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Quantum criticality in Ising chains with random hyperuniform couplings
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We study quantum phase transitions in transverse-field Ising spin chains in which the couplings are random
but hyperuniform, in the sense that their large-scale fluctuations are suppressed. We construct a one-parameter
family of disorder models in which long-wavelength fluctuations are increasingly suppressed as a parameter
α is tuned. For α = 0, one recovers the familiar infinite-randomness critical point. For 0 < α < 1, we find a
line of infinite-randomness critical points with continuously varying critical exponents; however, the Griffiths
phases that flank the critical point at α = 0 are absent at any α > 0. When α > 1, randomness is a dangerously
irrelevant perturbation at the clean Ising critical point, leading to a state we call the critical Ising insulator. In
this state, thermodynamics and equilibrium correlation functions behave as in the clean system. However, all
finite-energy excitations are localized, thermal transport vanishes, and autocorrelation functions remain finite in
the long-time limit. We characterize this line of hyperuniform critical points using a combination of perturbation
theory, renormalization-group methods, and exact diagonalization.
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I. INTRODUCTION

Quenched randomness has profound effects on the ther-
modynamics and dynamics of quantum systems. Equilibrium
quantum critical points are unstable to weak randomness if
the correlation length exponent violates the Harris criterion
ν > 2/d , where d is the spatial dimension [1]. When the clean
critical point is unstable, the system might exhibit a random
critical point [2], at which its properties are heterogeneous on
all length scales, or the phase transition might be rounded [3]
or preempted, for instance, rare-region effects might destabi-
lize one of the phases (for recent examples, see Refs. [4,5]).
In addition, disorder qualitatively modifies quantum dynamics
through Anderson localization of elementary excitations [6].
In low-dimensional systems, the Harris bounds are particu-
larly stringent and, besides, weak randomness localizes all ex-
citations [6]. Thus, at clean low-dimensional quantum critical
points, both equilibrium properties and dynamics tend to be
unstable to weak randomness. In the paradigmatic instance
of the transverse-field Ising chain [7], the clean correlation
length exponent ν = 1, which violates the Harris criterion; for
any disorder, the true critical point is at infinite randomness
[8–10], and all excitations at nonzero energy are exponentially
localized.

This standard analysis applies when the disorder lacks
large-scale spatial correlations. However, localization and the
instability of clean critical points occur more generally, even
for deterministic quasiperiodic potentials [11–23]. Quasiperi-
odic couplings, when weak, neither affect critical proper-
ties nor localize excitations; thus, unlike random couplings,
they are perturbatively irrelevant for both statics and dy-
namics. At a critical strength of the quasiperiodic potential,
however, all excitations localize and the equilibrium critical
point is concomitantly destabilized [24–27]. That the onset of

localization and the critical-point instability coincide in both
random and quasiperiodic systems might suggest that they
are somehow fundamentally linked; this is consistent with
the intuition [28] that statics and dynamics are inherently
linked at quantum phase transitions. Conceptually, however,
localization and the instability of critical points stem from
different aspects of disorder: the former is due to the disorder
potential having a continuous momentum-space spectrum,
the latter, to long-wavelength fluctuations. Uncorrelated ran-
domness has both features, while quasiperiodic potentials
have neither. However, a broad class of random patterns also
have suppressed large-scale fluctuations. These patterns are
called “hyperuniform” [29–32]. The local value of the order
parameter δi at site i in disordered system is characterized
by its spatial average δ = [δi] and with fluctuation scale set
by the standard deviation σ (δi ). Consider the integrated value
Sl (i) = ∑

| j|<l δi+ j summed over the region of linear size l
in d dimensions and centered at site i is characterized by
an asymptotic mean [Sl ] ∼ ldδ. Sl (i) For short-range cor-
related δi, the fluctuations σ (Sl ) are Poissonian, scaling as
σ (Sl ) ∼ ld/2. The spatial variation of δi is said to be hyper-
uniform if the fluctuations scale as σ (Sl ) ∼ lβ with β < d/2.
Even in maximally uniform structures, such as crystals, where
δi has the periodicity of the lattice, there are still fluctuations
of order σ (Sl ) ∼ l (d−1)/2; in a period structure this contribu-
tion comes from the boundary. We shall refer to systems with
β = (d − 1)/2 as strongly hyperuniform (class I of Ref. [32]).
Systems with intermediate exponent (d − 1)/2 < β < d/2
are weakly hyperuniform (classes II and III of Ref. [32]).

This work considers quantum phase transitions in which
the control parameter is spatially varying and exhibits ran-
dom hyperuniform fluctuations. Previous analyses have exten-
sively explored the implications of hyperuniform fluctuations
in particle density, both theoretically and experimentally in
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photonic materials [33,34], and their localization properties
have been studied numerically [35]; however, phase tran-
sitions in systems with hyperuniform couplings have not
previously been explored. We focus on the transverse-field
Ising model, subject to random hyperuniform bonds and/or
transverse fields, with tunable extent of hyperuniformity; the
picture that emerges from our study is quite general, however,
and applies to a range of phase transitions in systems with
hyperuniform couplings. The models we introduce are con-
structed in momentum space, and are thus simple to imple-
ment in ultracold atomic gases using spatial light modulators
[36] or in “quantum gas microscope” experiments [37]. The
hyperuniform couplings in the models we consider lead to a
modification to the usual Harris criterion, which is obtained
for uncorrelated spatial disorder. This alters the condition
for the relevance of the disorder to the critical properties
of the transition. Despite this change, as we consider one-
dimensional models with local hopping subject to random
bonds with continuous Fourier spectra, the E �= 0 excitations
remain subject to weak localization. Thus, these models are
intermediate between random and quasiperiodic systems: all
excitations localize at weak disorder, but the clean critical
points need not be unstable. Hyperuniform disorder comes
about due to correlations. The effect of correlated disorder on
localization [38–40] and phase transitions [41–44] have been
previously explored; these works, however, were concerned
with the case of locally correlated disorder, whereas this work
addresses local anticorrelations, which naturally give rise to
entirely different physics.

We explore the critical point (and near-critical phases)
of the random hyperuniform transverse-field Ising model
(TFIM) as a function of a parameter α, defined in Sec. II, that
tunes the degree of hyperuniformity (Fig. 1); α is related to
the wandering exponent β via β = max{0, (1 − α)/2}. Our
results are as follows. For strongly hyperuniform systems,
disorder is irrelevant at the clean critical point, and (to leading
order) does not affect thermodynamics or equal-time correla-
tion functions. It is counterintuitive that the disorder localize
excitations, but remain irrelevant to critical properties; this
is possible as the localization length diverges faster than the
clean correlation length (Fig. 2) at low energies [or, equiva-
lently, under a renormalization-group (RG) flow]. However,
despite irrelevance, the dynamics is completely altered even
for weak disorder: thermal transport vanishes, and autocor-
relation functions do not decay to zero; a wave packet has a
ballistically moving front that remains well defined at all times
(a remnant of the z = 1 clean critical dynamics), but the front
attenuates as it moves, and at late times the weight at the front
shrinks to zero (Fig. 2). We call the resulting unconventional
critical point the “critical Ising insulator” (CII); because dis-
order acts as a dangerous irrelevant variable here, we are able
to develop an essentially complete analytic understanding of
the unusual dynamics on this critical line.

In the weakly hyperuniform case, disorder is relevant,
and we find a line of infinite-randomness critical points with
continuously varying critical exponents (Fig. 3). Unlike the
uncorrelated α = 0 case, there are no Griffiths phases for
any degree of hyperuniformity; we explain this with an ele-
mentary counting argument. We explore these critical points
via strong-disorder renormalization-group (SDRG) methods.

α

ξi

Ji

FIG. 1. Upper panel: simple model with strongly hyperuniform
(α = 2) bond randomness. Each site is displaced by an independent
random amount ξi from its equilibrium position; this leads to bonds
Ji that are evidently strongly hyperuniform, in the sense that the
variance of

∑l
i=1 Ji tends to a constant independent of l . Lower

panel: phase diagram of the random hyperuniform TFIM. Away
from criticality, all excitations are localized for any randomness;
however, the universality class of the critical point changes as the
hyperuniformity parameter α is varied. A line of infinite-randomness
critical points, with continuously varying exponents, terminates at a
multicritical point, beyond which disorder is dangerously irrelevant
(the critical Ising insulator).

Our SDRG results for the average spin correlations at the
critical point yield unexpected nonmonotonic behavior: these
correlations go as [〈τ x

i τ x
i+l〉] ∼ l−2	σ , where the exponent 	σ

first increases as the model is made more hyperuniform, then
drops discontinuously. We attribute this effect to rare regions
(which dominate response in the conventional random TFIM)
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FIG. 2. Critical length scales and dynamics in the strongly hype-
runiform Ising model. Left: the length-energy scaling of two relevant
scales at the Ising critical point: the clean correlation length ξclean ∼
1/|E | and the localization length ξloc ∼ 1/|E |α . When α > 1 the
localization length diverges faster, so it appears asymptotically larger
than the correlation length in the low-energy critical properties. The
critical properties are then controlled by the clean Ising correlation
length. Right: expansion of an initially localized wave packet along
the CII line at α = 2. The bulk of the wave packet is localized
(corresponding to high-energy components of the wave packet), but
there is a rapidly attenuating component that propagates at the light
cone, depositing weight as it goes.
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FIG. 3. Weakly hyperuniform systems. Critical exponents at the
Ising transition vs hyperuniformity parameter α, extracted from
the strong-disorder renormalization group. Upper panel shows the
length-time scaling log t ∼ lψ , with the analytically exact results for
α = 0 [8] in agreement with the numerical results for 0 < α � 1.
Lower panel plots the average order parameter scaling dimension
[〈τ x

i τ x
i+l〉] ∼ l−2	σ , extracted from the correlations, and the scaling of

the magnetic moment μl ∼ lψφ . The relation 	σ = 1 − ψφ is seen
to hold.

getting progressively less dominant, and eventually becoming
subleading to typical regions.

The rest of this work is organized as follows. In Sec. II
we introduce a family of Ising models with random hyper-
uniform couplings. In Sec. III we use perturbative stability
arguments, as well as exact results for the zero-mode wave
function, to identify the perturbative (strongly hyperuniform)
and nonperturbative (weakly hyperuniform) regimes. (In the
process, we also generalize the Harris criterion to the hyper-
uniform case.) We then explore the equilibrium and dynamical
properties of the strongly hyperuniform critical point (Sec. IV)
and the weakly hyperuniform critical point (Sec. V), using a
combination of perturbative and strong-randomness methods.
In Sec. VI we present numerical results, from exact diago-
nalization, on the evolution of correlation functions as the
degree of hyperuniformity is changed. Finally, in Sec. VII we
summarize our results and address their implications for more
general phase transitions in hyperuniform systems.

II. MODELS AND REALIZATIONS

We consider the transverse-field Ising model (TFIM) with
spatially varying couplings:

H = 1

2

L∑
i=1

(
hiτ

z
i + Jiτ

x
i τ x

i+1

)
, (1)

where τα are the Pauli matrices. We construct the coeffi-
cients hi, Ji as follows. For concreteness, consider the Ji; we
choose Ji to have the form Ji ≡ J0 exp(−sqi ), where q j ≡

1√
L

∑
k qke−ik j (with k = 2πn/L, and n = 1 . . . L), and qk

are random numbers with correlations given by the structure
factor Sα (k, k′):

Sα (k, k′) ≡ [qkq−k′ ] ∼ |k|αδkk′ , (2)

where from here on [·] denotes disorder averaging. In nu-
merics we use qk = | sin(k/2)|α/2 1√

L

∑
j ξ jeik j ( j = 1 . . . L)

for independently identically distributed (iid) ξ j drawn from
the uniform distribution of mean [ξ j] = 0 and unit vari-
ance [ξ 2

j ] = 1. For this choice of qk one finds [qkq−k′ ] =
| sin(k/2)|αδkk′ ∼ |k|αδkk′ as required.

When s is small, we can expand Ji to linear order in qi, so
that both have the same fluctuation properties; for the nature
of the critical point, however, it is the distribution of ln Ji that
we would like to be hyperuniform (Sec. III B). It is known [30]
that when 0 < α < 1, the fluctuations scale as σ (

∑l
i=1 qi ) ∼

l (1−α)/2, where σ (·) denotes the standard deviation; for α > 1,
the system is strongly hyperuniform since these fluctuations
are independent of the size of the region. Models with general
α involve long-range correlations of the disordered couplings,
as a result of their nonanalytic behavior as k → 0. For the bulk
of our analysis and numerical work we fix hi to have the same
distribution as Ji in order to retain the standard self-duality
properties of the Ising model. However, we have checked that
our results are unaffected if, instead, we choose either hi or Ji

to be constant, so long as at least one of the terms is random
and hyperuniform.

Since these patterns (2) have simple properties in Fourier
space, they can in principle be implemented in systems of
ultracold atoms using spatial light modulators (which engi-
neer potentials in k space [45,46]). Spatial light modulators
would allow one to realize hyperuniform couplings in, e.g.,
Rydberg-atom arrays, in which the TFIM has been realized
[47,48]. Also, in realizations of the TFIM that use quantum
gas microscopes [37], all parameters can be addressed and
tuned locally. Beyond ultracold gases, random hyperuniform
couplings can also be straightforwardly realized in arrays of
magnetic adatoms [49], deposited precisely on surfaces using
scanning-tunneling microscopy, which can be chosen to have
random hyperuniform spacings.

For the specific case α = 2, the structure factor is analytic
at k = 0 so a simple local construction of the random po-
tential for this case exists [50] (Fig. 1, upper panel). Define
q j = j + ξ j , where ξ j are iid random “displacements” with a
mean [ξ j] = 0. Then, Jj = J exp(s{q j − q j−1}). This choice
of couplings is physically natural: it corresponds to exponen-
tially decaying spin-spin interactions between spins on sites
that are randomly displaced from equilibrium positions on a
regular crystalline lattice. One can check that for weak vari-
ations in Ji, we have Sα (k, k′) = δkk′ [ξ 2] sin2 (k/2) ∼ δkk′k2;
thus, this model is indeed hyperuniform with α = 2. Other
hyperuniformity exponents α may be realized in a similar
manner if the spin degrees of freedom are spaced such that the
fluctuations on the number of spins in a given volume are hy-
peruniform. Such models may arise naturally for judiciously
chosen processes [51,52].

We note that the TFIM with arbitrary couplings can be
mapped via Jordan-Wigner transformation to a model of free
Majorana fermions with spatially varying hopping. Specifi-
cally [25–27],

H = i

2

∑
i

(Jiγ2iγ2i+1 + hiγ2i+1γ2i+2), (3)
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where the Majorana operators are related to the spins via the
relations

γ2i ≡
⎛
⎝∏

j<i

τ z
j

⎞
⎠τ x

i ; γ2i+1 ≡
⎛
⎝∏

j<i

τ z
j

⎞
⎠τ

y
i . (4)

This free-fermion representation allows for H to be brought to
a diagonal form H = i

∑
n Enη2nη2n+1 using exact diagonal-

ization, and thus permits studies of relatively large systems.

III. CRITICAL POINTS AND PHASES VS α

In this section we identify the various regimes of behavior
as a function of the hyperuniformity parameter α, using per-
turbative arguments and the exact solution for the zero mode
of the Ising model. This leads us to separate the phase diagram
into a regime where disorder is perturbatively irrelevant [i.e.,
for strongly hyperuniform couplings (Sec. IV)] and a regime
where it is relevant [i.e., for weakly hyperuniform couplings
(Sec. V)]. In subsequent sections we address these regimes
separately, using the methods appropriate to each.

A. Harris criterion

As a first step to understanding the relevance of hype-
runiformity, we generalize the Harris criterion to random
hyperuniform potentials in one dimension. The argument
below generalizes that given by Luck [53] for quasiperiodic
potentials.

The control parameter δ = [log hi − log Ji] describes the
deviation of a thermodynamic system from criticality. Anal-
ogously, one can define a local control parameter δl , which
describes the deviation from criticality within a finite region
of size l . The value of δl depends on the disorder realization
(or equivalently the choice of finite region); δl has mean value
[δl ] = δ, and fluctuations given by the corresponding standard
deviation σ (δl ).

In the strongly hyperuniform case, the fluctuations of δξ

within a region of the size of the correlation length ξ are of
scale σ (δξ ) ∼ 1/ξ ∼ δν . For the clean criticality to be stable,
we require that [δξ ] > σ (δξ ), i.e., δ > δν , as the critical point
is approached (δ → 0). In this case, stability of the clean
universality to hyperuniform disorder requires ν � 1. Thus,
the stability of the clean TFIM critical point in one dimension
(where ν = 1) is marginal. For weakly hyperuniform systems,
the fluctuations are of order ξ−(1+α)/2, so the Harris criterion
accordingly gives ν � 2/(1 + α). Thus, the clean TFIM is
perturbatively unstable to weakly hyperuniform potentials,
while strongly hyperuniform potentials are marginal. To see
that strongly hyperuniform potentials are in fact irrelevant,
we turn to the exact solution for the zero mode of the TFIM,
which can be computed for arbitrary potentials.

B. Zero mode

As a complementary way of probing the nature of
the hyperuniform critical points, we use the following
explicit construction of the zero mode of the critical Ising
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FIG. 4. Zero-mode wave-function profiles |ci| [see Eq. (5)] in
a representative sample in the weakly (left) and strongly (right)
hyperuniform regimes.

Hamiltonian [25]:

η0 =
∑

i

ciγi, ci = 1

N
∏
j<i

(h j/Jj ), (5)

where N is a normalization factor. Since strongly
hyperuniform potentials do not cause this product to
wander, the zero mode has uncorrelated random site-to-site
fluctuations but no large-scale heterogeneity. For instance, in
the α = 2 model, Ji = J exp(s{ξi − ξi−1 + 1}), hi = h exp(s)
so ci ∝ (h/J )i exp(−ξi − ξ1) ∼ exp(−ξi) at criticality.
In the weakly hyperuniform case, by contrast, η0 has
strong amplitude fluctuations (Fig. 4), with sharp isolated
peaks c j . Moving a distance l away from a peak, at
criticality, the wave-function amplitude typically decays as
c j+r ∼ exp(−const × |r|(1−α)/2). In the marginal case α = 1,
the product decays as c j+r ∼ exp(−const × √

ln r) away from
the peak c j , i.e., slower than any power law. Therefore, we
expect the zero mode in this case to be spread out uniformly
over the lattice, as in the strongly hyperuniform regime.
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C. Energy-dependent localization length

In the models we are considering here, states far from
E = 0 are localized, with a localization length ξ given (at weak
disorder) by the theory of weak localization

1

ξ (Ek )
∼ ρ(Ek )([JkJ−k] + [hkh−k]) ∼ ρ(Ek )Sα (k, k), (6)

where Ek is the clean dispersion, and Jk, hk are the appro-
priate Fourier components of the hyperuniform potential. To
obtain this result, consider a plane wave of momentum k, and
treat the disorder perturbatively. The mean-free distance is
calculated by taking the product of the Fermi’s golden rule
decay time of the plane wave, and the group velocity. As the
mean-free distance is the only length scale in the problem, we
identify it with the localization length, yielding Eq. (6).

A consequence of Eq. (6) is that the behavior of the
localization length as |E | → 0 is sensitive to α. Specifically,
if we begin at the clean critical point, and consider the
weak-localization formula for ξ as |E | → 0, we find that ξ ∼
1/|E |α . This perturbative result is internally consistent when-
ever k ξ (Ek ) � 1, where k ∝ E at the critical point; this is true
for weak disorder when α � 1, but breaks down as |E | → 0
when α < 1. Physically, in the strongly hyperuniform regime,
the localization length diverges sufficiently rapidly at low
energies that the momentum of an eigenstate ∼|E | becomes
asymptotically sharp compared to its momentum width |E |α ,
although the wave function is localized on the longest scales.
By contrast, in the weakly hyperuniform regime, as with
uncorrelated disorder, the perturbation theory breaks down
at sufficiently low energies, and the low-energy localization
properties are governed by nonperturbative effects.

D. Stability of the critical Ising insulator

The strongly hyperuniform case shares some features with
the putative semimetal-to-metal critical point in disordered
Weyl and Dirac systems [54–57]. For Weyl systems, it is the
zero-energy density of states (DOS) rather than the spectrum
of the disorder that vanishes at low energies; however, both
mechanisms cause disorder to be perturbatively irrelevant as
|E | → 0. Nonperturbative rare-region effects destabilize Weyl
semimetals in the presence of disorder, and one might wonder
if some similar nonperturbative effect might arise as |E | → 0
at the strongly hyperuniform critical point, leading it to flow
to strong randomness. If some such scenario held, we would
expect the true critical point to be at infinite randomness
regardless of α, and the structure of the zero mode to evolve
smoothly with α. But, as we saw above, the exact zero mode
in fact shows an abrupt change of behavior at the critical
value α = 1, supporting our case that there really is a sharp
change in the critical properties between weakly and strongly
hyperuniform regimes.

IV. STRONGLY HYPERUNIFORM CASE:
“CRITICAL ISING INSULATOR”

In this section we explore the critical behavior of the
thermodynamics, equal-time correlations, transport, and dy-
namics when α > 1. As noted already, the critical point has
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FIG. 5. Density of states for strongly hyperuniform systems. At
low energies the density of states tends to a finite value as in the
clean case. The hyperuniform modulation gives rise to a subleading
correction in the form of a nonanalytic cusp. The density of states
was computed using the recursive method of Ref. [58] for parameters
L = 107, s = 3

16 , and n = 40 disorder realizations.

an energy-dependent localization length

ξ (E ) ∼ 1/|E |α; (7)

this relation will be central to our analysis below. We first
summarize the equilibrium properties of the critical point,
which are (to leading order) unchanged by the hyperuniform
potential; then turn to its dynamical properties, which are
qualitatively different from those of the clean system. Finally,
we extend our results away from the critical point.

A. Equilibrium properties

1. Density of states

Since disorder is perturbatively irrelevant at this critical
point, we expect the DOS of the disordered problem to
approach a constant as E → 0. However, there is a subleading
nonanalyticity in the DOS, for α �= 2. This nonanalyticity
follows from the nonanalytic behavior of ξ ; in fact, the two
are related by the Thouless formula [59]∫

dE ′[ρ(E ′) − ρ0(E ′)] log |E − E ′| � 1

ξ (E )
∼ |E |α, (8)

where ρ0(E ) is the DOS of the clean system. In general,
this equality requires ρ(E ) − ρ0(E ) ∼ |E |α−1: thus, the non-
analytic dependence of ξ−1 at low energies translates into a
nonanalyticity in the DOS. [The case α = 2 is special: here,
ξ−1(E ) is an analytic function of E , so the nonanalytic DOS
correction is absent there.] We see this nonanalytic behavior
clearly by numerically evaluating the DOS for very large
systems via the recursion method of Ref. [58] (Fig. 5). Finally,
we note that due to the subleading nature of the correction
to DOS we have neglected to precisely calculate logarithmic
corrections in (8).

2. Equilibrium correlation functions

On dimensional grounds, we expect equilibrium correla-
tion functions at long distances to behave as they would
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for clean systems. The scale ξl ∼ 1/|E |α is much larger
than �Ising ∼ 1/E . In the clean system, the correlations at a
length scale l are set by wave functions at energies E ∼ 1/l;
however, these wave functions are only localized on much
longer scales, so their localization properties are irrelevant
for the equilibrium correlations. This expectation is consistent
with the results of numerical simulations (Sec. VI).

B. Dynamics at the critical point

1. Thermal transport

Unlike equilibrium properties, transport is strongly mod-
ified by localization. The simplest conserved quantity in the
Ising model is energy; accordingly, we focus on thermal trans-
port. In the clean Ising chain, thermal transport is ballistic and
the conductance is given by the appropriate Landauer formula
κ ∼ T [60]. This result no longer applies in the CII, but
understanding how precisely energy is transported requires
some care with the order of limits. In what follows, we
consider a setup in which the Ising chain is connected to two
leads at temperatures TL ≡ T − 	T/2 and TR ≡ T + 	T/2,
respectively; we also make the linear-response assumption
	T  T .

Since ξ ∼ 1/|E |α , in a chain of length L, excitations with
E � 1/L1/α are delocalized (and indeed ballistic). Since the
level spacing scales as 1/L, the number of delocalized modes
grows with system size, although the delocalized fraction of
the spectrum decreases as L−1/α . There is a mesoscopic pa-
rameter regime for the temperature gradient such that 1/L 
	T  T  1/L1/α . In this mesoscopic regime, heat transport
takes place through the delocalized states around zero energy
and the clean-system Landauer result [60] continues to apply.

However, for thermodynamically long chains, this is not
the appropriate order of limits. Instead, one keeps 	T finite as
L → ∞, so that 1/Lα  	T  T . In this limit, a vanishing
fraction of the modes around E = 0 contribute to transport;
moreover, the contribution of each delocalized mode is sup-
pressed because it is effectively at very high temperature. The
Landauer formula for the energy flux is [60]

Q̇ = 1

2π

∫ ∞

0
dω ω(nR(ω) − nL(ω))t (ω), (9)

where nR, nL are the quasiparticle occupation numbers in
the two leads, and t (ω) is the transmission coefficient of
states at frequency ω. The transmission coefficient is given by
exp(−L/ξ ) ∼ exp(−αLEα ), which we approximate by cut-
ting off the integral at the energy scale 1/L1/α (this amounts to
neglecting the exponentially suppressed transmission through
localized states). The delocalized states with energies E �
1/L1/α have occupation numbers that are effectively at high
temperature since 1/L1/α  T . Thus, nR(ω) ∼ 1/2 − ω/TR,
and likewise for nL. Plugging these results into (9) we find

Q̇ ∼ 	T

T 2

1

L3/α
⇒ κ ∼ 1

T 2L3/α
, (10)

so the critical state is a thermal insulator, with a conductance
that decays algebraically with chain length.

TABLE I. Scaling properties of {γi+r (t )γi(0)} in the strongly
hyperuniform regime (1 < α � 2).

Quantity Behavior

Front height t−2/α ∼ r−2/α

Front width t1/α ∼ r1/α

Late-time saturation value r−1−1/α

2. Wave-packet dynamics and autocorrelations

We now turn to the behavior of autocorrelation functions
and wave-packet dynamics; these quantities might be easier
to probe, e.g., in ultracold atomic experiments, than transport.
A particularly illuminating quantity to study is the dynamics
of the Majorana fermion operator describing to the spreading
of elementary excitations

γi(t ) = eiHtγie
−iHt =

∑
j

Ui j (t )γ j, (11)

the transition matrix is set by the anticommutator Ui j (t ) =
{γi(t ), γ j (0)}. This quantity is closely related to the out-of-
time-order correlator [61,62]. After addressing how elemen-
tary excitations spread, we turn to the behavior of general
autocorrelation functions.

In the clean system at its critical point, operators spread
ballistically. The situation in the disordered case is quite
different. One can decompose the spatial Majorana degrees of
freedom in terms of the fermionic eigenmodes γi = ∑

n uinηn.
After time evolution up to a timescale t , the projection of
γi onto modes that have localization lengths ξ � t remains
localized, while the rest of the operator moves ballistically to
the light cone r(t ) = t . Assuming the operator was initially
spread out uniformly among modes, the fraction that is still
spreading at time t is 1/t1/α . This spreading fraction consists
of a well-defined but broadening peak, which is Gaussian in its
outer tail, with height decaying as t−2/α and width broadening
as t1/α . As it moves, the front locally “deposits” intensity
of order t−1−1/α (one can see this from the conservation of
total weight). When α > 1 (i.e., in the CII), the height of the
“deposited” operator is parametrically smaller than the height
of the front, and the front remains well defined at late times
(Fig. 6).

Finally, the broadening of the front can be understood as
follows. As we noted in Sec. IV A, the DOS in the presence of
hyperuniform potentials gets modified to ρ(E ) ∼ c + |E |α−1.
Since the momentum of low-energy modes is asymptotically
well defined (because the localization length of a mode grows
much faster than its wavelength), we can continue to associate
a momentum to each eigenstate, and therefore interpret the
DOS shift as providing an effective dispersion relation of
the form E (k) ∼ a|k| + b|k|α . This causes wave packets to
spread, with a width δr(t ) ∼ t1/α , when 1 < α � 2; this is
the behavior we observe numerically.1 These various scaling
relations are summarized in Table I. For all α this broadening

1For α > 2, the leading correction to the dispersion is the (analytic)
quadratic term, therefore in this regime the wave packet broadens
diffusively, and the height of the front decreases as t−1/α−1/2.
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FIG. 6. Top: spreading of a wave packet at the critical point for
α = 2. A well-defined ballistic front exists and moves out with the
clean critical velocity; however, the weight at the front attenuates
with time: its height shrinks as 1/t (dashed line) and it broadens as√

t (Supplemental Material, Appendix A [73]). Bottom: regimes of
{γi+r (t ), γi(0)}. The autocorrelator is small outside the light cone,
grows to r−2/α when r ∼ t , then saturates at later times to a value
{γi+r (∞), γi(0)} = 1/r1+1/α . Other correlation functions can exhibit
multiples p = 1, 2, . . . of this basic power law.

parametrically exceeds the t1/3 broadening in the clean Ising
chain [63–67].

Because the TFIM is a model of free fermions, the re-
sults above can be used to infer the dynamics of any local
perturbation that preserves the Ising symmetry (i.e., does
not involve Jordan-Wigner strings). The various regimes of
behavior of spatiotemporal autocorrelation functions such
as, e.g., the retarded transverse-field autocorrelation function
〈[γi(t )γ j (t ), γ0(0)γ1(0)]〉�(t ), can also be deduced from the
structure of the Heisenberg operator γi(t ). In the TFIM,
local operators locally create or eliminate some number of
quasiparticles, and each of these quasiparticles behaves as
discussed above. Space-time correlation functions exhibit a
well-defined but rapidly attenuating light cone, and the be-
havior inside the light cone clearly indicates localization:
the memory of local perturbations persists indefinitely. The
regimes of behavior of local autocorrelation functions are
sketched in Fig. 6. If one fixes a distance r and measures a
generic correlation function C(r, t ), it has three regimes: (i)
at times before the light cone passes through, the correlation
function is small, as causality demands; (ii) at a time r ∼ t ,
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FIG. 7. Minimum in the inverse localization length 1/ξ (E ): dis-
order averaged 1/ξ is plotted versus E . At criticality the localization
length ξ is monotonically increasing with decreasing excitation en-
ergy E . When one detunes away from criticality by δ, the localization
length is minimized at an energy E = O(δ). Data for system sizes
L = 5000, α = 1.5, s = 3

16 error bars smaller than plot points.

the correlation function grows to a value that is power-law
small in r; (iii) at times r � t , it saturates to a parametrically
smaller value that is also power-law small in r. The precise
values of these exponents depend on the operator.

C. Away from criticality

1. Localization length

Away from criticality, it appears that all states are localized
at weak disorder. For simplicity, we consider the paramagnetic
phase (though our results extend to the ferromagnetic phase by
Ising duality). Here, the clean system is gapped, with a dis-
persion relation E ∼ √

	2 + k2. We are primarily concerned
with the localization properties near k = 0, which correspond
to E = 	. The density of states is ρ(E ) ∼ 1/

√
E − 	, and

the effective velocity of an excitation at k(E ) ∼ √
(E − 	)	

is v(E ) ∼ √
E − 	. At leading order in perturbation theory,

we find that the mean-free time diverges in the strongly
hyperuniform regime as τ (E ) ∼ (E − 	)1/2(1−α). However,
because the velocity vanishes as E → 	, the mean-free path
goes as ξ (E ) ∼ (E − 	)1−α/2. Thus, ξ vanishes (and pertur-
bation theory ceases to be controlled) near the bottom of the
band for 1 � α < 2. We check numerically that ξ does indeed
decrease near the bottom of the band in Fig. 7. Precisely,
the pairs ψn, En were obtained by exact diagonalization of a
periodic chain, and indexed n by their rank order in energy.
A localization length ξn is then assigned to each one by a
least-squares fit to the relationship

log
∑

i

∣∣ψn
i ψn

i+r

∣∣ = r/ξn + const (12)

for −L/2 < r < L/2. The ensemble averaged values of
1/ξ = [1/ξn] and E = [En] are then plotted in Fig. 7.

For α = 2, the localization length remains finite at the bot-
tom of the band, and for α > 2 it diverges within perturbation
theory. Even for α > 2, however, rare local configurations
of the potential might smooth out the square-root divergence
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of the DOS and thus prevent ξ from diverging; this issue is
outside the scope of this work.

2. Equilibrium correlations

The equilibrium correlation length at a distance δ from
criticality is governed by the slowest-decaying modes in the
system. The very lowest-energy modes are potentially tightly
localized, in which case they cannot transmit correlations
beyond their localization length; however, modes at an energy
	E ∼ δ from the bottom of the band are still “critical”
regime, so their localization lengths are parametrically larger
than their inverse momenta, provided δ is sufficiently small.
Thus, the correlation length of the system is governed by these
modes, which decay on a length scale set by the distance from
criticality, not the localization length. Thus, up to potential
numerical factors, the equilibrium behavior of the model away
from criticality should be identical to that of the clean system.
The minima in 1/ξ (E ) which govern this behavior are visible
in Fig. 7.

3. Transport and dynamics

Unlike equilibrium correlations, transport and dynamics
are strongly affected by the localization properties of the
model. For α � 2 all modes are localized, with a nondiverging
ξ . Wave packets do not travel to infinity, and the finite-
temperature thermal transport coefficients are exponentially
small in system size (in addition to being thermally activated).
Specifically, at a distance δ from criticality, the least localized
modes are those with 	E ∼ δ above the gap, which have
localization length ξ ∼ 1/δα (see Fig. 7). The conductance
through a system of length L is therefore suppressed as
exp(−Lδα ).

V. WEAKLY HYPERUNIFORM CASE:
INFINITE-RANDOMNESS CRITICAL LINE

While perturbation theory about the clean limit allowed
us to extract the behavior of physical observables in the
strongly hyperuniform case (even when this behavior was
drastically different from the clean system), such a pertur-
bative approach evidently fails when disorder is relevant at
the critical point. We approach this regime instead using
strong-disorder renormalization-group (SDRG) methods and
estimates based on counting rare regions. We first discuss the
behavior of the density of states at the critical points, and
the absence of Griffiths phases for α > 0, as these can be
understood using elementary counting arguments. We then
present SDRG results for the evolution of critical exponents
with α. This section focuses on static properties, as these are
the most directly accessible; however, we expect the dynamics
throughout this phase to be qualitatively similar to that at the
conventional infinite-randomness critical point.

A. Density of states

The thermodynamic properties of the critical point are
captured by the density of states (DOS) near zero energy;
this quantity can be estimated by adapting Ref. [68]. The
key result of that work is that, for a random hopping model,
the integrated DOS up to energy E , N (E ) = ∫ E

0 ρ(E ′)dE ′,
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FIG. 8. Density of states for weakly hyperuniform systems. At
low energies the integrated density of states scales as N (E )(α−1)/2 =
c1 log E + c0 (for constants c0, c1), generalizing the familiar N (E ) ∼
1/ log2 E of the iid (α = 0) case. Mean values of N (E ) are calcu-
lated by disorder averaging; statistical error is shown by error bars.
Parameters: L = 107, s = 3
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obeys the relation N (E ) ∼ 1/2�(E ), where � is the spatial
scale over which the quantity log[

∏
j J j/h j] changes by an

amount ∼ log E . For uncorrelated randomness, � ∼ log2 E ,
leading to the familiar Dyson singularity in the DOS. For
strongly hyperuniform potentials, when the potential is weak
enough, the wandering does not grow with distance at all,
so � = ∞, and the DOS is (to leading order) unaffected by
weak randomness (but as discussed in Sec. IV, there are
subleading nonanalyticities). For α < 1, � ∼ log2/(1−α)(E )
and therefore ρ(E ) ∼ 1/(E log1+2/(1−α) E ). The correspond-
ing low-energy behavior of the integrated DOS for weakly hy-
peruniform disorder, N (E )(α−1)/2 = c1 log E + c0 (for some
constants c0, c1), is verified in Fig. 8. This construction
of the DOS also gives an implicit relation between length
scales and timescales, �(E ). In the strongly hyperuniform
case, �(E ) = ∞, so randomness does not affect the dynamic
critical exponent. In the weakly hyperuniform case, �(E ) ∼
log2/(1−α)(E ), suggesting infinite-randomness behavior. For
α = 1,

√
log � ∼ log E , so � ∼ exp(const × log2 E ). Thus,

ρ(E ) ∼ e−const×log2 E log E/E , which vanishes at small E .
This is subleading to the perturbative effects discussed in the
previous section (as we would expect since α = 1 is in effect
strongly hyperuniform).

B. Griffiths effects

The infinite-randomness critical point at α = 0 is associ-
ated with “Griffiths” regimes on either side; in these regimes,
the response to perturbations is dominated by rare regions
that are in the wrong phase, and these contributions are para-
metrically dominant over the response from typical regions.
Thus, for instance, in the paramagnetic phase sufficiently
near the transition, the magnetization m(h) ∼ hγ with γ < 1.
This behavior occurs because the paramagnet contains an
exponentially small (in size) density of regions that are locally
in the ferromagnetic phase, and these regions have an expo-
nentially large contribution to the susceptibility. These two
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exponentials combine to give a continuously varying power
law, depending on the density of Griffiths regions, and the
power law is less than one close to the critical point.

For α > 0, there are no Griffiths regimes. One can see this
by estimating the number of rare ferromagnetic regions in the
microscopic model (i.e., regions of size l for which the local
control parameter δl exceeds some threshold β). To do this, we
need the probability distribution PL(δl ) for a region of size l .
It is simpler to work with the characteristic function

Fl (t ) ≡
⎡
⎣exp

⎛
⎝ it

l

l∑
j=1

ln

{
h j

Jj

}⎞
⎠

⎤
⎦ ∼ exp(−t2l−(α+1)),

(13)

where we used the Gaussian (though correlated) nature of the
distribution of ln(hi/Ji ). Inverting the Fourier transform, we
find

Pl (δl ) ∼ exp
( − δ2

l l1+α
)
. (14)

Thus, the probability of a ferromagnetic region is suppressed
faster than exponentially in l , whenever α > 0. (In the
strongly hyperuniform regime, it vanishes as a Gaussian in l ,
which is natural since in this regime the entire variance must
come from the edge spins, which have a Gaussian distribu-
tion.)

We now estimate the contribution to the susceptibility from
these regions. At a field h, the ferromagnetic regions of size
� log h fully magnetize. The density of such regions is given
by exp[−(log h)1+α]. This vanishes faster than a power law
at small h, so it is always subleading to the paramagnetic
response from typical regions.

The arguments above applied only to the bare couplings;
one might wonder if they continue to apply if one instead con-
siders renormalized couplings. We argue below (Sec. V C),
after introducing our renormalization scheme, that they do
apply.

Edge-spin susceptibility

This analytic argument against Griffiths effects is borne
out numerically by studying the magnetization of the chain
in response to a field applied at the edge; this is a simple
way of computing a lower bound to the susceptibility of Ising
chains (Fig. 9). To do this within the free-fermion description
of the TFIM, one can introduce an artificial edge spin τ0

at one end of the chain, which couples to the leftmost spin
via a coupling gτ x

0 τ x
1 but has no transverse field acting on

it [69]. The susceptibility of the edge spin to this field is
given by the g dependence of the quantity 〈τ x

0 τ x
1 〉, which we

can compute within the free-fermion theory. Our results are
consistent with the absence of a Griffiths phase at α > 0: the
low-field susceptibility appears to be asymptotically linear in
the field even very close to the critical point, in contrast to the
α = 0 case.

C. SDRG and correlation functions

To probe the nature of the critical point in the weakly
hyperuniform case, we numerically apply the standard SDRG
for the random TFIM [8–10,70,71] to the hyperuniform case.
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FIG. 9. Susceptibility of a spin at the edge of the chain vs
distance from the transition δ, for the cases α = 0 (independent
random couplings), α = 0.5 (weakly hyperuniform), and α = 1.5
(strongly hyperuniform). Evidently, even for weakly hyperuniform
couplings, the susceptibility approaches linear behavior with field
even very close to the transition, suggesting the absence of a Griffiths
phase. Parameters: L = 2000, s = 3

16 .

The SDRG rules involve picking the largest coupling and
eliminating it. If the largest coupling is a bond, one creates
a new effective spin with transverse field hihi+1/Ji; if the
largest coupling is a field, one eliminates the corresponding
spin to create a new effective bond JiJi+1/hi. An important
property of these rules is that the effective bonds at any
stage in the SDRG are products of microscopic Ji divided by
products of microscopic hi, and vice versa for the fields. If
one runs the RG until the system size is rescaled by a factor l ,
the typical coupling scales as

∏i+l
j=i(Jj/h j ) ∼ exp(−const ×

l (1−α)/2). Thus, the space-time scaling at this critical point
has the infinite-randomness form t ∼ exp(const × lψ ), with
ψ = (1 − α)/2.

Other key exponents, such as the scaling of mean cluster
moments, can be extracted from numerically iterating the
SDRG rules for large systems (Fig. 10). The mean cluster
moment μ at a length scale � goes as μ ∼ lψφ , where ψφ

decreases linearly from its α = 0 value as α is increased.
Thus, hyperuniformity yields sparser spin clusters than iid
randomness. In the uncorrelated case, the mean cluster mo-
ment and the exponent that governs decay of mean order-
parameter correlations are related: Cxx(r) ∼ 1/|r|2	σ , where
	σ = 1 − ψφ. We find numerically that this relation contin-
ues to hold for the weakly hyperuniform case (as one might
expect, since the argument for this relation in Ref. [9] is quite
general).

A surprising implication of our results is that mean corre-
lations at the critical point actually decay faster in the weakly
hyperuniform case than in the uncorrelated case (although the
decay in the uncorrelated case is already faster than in the
clean TFIM). Thus, as one tunes α, it seems the exponent 	σ

must first increase, and then discontinuously decrease to the
clean Ising value at α = 1. By contrast, the typical correla-
tions keep getting longer ranged as the degree of hyperuni-
formity increases, going as exp(−|r|ψ ). These observations
can be qualitatively reconciled as follows: Hyperuniformity
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FIG. 10. Strong-disorder RG exponents. Upper panel: flow of
typical coupling scale [ζ ], [β] vs length scale l under SDRG for
various values of α. The power law [ζ ], [β] ∼ lψ is exhibited with
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scales as μ ∼ lψφ (scaling of moments is shown in the Supplemental
Material, Appendix C [73]). Parameters: L = 108, s = 3
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involves local anticorrelations, which make spin clusters
sparser than for independent randomness; therefore, correla-
tions due to rare clusters are suppressed. At the same time,
ψ decreases so typical correlations become longer ranged.
Eventually, at α = 1, typical regions begin to dominate over
rare regions, and one enters the strongly hyperuniform regime.

Griffiths effects

We now return to the question of whether Griffiths
phases exist. This was already addressed for the bare the-
ory in Sec. V B; we now argue that renormalization does
not change this basic conclusion. Consider running the
RG out to some finite length scale �; at this scale, the
system consists of effective spins consisting of O(�) mi-
croscopic spins, subject to transverse fields of the form
h̃ = (hkhk+1hk+2 . . . hk+�)/(Jk+1Jk+2 . . . Jk+�), and coupled by
bonds J̃ that are likewise products of adjacent J’s divided
by products of adjacent h’s. Suppose we take a region of
size l � �. The wandering in this region obeys the identity
δ̃ = ∑

α log(J̃α/h̃α ) = ∑
i log(Ji/hi ) = δ, where α labels the

o(l/�) effective spins and i denotes the original microscopic

spins in that region: this identity is an immediate consequence
of the SDRG rules. Thus, if one terminates the RG after
finitely many steps, the asymptotics of the wandering on much
larger scales are unaffected, and the argument of Sec. V B
goes through.

VI. EXACT DIAGONALIZATION RESULTS FOR
CORRELATION FUNCTIONS

The previous sections addressed the properties of the
weakly and strongly hyperuniform cases, using different
methods (perturbation theory and SDRG, respectively). In
this section we discuss how correlation functions evolve as
one tunes α, using exact diagonalization. We first discuss
two-point spin correlations, and then the ground-state entan-
glement entropy.

A. Spin-spin correlations

The free- fermion character of the Ising model allows us
to perform simulations on systems of up to a few thousand
sites. We focus on the equal-time correlation function of the
order parameter Cxx(r) ≡ 〈τ x

i τ x
i+r〉; this can be expressed as

a determinant of free-fermion Green’s functions [28]. We
have checked that correlation functions evolve qualitatively
similarly. We set the disorder strength s = 3

16 : when the dis-
order is either much weaker or much stronger, we see strong
transients. For weak disorder, these transients are expected,
as the system is clean on short scales. At strong disorder,
the states away from E = 0 are effectively site localized and
do not see the hyperuniformity; the universal regime of ξ (E )
shrinks to very small energies or equivalently to very large
length scales.

Our numerical results for the typical and average correla-
tions are plotted in Fig. 11. Both typical and mean correlations
behave differently in the two regimes. In the strongly hyper-
uniform case, we see clean critical behavior in both mean and
typical correlations. In the weakly hyperuniform case, typi-
cal correlations are consistent with a stretched exponential,
with the appropriate exponent 〈τ x

i τ x
i+r〉 ∼ exp(−const × rψ ).

Mean correlations clearly decay with a steeper power law than
the clean theory would suggest; however, at the accessible
system sizes we cannot clearly identify a regime of power-law
scaling. A clearer sign of the difference between the two
regimes can be seen by considering the histogram of Cxx(r)
in the two cases (Fig. 12). These histograms broaden with
n in the weakly hyperuniform case but stay the same width
(on a logarithmic scale) in the strongly hyperuniform case,
supporting our picture that the weakly hyperuniform case is at
infinite randomness.

B. Ground-state entanglement entropy

The ground-state entanglement entropy provides a useful
probe of criticality. In particular, the ground-state entangle-
ment S� between the first � sites of an open chain and the
remaining sites (� + 1, . . . , L) grows as

S� = c

6
log � + c′

1 + O(�/L), (15)
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FIG. 11. Typical (upper) and mean (lower) order-parameter cor-
relation functions 〈τ x

i τ x
i+r〉 as a function of distance for different

α (legend inset). The behavior of the typical correlation function
is consistent with a power law in the strongly hyperuniform case
(α > 1) and with a stretched exponential in the weakly hyperuniform
case (0 < α < 1). The mean correlator decays with the clean Ising
exponent in the strongly hyperuniform case, but clearly faster in the
weakly hyperuniform case. In the weakly hyperuniform case we do
not see a clean power law at large scales; it seems that our data here
are still dominated by typical rather than mean behavior. Parameters:
L = 2000 periodic chain, s = 3
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where the coefficient c forms part of the universal content of
the scaling theory, and c′

1 is a nonuniversal constant. If the
scaling limit is described by a conformal field theory, c is
equal to the corresponding central charge. This applies to the
clean Ising critical point, where c = 1

2 . In the disordered case
there is no underlying conformal field theory, but nonetheless
the coefficient c is still fixed by the universal content of the
scaling theory. Notably in the case of uncorrelated random
disorder, where the transition is described by the infinite-
randomness critical point, direct calculation yields c = 1

2 log 2
[72].

In this section we numerically extract the coefficient c
from the logarithmic growth of the entanglement entropy (15).
For α > 1, we find c = 1

2 , consistent with the clean Ising
universality exhibited throughout the strongly hyperuniform
regime. In contrast, in the weakly hyperuniform regime, the
universality is altered, and we find results which indicate
the coefficient c is given by a linear interpolation between
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FIG. 12. Histograms of the order-parameter correlation function
〈τ x

i τ x
i+r〉 for exponentially spaced values of r, for weakly hyper-

uniform (upper) and strongly hyperuniform (lower) systems. In the
former case, the histograms broaden strongly, while in the latter case
they do not broaden. Parameters: same as Fig. 11.

the clean Ising value and the uncorrelated infinite-randomness
value

c =
{

1
2 for 1 � α � 2,

α
2 + (1 − α) log 2

2 for 0 � α � 1.
(16)

In Fig. 13 we plot the numerically extracted form of
S� − (c/6) log(L/π ) as a function of �/L. Plotting in this
way causes data corresponding to different L to collapse
onto a single scaling form providing c has been correctly
identified. In Fig. 13 data are shown for various L (values
inset in legend) with the two panels corresponding to values
of α from the weakly and strongly hyperuniform regimes,
respectively. The data collapse, and exhibit good agreement
with (c/6) log(�/L) + c′

1 (solid black line) where c is set by
(16). The dashed black lines exhibit the expected growth S� for
the uncorrelated (α = 0, c = 1

2 log 2) and clean Ising (α = 1,
c = 1

2 ) cases for reference [73].

VII. DISCUSSION

This work studied a canonical low-dimensional quantum
critical point, that of the TFIM, in the presence of random hy-
peruniform couplings. We have found that the system exhibits
two distinct classes of behavior, dependent on the exponent
α (or equivalently the wandering exponent β). These distinct
classes of behavior are a line of infinite-randomness critical
points, with continuously varying exponent ψ , and a “mixed”
critical point with the equilibrium behavior of the clean Ising
model but the dynamics of an insulator. This “critical Ising
insulator” regime shows that disorder can localize excitations
(and thus qualitatively modifying critical dynamics) even
when it has minimal effects on equilibrium properties; this
is of some general conceptual interest, given that static and
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FIG. 13. Entanglement entropy S� of the region 1 . . . � as a
function of �/L. The predicted growth is S� ∼ (c/6) log(�) (solid
black line) with the coefficient c set by (16). The collapse of data
for different L (legend inset) onto the predicted line for �  L
validates the conjectured form (16). The dashed black lines exhibit
the expected growth of the uncorrelated (α = 0) and clean Ising
(α = 1) cases for reference. The panels correspond to different values
of α (values inset), with further data given in the Supplemental
Material [73].

dynamical properties are usually intertwined at quantum criti-
cal points. Even in the weakly hyperuniform regime, where
the strong randomness critical point survives, the Griffiths
phases that flank it disappear for hyperuniform couplings,
suggesting that hyperuniformity might be a useful knob for
controlling Griffiths effects more generally. Using SDRG and
perturbation theory, we were able to characterize both critical
regimes thoroughly; our predictions are in good agreement
with results from exact diagonalization. As is the case with

uncorrelated randomness, these results hold for any random
modulation with hyperuniform correlations (2), irrespective of
other details of the modulation, such as modulation strength or
marginal distributions. Generally, these additional properties
of the modulation play a role only to determine the length
scale above which the asymptotic scaling emerges.

One might wonder how many distinctively hyperuniform
critical phenomena exist beyond the TFIM. In general, when-
ever the control parameter has hyperuniform fluctuations, and
there is no source of uncorrelated randomness in the problem,
one expects the system will go to a hyperuniform rather
than the usual random fixed point. Starting from a micro-
scopic model, however, ensuring that the control parameter
fluctuations are precisely hyperuniform on all scales might
be challenging. One-dimensional models with multiplicative
strong-randomness RG rules are a wide class of models where
hyperuniformity holds at all scales. For such models it is
crucial that the couplings on odd and even bonds (or A and
B sites) remain separately hyperuniform, as in the TFIM. In
models such as the TFIM, or spin-1 chains [74], the odd and
even bonds are physically different, so it is natural for them to
be separately hyperuniform. In the XXZ chain [10], and in toy
models of the many-body localization transition [75,76], this
is not the case, and this odd-even structure must be imposed
by hand if the model is to flow to a hyperuniform fixed point;
otherwise, coarse graining disrupts the anticorrelations that
cause hyperuniformity (Supplemental Material, Appendix D
[73]). Extending these ideas to more general models, as well
as to two-dimensional systems [77], is an interesting task for
future work.
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