Session 9E: Web Censorship and Auditing

CCS ’19, November 11-15, 2019, London, United Kingdom

Geneva: Evolving Censorship Evasion Strategies

Kevin Bock
University of Maryland

Xiao Qiang
UC Berkeley

ABSTRACT

Researchers and censoring regimes have long engaged in a cat-and-
mouse game, leading to increasingly sophisticated Internet-scale
censorship techniques and methods to evade them. In this paper,
we take a drastic departure from the previously manual evade-
detect cycle by developing techniques to automate the discovery
of censorship evasion strategies. We present Geneva, a novel ge-
netic algorithm that evolves packet-manipulation-based censorship
evasion strategies against nation-state level censors. Geneva com-
poses, mutates, and evolves sophisticated strategies out of four basic
packet manipulation primitives (drop, tamper headers, duplicate,
and fragment). With experiments performed both in-lab and against
several real censors (in China, India, and Kazakhstan), we demon-
strate that Geneva is able to quickly and independently re-derive
most strategies from prior work, and derive novel subspecies and
altogether new species of packet manipulation strategies. Moreover,
Geneva discovers successful strategies that prior work posited were
not effective, and evolves extinct strategies into newly working
variants. We analyze the novel strategies Geneva creates to infer
previously unknown behavior in censors. Geneva is a first step
towards automating censorship evasion; to this end, we have made
our code and data publicly available.

CCS CONCEPTS

« Social and professional topics — Technology and censor-
ship; « Computing methodologies — Genetic algorithms; «
General and reference — Measurement.

KEYWORDS

Censorship; Genetic Algorithms; Geneva

ACM Reference Format:

Kevin Bock, George Hughey, Xiao Qiang, and Dave Levin. 2019. Geneva:
Evolving Censorship Evasion Strategies. In 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS °19), November 11-15, 2019,
London, United Kingdom. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3319535.3363189

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11...$15.00
https://doi.org/10.1145/3319535.3363189

2199

George Hughey
University of Maryland

Dave Levin
University of Maryland

1 INTRODUCTION

Multiple nations around the world today engage in country-wide
censorship of Internet traffic. Although there are many forms of
censorship—including political pressure [34] and outright blocking
of certain protocols [10, 17]—the most pervasive form of online
censorship involves in-network monitoring and censoring of for-
bidden keywords. China [48], Pakistan [29], and more [34] deploy
on-path monitors—similar to network intrusion detection systems
(NIDS) [21]—to detect and tear down network connections that
carry a prohibited word or domain name. The distinguishing fea-
ture of such on-path censors is that they are not one of the hops
in the target’s communication path; rather, they monitor copies of
packets and inject new packets (e.g., TCP RSTs) to interfere with
connections they deem to be inappropriate.

One approach to circumvent on-path censorship is to perform
client-side packet manipulation to confuse censors into not tearing
down connections. The high-level insight is that on-path censors—
like all NIDS—must maintain per-flow state in order to track TCP
connections. If this state can be invalidated, then the censor will be
unable to tear down the connection (e.g., if the censor perceives the
wrong sequence numbers) or simply will not try to do so in the first
place (e.g., if it believes the connection has already been terminated).
For instance, sending a TCP RST packet with a TTL large enough
to reach the censor but too small to reach the destination will make
the censor’s state (the connection has been terminated) inconsistent
with the destination’s (the connection is ongoing) [21].

For years, security researchers have been engaging in a cat-and-
mouse game, developing new packet-manipulation-based evasion
strategies, and updating censors to identify and defeat them. Un-
fortunately, censors have an inherent advantage: discovering new
censorship evasion schemes is a laborious, manual process (par-
ticularly for successful packet manipulation schemes), typically
involving researchers first measuring and understanding how a par-
ticular censor works before developing evasion strategies [33, 41].
As a result, when a new censorship technique is deployed, there
can often be considerable loss of availability until the technique is
measured, reverse-engineered, and circumvented [26, 37].

In this paper, we take a drastic departure from the previous evade-
detect cycle in censorship evasion. We present Geneva!l, a genetic
algorithm that automatically evolves censorship evasion strategies
against nation-state censors. As with all prior packet-manipulation-
based schemes, Geneva takes advantage of the fact that nation-state
censors employ incomplete implementations of networking stacks.
As a result, Geneva is able to run exclusively on the client-side and
requires no cooperation from other hosts, including the intended
destination. Unlike prior approaches, however, Geneva discovers

1 Genetic Evasion.

https://doi.org/10.1145/3319535.3363189
https://doi.org/10.1145/3319535.3363189
https://doi.org/10.1145/3319535.3363189

Session 9E: Web Censorship and Auditing

packet manipulation strategies on its own, with no prior knowledge
of the censor’s implementation (nor shortcomings thereof).

The primary technical challenge behind designing a genetic al-
gorithm for censorship evasion is in balancing between the breadth
of strategies it can explore and the efficiency in finding successful
strategies. On one extreme, we could permit the genetic algorithm
to perform arbitrary bit manipulations; this could eventually learn
all strategies, but would likely take an inordinate amount of time to
do so. On the other extreme, we could permit it to only perform the
packet manipulations discovered in prior work; this would likely
be efficient, but risks being confined only to rediscover established
techniques. One of our key contributions is a design that balances
breadth with efficiency: drawing inspiration from modular router
designs [23], Geneva composes sophisticated packet manipulation
strategies out of basic primitives.

We have implemented Geneva and evaluated it against the Great
Firewall (GFW) of China, ISP censorship in India, and HTTPS inter-
ception in Kazakhstan. Our results show that Geneva is highly suc-
cessful at discovering new strategies quickly and efficiently. Across
27 experiments against the GFW, Geneva discovered 4 unique
species, 8 subspecies (5 of which are novel), and 21 fundamentally
different variants of these subspecies. Against both India and Kaza-
khstan, Geneva discovers 5 species. In in-lab experiments, Geneva
independently re-derived 30 of 36 strategies suggested by prior
work (failing to generate only the strategies for which we did not
give Geneva the building blocks to express, such as sleeping be-
tween packets). Moreover, Geneva is efficient: Geneva re-derives
all strategies in a manner of hours.

Contributions We summarize our contributions as follows:

e We present Geneva, a novel genetic algorithm that efficiently
and independently discovers new packet manipulation strate-
gies to circumvent on-path censorship.

We present a detailed evaluation of Geneva using experiments
both in-lab and against China, India, and Kazakhstan, and ana-
lyze the circumvention strategies that Geneva has discovered.
We show that Geneva is able to re-derive almost all previously
published evasion strategies, derive successful strategies that
prior work posited were ineffective, and derive two altogether
new species of evasion strategy.

We also show that several evasion strategies that were suc-
cessful in prior work have since become extinct, but that by
seeding Geneva with extinct approaches, it can evolve them
into new, successful strategies.

2 BACKGROUND
2.1 On-Path Censorship

A key component to the design of most nation state censors, includ-
ing the GFW, is that they cannot rely entirely on in-path censorship.
In-path censorship is the type of traffic monitoring most network
administrators are familiar with: a direct man-in-the-middle for ev-
ery connection where the censor processes every individual packet.
In-path censors represent a stronger attack model, as they have the
power to directly manipulate or drop traffic. However, in-path sys-
tems are more computationally expensive to run, and can impose a
higher level of overhead to traffic processing. Therefore, although

2200

CCS ’19, November 11-15, 2019, London, United Kingdom

the GFW does have in-path components (it maintains a relatively
small IP blacklist, and any packets sent to IPs on that blacklist will
be immediately dropped by the GFW [45]), the majority of cen-
sorship performed by the GFW is done through “man on the side”
attacks, or “on-path” censorship. “On-path” or “man-on-the-side”
systems can see traffic going by, but sit physically outside the net-
work path—these censors can view traffic, but generally cannot
modify or drop the traffic. As a consequence, when the on-path
system wants to censor or terminate a connection, it does so by in-
jecting packets into the stream to disrupt it. For example, to censor
a TCP connection, the GFW injects TCP RST packets; Airtel’s ISP
injects a fake response with an HTTP block page.

The backbone of most nation-state level censorship today is Deep
Packet Inspection (DPI), which operates similarly to most NIDS.
In order to perform DPIL, any inspecting NIDS must have a near-
complete implementation of the relevant payload stack (such as
TCP/IP). In particular, stateful analysis of TCP connections requires
NIDS to track information about the state of each connection, such
as with Transmission Control Blocks (TCBs). It is up to the specific
censor implementation to decide when to begin tracking state for a
given connection; for example, it can choose to do so only after a
valid three-way handshake [21], but also can do so based on more
partial observation, such as the presence of a SYN flag. Due to the
vast number of active connections, another important consideration
for the censor is to decide when to stop maintaining state for a
given connection. Monitors can commonly “tear down” their TCB
for a given connection when a FIN handshake is done, or in the
presence of valid RST packets [41].

2.2 Packet-manipulation-based Evasion

Censors typically “soft-fail”—if a packet arrives for which the cen-
sor has no matching state or mechanism to decide whether or not to
censor the packet, the monitor does not censor the connection. For
example, if a packet is not on any IP blacklist and has no matching
TCB for stateful analysis, the censor will default to allowing the
connection. Additionally, due to differences in protocol stack imple-
mentation at various endpoints, previous work has suggested that
no NIDS will be capable of perfectly reconstructing a packet stream
in a way that mimics the end host [31]. Many of these middleboxes,
NIDS, and DPI systems also run incomplete TCP/IP stacks [33].

Discrepancies between how these systems handle TCP packets
present an opportunity for censorship evasion. If a client sends
specifically crafted packets, it is possible to trick a NIDS into desyn-
chronizing or deactivating the TCB for a given connection, or even
into ignoring the traffic completely, allowing the rest of the pack-
ets of the connection to pass through uncensored. As the censor
soft-fails and functions primarily as an on-path system, this is tanta-
mount to a successful defeat of the censor. Importantly, this does not
require support or cooperation from outside the censoring regime.
Evasion can be accomplished simply by altering the packet stream
on the client side.

A packet-manipulation-based evasion strategy is a sequence of
packet manipulations (modifying, adding, or dropping packets) to
evade a censor. Prior work has suggested different strategies that
can be used to invalidate the state that censors maintain. Here, we
discuss three recent efforts that are highly relevant to our design

Session 9E: Web Censorship and Auditing

and evaluation; we review related work more broadly in §7 and we
summarize these papers’ strategies in Table 3 in the appendix.

Khattak et al. [21] In 2013, Khattak et al. [21] crafted 17 different
evasion strategies to exploit specific implementational weaknesses
against the GFW. Though a follow-up study [41] found most of the
strategies to be ineffective in 2017, Geneva identifies some strategies
that fall within their taxonomy that are still highly effective today.

INTANG [41] In 2017, Wang et al. [41] released a comprehensive
work on evaluating the GFW. They developed a suite of highly effec-
tive hand-crafted strategies, and their open-source system INTANG
could systematically identify the best evasion strategy from this
suite for a given server and network path. They perform empirical
tests regarding the behavior of the GFW, and make hypotheses on
previously unknown updates to the GFW.

lib-erate [33] Li et al. [33] studied numerous middlebox traffic
classifiers in their 2017 work, and pioneered automated work of
identifying traffic differentiation. Once traffic differentiation is de-
tected, their system could choose from a library of pre-built evasion
techniques to evade the censor. They tested their work on many
censorship regimes, including the GFW, and many of the censorship
techniques they leverage are still relevant today.

Our system, Geneva, takes a drastically different approach from
those described in each of these three papers. Each of these works
developed strategies empirically by hand, informed by human
interaction with the censor. Although some work has included
highly successful automated components [33, 41], these amounted
to choosing from a pre-built library of evasion techniques based
on the network path, application, or server. Geneva, on the other
hand, derives the evasion techniques itself, and can thus naturally
adapt to different deployment scenarios.

2.3 Packet Manipulation Strategy Taxonomy

When comparing strategies, it is useful to define a taxonomic rank;
we use species, subspecies, and variants. The highest level classifi-
cation is species, a broad class of strategies classified by the type of
weakness it exploits in a censor implementation. TCB Teardown is
an example of one such species; if the censor did not prematurely
teardown TCBs, all the strategies in this species would cease to
function. Within each species, different subspecies represent unique
ways to exploit the weakness that defines the strategy. For exam-
ple, injecting an insertion TCP RST packet would comprise one
subspecies within the TCB Teardown species; injecting a TCP FIN
would comprise another. Within each subspecies, we further record
variants, unique strategies that leverage the same attack vector, but
do so slightly differently: corrupting the checksum field RST/ACK
packet is one variant of the RST subspecies of the TCB Teardown
species; corrupting the ack field is another.

We refer to specific individuals as extinct if they once worked
against a censor but are no longer effective (less than 5% success
rate). As we show in §5, multiple species discussed in prior work, in-
cluding TCB Creation, Data Reassembly and Traffic Misclassification
are currently extinct. That formerly successful approaches could,
after a few years, become ineffective lends further motivation for a
technique that can quickly learn new strategies.

2201

CCS ’19, November 11-15, 2019, London, United Kingdom

3 Geneva DESIGN

Geneva’s goal is to automate the process of discovering new cen-
sorship evasion strategies. In this section, we describe its genetic
algorithm-based design in terms of its building blocks and how it
composes and evolves them over time. We begin by providing a
high-level overview of the approach.

3.1 Overview and Challenges

Genetic algorithms [7] are a biologically-inspired approach to au-
tomate algorithm design. They require three core components:
(1) genetic building blocks that provide a way to programmatically
represent different algorithms, (2) a fitness function to capture how
well a given algorithm performs, and (3) methods for performing
mutation and crossover to generate new algorithms. Iteratively, over
successive generations (rounds), genetic algorithms simulate evo-
lutionary natural selection: Given a set of individuals (candidate
algorithms), it runs each one to compute their fitness, allows only
some of the fittest to survive, and mutates or crosses-over the sur-
viving ones to generate new individuals for the next generation.

One primary challenge faced in applying genetic algorithms to
censorship evasion lies in how many degrees of freedom we permit
in its genetic building blocks. On the one hand, we could allow
virtually unlimited degrees of freedom by, say, treating all packets
merely as bit strings and allowing the genetic algorithm to construct
strategies out of bit flips, bit removals, and bit insertions. Such an
approach would eventually learn virtually any possible strategy,
but would require an inordinate amount of time to do so. On the
other extreme, we could use existing evasion strategies from prior
work as building blocks; this would learn more quickly, but risks
“over-fitting” to the strategies that are already known. Therefore,
Geneva needs genetic building blocks that balance between finding
new strategies and finding them efficiently.

3.2 Geneva’s Genetic Building Blocks

Strategies in Geneva comprise a set of (trigger, action tree) pairs.
Packets that match a given trigger (for instance, all TCP packets
with the ACK flag set) are modified using the corresponding se-
quence of actions in an action tree. We permit Geneva to evolve
the triggers, the structure of the action trees, and the properties of
the individual actions themselves.

Here, we present the design of triggers, actions, and action trees,
as well as a syntax that comprises the genetic code of individuals
to unambiguously describe Geneva strategies.

Triggers Triggers represent fields in a packet header that, when
matched, cause packet manipulation actions to be applied. In this
work, we have restricted triggers to span only TCP and IP, though
adding support for additional protocols is straightforward in our
implementation. Triggers are expressed with the following syn-
tax: [PROTOCOL : FIELD: VALUE]. For example, [TCP:flags:R] is a
trigger that fires when the TCP field flags is set to RST. Geneva
requires exact matches: for instance, a packet with only the TCP
RST flag set would not match a trigger for [TCP: flags:RA].

Actions To balance expressiveness with efficiency, we permit four
distinct packet-level actions:

Session 9E: Web Censorship and Auditing

1. duplicate(A;, Az) copies a packet and applies action se-
quence A to the original packet and Ay to the duplicate.

. fragment{protocol:offset:inOrder}(A;, Ay) fragments
or segments the packet (depending on if the protocol is set to IP
or TCP) at a specific byte of fset, applies A; to the first fragment,
Aj to the second, and optionally returns them inOrder.

. tamper{protocol:field:mode[:newValuel}(A;) alters the
given field of a packet and then applies action sequence A; to
it. tamper always tries to keep the packet in a valid state unless
otherwise directed, and will recompute the headers’ checksums
and/or lengths if needed (unless field is a checksum or length).
Note that if the specified field is optional and not present, such
as a TCP option, it will be added to the packet. tamper has two
modes of operation: replace and corrupt. replace:newValue
sets the given field of the packet to newValue. corrupt re-
places the given field of the packet with a random value of
the same bitsize (a new random value is selected each time the
action is invoked).

4. drop causes a given packet to be dropped.

Action Trees Geneva’s actions are composed to form a binary
tree: duplicate and fragment both have two children; tamper has
one child; and drop has no children. An action tree encapsulates a
packet modification scheme—each packet that matches the associ-
ated trigger enters at the root of the tree and is passed down via
in-order traversal to the actions of the tree. Packets that emerge
at the leaves are sent on or accepted from the wire. We refer to an
ordered list of (trigger, action tree) pairs as a forest, and forests can
be combined to represent a strategy. Triggers need not be unique
within a forest—if multiple action-trees have the same trigger, each
action-tree is given its own fresh copy of the original packet, and
runs serially, in isolation, in the order the trees exist in the forest.
Note that action-trees are stateless, and operate only on singular
packet inputs (though they may result in sending multiple packets).
An interesting area of future work would be to extend Geneva to
operate over packet streams.

Outbound vs. Inbound We allow Geneva to evolve action-trees
for both inbound and outbound packets. A strategy in Geneva is
thus two components: an inbound and outbound forest of triggers
and action-trees. This lets Geneva independently alter outgoing
packets and alter (or ignore) incoming packets. Due to limitations
of NFQueue, branching actions (duplicate and fragment) are dis-
allowed in inbound forests. We represent the overall strategy syn-
tactically as outbound-forest \/ inbound-forest.

Example To demonstrate Geneva’s syntax, consider the follow-
ing:

Strategy 1: TCB Turnaround / RST Drop

[TCP:flags:S]-
duplicate(
tamper{TCP:flags:replace:SA}(
send),
send)-| \/
[TCP:flags:R]-drop-|

2202

CCS ’19, November 11-15, 2019, London, United Kingdom

This example strategy has one outbound and one inbound tree.
The first (outbound) action-tree duplicates outgoing SYN packets;
it replaces the first copy’s TCP flags with SYN/ACK before sending
it. It then sends the second copy of the SYN packet unmodified. On
the inbound forest, the only action-tree triggers on RST packets
and drops them. Collectively, this strategy implements a hybrid of
two previously known strategies: TCB-Reversal [41] (characterized
by sending a SYN/ACK before the three-way handshake) and RST-
Drop [6]. (Unfortunately, as we will see in Section 5, both halves of
this hybrid species are now extinct against the GFW.)

Expressiveness Note that Geneva’s genetic building blocks re-
flect the set of packet manipulations that can occur at the IP layer:
as a result, we posit that they can be composed to generate any
packet stream. To evaluate this hypothesis, we tested whether it was
possible to express all prior work’s strategies [21, 33, 41] through
combinations of duplicate, fragment, tamper, drop, and send
alone. Indeed, we were able to express 30 (83.3%) of the 36 pre-
viously published strategies—the only exceptions were strategies
that (1) manipulated HTTP packets, as was done by Khattak et
al. [21], and those that (2) paused for 40-240 seconds, as was done
by lib-erate [33]. These are not fundamental limitations: one could
easily extend Geneva to support HTTP manipulation or sleeping
through tamper actions. For this paper, we chose to limit Geneva
to only manipulate IPv4 and TCP (as this was the central focus
of most prior work), and not to include pauses: including pauses
would significantly slow down training time. As we will show in §4,
Geneva was able to independently discover all of these 30 strategies
in in-lab experiments, and it discovered many more strategies when
trained against a live censor: China’s GFW. Geneva automatically
derives these strategies through the process of evolution, which we
describe next.

3.3 Evolution

Geneva automatically derives censorship evasion strategies through
evolution, which takes place over a series of discrete generations.
Each generation comprises multiple individuals (strategies, rep-
resented as inbound and outbound forests of action-trees), and
includes three broad steps: (1) mutation and crossover, (2) eval-
uation of individuals’ fitness, and (3) selection of individuals to
survive to the next generation.

Population Initialization We explored two ways to initialize
Geneva’s population. For most of our experiments, we randomly
generated an initial population of individuals. We generated 200
individuals, each with random but valid action-trees with precisely 3
actions each. Additionally, we explored seeding the population with
“extinct” strategies. With a population seed, the initial population
is comprised of duplicates of the seed: this allows the algorithm to
focus evolution on improving a given strategy.

Mutation As in biological systems, Geneva’s genetic building
blocks can be altered through random mutations. Mutations can
occur at the level of actions, action-trees, and entire individuals.
Each action mutates in the following ways:

e duplicate mutations swap the order of the children (ie.,
duplicate(A;, Az) — duplicate(Az, Aj)).

Session 9E: Web Censorship and Auditing

e fragment mutations change the protocol (fragmentation or
segmentation), the order of the packet fragments, or the frag-
mentation index.

e tamper mutations depend on the mode it is in: replace mode
mutations can alter the field they replace or the new value it
changes it to, whereas corrupt mode mutations can alter the
field it corrupts. Both modes can mutate to the other mode.

e drop does not support mutations.

Triggers can also be mutated similarly to the tamper action: the
protocol, field, or value to trigger on may be changed.

To mutate an action tree, one of four primitives is applied with
some configurable probability?: a new action can be chosen at
random and added to the tree in a random location (20% probability
in our implementation), an existing action can be removed from the
tree (20%), the trigger can be mutated (20%), or one of the actions
can be mutated (40%).

An individual (which in turn comprises outbound and inbound
action-forests) can be mutated in one of four ways, also with config-
urable probability: a new random action tree can be added to one of
its forests (10%); an existing action tree can be removed from one of
its forests (10%); trees in its forests can be reordered (5%); or specific
trees within each forest can be mutated (25%). In each generation,
each individual is mutated with a configurable probability (90%).

As actions and triggers must operate on real-world packet data,
it is challenging to mutate the actions or triggers in such a way
that it results in packet values that are seen in the real world. For
example, if the algorithm was to mutate the TCP flags header field
to a valid random value (any value from 0-65535) it would very
rarely choose a valid combination of TCP flags. Therefore, during
mutation, actions and triggers are given access to a packet capture of
their previous run against a censor. The triggers (and tamper action)
can draw from the values contained in real packets to mutate.

Drawing from real packet captures also confers a second advan-
tage to the evading system. If the censor interacts with the strategy
(e.g., by forging RST packets), these injected packets will be avail-
able in the packet capture for the action system to draw from and
use for mutation. This allows action trees to find triggers that apply
only to injected packets.

Crossover Unlike mutations—which are random perturbations of
singular strategies or actions—crossovers serve as a form of “breed-
ing” between two different individuals. To perform crossover, two
individuals are chosen at random from the population pool, and one
of the following occurs. Trees in each action forest are randomly
swapped, or a randomly chosen tree in each forest is mated with a
randomly chosen tree from the other. To mate two trees, an action is
chosen from each tree, and the subtrees of that action are swapped
between each tree. If each action forest for a specific direction only
has one tree, crossover will be applied using the second mechanism.

In each generation, crossover is applied between every other in-
dividual in the pool with a configurable probability (40% by default).
In our implementation, crossover is applied before mutation.

2We verified that Geneva was still effective when each option was chosen with equal
probability. We chose our specific values based on our intuition during in-lab experi-
mentation, and leave a full parameter sweep optimization for future work.

2203

CCS ’19, November 11-15, 2019, London, United Kingdom

Fitness At the end of each generation, all individuals are eval-
uated for their fitness. Genetic algorithms rely on some domain-
specific fitness function when determining which individuals should
be allowed to survive to the next generation. Geneva evaluates
fitness by running directly against the censor. This way, Geneva
evolves in the presence of the real deployment, and can therefore
adapt to the details and idiosyncrasies of a particular censor’s im-
plementation.

To evaluate a given strategy, a Geneva client simply tries to
make a forbidden GET request through an actual censor (or a sim-
ulated censor, for in-lab testing), while the strategy runs on the
client side. The specific request depends on the censor: against
the GFW, Geneva makes an HTTP GET request with a forbidden
word, against India’s Airtel ISP, we make an HTTP GET request to
a blocked URL; against Kazakhstan’s HTTPS MITM, we make an
HTTPS request. Geneva assigns a positive numerical fitness metric
if the connection can properly finish; if the connection is censored
(is reset, blocked, or gets the injected certificate respectively), a
large negative value is added to the fitness. As we will see in §5,
some censors may not work 100% of the time. To prevent false
positives in strategy evaluation, Geneva evaluates each strategy
twice and records the lower of the two fitness scores.

Three additional adjustments are made to the fitness measure
to help refine and optimize successful strategies: First, the fitness
is punished if any vestigial action-trees are present—action-trees
whose triggers which are never fired during an evaluation. Punish-
ing for vestigial actions kills off strategies without effective triggers
early in the evolution process, allowing the framework to evolve
good triggers before it discovers fully functional action-trees, and
encourages pruning unused action-trees. Second, the fitness is pun-
ished for strategy overhead—the number of additional packets that
a strategy adds to the data-stream. Punishing for strategy overhead
encourages precise triggers (such as triggering only on PSH/ACK
packets, instead of every packet). Finally, the strategy is punished
for strategy complexity—a count of the number of actions across
all of the action-trees in the strategy to encourage succinct strate-
gies. Critically, punishments for strategy overhead and complexity
are applied only when the fitness of an individual is positive to
encourage the algorithm to explore the strategy space as much as
necessary in the early stages of evolution.

Selection In the final step of a generation, Geneva runs a selec-
tion tournament [14]. Some individuals are drawn at random (with
replacement) from the population; the highest-fitness individual
among them is added to the offspring pool. This process repeats
until the offspring pool is the same size as the population pool; then,
the offspring pool becomes the population for the next generation.

Selection tournaments have several benefits. High-fitness indi-
viduals have a greater probability of being selected for the next
generation—and because they are chosen with replacement, mul-
tiple copies of them are likely to be selected. This allows Geneva
to focus on improving promising strategies. While low-fitness in-
dividuals decrease in number, they have non-zero probability of
surviving to the next generation. This has the benefit of promoting
genetic diversity, thereby steering Geneva away from local maxima.

As the evolutionary framework will run for many generations,
it is possible to find a successful strategy, but mutate away from it

Session 9E: Web Censorship and Auditing

or break it in ensuing generations. To prevent the loss of successful
strategies as the algorithm progresses, the system maintains a “Hall
of Fame”: a global sorted collection of every individual the algorithm
has evaluated during a run. At the end of each generation, the Hall
of Fame is updated with the highest performing individuals.

Strategy Coverage The evolutionary process we have described
thus far does not, by itself, promote a broad exploration or coverage
of the strategy space. As we will see in Section 5, when running in
a real environment, some header fields have a higher probability
of contributing to a successful strategy. As a result, Geneva tends
to find them first, and there is no evolutionary pressure to deviate
from those individuals to find new strategies. To broaden coverage,
we add an optional meta layer on top of normal evolution: if, across
multiple consecutive experiments a particular header field is re-
peated across all of the successful strategies, Geneva can preclude it
from future training sessions. This encourages broader exploration
in other portions of the space of potential strategies.

3.4 Implementation

We implemented Geneva in approximately 6,000 lines of Python.
Geneva runs strictly at the client, and uses NetfilterQueue [30]
to interpose on (and possibly alter) all of the client’s outbound
and inbound packets. As a result, Geneva does not require any
modifications to the applications. To demonstrate this, we deployed
an unmodified Google Chrome browser on a client running Geneva
in China, and, using the strategies we present in §5, verified that
we were able to browse free of keyword censorship.

In its current implementation, Geneva requires root access—as
with all prior work on packet-manipulation-based censorship eva-
sion [1, 21, 33, 41, 44], root privilege is necessary for most of their
packet manipulations. However, we demonstrate in §5 that Geneva
is also able to find strategies that operate strictly through TCP
segmentation. Strategies such as these could be deployed without
root privilege. Recall that Geneva currently only supports modifi-
cations of IP and TCP packets; it would be straightforward to also
add application-layer modifications, in the form of new tamper
primitives for HTTP, DNS, and so on. These would not require root
privilege, and given prior successes at application-layer manipula-
tions [21, 33], we speculate that Geneva would also fare well, but
this is beyond the scope of this paper.

4 VALIDATION

In this section, we validate Geneva’s design by investigating whether
it can re-derive strategies found from prior work [33, 41]. Unfortu-
nately, the techniques employed by censors are not guaranteed to
be the same today as when these prior studies were performed. To
achieve a fair comparison, we have implemented mock censors that
exhibit the behavior reported in prior work, and validate against
them in a controlled environment.

Mock Censors We first developed a suite of mock censors (11 in
total) to mimic specific aspects of nation-state censor behavior as
hypothesized by previous researchers [3, 29, 33, 41]. This includes
on-path censors injecting TCP RST packets to disrupt a connection
(China), varied TCB synchronization/teardown behavior (China,

2204

CCS ’19, November 11-15, 2019, London, United Kingdom

Iran), in-path censors dropping packets (India, China), TCB resyn-
chronization behavior (China), and so on. A full list of the censors
we developed is included in the appendix.

We implemented a Dockerized [27] evaluation system for Geneva
to train against these censors. We ran each strategy in an isolated
environment with three containers (a client, a mock censor, and
server). We isolated each training session from the others, with a
starting population pool of 1,000 individuals, capped at 50 genera-
tions. In the lab setting, Geneva evaluated 3-5 strategies per second,
and each generation took 4.4 minutes on average to complete.

Validation Results Geneva found successful strategies against
every mock censor. We analyzed the strategies that Geneva dis-
covered and found that, of the 36 strategies suggested by previ-
ous work [21, 33, 41], Geneva automatically re-derived 30 (83%)
of them. The strategies that Geneva did not find are not possible
to create with our genetic building blocks (drop, tamper headers,
duplicate, and fragment). Specifically, Geneva did not rediscover
the ability to delay packet transmissions [33, 41], perform state ex-
haustion [21, 41], or perform HTTP-specific tweaks [21] (Geneva
was not given the HTTP protocol structure to perform specific
minor modifications).

In addition to learning simple behavior against weak censors,
Geneva finds strategies in the TCB Creation, Data Reassembly, and
TCB Teardown species, and learned more complex behavior. For
example, prior work theorized that the GFW would enter a “resyn-
chronization state” after a RST or RST/ACK, and that the GFW up-
dates its TCB with the next packet in the stream. Such a feature
would allow it to recover to continue censoring a connection, even
after an injected insertion RST [41]. Against a similar censor in
the lab, Geneva evolved a strategy that injects an insertion RST
packet after the connection is established, then injects an insertion
packet with an invalid sequence number. Geneva also evolved strat-
egy variants with additional behavior, such as TCB Turnarounds,
various fragmentation attacks, and different forms of TCB tear-
down [16, 33, 41]. While training in the lab, Geneva identified 9
now-patched bugs in scapy [35], a bug in Docker for Mac [27], and
a bug in NetfilterQueue [30].

All of the discovered strategies require only 1-2 action trees
in the outbound forest to express; besides the initial strategy of
dropping inbound RSTs, none of the strategies relied on the inbound
forest at all (Geneva typically pruned them quickly).

Why does Genevawork? At first glance, it seems counter-intuitive
that Geneva would be effective at searching the space of strategies:
after all, there is no continuous cost function against which it can
gradient descent (changing one TCP flag can cause the entire con-
nection to terminate). Yet, Geneva finds a working strategy in all
of its experiments (which comprise at most 10,000 individuals). By
comparison, when we run a strawman scheme that simply gen-
erates random strategies, it found no working strategies until we
manually assisted it by handing it working triggers, and even then
it only found one working strategy after 100,000 individuals. Why
is Geneva so much more effective?

Observing Geneva’s strategies throughout the duration of its ex-
periments, we can broadly classify four major “development phases”
that Geneva naturally goes through. First, Geneva learns which
triggers are relevant; in early generations, individuals try a highly

Session 9E: Web Censorship and Auditing

variable number of triggers, but those who randomly generate rele-
vant triggers receive higher fitness, and the selection tournament
converges on a set of workable triggers. Second, Geneva learns how
not to kill the ongoing TCP connection; action trees that have at the
root tamper{TCP:chksum: corrupt} are likely to be doomed—such
action trees get very low fitness and are thus likely to be weeded out
in the selection tournament. Third, with working TCP connections,
Geneva tends to tweak its action trees through mutation, crossover,
and mating to iterate on various modifications that ultimately trick
the censor. Finally, with working strategies, Geneva’s fitness func-
tion punishes strategies with more actions; thus mutations drive it
towards smaller strategies until a local minimum is reached.

We emphasize that we did not encode these various “stages”
into Geneva: these emerge naturally from its genetic algorithm and
fitness function.

These in-lab validation experiments demonstrate that Geneva’s
genetic building blocks are expressive enough to span a wide range
of strategies, and that our evolutionary process is effective at finding
successful ones. Next, we evaluate against real world censors.

5 EVALUATION AGAINST REAL CENSORS

We have three high-level questions in evaluating Geneva: (1) Can
Geneva find successful circumvention strategies efficiently when
training against a real censor? (2) What novel strategies can Geneva
find against a real censor? and (3) Does Geneva generalize to multi-
ple censoring regimes?

To answer these questions, we ran Geneva against three nation-
state censors: China’s Great Firewall, India’s ISP-based censorship
(Airtel), and Kazakhstan’s recent HTTPS MITM infrastructure. Ta-
ble 1 lists the success rates, descriptions, and taxonomy of all strate-
gies and strategy variants Geneva found against these censors.

5.1 Experiment Setup

Vantage points We used VPSes in Mainland China from four
vantage points (Shanghai, Zhengzhou, Shenzen, and Beijing); in
India, we used VPSes in Bangalore; and in Kazakhstan, VPSes in
Almaty and Qaraghandy. Censorship strategies can vary based on
ISP, routing path, or egress points [41, 49], but we observed no
significant difference in the success rate between any two of our
vantage points in any of the countries we tested. Nonetheless, it is
possible that running Geneva from more locations would result in
more varied success rates, or different strategies entirely.

Initialization In each evolution experiment we performed, we
initialized Geneva with a set of individuals generated at random,
each with three actions and one trigger (all selected and parameter-
ized with random values), and disallowed it from accessing results
from previous runs. We configured each training session with a
starting pool of 200 individuals, and capped it at 50 generations,
or until population convergence occurred (whichever came first).
On average, each generation generated approximately 500KB in
outbound traffic and 2MB in inbound traffic. Each generation took
5-10 minutes to complete; overall, training sessions took 4-8 hours.

Triage Recall that during training, Geneva evaluates each strat-
egy in the population by making real connections to censored
resources as a part of the fitness function. To compute a success

2205

CCS ’19, November 11-15, 2019, London, United Kingdom

rate for a given strategy in a given country, we repeatedly evaluated
the strategy from each of our vantage points within the country
and averaged the success rates of each.

After Geneva completed its experiments, we then manually ana-
lyzed the set of successful strategies it found. To verify that all of
the actions in each strategy were strictly necessary, we manually
removed individual actions and verified that the strategy was no
longer successful as a result. To better understand why the strate-
gies were successful, we manually altered, removed, added, and
swapped actions. We emphasize that all manual changes were only
done as a post hoc analysis, and all strategies and strategy variants
presented herein were independently discovered by Geneva.

5.2 China: The Great Firewall

We focus specifically on GFW’s HT TP censorship. The GFW injects
RST packets if a forbidden word is included in the URL of an HTTP
GET request. The GFW also employs “residual censorship” [41]:
after a client makes a censored request to a given website, the GFW
forbids new connections between the client’s IP address and the
website’s IP:port pair for approximately 90 seconds.

To avoid residual censorship, we compiled a pool of destination
servers to train against by querying all sites from the Alexa Top
10,000 that are initially reachable with an HTTP GET but censored
when the request includes a forbidden word. This allows us to test
whether Geneva can be effective at evading keyword censorship of
real, popular websites. It also filters servers that are in the GFW’s IP
blacklist (e.g., Facebook or Google); those blocked by DNS; and those
hosted in-country (in which case the GFW may not necessarily be
in-between our machine and the server). We find 7,917 sites out of
the above 10,000 that were outside the GFW and not immediately
censored. This is similar to GreatFire’s census, which found that
147 of the top 1,000 Alexa sites are blocked in China [5]. While
evaluating Geneva, we chose sites at random, limited to only those
that were both accessible and not subject to residual censorship.

As previously shown [21, 33, 41], strategies deployed against
the GFW do not succeed or fail consistently; in fact, if no strategy
is used whatsoever, we find that it still succeeds 2.8% of the time.
Throughout this section and in Table 1, we include each strategy’s
success rate against the GFW.

We allowed Geneva to train against the GFW directly in 27
discrete, isolated experiments over 16 days. Geneva discovered
successful strategies in 23 of the 27 training sessions, across four
different species of strategy. Geneva failed to discover strategies
only when we heavily restricted its access to header fields, in an
effort to explore a broader set of strategies (e.g., it failed to identify
strategies when disallowed from accessing the entire TCP header).
Below, we detail several successful strategies from each of the four
species Geneva was able to discover against the GFW.

Species 1: TCB Desynchronization This species’ strategies in-
ject an insertion packet with a payload. The GFW treats the packet
as legitimate, so the GFW advances the associated TCB, desynchro-
nizing from the connection. Geneva quickly discovered this species;
every subspecies emerged within the first three generations.

The most common way Geneva exploits this weakness is with a
single outbound action-tree, triggered on PSH/ACK packets (which
contain the censored keyword). For instance, Strategy 2 creates an

Session 9E: Web Censorship and Auditing

insertion packet by duplicating the offensive packet, setting the
TCP data offset to 10, and corrupting the checksum.

Strategy 2: TCB Desynchronization

[TCP:flags:PA]l-duplicate(
tamper{TCP:dataofs:replace:103}(
tamper{TCP:chksum:corrupt}(send)),
send)-| \/

98% (CN)

Interestingly, this strategy sends the forbidden keyword twice (in
both duplicates’ payloads), seemingly increasing the likelihood of
detection. Yet, neither request elicits a RST from the censor. Why?

The first packet invalidates the checksum, but this only causes
the destination web server to ignore it, as the GFW does not verify
checksums. The first packet also increases the dataof's. This field
controls the size of the TCP header; increasing it causes a receiver
to interpret the beginning of the payload as additional bytes in the
TCP header. This is sufficient for the GFW to no longer identify
the payload as an HTTP request, and thus it ignores the keyword,
treats it as a legitimate part of the connection, and consequently
desynchronizes from the connection. The censor therefore ignores
the second packet altogether (the sequence number appears out of
window), but the destination server accepts it.

Geneva also identifies seven other unique variants that exploit
this issue using different combinations of header fields, operations,
and action trees; these are available in Table 1.

Species 2: TCB Teardown This species’ strategies inject an in-
sertion packet with TCP flags to trigger a teardown of the GFW’s
associated TCB before sending the censored request. Once the TCB
is torn down, the GFW ignores the connection’s subsequent pack-
ets. Others have identified this species [33, 41], but Geneva has
discovered new variants that reveal that the GFW works differently
than suggested by prior work.

The most successful TCB Teardown strategy, shown in Strategy 3,
has one outbound action-tree, triggered on ACK packets. It duplicates
the ACK; it sends the first one unaltered, and turns the second one
into a RST with a corrupted checksum before sending it. As with
Strategy 2, the server ignores the RST, but the GFW does not verify
checksums and accepts the packet.

Strategy 3: TCB Teardown Variant 1

[TCP:flags:A]-duplicate(send,
tamper{TCP:flags:replace:R}(
tamper{TCP:chksum:corrupt}(send)))-| \/

95% (CN)

Through mutation, Geneva also found a variant of Strategy 3
that swaps the two packets: the corrupted RST is sent before the
original ACK. This swap lowers the success rate to 51%. Through
additional mutation, Geneva discovered Strategy 4, which improves
this less successful variant by adding a second outbound action tree
that corrupts ACK packets. This improves the success rate to 92%.

To understand why Strategy 4 works, recall that when multiple
action trees fire on the same trigger, each is given a fresh copy of the
original packet. Thus, the third and final packet sent in this strategy

2206

CCS ’19, November 11-15, 2019, London, United Kingdom

Strategy 4: TCB Teardown Variant 2 92% (CN)

[TCP:flags:A]l-tamper{TCP:seq:corrupt}-|
[TCP:flags:A]-duplicate(
tamper{TCP:flags:replace:R}(
tamper{TCP:chksum:corrupt}(send)),
send)-| \/

is the original, uncorrupted copy, and the three-way handshake
is able to complete. The server ignores the other two, corrupted
packets, but the GFW does not.

According to prior work [41], Strategies 3 and 4 should not work
(at least, not nearly as well as they do). Prior work hypothesized that
the GFW may enter a “resynchronization” state upon seeing a RST
or RST/ACK packet [41]. In this case, once Strategy 4 sends the RST,
the GFW should resynchronize the TCB on the next packet in the
datastream (the original ACK) and resume censoring the connection.
If this were the case, then modifying Strategy 4 to move the first
action tree (with the corrupted ACK) to the end of the outbound
forest should be equally successful. However, this modification
causes the strategy’s success rate to plummet to 47%. Why?

These results indicate that the GFW is tracking the state of
the TCP three-way handshake, and sometimes enters a resynchro-
nization state only while the three-way handshake is unfinished.
Concretely, we update the resynchronization state hypothesis as fol-
lows: upon receiving a RST or RST/ACK packet before the three-way
handshake is complete, the GFW may enter the resynchronization
state (about 50% of the time) instead of tearing down the TCB. Fur-
ther, these strategies suggest that the GFW tracks the three-way
handshake without paying attention to sequence numbers: the mere
presence of an ACK packet is enough to fool the GFW into thinking
that the three-way handshake is complete.

Geneva also lends insight into how the GFW processes RST pack-
ets. Consider Strategy 5:

Strategy 5: TCB Teardown with Invalid Flags

[TCP:flags:A]-duplicate(send,
tamper{TCP:flags:replace: FRAPUN}(
tamper{IP:ttl:replace:10}(send))-| \/

96% (CN)

FRAPUN is a completely invalid combination of TCP flags, and
yet the strategy is still highly effective. We hypothesize that the
GFW is looking only for the presence of a RST flag to teardown the
TCB, and not validating that a legitimate combination of flags is
present in the packet. Table 1 shows variants of this strategy with
many other invalid combinations of TCP flags.

Species 3: Segmentation This species’ strategies take advantage
of how the GFW mishandles TCP payloads that are segmented
across multiple TCP packets.

The Segmentation species is fundamentally different than the
Data Reassembly species from prior work [21]. Data Reassembly
takes advantage of the censor’s inability to differentiate which
fragments or which data from fragments should be accepted. For
instance, some such strategies extend one segment with junk data
and overlap the second segment with the correct data. Prior work

Session 9E: Web Censorship and Auditing

CCS ’19, November 11-15, 2019, London, United Kingdom

Success Rate
Species Subspecies Variant Genetic Code CN [IN [KZ
None None None \/ 3% [0% [0%
[TCP:flags:PA]-duplicate(tamper{TCP:dataofs:replace:10}
Corrupt Chksum (tamper{TCP:chksum:corrupt},),)-| 98% 0% 100%
[TCP:flags:PA]-duplicate(tamper{TCP:dataofs:replace:10}
Small TTL (tamper{IP:ttl:replace:103},),)-| 98% 0% 100%
. [TCP:flags:PA]-duplicate(tamper{TCP:dataofs:replace:10}
Inc. Dataofs Invalid Flags (tamper{TCP: flags: replace: FRAPUN},))| 26% 0% 100%
[TCP:flags:PA]-duplicate(tamper{TCP:dataofs:replace:10}
Corrupt Ack (tamper{TCP:ack:corrupt},),)-| 94% 0% 100%
[TCP:flags:PA]-duplicate(tamper{TCP:options-wscale:corrupt}
TCB Desync Corrupt WScale (tamper{TCP:dataofs: replace:87,),)-| 98% 0% 100%
[TCP:flags:PA]l-duplicate(tamper{TCP:load:corrupt}
Corrupt Chksum (tamper{TCP:chksum:corrupt},),)-| 80% 0% 100%
[TCP:flags:PA]-duplicate(tamper{TCP:load:corrupt}
Inv. Payload Small TTL (tamper{IP:ttl:replace:8},),)-| 98% 0% 100%
[TCP:flags:PA]-duplicate(tamper{TCP:1load:corrupt}
Corrupt Ack (tamper{TCP:ack:corrupt},),)-| 87% 0% 100%
Simple Payload SYN [TCP:flags:S]-duplicate(, tamper{TCP:load:corrupt})-| 3% 0% 100%
Stutter Request Stutter Request [TCP:flags:PA]-duplicate(tamper{IP:1len:replace:64},)-]| 3% 100% 0%
[TCP:flags:Al-duplicate(, tamper{TCP:flags:replace:R} 5% 0% 0%
Corrunt Chksum (tamper{TCP:chksum: corrupt},))-| ’ ’ ’
P [TCP:flags:Al-duplicate(tamper{TCP:flags:replace:R} 51% 0% 0%
(tamper{TCP:chksum:corrupt},),)-| ’ ’ ’
[TCP:flags:Al-duplicate(, tamper{TCP:flags:replace:R}
e) 87% | 0% 0%
With RST Small TTL (tamper{IP:ttl:replace:103},))-|
[TCP:flags:Al-duplicate(tamper{TCP:flags:replace:R} 599 0% 0%
(tamper{IP:ttl:replace:93},),)-| ’) ’
[TCP:flags:Al-duplicate(, tamper{TCP:options-md5header:corrupt} 36% 0% 0%
Inv. md5Header (tamper{TCP:flags:replace:R},))-| ’ ’ ’
: cade [TCP:flags:A]-duplicate(tamper{TCP:options-md5header:corrupt} 44% 0% 0%
(tamper{TCP:flags:replace:RA},),)-| ’ ’ ’
[TCP:flags:Al-duplicate(, tamper{TCP:flags:replace:RA} 30% 0% 0%
Corrupt Chksum (tamper{TCP:chksum: corrupt},))-| ’ ’ ’
up u [TCP:flags:A]l-duplicate(tamper{TCP:flags:replace:RA} 66% 0% 0%
(tamper{TCP:chksum:corrupt},),)-| ’ ’ ’
[TCP:flags:Al-duplicate(, tamper{TCP:flags:replace:RA} 047, 0% 0%
Small TTL (tamper{IP:ttl:replace:10},))-| ’ ’ ’
[TCP:flags:Al-duplicate(tamper{TCP:flags:replace:RA} 579 0% 0%
. (tamper{IP:ttl:replace:10},),)-| ’ ’ ’
TCB Teardown With RST/ACK [TCP:flags:Al-duplicate(, tamper{TCP:options-md5header:corrupt} 047 0% 0%
Inv. mdsHeader (tamper{TCP: flags:replace:R},))-| ’ ’ ?
’ [TCP:flags:A]l-duplicate(tamper{TCP:options-md5header:corrupt} 48% 0% 0%
(tamper{TCP:flags:replace:R},),)-| ’ ’ ’
[TCP:flags:A]l-duplicate(tamper{TCP:flags:replace:RA} 43% 0% 0%
Corrunt Ack (tamper{TCP:ack:corrupt},),)-| ’ ’ ’
P [TCP:flags:Al-duplicate(, tamper{TCP:flags:replace:RA} 31% 0% 0%
(tamper{TCP:ack:corrupt},))-| ’ ’)
[TCP:flags:Al-duplicate(, tamper{TCP:flags:replace:FRAPUEN} 89% 0% 0%
c ¢ Chk (tamper{TCP:chksum: corrupt},))-| ’ ’ ’
orrup sum [TCP:flags:Al-duplicate(tamper{TCP:flags:replace:FRAPUEN} 487 0% 0%
(tamper{TCP:chksum:corrupt},),)-| ? ’ ’
[TCP:flags:Al-duplicate(, tamper{TCP:flags:replace:FREACN}
96% 0% 0%
Invalid Flags Small TTL (tamper{IP:ttl:replace:10},))-|
g [TCP:flags:A]-duplicate(tamper{TCP:flags:replace: FRAPUEN} 56% 0% 0%
(tamper{IP:ttl:replace:103},),)-| ’ ’ ’
[TCP:flags:Al-duplicate(, tamper{TCP:flags:replace:FRAPUN}
. 94% 0% 0%
Inv. md5Header (tamper{TCP:options-md5header:corrupt},))-|
’ [TCP:flags:AJ-duplicate(tamper{TCP:flags:replace:FRAPUEN} 5% 0% 0%
(tamper{TCP:options-md5header:corrupt},),)-| ’ ’ ’
With ACK Offsets [TCP:flags:PA]-fragment{tcp:8:False}-| 04% | 100% | 100%
Segmentation [TCP:flags:A]-tamper{TCP:seq:corrupt}-|
g Reassembly Offsets [TCP:flags:PA]-fragment{tcp:8:True}(, fragment{tcp:4:True})-| 98% | 100% | 100%
Simple In-Order [TCP:flags:PA]-fragment{tcp:-T:True}-| 3% 100% | 100%
. . [TCP:flags:PA]-duplicate(tamper{TCP:flags:replace:F}
Hybrid With FIN Cut Header (tamper{IP:len:replace:78},),)-| 53% | 100% 0%

[TCB Turnaround[TCB Turnaround[TCB Turnaround [[TCP:flags:

S1-duplicate(tamper{TCP:flags:replace:SA},)-| [3% [0%

[Invalid Options [Invalid Options [Corrupt UTO

[[TCP:flags:

PA]-tamper{TCP:options-uto:corrupt}-|

[3%] 100% [0%

|
[100% |
,‘

Table 1: Species, subspecies, and variants Geneva found (with success rates) against the GFW. For readability, we omit all “send”s
from the genetic code (e.g., duplicate(,) is equivalent to duplicate(send, send)). This is correct, syntactic sugar for Geneva.

2207

Session 9E: Web Censorship and Auditing

theorized that the GFW would accept the first packet to arrive
with a specific IP fragment, but the second packet to arrive with
a particular TCP segment [21]. Other Data Reassembly strategies
leveraged this to inject insertion segments or fragments, tricking the
GFW into accepting the wrong packet. Conversely, strategies from
the Segmentation species exercise no IP fragmentation, no segment
overlapping, and no inert packet injection—and can be performed
from within an application, without raw sockets. Nonetheless, these
are the only strategies Geneva has found to date that are highly
successful across all three countries we experimented in.

Geneva has discovered two main Segmentation subspecies that
are effective against the GFW. The first subspecies, shown in Strat-
egy 6, segments the HTTP request (triggered on the PSH/ACK) at 8
bytes and corrupts packets with only the ACK flag set:

Strategy 6: Segmentation with ACK 94% (CN)

[TCP:flags:PA]-fragment{tcp:8:True}(send,send)-|
[TCP:flags:A]-tamper{TCP:seq:corrupt}(send)-| \/

Corrupting the sequence number of the ACK packet breaks the
original three-way handshake, but the ACK flag set in the PSH/ACK
packet finishes the handshake. Table 1 lists additional variants.

One might expect that this strategy simply splits the forbidden
word across multiple packets, and that the GFW must not be prop-
erly reassembling the segments. However, this is not the case. Our
TCP payload is “GET /?search=ultrasurf”: the first segment is
“GET /7?se” and the censored word appears in its entirety in the
second segment. Changing the length of the censored word (e.g.,
to “falun-gong”) does not affect the strategy’s success rate.

Each component of Strategy 6 is required—for instance, it fails
without the corrupted ACK—but it works surprisingly well even as
many of the individual values vary. Decreasing the size of the first
segment to anything less than 8 is equally effective, but increasing
it to larger than 8 renders the strategy completely ineffective. The
length of the HT TP parameter does not affect the strategy’s success
rate. As long as the sequence number is altered and the segmenta-
tion index is less than or equal to 8, the GFW seems insensitive to
additional changes tried by strategy variants, such as corrupting
both the sequence and acknowledgement numbers.

The second subspecies Geneva discovered is even stranger:

Strategy 7: Multi-segmentation 98% (CN)

[TCP:flags:PA]-
fragment{tcp:8:True}(send,
fragment{tcp:4:True}(send, send))-| \/

This strategy produces three segments, the first of size 8, the
second of size 4, and the final containing the remainder of the
original packet. Again, this does not segment the keyword: applying
Strategy 7 to the original HT TP request results in segments (1) “GET
/7?se”, (2) “arch” and (3) “=ultrasurf HTTP/1.1\r\nHost...”.

In a post-hoc analysis of this strategy, we explored different val-
ues for the segment offsets m and n (m = 8 and n = 4 in Strategy 7).
We found that Strategy 7 works with near identical success rate so

2208

CCS ’19, November 11-15, 2019, London, United Kingdom

long as 0 < m < 8, m+ n > 12, and the second segment does not
contain “HTTP/1”. The strategy’s effectiveness is also unaffected by
the segment ordering.

Frankly, we do not yet fully understand why these strategies
work. We hypothesize that this species exploits the GFW’s inability
to match or identify the packet as HTTP, but it is still unclear why
Strategy 6 works; some interplay between how the GFW synchro-
nizes its TCB after the three-way handshake also affects its ability
to process segments.

The Segmentation species required significantly more genera-
tions to find than the previous two species. Strategy 6 emerged
after 23 generations, and it required 4 more generations to achieve
population convergence. Strategy 7 required 12 generations to iden-
tify. This implies that more nuanced strategies may simply require
more generations to find, and there exists an opportunity to identify
additional such strategies with a higher generation limit.

Overall, the Segmentation species is a significant departure from
previously hand-developed strategies. Unlike almost all strategies
from previous work [16, 21, 33, 41], Segmentation strategies do not
require insertion packets, and can be deployed without raw sockets
(let alone root privilege). Prior work has found that middleboxes
can drop certain insertion packets [33, 41], and the requirement of
root privilege may be a deployment barrier for some users. Thus,
evasion strategies that can be deployed without insertion packets
and without root privilege have an advantage of being more reli-
able and easier to deploy. Moreover, we believe it would be very
challenging for a human to develop such a strategy as it exploits
multiple instances of previously unknown dynamics with the GFW.

Species 4: Hybrid The final strategy Geneva discovered against
the GFW is so distinct from other strategies that we classified it
into its own species. The Hybrid species (Strategy 8) triggers on the
HTTP request (the PSH/ACK). Before sending the original request,
it sends a corrupted version, with the TCP flags set to FIN and the
IP length set to 78.

Strategy 8: Hybrid Species

[TCP:flags:PA]-
duplicate(
tamper{TCP:flags:replace:F}(
tamper{IP:len:replace:78}(send)),
send)-| \/

53% (CN)

This is not a variant of TCB Teardown: injecting a FIN packet is
not sufficient to trigger a teardown for the GFW [41]. Instead, this
strategy actually causes a desynchronization in the GFW. Why?

Recall that checksums are calculated over the entire packet’s
data, but as the packet propagates, only the bytes within the speci-
fied packet length will be sent. Thus, while the client sends a correct
checksum, the subsequent hops will recompute the checksum as be-
ing different than what the client sent. In other words, the network
assists in constructing a successful insertion packet.

The IP length change cuts the censored GET request at the Host:
header, after the censored word appears. Like with the Segmen-
tation species, this should be sufficient for the GFW to identify it
as a censored HTTP request—indeed, if we remove the FIN flag,

Session 9E: Web Censorship and Auditing

the strategy immediately fails. We hypothesize that the FIN packet
carrying a payload induces the GFW to enter the resynchronization
state, and causes it to resynchronize immediately on the current
packet. This resynchronization behavior is unusual. We believe the
GFW has made a special case for FIN packets with data (after one
such packet in a connection, there are usually no further packets to
resynchronize on). To test this, we instrumented a client to increase
the sequence number of the valid copy of the forbidden request by
the length of the injected packet payload (in this case, 38). The GFW
tried to tear down this connection, confirming our hypothesis.

Although Geneva discovered this strategy with a fixed IP length
(78), we find that any value works so long as only one HTTP header
is included in the injected packet. We do not understand why this is
the case. Our results suggest that the GFW has a separate processing
pipeline when in the resynchronization state which differs from
their regular protocol parsing. This allows us to exploit weaknesses
in this specific code path. It is this secondary bug exploitation that
makes this strategy a unique species.

This strategy also presents an interesting dilemma for the GFW
as it pertains to the resynchronization state. In examining the TCB
Teardown variants that only succeeded 50% of the time, our results
indicated that if the GFW were to enter the resynchronization
state more frequently, they would be better protected from TCB
attacks. However, this strategy demonstrates that it is not so simple:
though increasing the likelihood of resynchronization worsens
the performance of some of the TCB Teardown variants, it would
improve the Hybrid variants.

5.3 Other Countries

To demonstrate Geneva’s generalizability beyond China, we apply
it to censors in two other countries: India and Kazakhstan.

India Our vantage points in India are within the Airtel ISP, specif-
ically in Bangalore, which performs HTTP censorship by injecting
a block page response if a request is made with a forbidden Host:
header [49]. In our evaluation, we perform an HTTP GET request
to a censored site (e.g., pornhub. com) from our vantage points, and
consider the strategy to have failed if we receive the Airtel block
page instead of the requested site. Airtel does not employ residual
censorship, so we do avoid connections to blocked sites. Also, un-
like the GFW, all of the strategies we tested either work 0% or 100%
of the time against Airtel. Table 1 evaluates all strategies found
from all of our vantage points against all three censors.

Geneva identified two broad species in India, both of which we
believe are previously unknown.

First, Geneva discovered that Airtel is incapable of handling any
invalid TCP options; by adding invalid TCP options to requests, we
can evade censorship completely. Geneva identified variants of this
strategy using almost every available TCP option. We find that all
the end-hosts we test ignore every option we add except timestamp,
so this strategy does not damage the underlying TCP connection.
Geneva also identifies additional subspecies that generate invalid
options by controlling the dataof's field.

Second, Geneva found that Airtel is incapable of handling TCP
segment reassembly; simply segmenting the request is sufficient
for the connection to succeed. Similarly, Strategy 9 sends only a

2209

CCS ’19, November 11-15, 2019, London, United Kingdom

portion of the payload before sending the entire payload, thereby
rendering the censor unable to identify the connection:

Strategy 9: Stutter Request 100% (IN)

[TCP:flags:PA]l-duplicate(
tamper{IP:len:replace:64}(send),
send)-|

Collectively, we find these evasion strategies to be much simpler
than those required to evade China’s GFW. Indeed, Geneva did
not identify any strategies in India resembling the TCB Teardown
strategy, and many of the strategies that take advantage of the
increased complexity of the GFW do not work against Airtel.

Kazakhstan Starting on July 17, 2019, Kazakhstan began inter-
cepting HTTPS connections to many social media sites using a fake
root certificate [32]. Though this interception has fortunately since
ended [20], we deployed Geneva against the system while it was
active. To perform strategy evaluation, we sent an SNI request with
a targeted hostname (such as facebook.com) to HTTPS servers
hosted in Kazakhstan within the affected region. We consider the
strategy to have failed if our client receives the injected certificate;
if we receive the correct certificate, we consider it a success.

Within 4 hours, Geneva discovered three successful species.

Similar to Airtel’s censorship, we find that Kazakhstan’s HTTPS
MITM cannot process TCP segmentation; segmenting the targeted
SNI request is sufficient alone to evade the MITM.

Geneva discovered a second species that was originally man-
ually developed (and is now extinct) against the GFW: the TCB
Turnaround (Strategy 1), which sends a SYN/ACK before the SYN to
make the censor believe the roles of client and server are reversed.

Geneva also identified strategies that resemble TCB Desynchro-
nization, though they are simpler than the desynchronization strate-
gies Geneva found against the GFW. As shown in Strategy 10, sim-
ply sending a second SYN packet with a payload circumvents the
MITM with 100% success rate. All of the other desynchronization
attacks learned against the GFW also worked (see Table 1).

Strategy 10: Simple TCB Desynchronization

[TCP:flags:S]-duplicate(send,
tamper{TCP:1load:corrupt}(send,))-|

100% (KZ)

As with India, strategies to evade Kazakhstan’s MITM attack
are less sophisticated and easier for Geneva to find than the GFW.
These results show that Geneva is capable of attacking diverse
censorship systems and can apply broadly.

5.4 Training Defunct Strategies

Extinct Strategies In addition to deriving new strategies, we
also tried multiple strategies in now-extinct species and subspecies
suggested by previous works against the GFW. We find the TCB
Creation species to be extinct; Geneva was unable to find any func-
tional strategies that create a new TCB. In manual testing, we also
found that strategies that relied on this species from former work
no longer work, and even improved versions of this strategy, such

Session 9E: Web Censorship and Auditing

as TCB Creation + Resync/Desync [41] do not work against the GFW.
This includes related subspecies, such as the TCB Turnaround [41].

TCB Teardown using a FIN or FIN/ACK packet [41] seems to be
similarly extinct: the only successful TCB Teardown strategies that
Geneva identified required the RST flag to be set to successfully
function. We also find the Data Reassembly (as defined by previ-
ous works) species to be largely extinct. This finding also confirms
results from previous work [41], which found that IP fragment
ordering strategies were no longer effective against the GFW. How-
ever, given the nuance of the Segmentation species, we hesitate to
definitively rule out any species as fully extinct.

Seeded Training We next experimented with how Geneva could
cope with changing firewall rules in the real world. For this exper-
iment, we seeded the evolution using the extinct TCB Creation +
Resync/Desync strategy [41] against the GFW. Seeding the evolu-
tion spawns the initial population pool using copies of this strategy
instead of a randomly initialized pool. It takes just 4 generations for
the first set of new functional strategies to emerge, and within 15
generations, a sizable population of TCB Desynchronization strate-
gies emerged. In a second experiment, it takes just 2 generations
to derive various less successful subspecies of TCB Teardown, and
a further 6 to hone it to a fully reduced, effective strategy. This
demonstrates that even if a species has achieved full population
saturation and the GFW updates to make them go extinct, Geneva
is capable of pivoting to find new successful strategies.

6 DISCUSSION

Is Geneva Necessary? Would it be possible to realize Geneva-
like functionality with less complexity? One alternative would
be to simply enumerate the entire space of packet manipulations.
Unfortunately, this is infeasible; INTANG [41] presents a strategy
("TCB Creation + Resync/Desync") that would require a Geneva
action tree of size nine to represent. However, because Geneva can
support modifications to all IP and TCP fields (including multiple
TCP options), there are a huge number of potential action trees.
We conservatively estimate® that there are 259 functionally distinct
Geneva trees of size nine.

Alternatively, we could ostensibly try to distill down the lessons
that Geneva learns and use them to manually craft rules to guide
strategy generation. However, this is unnecessary (Geneva learns
these lessons by itself), and worse yet, it introduces bias: if we
were to encode how we believe the censor’s implementation of
TCP works into how Geneva searches the space of solutions, we
would not allow Geneva to find unintuitive strategies or bugs in
the censor’s implementation.

It is possible that there is another form of machine learning that
is more accurate or more efficient than Geneva’s use of genetic
algorithms. Exploring these alternatives is beyond the scope of
this paper—our primary goal is to show that the problem can be
automated, and to discover strategies manual efforts have not.

Censor Countermeasures We envision two broad ways in which
censors can react to Geneva. First and foremost, they can fix their
systems. For implementation bugs, this may be a simple matter—in

3In this under-estimate, we assume that tampering with identifier fields (e.g. seq,
chksum) can only take one of two values: correct, or incorrect, and cardinal fields (e.g.
dataof's) can take on only one of three values: too-small, too-large, or just-right.

2210

CCS ’19, November 11-15, 2019, London, United Kingdom

fact, they may use Geneva themselves to find bugs prior to deploy-
ment. More difficult to repair, however, are errors the censors make
in their underlying assumptions. For example, the TCB Teardown
strategies exploit the GFW’s shortcut of tearing down TCBs to save
state; fixing this may introduce significant computational overhead.

Second, censors could try to detect and thwart Geneva itself,
for instance, by detecting its training packets, and poisoning our
datasets by making strategies appear (not) to work. Geneva tampers
with packets in random ways, often resulting in strange combina-
tions of flags that would be easy to detect, like FRAPUN in Strategy 5.
Geneva could be modified to avoid this, for instance by constraining
its mutations or by punishing “detectability” in the fitness function.

We see these as logical conclusions to the ongoing censorship
arms race: eventually, censors will either have to fully patch their
system (which seems costly) or thwart future efforts to probe their
systems (which seems infeasible). Geneva’s automation speeds us
to these ends.

Limitations of Our Evaluation We did not evaluate our system
on as many vantage points in China as some prior work [33, 41]
because, since those studies, China has made it significantly more
difficult for non-Chinese residents to rent machines in mainland
China. Obtaining the vantage points we had required considerable
effort. The difficulty with which to run these experiments also limits
the ease with which the results can be reproduced, a limitation that
unfortunately applies to all work in the space of nation-state cen-
sorship evasion. We find this trend concerning, and caution users
to fully understand the risks before undertaking similar studies.
Nonetheless, by applying Geneva in three fundamentally different
censoring regimes, we have shown it generalizes, and expect it
would be applicable to other vantage points in these countries, as
well.

Ethical Considerations We designed Geneva to have minimal
impact on other hosts. To the best of our knowledge, the state of
one host’s TCP connections does not affect the connections of other
hosts. Geneva was designed not to spoof IP addresses or ports, and
our interactions with the GFW should have had no impact on any
other users. Moreover, we designed Geneva to evaluate strategies
serially, which effectively limits the rate at which it creates TCP
connections and sends data, mitigating any impact it may have had
on other hosts on the same network.

Beyond these traditional concerns of evaluating systems on
shared infrastructure, there are also ethical concerns with evaluat-
ing in a censoring regime. Similar to some prior work [21, 33, 41],
we evaluated Geneva by running it solely on hosts that we rented
and controlled—as opposed to recruiting unwitting users [4]—to
mitigate ethical concerns.

7 RELATED WORK

Circumventing Censors In this paper, we have focused on au-
tomating and improving packet-manipulation-based censorship
evasion (we reviewed prior work in that space in §2). Additionally,
there is a much wider space of strategies for circumventing censor-
ship. Researchers have explored tunneling traffic over a wide vari-
ety of mediums, including email [50], video games [39], VoIP [18],
SSH [43], WebRTC [11], HTTP [12], just to name a few. Other sys-
tems seek to hide the true destination of traffic, such as with Tor [8],

Session 9E: Web Censorship and Auditing

domain fronting [13], Decoy or Refraction Routing [9, 19, 46, 47],
or to avoid the censoring country altogether (Alibi Routing [24],
DeTor [25]). Traffic mimicry systems have also been developed to
disguise network traffic as another protocol [28, 40, 42]; though
these appear to have inherent limitations [17].

Geneva is orthogonal to all of these systems, and, as demon-
strated with INTANG [41], could be used in tandem with them to
help bolster their ability to circumvent censors.

Fuzz Testing Fuzz testers [22] mutate inputs nondeterministi-
cally in an effort to evaluate the correctness, security, and cover-
age of programs. At a high level, Geneva shares some properties
with fuzz testers: both perform random mutations and use the out-
put of a program (a censor) to evaluate whether those mutations
were beneficial. However, there is a subtle but fundamental distinc-
tion: whereas fuzz testers generate inputs, Geneva generates what
amounts to small pieces of code (packet manipulation strategies)
that are in turn applied to inputs (user traffic). Geneva thus per-
forms its mutations and evolutions over the space of manipulation
actions (drop, tamper, etc.), not over the input space (packets) itself.

Genetic algorithms have been used for fuzzing, including in the
well known American Fuzzy Lop (AFL) [2] and iFuzzer [38]. Genetic
algorithm fuzzing techniques have been applied to web applica-
tions [36] and other popular protocols [15]. To our knowledge, we
are the first to apply such techniques to censorship evasion.

8 CONCLUSION

There has long been a cat-and-mouse game between censors and a
community of researchers and practitioners who seek to evade them.
The current evade-detect cycle requires extensive manual measure-
ment, reverse-engineering, and creativity to obtain new means of
censorship evasion. In this paper, we presented Geneva, a genetic
algorithm for automatically discovering censorship evasion strate-
gies against on-path network censors. Through evaluation both
in-lab and against the GFW, we have demonstrated that Geneva
efficiently discovers strategies, and that its genetic building blocks
allow it to both re-derive all previously published schemes that it
can support, as well as derive altogether new strategies that prior
work posited would not be effective. We believe Geneva represents
an important first step towards automating censorship evasion. To
this end, we have made our code and data publicly available at
https://geneva.cs.umd.edu

ACKNOWLEDGMENTS

We thank Ramakrishna Padmanabhan, Neil Spring, the Breakerspace
lab, and the anonymous reviewers for their helpful feedback. This
research was supported in part by the Open Technology Fund and
NSF grant CNS-1816802.

REFERENCES

[1] Claudio Agosti and Giovanni Pellerano. 2011. SniffJoke: transparent TCP con-
nection scrambler. https://github.com/vecna/sniffjoke. (2011).

american fuzzy lop [n. d.]. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.
([n.d]).

Simurgh Aryan, Homa Aryan, and J. Alex Halderman. 2013. Internet Censorship
in Iran: A First Look. In USENIX Workshop on Free and Open Communications on
the Internet (FOCI).

Sam Burnett and Nick Feamster. 2015. Encore: Lightweight Measurement of Web
Censorship with Cross-Origin Requests. In ACM SIGCOMM.

(2]

2211

[11

[12

[13

[14

=
&

[16

(17]

(18]

(19]

™
=2

[21

[22

[23

™~
2

~
=

CCS ’19, November 11-15, 2019, London, United Kingdom

Censorship of Alexa Top 1000 Domains in China [n. d.]. Censorship of Alexa Top
1000 Domains in China. https://en.greatfire.org/search/alexa-top-1000-domains.
([n. d.]).

Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. 2006. Ignoring the
Great Firewall of China. In Privacy Enhancing Technologies Symposium (PETS).
Lawrence Davis. 1991. Handbook of genetic algorithms. CUMINCAD.

Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In USENIX Security Symposium.

Daniel Ellard, Christine Jones, Victoria Manfredi, W. Timothy Strayer, Bishal
Thapa, Megan Van Welie, and Alden Jackson. 2015. Rebound: Decoy routing
on asymmetric routes via error messages. In IEEE Conference on Local Computer
Networks (LCN).

Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver,
and Vern Paxson. 2015. Examining How the Great Firewall Discovers Hidden
Circumvention Servers. In ACM Internet Measurement Conference (IMC).

David Fifield. 2017. Threat modeling and circumvention of Internet censorship.
In PhD thesis.

David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Dan Boneh, Roger
Dingledine, and Phil Porras. 2012. Evading Censorship with Browser-Based
Proxies. In Privacy Enhancing Technologies Symposium (PETS).

David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. In Privacy Enhanc-
ing Technologies Symposium (PETS).

Félix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (July 2012), 2171-2175.

Li Haifeng, Wang Shaolei, Zhang Bin, Shuai Bo, and Tang Chaojing. 2015. Net-
work protocol security testing based on fuzz. In International Conference on
Computer Science and Network Technology (ICCSNT).

Mark Handley, Vern Paxson, and Christian Kreibich. 2001. Network Intrusion
Detection: Evasion, Traffic Normalization, and End-To-End Protocol Semantics.
In USENIX Security Symposium.

Amirr Houmansadr, Chad Brubaker, and Vitaly Shmatikov. 2013. The Parrot is
Dead: Observing Unobservable Network Communications. In IEEE Symposium
on Security and Privacy.

Amir Houmansadr, Thomas Riedl, Nikita Borisov, and Andrew Singer.
2012. IP over Voice-over-IP for censorship circumvention. In arXiv preprint
arXiv:1207.2683.

Amir Housmandr, Giang T. K. Ngyuen, Matthew Caesar, and Nikita Borisov. 2011.
Cirripede: Circumvention Infrastructure using Router Redirection with Plausible
Deniability. In ACM Conference on Computer and Communications Security (CCS).
Kazakhstan’s HTTPS Interception Live! 2019. Kazakhstan’s HTTPS Interception
Live! https://censoredplanet.org/kazakhstan/live. (2019).

Sheharbano Khattak, Mobin Javed, Philip D. Anderson, and Vern Paxson. 2013.
Towards Illuminating a Censorship Monitor’s Model to Facilitate Evasion. In
USENIX Workshop on Free and Open Communications on the Internet (FOCI).
George T. Klees, Andrew Ruef, Benjamin Cooper, Shiyi Wei, and Michael Hicks.
2018. Evaluating Fuzz Testing. In ACM Conference on Computer and Communica-
tions Security (CCS).

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.
2000. The Click modular router. ACM Transactions on Computer Systems 18, 3
(2000), 263-297.

Dave Levin, Youndo Lee, Luke Valenta, Zhihao Li, Victoria Lai, Cristian Lu-
menzanu, Neil Spring, and Bobby Bhattacharjee. 2015. Alibi Routing. In ACM
SIGCOMM.

Zhihao Li, Stephen Herwig, and Dave Levin. 2017. DeTor: Provably Avoiding
Geographic Regions in Tor. In USENIX Security Symposium.

Moxie Marlinspike. 2017. Doodles, stickers, and censorship circumvention for Sig-
nal Android. https://signal.org/blog/doodles-stickers-censorship/.
(2017).

Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux Journal 239, 2 (2014).

Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian
Goldberg. 2012. SkypeMorph: Protocol Obfuscation for Tor Bridges. In ACM
Conference on Computer and Communications Security (CCS).

Zubair Nabi. 2013. The Anatomy of Web Censorship in Pakistan. In USENIX
Workshop on Free and Open Communications on the Internet (FOCI).

NetFilter [n. d.]. NetFilter. https://netfilter.org. ([n. d.]).

Thomas H. Ptacek and Timothy N. Newsham. 1998. Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection. In Secure Networks, Inc.
Ram Sundara Raman, Leonid Evdokimov, Eric Wustrow, Alex Halderman,
and Roya Ensafi. 2019. Kazakhstan’s HTTPS Interception. https://
censoredplanet.org/kazakhstan. (2019).

Fangfan Liand Abbas Razaghpanah, Arash Molavi Kakhki, Arian Akhavan Niaki,
David Choffnes, Phillipa Gill, and Alan Mislove. 2017. lib-erate, (n): A library
for exposing (traffic-classification) rules and avoiding them efficiently. In ACM
Internet Measurement Conference (IMC).

https://geneva.cs.umd.edu
https://github.com/vecna/sniffjoke
https://censoredplanet.org/kazakhstan/live
https://signal.org/blog/doodles-stickers-censorship/
https://censoredplanet.org/kazakhstan
https://censoredplanet.org/kazakhstan

Session 9E: Web Censorship and Auditing

[40]

[41

[42

[43]

Reporters Without Borders. 2013. Enemies of the Internet 2013 Re-
port. https://surveillance.rsf.org/en/wp-content/uploads/sites/2/
2013/03/enemies-of-the-internet_2013.pdf. (March 2013).

Scapy [n. d.]. Scapy. https://scapy.net. ([n. d.]).

Scott Michael Seal. 2016. Optimizing Web Application Fuzzing with Genetic
Algorithms and Language Theory. In Master of Science Thesis.

Signal. 2017. Egypt keeps trying to block Signal, inadvertently blocking all
of Google, and having to stop as a result. We’ll also expand domain fronts.
https://twitter.com/signalapp/status/817062093094604800. (2017).
Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. 2016. IFuzzer:
An Evolutionary Interpreter Fuzzer using Genetic Programming. In European
Symposium on Research in Computer Security (ESORICS).

Paul Vines and Tadayoshi Kohno. 2015. Rook: Using Video Games as a Low-
Bandwidth Censorship Resistant Communication Platform. In Workshop on Pri-
vacy in the Electronic Society (WPES).

Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir Houmansadr, and Nikita
Borisov. 2012. CensorSpoofer: Asymmetric Communication Using IP Spoofing
for Censorship-Resistant Web Browsing. In ACM Conference on Computer and
Communications Security (CCS).

Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V. Krishna-
murthy. 2017. Your State is Not Mine: A Closer Look at Evading Stateful Internet
Censorship. In ACM Internet Measurement Conference (IMC).

Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister,
Steven Cheung, Frank Wang, and Dan Boneh. 2012. StegoTorus: A Camou-
flage Proxy for the Tor Anonymity System. In ACM Conference on Computer and
Communications Security (CCS).

Brandon Wiley. [n. d.]. Dust: A Blocking-Resistant Internet Transport Protocol.
http://blanu.net/Dust.pdf. ([n. d.]).

2212

CCS ’19, November 11-15, 2019, London, United Kingdom

[44] Philipp Winter. 2012. brdgrd (Bridge Guard). https://github.com/
NullHypothesis/brdgrd. (2012).
[45] Philipp Winter and Jedidiah R. Crandall. 2012. The Great Firewall of China: How

It Blocks Tor and Why It Is Hard to Pinpoint. ;login: 37, 6 (2012), 42-50.

[46] Eric Wustrow, Colleen M. Swanson, and J. Alex Halderman. 2014. TapDance: End-
to-Middle Anticensorship without Flow Blocking. In USENIX Annual Technical
Conference.

[47] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. 2011. Telex:

Anticensorship in the Network Infrastructure. In USENIX Annual Technical Con-

ference.

Xueyang Xu, Morley Mao, and J. Alex Halderman. 2011. Internet Censorship in

China: Where Does the Filtering Occur?. In Passive and Active Network Measure-

ment Workshop (PAM).

[49] Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain, Piyush Kumar Sharma,
and Sambuddho Chakravarty. 2018. Where The Light Gets In: Analyzing Web
Censorship Mechanisms in India. In ACM Internet Measurement Conference (IMC).

[50] Wenxuan Zhou, Amir Houmansadr, Matthew Caesar, and Nikita Borisov. 2013.
SWEET: Serving the Web by Exploiting Email Tunnels. In Privacy Enhancing
Technologies Symposium (PETS).

[48

APPENDIX

In this appendix, we aggregate several low-level details about prior
work: We provide a detailed list of all of the mock censors we
validated against in-lab (Table 2) and a full list of all previously
published strategies (Table 3).

https://surveillance.rsf.org/en/wp-content/uploads/sites/2/2013/03/enemies-of-the-internet_2013.pdf
https://surveillance.rsf.org/en/wp-content/uploads/sites/2/2013/03/enemies-of-the-internet_2013.pdf
https://twitter.com/signalapp/status/817062093094604800
https://github.com/NullHypothesis/brdgrd
https://github.com/NullHypothesis/brdgrd

Session 9E: Web Censorship and Auditing

CCS ’19, November 11-15, 2019, London, United Kingdom

Censor behavior

Learned strategy to defeat

1.

Synchronizes TCB on the first SYN only; sends RSTs only to the client if a censored
word appears anywhere in any packet and a matching TCB exists.

Drop inbound RST packets.

. Synchronizes TCB on the first SYN only; sends RSTs to the client and server if a

censored word appears anywhere in any packet and a matching TCB exists.

Inject a SYN packet with a different sequence
number.

. Synchronizes TCB on the first SYN only, drops all future client/server communi-

cation if a censored word appears anywhere in any packet and a matching TCB
exists.

Inject a SYN packet with a different sequence
number.

. Synchronizes TCB on SYN and ACK packets; sends RSTs to the client and server if a

censored word appears anywhere in any packet and a matching TCB exists.

Inject an insertion ACK packet with a different
sequence number after the 3-way handshake.

. Synchronizes TCB on SYN, and resynchronizes periodically every few packets

packets; sends RSTs to the client and server if a censored word appears anywhere
in any packet and a matching TCB exists.

Inject an insertion ACK packet with a different
sequence number after the 3-way handshake.

. Synchronizes TCB using only IP addresses on SYN and SYN/ACK; sends RSTs to

the client and server if a censored word appears anywhere in an HTTP header or
packet payload unless TCB is torn down.

Inject an insertion RST packet after the 3-way
handshake, or induce the server to send a RST
on another port.

. Synchronizes TCB using only IP/port tuples on SYN and SYN/ACK; sends RSTs only

to the client if a censored word appears anywhere in any packet unless TCB is
torn down.

Inject an insertion RST packet after the 3-way
handshake.

. Synchronizes TCB on SYN, SYN/ACK, and ACK; sends RSTs only to the client if a

censored word appears anywhere in any packet unless TCB is torn down.

Inject an insertion RST packet after the 3-way
handshake.

. Synchronizes TCB on SYN and ACK; sends RSTs only to the client if a censored word

appears anywhere in any packet, and enters a resynchronization state on any RST
or FIN packet.

Inject an insertion RST or FIN after the 3-way
handshake, and then send a followup insertion
packet with a different sequence number.

10.

Synchronizes TCB on SYN, only processes packets with correct checksums; sends
RSTs only to the client if a censored word appears anywhere in any packet, and
enters a resynchronization state on any RST or FIN packet.

Inject an insertion RST packet after the 3-way
handshake using a non-checksum insertion
mechanism (e.g., low TTL), immediately fol-
lowed by another insertion packet with an in-
correct sequence number.

11.

Synchronizes TCB on SYN, only processes packets with correct checksums, lengths,
and data offsets; sends RSTs only to the client if a censored word appears anywhere
in any packet, and enters a resynchronization state on any valid RST or FIN packet.

Inject an insertion RST packet after the 3-way
handshake using a low TTL, immediately fol-
lowed by another insertion packet with an in-
correct sequence number.

Table 2: Mock censors developed for in-lab training, and strategies Geneva learned to defeat them.

2213

Session 9E: Web Censorship and Auditing CCS ’19, November 11-15, 2019, London, United Kingdom

Found?
Species Strategy [21][33][41] Geneva
w/ low TTL v
TCB Creation w/ corrupt checksum
(Improved) and Resync/Desync
w/ RST and low TTL v v
w/ RST and corrupt checksum v

w/ RST and invalid timestamp

w/ RST and invalid MD5 Header
w/ RST/ACK and corrupt checksum
w/ RST/ACK and low TTL v v
w/ RST/ACK and invalid timestamp
w/ RST/ACK and invalid MD5 Header
w/ FIN and low TTL N
w/ FIN and corrupt checksum
(Improved)

and TCB Reversal

TCP Segmentation reassembly out of order data v
Overlapping fragments v
Overlapping segments v
In-order data w/ low TTL
In-order data w/ corrupt ACK v
In-order data w/ corrupt checksum
In-order data w/ no TCP flags
Out-of-order data w/ IP fragments
Out-of-order data w/ TCP segments
(Improved) In-order data overlapping

TCB Teardown

Reassembly

SNENENENENENENENENENIENENENENENENENENENENENENIENENEN

ESENIENENENENENENENENENENENEN|ENENENENENENENENENENENENIENENEN

Payload splitting v

Payload reordering v

. . . Inert Packet Insertion w/ corrupt checksum v

Traffic Misclassification Inert Packet Insertion w/o ACK flag v
State Exhaustion Send > 1KB of traffic

Classification Flushing — Delay v

GET w/ > 1 space between method and URI
GET w/ keyword at location > 2048

HTTP Incompleteness | GET w/ keyword in 2nd or higher of multiple
requests in one segment

GET w/ URL encoded (except %-encoding) v
Table 3: Prior work’s effective TCP-based strategies and whether Geneva re-derived the strategy in the lab or in the wild,
regardless of whether the strategy is still effective. Note that Geneva had no knowledge of HTTP fields and could not introduce
delays into the request.

SEENENIENEN

2214

	Abstract
	1 Introduction
	2 Background
	2.1 On-Path Censorship
	2.2 Packet-manipulation-based Evasion
	2.3 Packet Manipulation Strategy Taxonomy

	3 Geneva Design
	3.1 Overview and Challenges
	3.2 Geneva's Genetic Building Blocks
	3.3 Evolution
	3.4 Implementation

	4 Validation
	5 Evaluation against real censors
	5.1 Experiment Setup
	5.2 China: The Great Firewall
	5.3 Other Countries
	5.4 Training Defunct Strategies

	6 Discussion
	7 Related Work
	8 Conclusion
	References

