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Abstract

A variational multiscale Discontinuous Galerkin (VMDG) method is developed for microscale
modeling of domains containing conforming and non-conforming meshes. Essentially, the product
of the applied volume-average strain (or macro-strain) and the domain diameter acts as an imposed
displacement jump within the VMDG terms. Hence, the method is suitable for modeling
deformation of both block and truly (self) periodic representative volume elements (RVEs). The
primal displacement field and macro-strain are the only unknowns because the method eliminates
the Lagrange multiplier (LM) enforcement of the kinematic constraint. Rigorous derivation of the
method provides a framework to accommodate either the macro-stress or macro-strain as the driver
of the microscale boundary value problem. The method is developed first for finite deformations
and then specialized to small deformation kinematics. Algorithmic modifications to the method
are also studied for their effects on tangent symmetry and convergence rate. The results from
numerical studies for isotropic and anisotropic materials show that the proposed method is robust,
accurate, stable and variationally consistent for modeling complicated conforming and
nonconforming RVEs.
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1. Introduction

Fundamental understanding of microscale deformation mechanisms continues to be pursued
for advanced materials and heterogeneous systems that are designed for aerospace vehicles. These
heterogeneous materials such as fibrous composites and metallic alloys have complex dependence
on spatial distribution, size, texture and shape of different constituents. The need to define the
macroscopic mechanical response of heterogenous materials has led to past and present
development of homogenization techniques.

The analytical techniques [1-4] traditionally used to predict the collective response of multi-
phase materials have been found to be ill-suited for microscale modeling of materials subjected to
large deformations and non-uniform cyclic loading. The application of analytical techniques is
also usually hindered by the complex geometry of the representative microstructure [5, 6].
Computational homogenization is a preferred alternative because of its accuracy in accounting for
the non-linear characteristics of a material at the microscale, and the method is not constrained by
the geometry of the domain of interest [5, 7-10]. Though the technique is computationally
expensive, it offers an established procedure for obtaining the effective properties of a
heterogenous material [4, 5, 11].

Commonly in computational homogenization, the primary macroscopic kinematical
quantities such as the deformation gradient enter the microscale boundary value problem (BVP)
through the boundary constraints on the representative volume element (RVE). Typical kinematic
constraint types are the linear displacement boundary condition, constant traction boundary
condition, and periodic boundary condition (PBC) [5, 6, 12, 13]. Among the three constraints, the
PBC is widely used and considered more efficient for modeling of the underlying microstructure
because the predicted results converge faster to the effective properties of RVE as size increases

[5,7, 8, 13-15].



The Lagrange multiplier (LM) method [16, 17] is commonly used for enforcing PBC on the
RVE through the imposition of identical displacement fields on two matching nodes on opposite
boundaries. The limitation of the method lies in the non-suitability of the method for RVE
containing non-conforming meshes, also termed as non-periodic meshes. Since RVEs meshes are
generated often directly from microstructure images which inherently produce non-periodic
meshes, a recent LM approach employs weak enforcement of PBC instead of pointwise constraints
[18]. However, this method belongs to the category of mixed field problems for which stability
can be a concern [19, 20], and the extra LM degrees of freedom must be determined with the
displacement solution. Also, the LM field is required to belong to a mortar space or modified trace
space to enforce an orthogonality relationship with the displacement jump [21]. The extra degrees
of freedom could be reduced by relying on either the biorthogonality condition that localizes the
coupling conditions to construct dual Lagrange multiplier shape functions [21-23] or the static
condensation method [9, 24, 25]. Non-periodic surfaces have also been treated using LM by
discretizing the boundary surface independently for smooth transitioning of micro-macro BVP in
[12]. Another LM [26] approach enforces quasi-periodic boundary conditions on nonconforming
meshes using shape functions to interpolate the displacement field between nodes on the master
and slave opposing surfaces of the RVE. Other means of enforcing PBC such as the surface-to-
surface constraint [27] which largely depends on the choice of master and slave surfaces may not
be robust, and the method of the unidirectional polynomial interpolation of the displacement fields
[8, 28] could require very high order polynomial interpolation functions.

The Discontinuous Galerkin (DG) method is a popular method for weakly enforcing
continuity of solution fields across naturally or artificially disjointed surfaces [29-33]. The DG
method has been described as a promising method for enforcing PBC on RVE boundaries in scalar
field problems [34], and subsequently employed to treat the higher-order continuity requirements

of the macroscale problem for a second order computational homogenization scheme [35]. To the



best knowledge of the authors, this paper presents for the first time the development of
Discontinuous Galerkin method for the microscale problem of the first order computational
homogenization scheme of solid mechanics. This paper discusses the variational multiscale
Discontinuous Galerkin (VMDG) method earlier applied in a continuum context for small and
large strains [36-40].

The VMDG method is suitable for enforcing PBC on microstructures containing periodic and
non-periodic meshes. While the existing methods generally only permit the macro-strain to drive
the RVE boundary conditions, the rigorous derivation of the VMDG method provides a framework
to accommodate either the macro-stress or macro-strain on the microscale boundary value problem.
Macro-stress driven problems are appropriate for performing patch tests and convergence studies
of the method and also for cases where displacement and traction conditions are specified, such as
unconfined uniaxial tension. The VMDG method is a single field formulation that is free from
stability concerns associated with mixed formulations like the mortar-type Lagrange multiplier
method. The consistently-derived stabilizing terms require no calibration and account for element
geometry and material properties along the boundary. Hence, the method is suitable for modeling
deformation of both block and truly (self) periodic RVEs. As shown in Figure 1 (a), for block RVE
the domain boundary cuts through geometric features such as grains or fibers. In the latter case for
truly periodic RVEs in Figure 1 (b), the RVE boundary conforms to the geometric features, which
can ease the mesh generation of quality element shapes and aspect ratios. Instead of focusing on
only small or finite deformations, the VMDG method is developed in the finite deformation
context and subsequently specialized to small deformation of RVEs. Contrary to earlier
presentations in the literature that usually start from the weak form or minimization form [8, 16,
18], this paper begins from the strong form of a microscale problem to derive from a LM
formulation to an underlying stabilized DG method by reliance on variational multiscale (VMS)

1deas.



The organization of the paper is as follows. We begin in Section 2 by giving a brief summary
of the essentials of the microscale problem and PBC enforcement at the RVE boundaries as well
as describing the governing equations and associated weak form of the Lagrange multiplier
formulation. In Section 3, we describe the derivation which relies on variational multiscale ideas
(VMS) for the stabilized formulation for enforcing PBC. The algorithmic modifications of the
VMDG method are proposed in Section 4, and specialization of the VMDG formulation to RVE
undergoing small deformation are briefly discussed in Section 5. In Section 6, multiple benchmark
problems for error convergence analysis and method consistency tests for 2-D and 3-D

microstructures are performed. Finally, we give concluding remarks in Section 7.

(2) (b)

Figure 1. RVE instantiations: (a) 2D block RVE; (b) 2D truly (self) periodic RVE

2. Microscale Modeling and Periodic Boundary Condition for RVE
To motivate the formulation of the periodic VMDG method, we recall key concepts from
mechanical multiscale theory [15]. This section begins by describing the kinematic fields in the

context of the microscale region termed as a representative volume element (RVE) domain. Next,



the principle of scale separation is summarized as a means to link the deformation of constituents
at the microscale with the average deformation and stress experienced at the macroscale, followed
by the Hill-Mandel principle for energetic consistency as well as classes of kinematically
admissible boundary conditions for the microscale problem. Lastly, the strong form and weak form
are posed for the microscale problem with periodic boundary conditions, which is the focus of the

VMDG derivations in Section 3.

2.1. Microscale domain and kinematics

Let QcR™ be an open bounded RVE domain with piecewise periodic boundary I', where

n, >2 1is the number of spatial dimensions. The boundary I' is divided into two subsets
= Uil“i+ and I = Uil";, where i denotes an RVE boundary pair, and the subsets satisfy
I'"UI™ =T; see Figure 2. The RVE is deformed according to the motion ¢(X ,t) which maps
the points X eQ in the reference configuration to points x= ¢(X ,t) in the current

configuration. The displacement u(X,¢)=¢(X,t)—X is the difference between the locations in

the current configuration and reference configuration while the deformation gradient F is

defined as follows:

F(X,t):s—;:GRADx (1)
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Figure 2. The deformation of the RVE from reference to current configurations

2.2. Physical scale separation principles

The concept of scale separation relies on the existence of an RVE associated to a material point

X, €Q,, In the macroscale, as depicted in Figure 3, which has a characteristic length that is
small compared to the continuum scale.
$(X)=F, X+¢ )
F(X,t)=F, +GRAD¢ (3)
The microscopic deformation map @ can be decomposed into a linear mapping F,, X and a

deformation mapping fluctuation ¢3 according to (2). Thus, the microscale deformation gradient

in (1) can also be expressed in terms of the macroscale deformation gradient as in (3).
Macro-to-micro coupling of the kinematical constraint in physical scale separation usually requires
the assumption that the volume average of the microscale deformation gradient is equal to the

volume average of the microscale deformation gradient.



| F(x)d 4

where X e Q and V) is the microscale domain volume. Evaluating the volume average of the

microscale gradient (3) simplifies as follows after applying the divergence theorem on the second

term:

1 1 - -
70jQF(X)dngM (XM)+70jQGRAD¢dQ=FM (XM)+70jr¢®NdF )

where N is the outward unit normal. By comparing (4) and (5), it is observed that the surface
integral of the mapping fluctuation field must vanish, and several options for enforcing this
condition are mentioned subsequently.

The equally important Hill-Mandel principle [18, 41, 42] is also employed to satisfy macro-to-
micro energetic consistency by defining the volume average of the microscopic deformation

energy to be equivalent to the macroscopic energy, where the ¢ terms signify variational strains:

Py (X,):0F, (X,) =], P(X):0F (X)d0 ©

0

The fulfillment of the Hill-Mandel principle holds if and only if there is no work due to external

surface traction and body force of the RVE:
[ n,-tdr =0, [ n,-bd=0 %

VLJQP(X):M(X)dQ=[VLOLN.P(X)®X<1F}:5FM+Vioer-P(X)-5¢3dF (8)

0

According to [15], it has been shown that the right hand of (6) can be expressed as (8). Since the
contribution of the mapping fluctuation field vanishes, the macroscopic first Piola-Kirchhoff (PK)

stress tensor P, (X,,) is equal to the volume average of the microscopic counterpart P(X):



1 1
P, :ZLN-P(X)caXdr:?OjQP(X)dQ ©)

The reader is referred to [15] for details of the derivation of the average theory.

Q=0 UQ
— Void Q
2( e Q)
r —— Solid QS
Continuum RVE

Figure 3. An RVE domain Q residing at the vicinity of X,, € Q,, at the continuum scale

Several methods exist to fulfill the condition whereby the mapping fluctuation field vanishes. The
Taylor (Voigt) model simply assumes no fluctuations exists in the RVE volume such that it
experiences an identically constant strain. The Sachs (Reuss) model assumes an identically
constant stress in the RVE volume. The Taylor model generally produces a stift estimate of the
macroscopic overall mechanical response while the Sachs model produces a very compliant
estimate. Although both models are computationally inexpensive and provide rough estimates,
they do not simultaneously capture both equilibrium and compatibility of the microscale phases.

The minimal kinematic boundary condition requires the boundary integral of the fluctuations on
the boundary expressed in (5) to vanish. The uniform displacement boundary condition assumes
that there is no fluctuation at the RVE boundary and the displacements at the RVE boundary are
prescribed according to macroscopic deformation gradient. The uniform traction boundary

condition allows the traction on the RVE boundary to be prescribed according to the macroscopic

9



stress. The uniform displacement boundary condition overestimates the macroscopic effective
stiffness, while both the minimal kinematic condition and the uniform traction condition
underestimate the macroscopic effective stiffness.

The periodic boundary condition is suitable for RVE with geometrically periodic boundary

I which is divided into two subsets I'" = Ul_l“l.+ and T = U,-F ., where i denotes an RVE

boundary pair. The microscopic deformation map ¢ on the RVE boundary can be expressed by
(2) with counterparts at two opposite boundaries of the RVE in Figure 2 (b). The key kinematical
assumption is the periodicity of the fluctuation ¢ along T' to ensure displacement compatibility:

1 1
P, =7OLN-P(X)®Xdr=70jQP(X)dQ (10)

Herein, we consider I'" as the primary side and refer to points on I'" through the pairwise

operator ¢ in Figure 4; the treatment of rectangular and non-rectangular RVE is systematic using
these pairwise maps as discussed in [42]. The periodic boundary condition is widely used and
considered more efficient for modeling of the underlying microstructure because the predicted

results converge faster to the effective properties of RVE as size increases [5, 7, 8, 13, 14].

L

(a) (b)
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Figure 4. Pairwise mapping of boundary quantities for (a) rectangular RVE and (b) hexagonal

RVE
2.3. Microscale governing equations and weak form

Adopting PBC for the kinematic constraint, the strong form of the microscale boundary value

problem is posed as:

DIV P(F)=0 in O (11)
[¢]=F.[X] on I'* (12)
P(XO) N = a(x")= —P(p(X(+))) N onl* (13)
[ 2®[x]dr=V,P, (14)

The momentum balance equation (11) of the microscale domain is defined only in terms of the

divergence of the first PK stress tensor according to the Hill-Mandel principle. The deformation

jump [[¢]] along I'" is constrained by the macroscale deformation gradient F,, according to

(12) which derives from the decomposition (2) and the periodicity (10) conditions. Throughout,
the vector valued jump operator is defined as [[-] = (-)(+) —(-)(_) . This constraint (12) is imposed

through the Lagrange multiplier (LM) field 4 in (13) which also enforces the equilibrium of the

tractions along the RVE boundary. Finally, the prescribed macroscale stress P,; transmits to the
RVE surface according to (14).

Note that both F,, and P, belong to the space of second order tensors that can be described in
component form as the space 7= ®’« R™ with dimension 7, «n, once a coordinate system is
specified. For a well-posed problem, exactly n,xn, tensor components amongst the total

2(nsdxnsd) strain and stress components can be prescribed within (12) and (14) while the

11



remaining components are unknowns along with ¢ and 4. We denote these prescribed values
as {FM}';; and {PM}'ZI with n, +n, =n,xng.
Remark:

The distinguishing feature of this BVP compared to the strong forms underlying our previous

VMDG developments are the non-zero displacement jump (12) and the surface integral of the
tractions (14). In fact, for macro-stress driven problems when By, is prescribed, then the macro-
strain F,;, becomes an unknown that is solved for alongside the deformation field. Aspects of

representing this unknown in the discrete setting are discussed in Section 3.3 and the Appendix.

Subsequently, the governing equations (11) and (13) are multiplied by weighting function #,,
integrated over their respective regions, and the divergence theorem is applied. Similarly, equation
(12) 1s multiplied by weighting function u, (14) is multiplied by a weighting tensor x , and (12)
is integrated over I'". Thus, the weak form of the microscale problem is expressed as: Find

(@, 4,F,;} € SxQxT, suchthatforall {n, ur}ecSxOxT,:

[ GRADy,:PdV—| 2-[n,]d4=0 (15)
w141 R XD)as=0 a6
[ (<[ X])- (2= PyND)da=0 (17)

The appropriate functional spaces for the functions in the weak form are expressed as (18) — (21):

3={¢‘¢E[H1(Q)]"“’ : det(F(¢))>0} (18)

Q={z

ze[H%(rl)}”“} (19)

12



TFz{FM‘FMeT,FM’jzl?M’jforj:ItonF} (20)
%z{x‘xeT,lg/=0forj=1tonF} 20
where H' (Q) and H are standard Sobolev spaces. Notice that the integration of the surface

terms in (15) — (17) is performed on T only, which is an outcome of the node pair mapping @

that identifies a unique X ©) for each X" For example, the conversion between one term in

(17) and (14) proceeds as follows:

[, (k[X])-(RND)dr = [ (1) (PN )T = te| Pic[ VX dQ|=V,Byix (22)
This surface mapping is not limited to rectangular RVE in Figure 4(a) but could be carefully
performed on hexagonal shaped RVE as in Figure 4(b) and on irregular and complex 3-D RVE
domains; see examples in [43] and Section 6.4 herein. Also, while the definition of the interface
jump depends on the ordering of the boundaries as in [36], the final weak form obtained at the

completion of the derivations is independent of the ordering.

For completeness, we remark that the weak form in the case of hyperelastic materials

(P(F ) = 0W OF ) can be shown to be equivalent to the saddle point of the following functional:

[ w(F)aa-[ (2@N): (M—FMM)H—L Py :(Fy[X])dr (23)
where M = (-)M N + (o)(f) ®N") s the tensorial jump operator.

3. Multiscale decomposition

The weak form (15) — (17) has been solved traditionally using a collocation approach for the
LM field (i.e. multi-point constraints of paired nodes), but this is possible only if the discretization
of T' isperiodic. In general, the mixed weak form (15) — (17) has two main drawbacks: it requires
solving for an additional unknown LM field, and the discretized form must satisty the Babuska-

Brezzi condition [44, 45] to avoid stability issues, the latter being difficult for non-periodic meshes.
13



In the steps that follow, the LM formulation is converted to the single-field formulation with
enhanced stability by systematically condensing out 4 using variational multiscale ideas [46-48].
Although the key concepts in the context of small and large deformations can be found in our
previous works [36, 37, 40, 49], the additional terms from enforcing the PBC (12) motivate us to
revisit both the fine-scale models and the coarse-scale embedding.

An overlapping decomposition into coarse and fine scales is assumed within the microscale

BVP of the deformation map ¢ and weighting function #, within the RVE:

p=¢od,  n =i, +i, (24)

where o denotes the composition of mapping functions between the fine scale deformation ¢

and the coarse scale deformation ¢3 The coarse-scale deformation map ¢3 is associated to the
discrete function space and the fine scale ¢ can be considered as the error filtered out by the

finite element mesh. The weighting functions #, and #, are associated with the coarse and fine

scales. The linearity of the weak form (15) — (17) with respect to #, enables the separation into
a coarse-scale problem (25) — (27) and a fine-scale problem (28):
Coarse-scale problem

R(#,:4.6.2)= [ GRAD §,:PdV —[ i-[4,]d4a-[ x[X]-(2-B,N)d4=0 (25)
R, (1:2)=[ k[ X]-(2=P,N")da=0 (26)

A

Rﬂ(ﬂ’é’&’FM):_J-]—+”'(|I¢;o¢?1|_FM[[X]])dAZO (27)
Fine-scale problem

R(#,:4.6.4)= [ GRAD#,:P“'dV - [ 2-[f,] d4=0 (28)

14



3.1. Modeling of fine scales

It is worth mentioning that the fine-scale problem in (28) produced from the multiscale
decomposition of the microscale weak form is similar to those in our previous VMDG interface
formulations for compatible and equilibrated domains [40] and weak and strong discontinuities
[37]. Namely, in [50], a body force is included and the surface integral is over an interface rather

than I'". Although these earlier formulations were applied in a continuum setting, the versatility
of the VMDG method is manifested by the similarity of the fine-scale equations for the microscale
problem. Hence, the fine-scale modeling details translate directly from [50], and we summarize
the three key steps leading to the analytical fine-scale solution.

First, the coarse-scale fields are discretized using finite elements €2, to cover Q. The fine-
scale fields are assumed to be localized only within the elements adjoining I" and approximated
using sufficiently higher-order edge bubble functions b, over the sectors @, < €2, such that it
satisfies the requisite property for vanishing along all sector edges except the boundary segment

v, <I' [36]. A complete listing of b, for two and three dimensional element shapes is given in
[51]. The bubble functions effectively localize (28) into a series of problems posed over pairs of
conforming sectors; namely, the sectors are chosen such that each point X e yi < closure(a)j )

has an image X O = p(X (+)) €y, C Closure(a); ) where the sectors lie within single elements

Q. and Q_. The segments are disjoint, and their unions cover I'" and I ; see the useful
illustrations in [50].
Second, the fine scales are treated as a small perturbation such that ¢ o¢3 :¢3+Aﬁ, and the

fine-scale problem is linearized to facilitate the substitution of the edge bubble functions and an

analytical solution. The linearized weak form is expressed in terms of the acoustic tensor

15



A (F (‘”) of the material moduli given in (29) as well as [37, 40, 51, 52], where the superscript

o takesthe value + or — ontheboundary I'" and I, respectively. A detailed discussion of
the linearization procedure that exposes the geometric and material nonlinearity within the acoustic

tensor can be found in [47].

2117 (@)
A©@ (F(“)) _ gIzVaF (29)

Third, we solve for the fine-scale field in terms of the coarse scales fields ¢? and 4 and

assume that the fine-scale bubble function is orthogonal to the coarse-scale residual by neglecting

the interior residual terms. The resulting fine-scale solution on either boundary is as follows:

A = T§+) -[—i—PH) . N(+)], A = Tgi) _[l_P(*) .N(*):I (30)
where
() - () ? ()
@ _ b d4| £ 1
o =[meas(y,)]"(], 5 ) & (1)
-1
FO = [ .,GRAD b\ : A“:GRAD b* dV} (32)

These three assumptions enable the analytical representation of the fine scales in terms of the
boundary residual on either side of the periodic domain according to (30), in a manner similar to

the development of stabilized finite element formulations [48, 53-55]. Hence, the stability tensor

7'% that scales the residual is not a free tuning parameter but rather emerges from the consistent

derivation, where the tensor depends on the element size, element shape, polynomial order and the

acoustic tensor of the material.
3.2 Variational embedding into the coarse-scale problem

Recall that the fine-scale field is small and localized only at the adjoining interface. Therefore,
the deformation jump operator can be linearized as [[& ° (13]] = [[;5]] + [[Aft]] according to [40].

16



Substituting this linearization along with the fine-scale solution (30) into the continuity equation

(16) produces (33).
_Jr+ ”.[{[é]]_1§+) -(l—P“) ) N<+))+ T _(_;__P(—) . N(—))_FM [[X]ﬂ d4=0 (33)
Because of the enhanced stability derived from the fine-scale model, this expression can be solved

pointwise by selecting the Lagrange multiplier space Q to encompass all L, functionson I'",

resulting in a locally defined expression on each segment y  that is a function of the weighted
average traction.
a={P-N}+r -([4]- £ [x]) (34)
((8)- V)=o) N =00 (o) N 39

=)

S

-1
The flux weighting tensor 6!’ =z -7!* and stability tensor 7, = (rﬁ” +7 ) are expressed

)

in terms of 7'“) and thus inherit the dependency on the element configuration and material

properties. A distinguishing feature of (34) compared to previous VMDG methods is that the

Lagrange multiplier field is driven by the macroscale deformation gradient F|,.

The expression (34) is substituted into (30), and both are placed within the coarse-scale equilibrium
equation (25). Simplifying the result along the lines of [50], these steps yield a modified coarse-
scale problem (36) that is stable and is free from the additional LM field.
Modified coarse-scale problem
R(n, ;4. F)=[ GRADy,:PdV—[ x[X] P,N"d4
of [In]-#[XT) . ([6]- Fu[ X]) a4
[ [In,]-+[x]])-{P-N}d4 (36)
~[ {(GRAD1,:A)- N}-([9] - F, [ X]) a4
—jﬁ [(GRAD ,:A)-N|-8,-[P-N]d4 =0

17



_ Riak!
where 9, =|:(T§+)) 1+(Tff)) 1} is the additional stability tensor that arises due to the
dependence of Az on the traction jump [[P -N ]] through (30) and (34). The traction jump term

along with the derived stability tensors distinguish the VMDG method from the popular Nitsche
and interior penalty Galerkin methods. Similar to our previous work on VMDG [37, 39, 40], we
neglect the traction jump term to simplify the formulation and reduce computational costs since
the term is often relatively small [37, 40, 49]. The final form of the consistently derived and
stabilized VMDG formulation for microscale deformation is then provided below as (37).

R('](,, k;¢,FM)= JQ GRADy,:P dV_Ir+”[[X]]‘PMN(+)dA

+f, [[n]-[X]] 7. ([#]- Fu [ X]) d4

(37)

=) Lln, =% [X]]-{P- N} d4

~[. {(GRAD 1,:A)- N}-([#] - F, [ X])d4 =0

R3

For later elaborations on algorithmic modifications, we identify specific terms in the VMDG

formulation. The volume integral in RO weakly enforces equilibrium within the RVE while the
surface integral imposes the macro-to-micro driving stress P,, and is the sole external driving
force of the problem. The penalty term RI1 stabilizes the VMDG formulation, and the consistent

term R2 weakly enforces anti-periodicity of the tractions along I, thereby ensuring the VMDG

method is variationally consistent. Besides ensuring that the VMDG method is symmetric, the
symmetrizing term R3 also weakly imposes the periodicity of ¢ along T.

The most significant contributions of the present paper that set it apart from our previous

VMDG formulations are (a) the appearance of macroscopic or homogenized deformation gradient

tensor F,, inthe penalty and symmetrizing terms, (b) the presence of weighting tensor & in the

penalty and consistent terms, and (c) the coupling of finite element surfaces along opposite

18



boundaries separated by [[X ]] instead of across a closed interface. These tensors F,, and »

constitute global variables that are collectively associated to boundary I' as opposed to the local
inelastic gap or damage variable ¢ defined pointwise along interfaces in [37-39]. These
contributions collectively extend the VMDG framework to enable imposition of periodic boundary
conditions on conforming and non-conforming meshes. Thus, the framework is now suited for
micro-scale modeling of RVE with the goal of determining the overall effective properties of
heterogeneous materials and alloys.

Remark:

Typically, stabilized methods require the calibration of stability parameters to ensure
accuracy. While possibly requiring some effort, the use of carefully chosen constant parameters
for each material region along the RVE boundary could still be appropriate for block shaped RVEs
with periodic meshes. However, the use of spatially uniform parameters for microscale modeling
of either non-periodic meshes or non-block RVEs could cause stability and accuracy issues since
the interfacial physics between material regions on either side needs to be properly captured. The
dependence of the stability tensor of the VMDG formulation on material properties of the two
materials at the opposite boundaries naturally accommodates block RVE and self-periodic RVE

modeling. Examples of spatial and temporal variations in VMDG stability tensors are given in
[51].
3.3. Summary of consistent linearization and implementational aspects

The consistent linearization of the VMDG formulation in (37) is needed for the tangent
stiffness matrix within the Newton-Raphson algorithm for solving the non-linear microscale
behavior. We summarize the linearized form of the interface flux, jumps and material acoustic
tensor in the Appendix. The reader is encouraged to refer to the Appendix and [40] for details

regarding the linearization of the interface terms and [56] for the bulk terms. The contributions
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from the interface flux terms K, ; are then highlighted below in (38). The final linearized

tangent stiffness components for the microscale behavior are presented in (39) - (42).

K, ,= | GRADy,:A:GRAD AudV + [ [u,] 7, -[Au] d4
- [[ﬂa]]'{(AK:OGRAD Au)-N}dA-| {(ZRAD n,:A)-N}-[Au]da
~[ {(GRAD #,:2:GRAD Au)- N}-([¢]- F, [ X]) d4

K4

(38)

where the curvature tensor Z(F) is a sixth-order tensor of material moduli defined as in (39):

_ ow

=2(F)= 2Faror e
K, r = —'L [[1]0]]~rs -Ag,, [[X]] dA+.[r+ {(GRAD n, :A)-N}~A£M [[X]] d4 (40)
K,p==| #[X]-7,-[Au]dd~+ | #[X]-{(A:GRAD Au)- N} d4 @41
K. = jﬁk[[X]]-rs -Ae, [X]da “2)

K1
In our previous studies [36, 39, 51], we have shown that the interface tangent stiffness X,
is symmetric due to the existence of the interface potential functional for the VMDG method. It is
obvious by inspection that the fourth tangent stiffness matrix in (42) is symmetric with respect to

the variation K and the incremental strain Ag,, . Notice that the third tangent stiffness matrix

K, 4 1n(40) is the transpose of the second tangent stiffness matrix K, . in (41).

The implementation of the VMDG formulation into standard pure-displacement finite element

(FE) codes requires two straightforward additions: (a) adding variables for F,, and (b)

computing force and stiffness terms along I'". The macroscale tensor F,, is straightforward to
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representas ng, xn, generalized degrees of freedom (DOFs) as proposed for example within [57].
A natural way to assign these DOFs into the FE code is to add n, so-called “macro” nodes into

the model each having n, DOFs, and these nodes are appended to the connectivity of the

“interface” elements mentioned in the next paragraph. The imposed components of the macroscale

1* Piola-Kirchhoff stress {13M }j:l are simply multiplied by the RVE volume V|, and assigned as

“nodal forces” to the macro-nodes. Constrained macroscale deformation gradient values {F M}

np
J=1

analogously give rise to nodal reactions {VOPM};'Zl that are obtained by the usual post-process

method of FE displacement-based solutions. Also note that rigid body modes need to be suppressed
in the discretization of the RVE microscale displacement field, e.g. by fixing node and partially
constraining its neighbors.

Due to the element-local fine-scale representation, the smallest computational unit of the
VMDG terms is an integral along a single boundary segment y, cI'" such as in (31). The

displacement and traction fields in these integrals require the nodes of the solid elements from

) and "

sectors @ adjacent to the segment and its image 7/(7) =go(7(+)) as well as the

macro nodes associated with F,, . For example, in the case of an RVE meshed with linear 4-node

quadrilateral elements, all quantities for the surface integrals in (38) — (42) are computable in the

discrete setting from the nodal displacements of two solid elements adjacent to y, and the macro

nodes, implying a generalized “interface” element with (4+4+2)=10 nodes. The explicit form of
the stiffness matrix for this VMDG interface element is given in equation (74) of the Appendix;
note that one submatrix term turns out to be equivalent to previous forms of the VMDG stiftness
matrix and thus analogous to symmetric interior penalty DG stiffness matrices. Also, small

deformation counterparts (presented in Section 5) of these elements are implemented in MATLAB
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within the open-source interface mesh generation program DEIP [58], which has been extended to
address periodic meshes in [43].

34. Macroscale material tangent modulus

While the emphasis on the computed results in Section 6 are on the microscale problem alone, the
VMDG formulation is naturally suited for computing the macroscale material tangent moduli

required for computational homogenization methods. Due to the location of the macroscale stress

P, in the residual form (37), the computation of the total derivative dP,, /dF,, follows from the

linearized terms given in Section 3.3 and the Appendix after a short algebraic manipulation, along

the lines of [10, 16]. Let K K, .. K, and K, denote the global assembled stiffness

1,8
matrices from the RVE interior and boundary given in the Appendix, with rigid translation

suppressed in K .- Lhen the macroscale material tangent components follow as:

1r= 1= _ -1 —
dPM,;‘j /dFM,kI = V[KK;FM :'ijk[ _70|:qu¢ (Km, ;¢) Knu;FM :lijkl (43)

0

We emphasize that these matrices are identical to those needed by the Newton-Raphson algorithm
with zero modification or manipulation, making this calculation easy to implement.

4. Algorithmic modifications to VMDG method

The attractive features of the proposed VMDG formulation for microscale modeling lie with the
consistently derived expressions for the stability tensors and numerical fluxes, which account for
material and geometric nonlinearity. The complexity and implementational cost of the method can
be reduced by adjusting the residual force vector and tangent matrix, with possible consequences
to the stability, accuracy and consistency of the method. These simplifications are summarized in
Table 1 and range from removing the curvature tensor Z, to removing the symmetric term, to
freezing the acoustic tensor during iterations. However, these modifications could affect the

variational, adjoint or/and algorithmic consistencies of the method. The reader is referred to [51]
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for the definition of the three types of consistency as well as other comments. In particular, loss of

adjoint consistency can reduce the convergence rate of the L, displacement error norm with

respect to mesh refinement, and loss of algorithmic consistency may reduce the convergence rate
of the iterated residual within the Newton-Raphson method. These modifications are assessed

numerically in Section 6.

Table 1. Summary of the residual and tangent stiffness terms

Method Residual Tangent matrices
K, , K, , Algo. Tang.
cons. Symm.
1 VMDG RI,R2,R3 K1,K2,K3,K4 K1,K3 Y Y
2 VMDGs RI,R2,R3 K1,K2,K3 K1,K3 N Y
3 IVMDG RLR2 K1,K2 K1 Y N
4  IVMDGs RLR2 K1,K2,K3 K1,K3 N Y
5 RVMDG RI,R2,R 3 K1,K2,K, 3 K1,K, 3 Y N
6 RVMDGs  RI,R2,R3 K1,K2,K3 K1,K3 N Y

4.1. VMDGs method

The derivation of the closed form of the curvature tensor =, a sixth order tensor, can be very
involved especially for complex material models. For example, the case of Von Mises plasticity
requires more than the second variational derivative of radial return algorithm and the

accompanying nonlinear kinematic tensors [50]. However, the contribution of the K4 term

containing E can be very small when the discretized deformation jump [@#] is close to zero.

Therefore we define the VMDGs method by removing the K4 term from the tangent stiffness
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matrix while still retaining the VMDG residual force vector, where “s” refers to shortening or

symmetrizing. Row 2 of Table 1 shows that VMDGs retains all the terms in VMDG except the
reduction of K, ., to the form expressed in (44). While this new formulation does not possess
algorithmic consistentency, it is variationally consistent, adjoint consistent, and symmetric. Hence,

the VMDGs is simple to implement and provide computational cost savings.

K, ,=K(n,,Au;$)= IQGRADqO :A:GRAD Au dV+J‘r+[[110]]-rS [Au] d4

KO0 K1

o Hnowps Mer | formon i niinde

K2 K3

4.2. IVMDG/ IVMDGs method: incomplete interior penalty method

The IVMDG method is a further modification of VMDG formulation where the symmetrizing
term is removed from the residual force vector and the tangent stiffness matrix, analogous to the
“Incomplete” interior penalty method. Hence, the method inherits the algorithmic consistency
properties but is non-symmetric. The third row of Table 1 highlights the terms present in the
residual vector and tangent matrix. For completeness, the reduced residual and linearized weak
form are expressed in (45) — (47).

R(n,,x;¢,F,)=| GRADy,:PdV-| «[X] P,N"d4
RO
[ Ln1-v[XT)-=.- (4] [X]) 44 us)

R1

~J[[n.]-*[XT)-{P- N} da=0

R2

Ko =K 0. 806) = GRAD, ACGRAD 800+ [n ], ]

o

K0 K1

~[..n.]-{(A:GRAD Au)- N} d4 (46)

K2
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K'IO;FM :K(”O’AgM;FM):_J.F+I[”0]I'TS 'I[AgM]]dA

K1

(47)

While this method is the simplest that retains variational consistency, the loss of adjoint
consistency leads to some drawbacks, including possible reduced accuracy, reduced convergence
rate of displacement error, and extra data requirements for non-symmetric solvers. To combat the
latter similar to [51], the IVMDGs is proposed by restoring the symmetry according to the fourth
row of Table 1, namely using the tangent of the VMDGs method. Therefore, this method lacks
both adjoint consistency and algorithmic consistency, and this trade-off may impact its numerical

performance.

4.3. RVMDG/ RVMDGs method: reference configuration acoustic tensor A,

The RVMDG method is designed as a compromise between the original VMDG and IVMDG

methods by freezing the deformation gradient F =1 to the reference configuration (denoted by

“R”) and consequently freezing the acoustic tensor A=A, in the symmetrizing term. The
residual force and tangent matrix in the fifth row of the Table 1 are then defined in terms of R 3

and K,3. For completeness, the reduced residual force vector and linearized weak form are
expressed in (48) — (50).
R(n,,x:¢,F,)=[ GRAD#,:PdV-| x[X]-P,N"d4
RO

+[ [[n]-=[X]])-=. -([¢]- Fu [ X]) a4

(48)

~[.[[n.]-*[x]])-{P-N} d4

_Ir+{(GRAD ”O:Ao)'N}'([[¢:[|_FM I[X]])dA -0

R3

25



K, 4=] GRADy,:A:GRAD AudV +[ [n,]-z, [Au]d4
KO0 K1

~[..[n.]-{(A:GRAD Au)-N}dd-| {(GRAD#,:A,)-N}-[Au] d4

(49)

K2 K,3

K, 5 = —J‘F+ [n,] 7, - [Aen] dA+J‘F+ {(GRAD n, :Ao)-N}-AsM d4 (50)

K1 g3
While the RVMDG residual has the same structure as VMDG, the linearized weak form does not
contain the curvature tensor due to the fixed acoustic tensor in the symmetric term. Note that
RVMDG has a non-symmetric tangent stiffness similar to IVMDG and has a number of terms
similar to VMDGs. Like IVMDGs, the RVMDGs method is developed by sacrificing the
algorithmic consistency of the RVMDG method to recover tangent symmetry by substituting K3
for K3; see the sixth row of Table 1. We remark that since K3 is the transpose of K2,
RVMDG:s is less expensive in comparison with RVMDG.
5. Specialization of the VMDG formulation to small strains

The VMDG method can be specialized to enforce PBC on RVE undergoing small
displacements and strains; the small strain kinematics formulation is presented for completeness.
When the deformation is small, the second order terms in the Green-Lagrange strain are negligible,
and the displacement gradient evaluated in the undeformed configuration can be approximated

with that evaluated in the current configuration. Hence, the VMDG method can be formulated

based on the current configuration x = ¢(X ,t). The microscopic displacement # is split into
the linear displacement &,, x from the macroscale and the displacement fluctuation #

according to (51), where the fluctuations at each pair {x(+),x(_)} are set equal to enforce the

periodicity condition. The displacement jump at the RVE boundaries can then be expressed as (52).

' (x(a)) =g, X9 4 ﬁ(a)’ a) (x(+)) =z (x(*)) 1)
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u? —u =g, [[x]] (52)
The associated strong form and weak form of the mixed RVE problem at small strains is then posed
in terms of the displacement and Lagrange multiplier fields. The ensuing steps of variational
multiscale modeling are then followed with analogy to the large strain context, where the fine-

scale problem is already linear and thus simpler. The resulting small strain VMDG formulation

emerges as: Find {u, &,,} € Sx7, such that forall {w,x}eSxT:

Igs(w):C:e(u) dV -Vx:o, +J.F+ ([w]-#[x])-7, -([u]-&y [ x]) dr

Rl

_Ir ([[w]]_”[[x]])'{czg(”)'"} dF_J.P {C:‘?(W)'”}'([[u]]—sM [[x]]) dl'=0

R2 R3

(53)

where w is the weighting function, & isthe symmetric gradient operator, and the moduli tensor

C is obtained from the Cauchy stress o operator o(u)=C:¢(u). The deformation of the

microscale domain is driven by the macroscale Cauchy stress o,, and engineering strain ¢&,;; as

before, only one component of stress or strain is imposed at a time. The appearance of the
formulation in the small strain context (53) resembles the large strain counterpart in (37). The bulk
term RO, the penalty term R1, the consistency term R2, and the symmetric term R3 are
present. However, the sixth-order curvature tensor does not appear in the stiffness matrix since the
problem is linear. Hence, the implementation is simpler and straightforward. In the numerical
section, we will argue that the VMDG method is very robust and stable for RVE undergoing both

finite and small strains.

6. Numerical Results

In this section, we investigate the performance of the proposed interface formulation across a
range of 2-dimensional and 3-dimensional RVE domains subjected to small and large strains. The

following compressible Neo Hookean material model is employed for modeling large strain, and
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plane strain conditions are assumed in all 2-dimensional cases:
w(F)= %ﬂ(detF 1) - ,uln(detF)+%y(tr (F'F)-3) (54)
P=detF(detF-1)F " +u(F" +F) (55)

a)

The bubble functions bf,“) used for evaluating the stability tensors 7'*) for 2-dimensional and

3-dimensional (2-D and 3-D) element types are listed in [51], and all calculations are done using
full numerical quadrature. The first example highlights the stress driven capability of the method
while the other examples are strain driven problems. In the first numerical example, a patch test
using a composite rectangular block is implemented in the small strain context to check the

variational consistency and accuracy of the FE solutions produced from enforcing PBC on RVE
using the VMDG method. Convergence rates of displacement error in the L, norm and H'

semi-norm are performed for different element types.

The accuracy and variational consistency of the VMDG method for enforcing PBC on periodic
and non-periodic RVE are evaluated in the second example in comparison with the mortar method.
Reference solutions are taken from highly refined meshes, which is justified when a formulation
does not exhibit stability issues. This is followed by another numerical example where a 2-D RVE
consisting of periodic microstructures is subjected to an average tensile strain. The model example
is designed as a polycrystalline sample of a metallic alloy to serve as a practical application with
interest to the broader research community. The effectiveness of the standard VMDG method is
first studied for representing the material response and required periodicity of the solution fields
across RVE domain before exploring the robustness, accuracy and computation cost associated
with other methods belonging to the VMDG algorithmic family.

Finally, the accuracy and robustness of the VM DG method to weakly enforce PBC on complex
truly periodic 3-D microstructures are studied. Initially, isotropic material behavior is employed in

a patch test to compare with the LM method. Then, the anisotropic properties of a single phase
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o —Ti-6Al alloy are assigned in a periodic RVE consisting of a 100-grain microstructure. Instances
of random and fiber textures are modeled to assess the VMDG method’s performance for
polycrystalline materials.

Remark:

The following numerical problems all employ hyperelastic materials such that the VMDG
method has an underlying potential energy form. Allowing for inelastic material response requires
that the material history is also tracked at the quadrature points along the boundary segments due
to the appearance of the stress tensor in the flux terms. Additionally, the derived fine-scale stability
terms should account for the material history dependence. Such aspects were addressed for the
VMDG method [50] in the context of small deformation isotropic plasticity. A forthcoming work
will establish the algorithmic performance of the VMDG method for anisotropic crystal plasticity

with interfacial debonding.
6.1. Rectangular composite block

Herein, we evaluate the variational consistency of the VMDG method by performing a
convergence rate study using different element types. The coarsest meshes are shown in Figure 5,
and the refined meshes are obtained using uniform bisection. The details of the mesh hierarchy are

presented in Table 2. We model a macro-stress driven RVE problem where an average shear stress
Oy =10 MPa and zero axial stresses are prescribed on a 4 mm x 4 mm rectangular composite
domain consisting of two materials. The elastic moduli of the central rectangular domain and outer

domain are E' =500MPa and E’=100MPa, respectively, while the Poisson ratios are the same

with v'=0>=0.25 . Figure 6 shows the average strain ¥u response plotted against the

characteristic mesh parameter /% . For all element types considered, the predicted average strains
approach the reference value as the mesh is refined, where the reference is obtained on a further
refined grid. The percent errors in the average strain from the coarsest approximation are
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0.93%, 0.55%, 0.12% and 0.06% for T3, Q4, T6 and Q9 elements respectively. This trend is
consistent with the behavior of other stabilized methods such as in [48].

f

The reference error e=u’ —u" between the computed #” and highly refined u’

solutions are evaluated in the L, norm and H ' semi norm using (56) and (57) to estimate the

global measure of accuracy of the numerical results.

o =],r 40 (56)
Wy =] V9 :Vd0 (57)

The results presented in Figure 7 show that the convergence rates of the linear elements are

v

consistent with finite element definition of the rate of convergence of a primal field. These values

which are approximately 2 and 1 correspond to k+1 and k for L, normand H ' semi norm,

where k is the highest degree of the polynomial basis functions. However, the rates of the

convergence of the quadratic elements are affected by the low regularity of the displacement field
solution attributed to the sharp corners of the inner domain. Nonetheless, the average strain as well

as the microscale displacement field from all element types converges as the element size is

reduced.
Table 2. Listing of elements and nodes in the mesh hierarchy

Q4 Q9 T3 T6
Mesh name

Elements Nodes Elements Nodes Flements Nodes FElements Nodes
Coarse 64 81 64 289 128 81 128 289
Medium 256 289 256 1089 512 289 512 1089
Fine 1024 1089 1024 4225 2048 1089 2048 4225
Very fine 4096 4225 4096 16641 8192 4225 8192 16641
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Figure 5. Mesh hierarchy: (a) 64 elements Q4; (b) 64 elements Q9; (c) 128 elements T3; (d) 128

elements T6
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Figure 6. Convergence of average strain y,, for different element types
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Figure 7. Convergence rates of the error: (a) L, norm of displacement; (b) H ' semi norm of

displacement
For a visual comparison, a domain consisting of uniform material properties E=100MPa ,

v=0.25 is simulated, and the contour plot of displacement £_ is presented in Figure 8 (a),

where the deformed shape has been exaggerated by a factor of 10. The maximum displacement of

0.0625mm is produced at the top edge, and uniform gradient fields »,, =0.0156 and o, =10

MPa are reproduced. The displacement £, contour plot of the composite block RVE is shown

in Figure 8 (b), where maximum displacement equals 0.0481mm . The reduced displacement and
warping deformed shape of the composite block are attributed to the presence of a stiffer material

at the center.
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Figure 8. Displacement 2, (mm) on deformed configuration x10: (a) homogenous block; (b)

composite block
6.2. Periodic and Non-Periodic RVE mesh with circular voids

The efficiency of the proposed method for enforcing PBC on periodic and non-periodic meshes is

evaluated herein. A 2mmx2mm RVE with four circular voids, each having a radius of 0.2mm
and centered within 1mmx1mm squares, is subjected to a small deformation gradient FM with

shearing components according to (58) applied in twenty equal load steps. The material properties
are specified as E=70GPa and v =0.3. The discretized RVE containing a periodic mesh of
1600 linear quadrilateral elements is shown in Figure 9(a), and its non-periodic counterparts
containing 1880 linear quadrilateral elements are shown in Figure 9(b) — (¢). The non-periodic
mesh A is a mirror image of the non-periodic mesh B. The RVEs with the same material definition

and mesh resolution described herein have been modeled earlier in [18] using the mortar method.

The P

>, component of the first PK stress tensor obtained from the RVE modeling using the

proposed VMDG method are compared with those from the mortar method in [18]. For a highly

refined mesh, P, produced from the VMDG method is equal to 3582.3MPa for both the

12

periodic mesh and non-periodic mesh. This value is used as the reference value to compute
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percentage error instead of using P, from coarser periodic mesh in [18]. The results presented in

Figure 10 show that the first PK stress tensor produced from the VMDG method are
3636.41MPa, 3633.53 MPa and 3633.54 MPa for the periodic mesh, non-periodic mesh A and non-
periodic mesh B while the equivalent stresses produced by mortar method are recorded from [18]
as 3658.73 MPa, 3654.43 MPa and 3653.75 MPa. The VMDG solutions have a percentage error of
1.51%, 1.43% and 1.43% while the mortar method solutions have a percentage error of
2.13%, 2.01% and 1.99% for periodic, non-periodic A and non-periodic B meshes. The VMDG
solutions are very close to the solutions from mortar method, and the VMDG method produced
quite similar stress results for both non-periodic mesh A and non-periodic mesh B. Note that exact

form of the neo-Hookean material model is not recorded in [ 18], which precludes making an exact

comparison.

7 1.0 0.1
- (58)
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Figure 9. Finite element RVE with (a) periodic mesh:1600 linear quadratic elements; (b) Non-

periodic mesh A: 1880 elements; (c) Non-periodic mesh B: 1880 elements

To briefly report the methods’ algorithmic efficiency, the iterated residual norms from the Newton
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solver during one of the twenty equally spaced load increments are tabulated in Table 3. The results
show that the VMDG method is fully linearized and algorithmically converged faster than the

mortar method.
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Figure 10. Comparison of first Piola-Kirchhoff stress from each method versus refined solution

Table 3. Evolution of the residual L, norm for each method

Iteration number Mortar Method [18] VMDG

1 8.47687 0.288937x10*
2 0.203536 0.812551x10
3 0.134021x10* 0.311889x1071
4 0.358867x10!! -

Next, we further analyze the features of the VMDG computed response on the periodic and non-
periodic meshes. The shear stress &, contour plot of the results from the VMDG formulation are
presented in Figure 11. There is no appreciable difference in the contour plots from all meshes

considered except nearby the voids. A similar value of local maximum shear stress of 1734 MPa

is produced by both the periodic and non-periodic meshes. Additionally, refinement by mesh
subdivision was carried out, and the macroscale stress B, for each mesh is recorded in Figure
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12. The periodic mesh and the non-periodic mesh results clearly converge towards each other with
reduced element size % . Also, the computed stress slightly decreases with refinement, which is
logical since the macroscale strain is prescribed and the FE approximation generally becomes less

stiff with refinement.
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Figure 11. The Cauchy shear stress &,, contour plot: (a) periodic mesh (b) non-periodic mesh
A (c) non-periodic mesh B
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Figure 12. Convergence of macroscale stress for periodic and non-periodic meshes
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6.3. 2-D microstructure containing 6 grains

The trade-offs in efficiency and accuracy of the VMDG family of methods is studied herein for
enforcing PBC on a polycrystalline microstructure. The 6-grain periodic RVE is generated in 2
steps: (1) a standard non-periodic microstructure is generated using an open-source program, and
(2) adjustments are made to selected nodes and regions along the domain edges. First,a 1 mm x 1
mm two-dimensional RVE non-periodic microstructure containing 10 grains is generated using
Neper open source software package [59] as shown in Figure 13 (a). The reader is encouraged to
consult its user manual for details on the commands for tessellating and meshing the standard 10

grain microstructure.
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Figure 13. Two-dimensional RVE with color indicating the grain ID: (a) non-periodic

microstructure containing 10 grains; (b) periodic microstructure containing 6 grains

Next, the grain ID and nodes at the top and left edges are adjusted to produce a 6-grain-periodic
microstructure containing 466 constant strain triangular (CST) elements and 263 nodes in Figure
13 (b). Notice that the nodes, elements, and grains in the bottom-right section of the RVE are

preserved between the original and modified microstructures. A list of the Young’s moduli and
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Poisson’s ratios for the elastic material assigned to each grain is listed in Table 4. Note that the
materials are not permitted to yield and thus the problem is hypothetical; however, this problem
tests the VMDG method under large strains and material mismatch. The RVE problem is modeled

in a finite strain context, and the microstructure is subjected to 50% tensile average strain using

deformation gradient FM in (59) applied over 20 equally spaced increments.

= 1.0 0
Mlo 15 (59)

Table 4. Material properties of the grains in the RVE

Grains IDs 1 2 3 4 5 6
Elastic modulus (GPA) 101 200 73.1 85 120 80
Poisson’s ratio 0.35 0.32 0.35 0.27 0.36 0.28

The contour plots of the stress and displacement results from the VMDG formulation are first
presented in Figure 14 and Figure 15, followed by comparing the methods belonging to the VMDG
family. The stress and displacement contour plots show that the maximum stress and displacement
are 17MPa and 0.1mm. Higher stress values are observed in grains 1, 2, and 5 that form a chain
of stiffer grains along the direction of the applied axial strain. Stress gradients appear near the grain
boundaries, although a finer mesh would be needed to resolve the features more clearly [60]. A
larger instantiation of the 6-grain microstructure shown in Figure 15 (a) is obtained by duplication

and translation. The transformed displacement contour plot in Figure 15 (b) shows that the

displacement field u, of the smaller RVE from Figure 14 (b) corresponds with its location within

the larger RVE similar to [43], confirming that the computed displacement field is periodic.
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Figure 14. Solution fields on deformed configuration: (a) tensile stress o, (MPa); (b)

displacement «, (mm)
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(a) (b)
Figure 15. Larger RVE instantiation: (a) consisting of six repeating grains; (b) displacement u,

contour plot on deformed configuration x5
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Figure 16. Number of Newton-Raphson iterations for each method at 25% and 75% load level

Computational cost is an important consideration for method development at finite strain. A
key driver of cost is the number of Newton iterations, reflecting the number of times the stiffness
matrix is formed and factorized. Therefore, each method from the VMDG family is applied to
model this RVE, and the number of iterations required to reach a relative convergence tolerance
of 4x107"* at the 5th and 15th load steps are presented in Figure 16. The overall trends for the
larger and smaller iteration counts match with those observed in [51] for the VMDG method
applied to interfaces and discontinuous interpolations. Only 3 or 4 iterations are required by the
VMDG, IVMDG, and RVMDG methods, although the load amplitude is small. Thus, choosing

between these methods is governed by accuracy and adjoint consistency as discussed next, as well
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as noting that IVMDG and RVMDG have non-symmetric tangent matrices. The symmetrized
methods require more iterations to reach the same tolerance than the original methods, though only
a mild increase for VMDGs. Adding these few extra iterations may offset the implementation and

runtime costs associated with evaluating the sixth-order curvature tensor =.

Table 5. Computed average stress P,, from VMDG method family

Methods Average stress (GPa)
VMDG [-55.361  0.3789 |
| 0.5750  —69.422 |

YMDG [—55.361  0.3789 |
; 05750 —69.422 |
VMDG [—55.709  0.385 |
| 0.5767 —69.682

VMDG [—55.709  0.385 |
; | 0.5767  —69.682 |
RYMDG [-55.599  0.3636 |
| 0.5516  —69.498 |

RYMDG [-55.599  0.3636 |
; | 0.5516  —69.498 |

The average stress result from modeling the 2-D microstructure using the VMDG family of

algorithms are reported in Table 5. All the methods produce P,, stresses within 0.1% of each
other, and the symmetrized methods give results matching to their original counterparts. This
degree of similarity is somewhat expected since the weak discontinuities for this problem are

confined only to the RVE surface. Thus, the VMDGs method’s balance of accuracy, number of

iteration, and reduced implementation cost merit its use for periodic RVE modeling. Overall, these
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results are consistent with our previous study [51].
6.4. 3-D microstructure containing 100 grains

The final numerical tests evaluate the performance of the VMDG method for enforcing PBC on
complex 3-D RVE models. Most existing studies have employed synthetic block-shaped 3-D RVE
for multiscale modeling due to their ease for enforcing PBC. However, the truly/self-periodic 3-D
RVE model is an instantiation of a synthetic polycrystalline microstructure that is free from
artificial slices through grains. Though it is more difficult to enforce PBC on a truly periodic model
such as Figure 17, the benefits of using such models, for example to represent grain boundary
sliding, can be appealing [43].

A 3-D truly periodic 100-grain microstructure in Figure 17 (a) is generated using Neper 3.1.0. The
discretized model contains 36172 linear tetrahedral elements and 8324 nodes. We show that the 1
mm® RVE volume is part of a larger periodic microstructure in Figure 17 (b) by translation. The
VMDG method is first compared with the classical LM method for nodal constraints described in
our previous study [43]. This is followed by another study to examine the robustness of the VMDG

method by modeling transversely isotropic materials in 3-D RVE.
6.4.1 Verification against LM nodal constraint method

The 3-D microstructure RVE in Figure 17 is modelled with uniform isotropic elastic properties
E=100GPa and v =0.25 in all grains to verify that both the VMDG and LM methods produce
constant stress by consistent enforcement of the periodicity of the microstructure. A combination

of tension and shear are applied as the macroscale strain ¢&,, according to (60). Both methods

produced a constant tensile stress o of 1200 MPa and maximum displacement of 0.01 mm, and

the displacement contours of the two methods in Figure 18 are essentially identical. As further

quantification, we evaluated the surface integral of the periodic constraint [u]—¢,, [x] from (52)
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for the VMDG method. Despite the weak enforcement, this integral (evaluated over half of the
total surface area 8.1436mm’ of the RVE in Figure 17 (a)) is a zero value up to machine precision.

These results demonstrate essential agreement between the strong and weak enforcement of the
PBC for this complex RVE problem. Recall that the VMDG method has favorable attributes versus
the LM method; namely, the VMDG symmetric stiffness matrix has all positive diagonal entries
as opposed to the zeros in the extra rows of the LM constraint equations which can only be avoided

by direct condensation during assembly, an added implementational hurdle.
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Figure 17. 3-D RVE containing a truly periodic 100-grain microstructure: (a) smaller RVE; (b)

larger RVE
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(a) (b)

Figure 18. Displacement #, (mm) on deformed configuration: (a) VMDG method; (b)

Lagrange multiplier method

0.01 0.01 0
= 0 0 0 (60)
0 0 0

6.4.2 Ti-6Al alloy with transversely isotropic properties

The robustness of the VMDG method is examined herein by modeling a 100-grain microstructure
representing a single phase @ —Ti-6Al alloy. The transversely isotropic elasticity parameters C ;

associated to hexagonal close packed « —phase titanium at room temperature are taken from [61,

62] as C,,=C,,=136GPa, C, =78GPa, C, =C,, =68GPa, C,, =163GPa, C,, =29GPa,
Css =Cy =40GPa and all other C ,'s = 0. Two orientation distribution functions (ODF), a weak

(random) ODF and a strong (fiber) ODF, were generated using MTEX [63] to represent the
probability of finding a given lattice orientation within a reference volume. Two statistical samples

of 100 orientations were taken from each ODF to provide four instantiations of Ti-6Al texture that
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are characterized using the pole figures in Figure 19. The Kocks Euler angles from each orientation
are then used to transform the transversely isotropic stiffness tensor in the lattice coordinate frame
into the global coordinate frame, and that transformed stiffness tensor is assigned to all finite
elements of the grain with the associated orientation. Subsequently, the macro and micro scale
mechanical response of these RVEs is examined for the two down-samplings of the two different

ODF.

The four RVEs are subjected to the same imposed strain defined in (60), and the computed local
tensile stress fields are plotted in Figure 20. Gradients in stress are now present within many of the
grains as compared to the uniform stress in the previous section. In general, the local stress in each

grain is a function of its transformed stiffness tensor as well as the stresses in its surrounding

grains. The maximum local tensile stress O in each texture respectively is 150.3 MPa, 186

MPa, 142.8 MPa, and 148.6 MPa and the minimum local tensile stress O, in each texture is 87.2

MPa, 64 MPa, 125.2 MPa, and 123.8 MPa. The differing positions of these maximum and
minimum values within the microstructure may be connected with the difference in misorientation
across the grain boundaries. Since the misorientation between grains is generally larger in the weak
texture than the strong texture case, higher stress concentrations are expected and indeed occur in
the weak texture models. Note that the behavior herein is elastic; response due to crystal plasticity

may not follow this trend.

Texture 1 Texture 2 Texture 3 Texture 4
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Figure 19. Pole figures for instantiated random and fiber textures of « —Ti-6Al alloy

The macroscopic Cauchy stress tensor ¢,, is listed for all four textures in Table 6. In contrast to
the local stress variations, the volume average stresses are fairly close for the two discrete textures

from the same ODF, with a relative difference in the 0 component of less than 0.7%. This

behavior is expected since the homogenized stiffness for RVE of polycrystalline elastic materials
having the same ODF converges rather quickly with higher number of grains [2, 64, 65], though
this convergence typically requires more than 100 grains. However, the homogenized stress from

the strong texture cases is noticeably different from the weak texture cases in Table 6, large enough
to be attributed to the difference in the underlying ODF. Indeed, the slightly larger o, stress for

the strong texture case may be associated with the alignment of most grains’ [0001] axis with the
loading x-direction as opposed to the less stiff response of the weak texture case. Additionally, the
surface integral of the displacement periodic constraint (52) is reported in the third column of Table
6 for each RVE; note as before that a zero value of the integral means that the error in the PBC is

zero. Similar textures produced periodic constraint values that are close to each other. Though
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these values are all small relative to the 8.1436mm” surface area, the lower value in the strong

texture case may be attributed to the expected higher accuracy of the solution with lesser stress
gradients compared to the weak texture case. Hence, for this problem with mismatched elastic
properties across grain boundaries and others with large applied strain and nonconforming meshes,
the VMDG provides accurate weak enforcement of the PBC such that it can reliably provide the

homogenized mechanical response and capture interesting features of microscale problems.
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Figure 20. Tensile stress o, (MPa) on the deformed configuration: (a) texture 1; (b) texture 2;

(c) texture 3; (d) texture 4
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Table 6. Volume average stress computed for the titanium textures

Average stress (MPa) Periodic constraint

—120.1307 -30.6514 —0.2487
Texture 1 -30.6514 —-58.5810 0.2088 2.13334x%107 mm?
—0.2487 0.2088  -60.6220

[—119.3662 -30.5088 —0.3757 |
Texture 2 -30.5088 —60.0456  0.5832 2.02474x10”7 mm?>
| 03757 0.5832  —59.9275 |

[—136.1784 —33.1791 -0.4446 |
Texture 3 —33.1791 -56.7330 -0.3572 5.99651x10°8 mm>
| —0.4446  —0.3572 —56.8308 |

[—135.2728 -33.2870 —0.0636 |
Texture 4 -33.2870 -56.8135 -0.0235 6.56123%10°® mm?
| —0.0636 —0.0235  —56.7669 |

7. Conclusions

This paper derives a stabilized DG method from an underlying LM formulation of a periodic
microscale boundary value problem by relying on variational multiscale (VMS) ideas. While
existing methods for periodic constraints of multiscale problems typically only permit the macro-
strain to drive the microscale problem, the rigorous derivation of the VMDG method provides a
framework to accommodate either the macro-stress or macro-strain to drive the RVE response.
The novelty of the method essentially derives from the idea of imposing the product of the macro-
strain times the domain diameter as a non-zero displacement jump within the DG terms on the
RVE surfaces. The method does not require solving for additional unknown fields as in mortar-
type methods and does not encounter stability concerns that can arise when selecting the function

space of the Lagrange multiplier field [18-20]. The method is suited toward enforcing PBC on
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periodic or non-periodic meshes by partitioning the elements along the boundary surface and
representing the fine-scale displacement with bubble functions on sectors. Instead of focusing on
only small or finite deformations, the VMDG method is developed in the finite deformation
context and subsequently specialized to small deformation of RVEs. Several algorithmic
modifications of the method are proposed to provide tradeoffs between variational consistency,
algorithmic consistency, adjoint consistency and tangent symmetry.

Several numerical tests confirm the features of the VMDG method. Convergence rate studies
on a rectangular composite block evaluate the displacement error in the L, norm and H ' semi

norm using different element types. While the linear elements converge optimally, the quadratic
elements exhibit suboptimal convergence due to the sharp corners of the inclusions. Next, an RVE
with circular voids is loaded by a finite shear strain to compare the performance of the VMDG
method for periodic and non-periodic meshes. The resultant macroscale shear stress is found to
match closely with values obtained from a reference mortar method for PBC and to not depend on
the conformity of the boundary mesh. The consistent linearization of the VMDG method was also
verified numerically. Both the rectangular inclusion and circular void problems exhibit
convergence of the macroscale stress versus strain response with mesh refinement. The third
numerical problem uses a polycrystalline 2-D microstructure to probe the accuracy and
computational cost of various members of the VMDG algorithmic family. All variants of the
family captured the PBC correctly and produced very similar average stress results. The changes
in computational cost (time and memory) arise due to dropping certain boundary terms in the
residual vector or tangent matrix. One attractive balance is struck by the VMDGs method which
avoids evaluating the sixth order curvature tensor of material moduli, while the IVMDG method
possesses the fewest terms and a non-symmetric tangent matrix. Lastly, the VMDG method is used
to model a complex 3-dimensional self-periodic RVE containing first isotropic and then

anisotropic materials. The former case with uniform material properties confirms that the weakly
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enforced PBC through the VMDG method produced the same stress and displacement results as
the strongly enforced PBC by the LM method. The latter case models consisting of samples of
weak and strong textures of a single phase « —Ti-6Al alloy within a 100-grain microstructure
showed that all textures produced very small errors in the periodic constraint although the error
values differed between textures by about a factor of three. The computed volume average stresses
under combined tension and shear strain exhibit only 0.7% relative difference between each
instantiation, which is reasonable for RVE with a small number of grains. Local stress gradients
and periodic surface constraints are well-resolved by the VMDG method.
Acknowledgements
This material is based upon work supported by the National Science Foundation, USA under
Grants No. CMMI-1641054 and No. CMMI-1751591.
Appendix. Consistent Linearization

The consistent linearization of the stabilized formulation is performed herein to produce the
tangent matrix required to solve the nonlinear microscale behavior using the Newton-Raphson
algorithm. We summarize the linearized form of the interface flux, jumps and material acoustic
tensor in (61) — (64). The reader is encouraged to refer to [40] for details regarding the linearization

of the interface terms and [56] for bulk terms.

D, [[#]]-au" + D, [[4]]- 26 =[4u] (61)
+ - 62

D, [{P-N}]-au 4D [(P-N}]- 8 ={(A:GRAD Au)- N} (62)
D, [A]-Au'*) ==):GRAD Au'” (63)
(64)

D, [ Fy[X]] Aey =Aey, [X]

For brevity, we show the key steps involved in the linearization procedure for deriving the
tangent stiffness associated with the interface terms. We then present for the first time the tangent

stiffness associated with the periodic domain boundaries. The integrals will be evaluated by
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numerical quadrature segment-wise over the union US y,=T".
The first contribution is obtained by linearizing the residual R(#,;¢) using the directional
derivative D,:

K, 4=K(u,,0u:8)=D ,, [ R(n,.¢)]- Au'”
= [n.]-.(p,. [[#])- 46" +D, [{[¢]]]-Au<f>)dA
—j [n.] ( [{P-N}]-au" 4D, [P-N}]-Au(‘))dA (65)
-| {(GrADy, :A) N}-(D,, [[#1]- 46 +D ., [[#]]- Au) as
—LS {(GRAD , :(D s [A]-2u" 4D | [A]-Au(_))) : N} ([]-Fu[X]) d4

The substitution of the linearized forms into (65) yields the final linearized tangent stiffness X, ;

for the interface:

K,p=] [n]e, [Au]as

Kl

-], [n,]-{(A:GRAD Au)- N} d4~ | {(GRAD#,:A)-N}-[Au]dA

(66)
K2
—LS {(GRAD 4, :E:GRAD Au)-N}-([¢]- F, [ X]) d4
K4
where the curvature tensor E( F) is a sixth-order tensor of material moduli defined as:
':( ) = 83—W 67
- OF OF OF ©7)

Additionally, the tangent stiffness K, . 1is obtained by linearizing the residual R(n{,;FM)

using the directional derivative D,
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K, r. :K(nO,AgM;FM):DFM [R(n,;Fy)]-Aey,
=[ [n.]=. (D, [-Fu[XT]- A2y, ) a4 68)
-| {(GRAD#,:A)-N}-(D, [-F,[X]]- 8¢, )d4
The substitution of the linearization (64) into (68) yields the final linearized tangent stiffness

K

1,3 Fy

in (69).

K, 5 =- LS [n,] 7, Aey [ X] dd+ LS {(GRAD #,:A)-N}-Ae,, [ X ] d4 ©9)

K1 K3

The tangent stiffness K, , is obtained by linearizing the residual R(x;¢) using the directional

derivative D,:
K, =K(x,008)=D , [ R(x;8)]-Au'
= _L k[ X]-z, '(D¢<+> [[[¢]]] Au) D [[[¢]]] : A”(_)) d4 (70)
+Lﬁ x[[X]]-(Dw [{P-N}]-Au"+D | [{P-N}]-Au“)dA
The substitution of the linearized forms into (70) yields:

K,, :—Lx;c[[x]]-rs -[[Au]]dA+J.KIc|[X]]-{(A:GRAD Au)-N}d4

(71)

K1 K2

The tangent stiffness K, . is obtained by linearizing the residual R(IC;FM) using the

directional derivative D :

K, =K(kAe,;F, )= D, [R(x;Fy )] Aey,

k’

(72)
=— L [#]-, -(DFM [-F, [X]] AaM) d4
The substitution of the linearization (69) into (72) yields the final tangent stiffness:
Ko, =[ w[X]-z 06, [X]dd 73)

K1
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Notice that the tangent stiffness is symmetric with respect to its arguments because
K, 4(n,.00)=K, ,(Aun,) . K, . (n,08,)= K., (Aey,n,) ., and K, . (k,As,)=

K Ag,,, K) , which is expected due to the existence of the potential functional (23).

K Fy (
The VMDG formulation can be straightforwardly implemented into standard pure-displacement

finite element codes by discretizing the four linearized forms with shape functions, converting to

matrix form, grouping the (+) terms together and the (—) terms together, and carefully

arranging the resulting sub-matrices into a total element stiffness matrix (74).

K, 400" )+ K, . (n).08l )+ K, (" Au" )+ K, . (6", A8}, ) = WKU (74)
K;+¢ K;;¢ K;O;FM w’ u’

K=K K, K pn | W=|w | Us\u (75)
Ko Ko K K ;

The further decomposition of K into (+), (-) and (*)components is analogous to the

decomposed interface stiffness matrix for the discontinuous Galerkin method presented in [39].

Taking for example the linear quadrilateral element mentioned in Section 3.3, the vector u”

contains the x and y degrees of freedom for the four nodes of the element Q] containing the

sector @, adjacentto y , vector u~ contains the eight degrees of freedom from element Q,

and € contains the x and y degrees of freedom for the two “macro” nodes of the RVE.
Notice that the all derivations herein are done in the reference configuration. Similar to [40], this
method could be easily implemented in the current configuration. The reader is referred to the

appendix of [40] for details.
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