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In ergodic quantum systems, physical observables have a nonrelaxing component if they “overlap” with a
conserved quantity. In interacting microscopic models, how to isolate the nonrelaxing component is unclear.
We compute exact dynamical correlators governed by a Hamiltonian composed of two large interacting
random matrices H = A + B. We analytically obtain the late-time value of (A(#)A(0)); this quantifies the
nonrelaxing part of the observable A. The relaxation to this value is governed by a power law determined by the
spectrum of the Hamiltonian H, independent of the observable A. For Gaussian matrices, we further compute
out-of-time-ordered correlators and find that the existence of a nonrelaxing part of A leads to modifications of
the late-time values and exponents. Our results follow from exact resummation of a diagrammatic expansion

and hyperoperator techniques.
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Consider an isolated quantum system whose Hamiltonian
can be decomposed into two terms

H=A+B. ey

Under what conditions does the observable A have a nonrelax-
ing component? There are many more or less exotic mecha-
nisms for the connected correlation function (A(#)A(0)). (the
expectation value (o) of any operator o may include thermal
and disorder averaging, the distinction is not important at this
level of discussion) to approach a nonzero constant at late
time: A could commute with H, or the whole system could be
localized [1-6], scarred [7-10], shattered [11], or otherwise
mistreated by theorists.

However, even in the simple case in which H is ergodic
and A does not commute with it, the operator A appears to
be “part” of the conserved energy and we expect it to have
a nonrelaxing component. This intuition is misleading. For
any operator O and any Hamiltonian H, one could write H =
(H — O) + O and formally reproduce the decomposition in
Eq. (1) without learning anything. For Eq. (1) to be nontrivial,
there must be some physical sense in which the decomposition
is defined. In this paper, we consider the case in which A and
B are large independent random matrices of dimension N with
arbitrary spectra. They need not obey Wigner’s celebrated
semicircle law, but the eigenvectors of A must be in generic
position with respect to those of B. While this choice appears
technical, it is a natural model if H, A, and B each satisfy the
eigenstate thermalization hypothesis (ETH) and A and B are
built out of physically distinct local operators.

I. MAIN RESULTS

Our primary result is an exact integral representation of the
dynamical correlator (A(t)A(0)). at large N [Eq. (41)]. From
this representation we derive the asymptotic structure at late
time
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where Ago and C, y are two constants that will be discussed
in detail in the main text.

For now, notice that this form has two important features:
first, the late-time value A% of the correlator quantifies the
nonrelaxing component of A. It has a definite integral repre-
sentation in terms of the densities of states of A and H [see
Eq. (50)]. In general, A2, is not zero (this accords with the
intuition that A is “part” of the energy), however, it is not given
by a simple trace overlap.

Second, (A(#)A(0)). approaches its late-time value with
a form governed by the characteristic function of H alone.
The particular operator A only enters through the constant
rescaling C4 . This implies that the late-time power laws
come from the singularities in the density of states of H and
do not depend on any detailed structure of A. For the many
random matrix ensembles where the density of states of H has
square-root singularities (the semicircle law is one example),
Eq. (2) predicts 1/t decay. Still, other possibilities exist: if A
and B are projectors, for example, the resulting Hamiltonian
has different singularities which produce a slower 1/¢ decay.

The reader may be surprised by the apparent lack of
thermalization in a system whose Hamiltonian is random. For
extended ergodic systems of volume V', we indeed expect the
infinite-time value A2, to be a quantity of order 1/V. Here,
the system is composed of a single (N-dimensional) degree of
freedom and V = 1. Nonetheless, Eq. (50) predicts a precise
value for the constant that can be compared with numerics on
ETH-satisfying systems.

We set up the calculation at infinite temperature, but once
we have those results the full temperature dependence can
be derived introducing Boltzmann weights in appropriate
places (Sec. IV). In the zero-temperature limit, the power-law
approach of Eq. (2) is modified and typically the decay expo-
nents are reduced by a factor of 2. This behavior is reminiscent
of the Sachdev-Ye-Kitaev (SYK) model [12-16] at times ¢ >
N, the number of fermions, but t < ¢"*, the level spacing.

In the special case where A and B are both Gaussian
random matrices, and thus satisfy the semicircle law, these
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results simplify significantly: the late-time value A2, is given
by a trace overlap between A and H [Eq. (81)], as one might
have guessed, and the asymptotic form (2) holds exactly
for all times . We derive these simplified forms both from
our general diagrammatic formalism, and from a more direct
hyperoperator approach.

There has been a lot of recent interest in computing out-
of-time-ordered correlators (OTOCs) as a rough characteriza-
tion of quantum chaos [12,13,17-22] among other possible
characterizations [23-26]. For Gaussian A and B we use the
hyperoperator technique to compute the OTOC,

3(A@), AO)P) 3

and find that it decays asymptotically more slowly than if it
did not contain a conserved piece.

It is worthwhile noting that much recent analytical progress
on dynamics in many-body systems has been made in the
setting of random unitary circuits [17,20,27,28]. These mod-
els do not naturally have conservation laws, and introducing
the extra structure to create them [19,29] makes calculations
significantly harder. On the contrary, Hamiltonian models au-
tomatically come with a conserved energy, but deriving exact
results there is difficulty in the absence of further structure
like conformal symmetry, integrability, or a large-N limit. Our
work falls in this last class: we treat a Hamiltonian system
exactly, at the price of introducing large-N random matrices.

All of our results are at infinite temperature and averaged
over the random matrix ensemble; for the rest of the paper, the
“expectation value” symbol means

1
(o) == N]EA,B[Tr(O)]. “)

The normalization is such that the N x N identity matrix has
expectation equal to 1.

The ensemble for A and B is fairly general: we just need
their densities of states p4 and pp to be well defined in the
limit N — oo, and their eigenspaces to be in generic position.
One way to realize such matrices is

A=U"AU, %)

where A is a diagonal matrix and U is a Haar unitary.

The paper is organized as follows: In Sec. II we introduce
a set of diagrammatic tools and use them to derive the exact
frequency space two-point function. Using this result we
study (Sec. III) the long-time behavior of (A(#)A(0)) and
identify the structure mentioned in Eq. (2). We then discuss
(Sec. IV) how these results are modified at finite temperature.
In (Sec. V) we introduce the direct hyperoperator approach
for Gaussian matrices. We use it to reproduce the results of the
previous sections and compute the OTOC. Finally, in (Sec. VI)
we compare the predictions of our analysis with numerics,
obtaining a satisfactory agreement.

II. EXACT ANALYSIS

A. Frequency space representation of correlators

The correlation function we focus on in this section is

G(t) = (A(H)A0)) = (M Ae™ 1 A). (6)

Im(z)

> Re(z)

FIG. 1. Integration contour for the Cauchy transform in Eq. (7).
The crosses are eigenvalues of H.

It is convenient to reformulate this problem in frequency
space, using the Cauchy representation of the time-evolution
operator:
ot — ﬁ i ’ %)
2miz —H

where the integral is over any contour that encloses the full
spectrum of H (see Fig. 1). At any finite Hilbert space size N
this contour is closed, and in the thermodynamic limit it can
be closed at infinity.

Using the integral representation just introduced, we can
rewrite Eq. (6) as

60 = § 5 s oA toa) @
2wi 2mwi z—H w—-—H
= %%e’“’w)’G(z, w) ©)
which defines the frequency space correlator:
Gz, w) := <;A ! A> (10)
z—H w—-H

= Z Z FW(H"AH’”A). (11)
m=0 n=0
The last formal manipulation involving the geometric series
shows that we can reduce the problem of determining G(z, w)
to the calculation of mixed moments of A and H:

(H"AH™A) = ((A + B)"A(A + B)"A). (12)

For practical purposes it is better to write the calculation in
terms of the matrices A and B, as they are the independent
objects in the problem.

If A and B are Gaussian random matrices, the evaluation of
the moments is readily accomplished using Wick’s theorem.
For the more general (nonsemicircle) matrices we would like
to treat here, the free cumulant expansion plays the role of
a generalized Wick’s theorem for noncommuting matrices.
Given a set of noncommuting random variables X;, we can
recursively define their free cumulants (denoted with curly
braces) through the formula

X;...X,) = Z ]—[ X ... X, }. (13)
71 eNC(n) ber

where NC(n) denotes the set noncrossing partitions of n
objects, and b is a block in the partition . See Ref. [30] for
more pedagogical details of this formalism. For aficionados of
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planar perturbation theory, we note that the free cumulants of a
random matrix X are closely related to the fully renormalized
vertices of X.

Restating the problem in terms of free cumulants makes
things simpler: in the large-N limit all the mixed free cu-
mulants of independent random matrices vanish [31], which
simplifies enormously the calculation of moments like the one
of Eq. (12). When two random matrices have this property, we
say that the two variables are freely independent.

B. Diagrammatic solution

The calculation of moments of large independent random
matrices lends itself to a convenient diagrammatic represen-
tation through the free cumulant expansion [Eq. (13)]. The
diagrammatics are similar to those of Refs. [32,33] although
our interpretation in terms of free cumulants is somewhat
more recent [30,31].

We are computing trace moments, so it is natural to rep-
resent them with a circular diagram. Factors of A will be
represented by the insertion of a full dot (e) along the circle
and B factors by insertions of an empty one (o).

Notice that two of the A insertions are not like the others:
they do not come from the expansion of H". Each diagram is
then naturally split in two halves by those special A insertions,
one-half associated to the H"/z"*! term and the other one to
the H™ /w”*! term.

Associate single lines (—) to factors of 1/z and 1/w: lines
in the upper semicircle represent factors of 1/z and lines in
the lower semicircle factors of 1/w. A vertex with double
line legs (=) that connects a set of insertions represents the
free cumulant of those operators. Notice that all the insertions
participating in a given vertex must be of the same kind, as
mixed free cumulants of A and B vanish.

Let us summarize the diagrammatic rules we have just
introduced:

— ~— — [ J o
1/z 1/w A B

N

Finally, in the free cumulant expansion we only need non-
crossing partitions, so these diagrams are planar. The planar
nature of these diagrams makes them easy to classify, which
will be very useful in Secs. II B 1 and II B 4 where we compute
a perturbative resummation of infinitely many diagrams.

Our aim is the following: to compute G(z, w) we must sum
over all planar diagrams with at least two A insertions and any
number of A and B insertions in the upper and lower halves.
There are no extra combinatorial factors.

As an example of the application of these rules, let us

calculate a diagram that will be included in the expansion of
G(z, w):

= Z31W2 {42} {B} {B} (14)

In this simple case there are only vertices with one or two legs,
but in general a vertex can have any number of legs.

Without loss of generality, for the rest of the paper we
will assume that {A} = {B} = 0. This does not change the

dynamics, as it corresponds to a constant energy shift, but
makes the diagrammatics much simpler.

1. Propagator
The full propagator of H, fy(z), is

1 o (H")
-MQ”Z<Z_H>=§:ZHr (15)

n=0

Below, we suppress the subscript H when there is no risk
of confusion. As usual, the complex analytic features of
the propagator encode the spectrum of H. For example, the
mean spectral density p(x) can be obtained by inserting the
Sokhotski-Plemelj formula

lim -
80+ x £ i8

1

=P- Find(x) (16)
X

into the definition of the propagator

. 1
ﬁummzkjﬁzg> (17)

= ¢u(x) F im pu (x). (18)
Here, ¢y (x) is the Hilbert transform of pgy (x):

I Py
b (x) = <Pm>=P/dk p”()\), (19)

X —

where the symbol P means that the integral uses Cauchy’s
principal part prescription.

2. 1PI Diagrams

We write a diagrammatic representation of Eq. (15) by
introducing a thick line to represent f(z):

- N Ly
+ dov—+ deny
+ dees—+ Loy ... Q0)

This series can be organized into a Schwinger-Dyson equation

= - - 2 D)

where we have introduced two kinds of one-particle-
irreducible diagrams (1PI), those with an A or a B as their
outermost insertion. We remind the reader that 1PI diagrams
are the amputated diagrams which cannot be disconnected by
cutting a single 1/z line. We solve Eq. (21) by introducing the
“self-energy” Xy (z):

= . 22
fn@) = ——— (22)
Comparing to Eq. (21), we have
Yu(2) = Za(2) + Ep(2), (23)
where
o) - =N+ L+ o
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Let us pause and make several connections between planar
perturbation theory and free probability theory explicit. The
self-energies in Eq. (24) are given algebraically by'

o]

Za@) = Ra(f(2) = ) (A" fu )" (25)

p=0

and similarly for Xp. That is, the self-energy %, is given by
the free cumulant generating function R4 evaluated at f(2).
Thus, additivity of the self-energy in planar perturbation
theory is equivalent to the additivity of the free cumulants of
freely independent random variables [34].

The Cartesian decomposition of f(x) [Eq. (18)] induces a
similar structure in ¥4 [Eq. (25)]:

Taekis) =Y {A"Hg(x) F imp(x)]" (26)
n=1
= Z5(0) FiT)H(), 27)

where R (x) and X/ (x) are real functions.

3. 2PI diagrams

It is useful at this point to introduce the analog of the
two-particle-irreducible (2PI) diagrams familiar in the context
of field theory: they are (amputated) diagrams that cannot be
separated into two disconnected pieces by cutting at most one
z and one w line. Notice that all the vertices at the boundary
of a 2PI diagram must be of the same type, either A or B.

We will denote 74 (z, w) the sum of all 2PI diagrams with
the most external interaction of type A:

A | = +V+&+m (28)

and define analogously mz(z, w). The series corresponding to
Eq. (28) is

s (w,z) =

Tz w) =) (A @ fw)T (29)

n=0 =0
_ Ba@) — Baw) G0,
f@)— f(w)

The linearity of the self-energy contributions guarantees the
linearity of this quantity as well:

Th (2, w) = ma(z, w) + 7p(2Z, w). 31

4. Box resummation

In the diagrammatic expansion of G(z, w) we need a set of
disconnected diagrams that is closely related to the 2PI we just
introduced: they are composed of a 1/z line, a 1/w line, and
any number of vertices possibly connecting those two lines.
We call the sum h(z, w) of this class of diagrams the box,

I'This is a definition of Ry, as a formal power series with coefficients
equal to the free cumulant of A.

and represent it with a gray shaded area.” The resummation of
these diagrams proceeds in a way analogous to what we did
for the propagator.

Before writing the self-consistent equation we show a few
of the diagrams that contribute to the box:

A4

h(w,z) = = - +

Fas
+ + + .
(32)

where we can imagine that the first line of this equation
contains all the disconnected diagrams and the second line all
the connected ones.

The disconnected diagrams can be summed using the
results of Sec. IIB 1, while the connected diagrams can be
written in terms of 7ty and the box itself:

h(w,z) = [ = + o

which can be solved for /(z, w) to give

_ f@f(w)
1 —mp(z, w)f)f(w)

We can further simplify this expression using Egs. (30) and
(22), so that after some algebra we obtain

f@) = fw)

I—w

(33)

h(z, w) (34)

h(z, w) = (35)

5. Triangle resummation

There is another pattern that is important for the computa-
tion of the two-point function: (amputated) diagrams in which
one of the two special insertions of A participates in a vertex
with at least three legs, and it connects to both a z and a w
line. The sum of all diagrams of this kind is

T(z,w)= @ %—F %—F %+ (36)

which can be written in a simple form using Eq. (25):

o0 n
TGz w) =Y (A" @f(w)) ] f@) fw)™" (37)
n=0 t=0
_ J)Xa2) — f@)Ta(w) (38)
f@ = f(w)

As a simple consistency check, notice that if A is from
one of the Gaussian ensembles we have X 4(z) = {A%}f(z) and
thus 7' (z, w) vanishes identically. This is consistent with the
diagrammatic statement that Gaussian matrices do not have
vertices with more than two legs.

The actual shape does not matter, as long as it has four sides: one
side must contain only 1/z lines and the opposite one only contains
1/w lines.
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C. Two-point correlation function

We are now ready to compute the two-point function
G(z, w): as stated in Sec. IIB, we must sum over all the
circular planar diagrams with at least two A insertions. Using
the objects X4, h, and T we can sum all diagrams in which the
two special A insertions do not connect to each other.

We organize the remaining diagrams by the kind of inter-
action the two A participate in:

A YAVLADLS
@+@+®+®+@
OGO .

which is the diagrammatic representation of

+

+

Gz, w) =h(z, w)[T (z, w) + Tu(z) + Ta(w)]?
+ Y A f W) Y FER) fw) (40)
n=0 =0

and the series appearing in the last term can be summed as
usual using Eq. (25):

_ Ya(w) — Bp(2)
G(w,z) = f(Z)f(W)—f(w) 1 2
SR - fw) (f(z)EA(z) - f(w)EA(w)>
z—w @) — f(w)

(4D

This is our main result about the two-point function: once

we fix the probability distributions of A and B, we can

compute [34,35] f(z) and X4(z), so they can be considered
inputs to the problem.

D. Example: A, B Gaussian

If A and B are sampled from the Gaussian unitary ensemble
(GUE), all their free cumulants vanish after the second one.
Without loss of generality we can set

{A} ={B} =0, 42)
while a convenient choice for the second free cumulant is
{A2%y=x, (BY}=1-1x (43)

with 0 < A < 1. For these random variables the self-energy
series terminates after just one term:

Ta@) =Af(z) Zp(x)=(1—-21)f(2). (44)

In the infinite-N limit, independent GUE variables are also
freely independent [31], so we can use Eqgs. (23) and (22) to
compute the propagator for H:

f@)=3E@—Vz2-4) (45)

and plugging f and ¥, in Eq. (41) we have

G(w. 2) = A f @) f (w) — AZM ) + FOR.
(46)
The real-time correlator is [Eq. (9)]
(AA0)) = Zd—z j Gz, w) (47
Tl

which has a closed form? in terms of the Bessel function J; :

2
%(A(t)A(O)) =i+~ )»)(Jl(tZt)> . (48)

III. LATE-TIME ASYMPTOTICS
A. General case

The integral in Eq. (9) can not be expressed in terms
of elementary functions except in a few special cases. In
this section we prove that for a large class of Haar-invariant
ensembles we have the asymptotic result

(ADA©0) ~ A% + Canle™P 1 — 00,  (49)

where Cy4 y is a real constant and [see Egs. (17) and (25) for
the definitions of the quantities involved]
m¥,(x )) . (50)

pr (x)

This integral expression lets us compute the long-time value
of the correlator, and the second term in Eq. (49) contains the
nontrivial result that the decay is controlled by the Hamilto-
nian only.

To derive Eq. (49), we deform the integration contours in
Eq. (9) to run infinitesimally close to the real axis:

x,y,8eR o

A2 / dx pH(x)(RezA<x) bl )

z=1x%is, w=:y=%ié,

and for convenience we define the symbol

Aif(x) = Blir&[f(x +i8) — f(x —id)] (52)

so that after parametrization the integral representation of the
two-point correlator becomes

[ dxdy
uwao) = [ o

Comparing with Eq. (41), it is clear that contributions to
the long-time value of this integral only come from Dirac
8(x) terms in f(z), and the divergence in h(x + i§, y — i§) as
x approaches y [see Eq. (35)]. The first kind of constant is
trivial, so we will assume that

lim (¢"") = 0 (54)

=00

e"(x—”’AﬁAgG(x,y). (53)

and focus on the second kind.
The asymptotic behavior of the inverse Fourier transform
F~{o}(t) is determined by singularities in frequency space

3The factor 1/ on the left-hand side is included for convenience:
with the choices of this section (A(0)A(0))/x = 1.
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[36], with smaller positive powers «; > 0 corresponding to
slower real-time decay:

1
—1 o ~
F : E |x — x; } 0<—|t|minia,-+1>’ t — o0.

i

(55)

For many common choices of A and B, including the
Gaussian, the orthogonal polynomial [32], and the Wishart

J

2
AAYG(x, ) ~ i)’ <RA (6(0) + p(r) FAP)

) 3(x — y)p(x) + (27i)*

ensemble, all the singularities in py (x) are of the form

lx — x;|%0(x — x;), o; >0 (56)

which means that the density of states is small close to its
edges. We obtain then the asymptotics of Eq. (53) expanding
the integrand in powers of p and integrating term by term.
The expansion coefficients depend on x and y, so they could
in principle modify the singular behavior, but in hindsight we
realize that this not the case.

Keeping terms up to O(p(x)p(y)) gives

2

dé(x) de(x)do(y)
R -R - R —d()R 2
o <¢(x)¢(y) A(‘ZE)(C;; = ¢/2y(<)15(y)) _ ¢(x; _f(y)<¢(X) A(¢q£)(2; _zg; A(¢(y))> )p(x)p(y). 57)

The first term is time independent after integration, and gives
an approximate value of (A(c0)A(0)), but we can do better:
using Eq. (16) before expanding in powers of p and collecting
all terms proportional to §(x — y), we obtain the exact expres-
sion presented in Eq. (50).

B. Example: Asymptotics for a /x edge

The square-root singularity at the edges of the GUE spec-
tral density is very common, so we believe it is useful to
analyze in detail this case. Using the same conventions as in
Sec. IID, Eq. (9) reads as

(A(HA0)) _% dz dw

z(z w)t
A 2mi 2m <f(z)f(w)

/@)= f(w)

-

[f(w )+f(z)]2) (58)

The integrand has four branching points in z = £2 and
w = %2 [see Eq. (45)], so we cut the complex plane and
deform the integration contour as presented in Fig. 2.

The first term in Eq. (58) is factorized and can be estimated
using standard* methods:

—im /4 ,=2it

d izt
/ﬁ JQ~ =5 mr

em/4 82”

dz izt
/VR i ¢ IO TR

which gives

‘ 11
?gdze’”f(z) ~——— cos (2t + 5),
ST 4

t—o00 (59

t — 00 (60)

t — oQ.

(61)

“We remind the reader that «/—1 = exp (—im /2) with our choice
of branch cut.

(

Using Eq. (45), we can rewrite the remaining terms in Eq. (58)
as

[f(w) + f)I

2 )
=—1+f(z)f(w)—w. (62)

f@)— f( )
z—

During the calculation we drop all analytic terms from the
sum, as they integrate to zero on a closed contour. The
factorized term gives the same result as Eq. (61), and one
proves that

2 2
7§ 2 dw oy ZF@—wi @)
2mwi2mwi w—z

Even without going into the details of integration, we can rec-
ognize that it must be constant, by taking the time derivative
under the integral sign:

d [ dzdw o, ZF@) = wifw)

£ Y (64)
dt 2mi 2mi w—2z
= LAY w2y w )] = 0. (65)
2711 271

In conclusion, we have proved that
A(t)A(O 1—
AOAO)

A
cos? (2t + %), t — 00 (66)

A el
which is consistent with the exact result (48) since
J1(2t) 1 1
; —\/_ 7 cos<2t+ 4) t — oo. (67)
Im(z) Im(z)
| Re(2) ; i Re(2)
)/ TR

FIG. 2. Branch cut (dashed line) and integration contour for
Eq. (58). The same choices are made in the w plane.
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IV. FINITE-TEMPERATURE MODIFICATIONS

In order to shift from infinite to finite temperature ﬂ’l,
observe that the exact analysis of G(w, z) is unmodified, so
the results we have derived about G(¢) immediately transfer
mutatis mutandis: it is sufficient to replace t — ¢ + if8 in ap-
propriate locations, which induces some thermal reweighting
of the integrals. Here, we point out the key modifications that
need to be made in Secs. II and III for finite 8.

At finite temperature, the dynamical autocorrelator is

(68)

Tr(e‘ﬁHA(t)A(O)):|

(A(NAQ0))p = E[ Tr(eP7)

At large N, the concentration of measure allows one to split
the disorder average between numerator and denominator.
Defining the partition function

1
Z = —E[Tr(e P, (69)
N
the correlator becomes
1 . .
(ADAWO) g = (P AeTHA), (70)

where the average on the right is the usual disordered averaged
trace from Eq. (4).

Retracing the steps of Sec. II, we find that all the informa-
tion about temperature disappears from G(z, w), and is only
contained in the integration measure:

dw dz et=Px

— W G(w, 7). 71
2ri2ni 7 ¢ (w, 2) 7D

(A()A0))p =

The exponential factor e~#Z does not cause convergence prob-
lems if the density of states has bounded support, as in most
random matrix ensembles.

In particular, the late-time asymptotics of (A(t)A(0))g are
still governed by the decomposition (57) of the exact G(w, z).
Plugging Eq. (57) into (71), we find the analog of Eq. (2):

(A(I)A(O))ﬂ z:oo Aio’ﬂ + Q?H (e(il—ﬂ)H> <e—iHl>' (72)

The late-time constant A;, is the same as Eq. (50)
reweighted by the Boltzmann weight

ImX,(x) ) 2
mpn(x) )
(73)

—Bx
Wy = [ s pur(Rezaco + o0

Somewhat more interesting is the approach to the constant:
for any finite 8, the power law is the same as in infinite-
temperature case, while in the limit 8 — oo, the decay is
slower since
l(e(il—ﬂ)H> N eilEO’ (74)

zZ
where E, is the ground-state energy. Thus, if the finite-
temperature relaxation follows a power law 1/7%, the zero-
temperature system relaxes as 1/¢%/2.

V. GAUSSIAN ROTATION APPROACH

If A and B are both Gaussian, there is an alternative
approach that lets us compute any real-time correlator based
on an orthogonal transformation. When A and H are freely
independent, we can easily compute the two—point function

(A(DA0)) = (e A1 A) (75)

using the noncrossing rules between A and H, but the problem
is of course that we are interested in the case when they are
not.
In Sec. II we kept A fixed and expanded H in terms of A and
B, which do have a noncrossing rule. Here, we do the opposite:
we hold H fixed, and seek a change of variables that turns A
into something freely independent with H. This is easily done
in the Gaussian case, but it is not clear how to construct such
a transformation for general ensembles.
As in Sec. IID, we use traceless matrices with second
moments
@ =ir (B)=1-1 (76)
and it is convenient to extract the A dependence defining the
unit variance variables
A 5 B
Vi T—x
to make the algebra in the rest of the section a little cleaner.
We define the variable C through the orthogonal transfor-

mation
C\ _(VT—x —V/a\(A 78)
H) 7\ Vi J1-2)\B
which makes it Gaussian and independent with H. In the
N — oo limit, independent Gaussian variables become also
freely independent [31], so we have found a variable with the
requested noncrossing rule with H.

The calculation of the correlator at this point is straightfor-
ward: we express A as

A

A

(77)

A= =JT—iC+AH (79)
A
and using the free cumulant expansion we get
A(1)A(O -
w = (A(1)A(0)) (80)
= MH?) + 1 =(C)™P 8D
2
— it —m(@) (82)

which correctly reproduces the result we obtained through the
diagrammatic formalism [Eq. (48)].

Using this method we can actually compute any correlator
of Gaussian operators easily. For example, the out-of-time-
order correlator of A with itself:

OTOC(t) := 1 (|[A(), A]])
= (A(t)*A%) — (A()AA(1)A). (83)
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FIG. 3. Gaussian OTOC, N = 200, disorder average over 10
samples.

The free cumulant expansion gives in this case

2
M:l—kz—F(@) (1 =2)(A=92%)

A2
2
_ <‘@) 11(740(1 — k)Z

J1(2t) 1> (2t)
t2

2
+ <@) 8A(l —A).

120(1 — A)

(84)

This expression is in good agreement with numerics, as we
can see from Fig. 3. The short-time behavior is compatible

with what is known in literature [21]

OTOC(z)
A2

=5(1 — M2 + 0@, (85)

but we see a modification of the exponent in the long-time
power law: if A is independent of H, previous work [21] finds
at~* decay to the infinite-time value. The partial conservation

of A leads to a slower 1/13 decay:

TABLE I. Summary of functions and result for a few examples
we checked numerically.

A B Ri(2) fu(2) (A()A(0))
GUE GUE iz PR |
z Hl—A/22—2—7 X
MP  MP i e 2] L
2z z 1 2
BIN BIN 232 N " max (5, 1— 2‘;2

VI. NUMERICAL CONFIRMATION

In this section we check the predictions of Eq. (41) in a few
interesting cases. Table I contains a summary of the relevant
functions and the resulting long-time constant, while Fig. 4
compares the analytical prediction with the numerical results.

In all three examples, A and B are sampled from the
same ensemble simply because the resulting expressions are
cleaner, but this is not necessary: our results work just as well
in the mixed case.

(a) GUE. We used the conventions of Sec. IID.

(b) Marchenko-Pastur (MP). To sample an MP matrix A
we first sample a standard GUE matrix M with

M)y=0 (M*) =1 (87)

and then we compute

A =M — (M?). (88)
The same procedure is repeated for the matrix B.
(c) Binary matrices (BIN). These are matrices of the form

A=1UDU;, B=uU;DUp, (89)

where U; are Haar-random N x N unitaries and D is a diago-
nal matrix filled with half —1 and half 41 values.

While the result (41) is still valid for these matrices, the
approximation that leads to Eq. (57) breaks down: pg(x) has
x~/2 edges (see the second column in Table I). This means
that the value of the long-time constant (50) is correct, as
confirmed by numerics, but determining the approach requires

more work.
We instead numerically compute the characteristic function

A, >0

OTOC(r) —y (1 —=2x)? (€M) and fit
2 T 3 i
* 2t ) | (A(DA(0)) = (A(00)A(0)) + cl(e™™)? (90)
sin(4t
- (1=m1- 17X)W + 0(;)- (86)  to the numerics. Figure 4 shows that this approximation is not
T as clean as in the other two cases, but after a short time the
error settles to 1/N, which is the best we can hope for.
GUE + GUE MP + MP BIN + BIN
. umerics 1.0 1+ . umerics . umerics
107 \ :na\yt\cs Zsymptot\cs o1t :t
09 1% 081
=~ 1 0.9 1
;v, 0.7 0.4 08 1
0.6 0.2 o 071
0.5 T T 0.0 T 0.6 T
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
t

FIG. 4. Numerical verification of the prediction of Eq. (41) with N = 500. See Sec. VI for details. The title of each panel indicates which

ensemble A and B are sampled from.
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This suggests that even though the approximation of
Eq. (57) is not valid in this case, the approach to the constant
is still determined by the characteristic function of H.

VII. DISCUSSION

There are two directions along which it would be interest-
ing to extend this work to local, finite-dimensional, ergodic
quantum systems.

First, if A is a local operator and B is a sum of local
operators which itself satisfies ETH, then we expect H =
A + B to satisfy ETH and the observable A to be partially
conserved. This implies that (A(¢)A(0)) — c¢/L where L is the
size of the extended system and c is a constant quantifying
how conserved A is. This can be computed explicitly using
Eq. (50) and the results tested against ETH systems.

More technically challenging is to extend the analysis here
to chains of locally interacting random matrices where one
might hope to compute the energy diffusion constant explic-
itly from the dynamical correlators. Here, the exact resumma-
tions available in the random matrix case are complicated by
the locality structure of the chain. Some technical steps along
this axis have been developed in Ref. [30].

The order of limits is important: N — oo must be taken
before + — oo. At finite N, we expect corrections of order
1/N to the late-time value of (A(t)A(0))., although we have
not computed them. They can be calculated perturbatively by
resumming diagrams that tessellate a torus with a hole. For
A independent of H, the 1/N corrections can be computed
nonperturbatively from dephasing the spectral representation:

(ADA0) — EZ|AW| <A2> 1)

where o runs over the energy eigenbasis. However, for A part
of H, this “diagonal ensemble” calculation is not straightfor-
ward, as the |«) are correlated with A. Indeed, these correla-
tions must produce both the O(1/N®) late-time value which
we have computed and any O(1/N) corrections.
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APPENDIX: SHORT-TIME EXPANSION

In the GUE case, the two-point correlation function can
also be computed summing its short-time expansion: we write
G(t) as a power series in the Liouvillian hyperoperator £ :=
[H, -]

(ADAO) (zr)”
A n=0
and evaluate explicitly ((L"A)A).

These moments exhibit a clear pattern [37]: for odd powers

of L the expression vanishes, while for even powers we have
1 ifn=0

2n §
(LDA) = {C,,C,,+1(1 M, ifn=0

where C, is the nth Catalan number. The short-time series is
then

= ((¢""D)A) = (L"A)A)

(AD)

(A2)

(A(A(0)) (lt)z"
f—l—(l—mm—x)z(z G
(A3)
and it can be summed
2
(A(t);\(0)> it _)L)<J1(t2t)) (Ad)

which agrees with the result presented in the main text.
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