Session 10

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Vorpal: Vector Clock Ordering For Large
Persistent Memory Systems

Kunal Korgaonkar Joseph Izraelevitz

kkorgaon@eng.ucsd.edu jizraelevitz@eng.ucsd.edu
UC San Diego UC San Diego
ABSTRACT

In systems with non-volatile main memories (NVMMs), program-
mers must carefully control the order in which writes become
persistent. Otherwise, what will remain in persistence after a crash
may be unusable upon recovery. Prior art has already explored
semantic models for specifying this persist order, but most en-
forcement algorithms for the order are not scalable to large server
machines because they assume that the machine contains only one
or two memory controllers. In this paper, we describe a collection of
provably-correct algorithms for enforcing the persist-order across
writes, generated at many different cores, and persisted across nu-
merous different memory controllers. Relative to existing solutions,
our algorithms improve performance by 48% by reducing both
traffic and serialization overheads.

ACM Reference Format:

Kunal Korgaonkar, Joseph Izraelevitz, Jishen Zhao, and Steven Swanson.
2019. Vorpal: Vector Clock Ordering For Large Persistent Memory Systems.
In 2019 ACM Symposium on Principles of Distributed Computing (PODC ’19),
Fuly 29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3293611.3331598

1 INTRODUCTION

Non-volatile main memories (NVMM:s), such as phase-change mem-
ory (PCM) [46], resistive RAM (ReRAM) [38], and 3D Xpoint [31],
are likely to bring profound changes to many aspects of computer
systems. Like DRAM, these devices are byte-addressable, and pro-
grams interact with them using the traditional load/store (read-
/write) interface. Unlike DRAM, but like disk, these devices are
non-volatile — their contents are guaranteed to survive a power
outage. As such, NVMMs are poised to provide a medium for fast,
durable storage. Given their non-volatile property, NVMM are also
referred to as persistent memories.

Unfortunately, from the perspective of durable storage, NVMM:s
are somewhat undermined by the fact that processor caches and

This work was supported in part by CRISP, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA. We thank our shepherd,
Marc Shapiro, for his valuable guidance in writing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODC °19, July 29-August 2, 2019, Toronto, ON, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6217-7/19/07...$15.00
https://doi.org/10.1145/3293611.3331598

435

Jishen Zhao Steven Swanson
jzhao@eng.ucsd.edu swanson@eng.ucsd.edu
UC San Diego UC San Diego

registers lose their contents on power failure. Consequently, barring
additional effort, data in NVMMs is likely to be unusable after a
power failure because processor caches and registers lose their
contents on power failure — what will survive in NVMM is that
data that was not held within the cache hierarchy at the time of
failure. As a consequence, NVMMs require programs to carefully
control the order in which their writes reach persistent memory.
A failure in the middle of a linked-list insertion, for example, may
lead to a post-crash dangling reference, if the “next” pointer of
the predecessor node is written into persistent memory while the
pointed (inserted) node itself remains in a cache.

To give programmers a tool to manage the order of writes to per-
sistent memory, modern ISAs provide a memory persistency model,
which is a set of instructions that control the order in which writes
to NVMM become persistent, such that they will be visible after
a power failure [35]. The memory persistency model is specified
in conjunction with of the similar, yet, different, memory consis-
tency model, which describes the order in which concurrent threads’
updates become visible to each other. These models are generally
orthogonal (two ISAs might implement the same persistency model
on top of different consistency models), but their interactions are
generally tightly coupled — a persistency model might leverage the
memory consistency model to induce orderings.

A growing body of research [20-23, 32, 35, 40, 41] explores ISAs
and supporting micro-architectures to enforce these ordering con-
straints. Despite this previous work, scalability of persistence or-
dering support still remains an issue for NVMMs. Most previous
work only considers the ordering of NVMM writes through one or
two memory controllers [4, 20-23, 32, 40], but modern servers can
include many memory controllers scattered across multiple sock-
ets [15]. Enforcing ordering constraints between writes generated
at many different cores and written into NVMM (that is, persisted) at
many different memory controllers requires an efficient algorithm
to capture and enforce these constraints.

In this paper, we propose a set of novel distributed algorithms for
ordering writes to persistent memory on a large, shared-memory
computer system. Our collection of algorithms, which we call Vector
ORdered Persistence ALgorithms (Vorpal), uses a vector clock [12,
30] representation to (1) construct a partial order over the writes to
NVMM and (2) efficiently enforce their order at multiple memory
controllers.

In particular, this paper makes the following contributions:

e We describe a basic vector clock algorithm for enforcing
write order to persistent memories and demonstrate that
it can implement the acquire-release memory persistency
(ARP) model, defined in Section 2.2.3.

e We address the scalability problems in vector clocks as a
write ordering mechanism in cache-coherent, shared-memory

