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Abstract 

A variational multiscale Discontinuous Galerkin (VMDG) method is developed for microscale 

modeling of domains containing conforming and non-conforming meshes. Essentially, the product 

of the applied volume-average strain (or macro-strain) and the domain diameter acts as an imposed 

displacement jump within the VMDG terms. Hence, the method is suitable for modeling 

deformation of both block and truly (self) periodic representative volume elements (RVEs). The 

primal displacement field and macro-strain are the only unknowns because the method eliminates 

the Lagrange multiplier (LM) enforcement of the kinematic constraint. Rigorous derivation of the 

method provides a framework to accommodate either the macro-stress or macro-strain as the driver 

of the microscale boundary value problem. The method is developed first for finite deformations 

and then specialized to small deformation kinematics. Algorithmic modifications to the method 

are also studied for their effects on tangent symmetry and convergence rate. The results from 

numerical studies for isotropic and anisotropic materials show that the proposed method is robust, 

accurate, stable and variationally consistent for modeling complicated conforming and 

nonconforming RVEs.  
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1. Introduction 

Fundamental understanding of microscale deformation mechanisms continues to be pursued 

for advanced materials and heterogeneous systems that are designed for aerospace vehicles. These 

heterogeneous materials such as fibrous composites and metallic alloys have complex dependence 

on spatial distribution, size, texture and shape of different constituents. The need to define the 

macroscopic mechanical response of heterogenous materials has led to past and present 

development of homogenization techniques. 

The analytical techniques [1-4] traditionally used to predict the collective response of multi-

phase materials have been found to be ill-suited for microscale modeling of materials subjected to 

large deformations and non-uniform cyclic loading. The application of analytical techniques is 

also usually hindered by the complex geometry of the representative microstructure [5, 6]. 

Computational homogenization is a preferred alternative because of its accuracy in accounting for 

the non-linear characteristics of a material at the microscale, and the method is not constrained by 

the geometry of the domain of interest [5, 7-10]. Though the technique is computationally 

expensive, it offers an established procedure for obtaining the effective properties of a 

heterogenous material [4, 5, 11]. 

 Commonly in computational homogenization, the primary macroscopic kinematical 

quantities such as the deformation gradient enter the microscale boundary value problem (BVP) 

through the boundary constraints on the representative volume element (RVE). Typical kinematic 

constraint types are the linear displacement boundary condition, constant traction boundary 

condition, and periodic boundary condition (PBC) [5, 6, 12, 13]. Among the three constraints, the 

PBC is widely used and considered more efficient for modeling of the underlying microstructure 

because the predicted results converge faster to the effective properties of RVE as size increases 

[5, 7, 8, 13-15]. 



3 

 

The Lagrange multiplier (LM) method [16, 17] is commonly used for enforcing PBC on the 

RVE through the imposition of identical displacement fields on two matching nodes on opposite 

boundaries. The limitation of the method lies in the non-suitability of the method for RVE 

containing non-conforming meshes, also termed as non-periodic meshes. Since RVEs meshes are 

generated often directly from microstructure images which inherently produce non-periodic 

meshes, a recent LM approach employs weak enforcement of PBC instead of pointwise constraints 

[18]. However, this method belongs to the category of mixed field problems for which stability 

can be a concern [19, 20], and the extra LM degrees of freedom must be determined with the 

displacement solution. Also, the LM field is required to belong to a mortar space or modified trace 

space to enforce an orthogonality relationship with the displacement jump [21]. The extra degrees 

of freedom could be reduced by relying on either the biorthogonality condition that localizes the 

coupling conditions to construct dual Lagrange multiplier shape functions [21-23] or the static 

condensation method [9, 24, 25]. Non-periodic surfaces have also been treated using LM by 

discretizing the boundary surface independently for smooth transitioning of micro-macro BVP in 

[12]. Another LM [26] approach enforces quasi-periodic boundary conditions on nonconforming 

meshes using shape functions to interpolate the displacement field between nodes on the master 

and slave opposing surfaces of the RVE. Other means of enforcing PBC such as the surface-to-

surface constraint [27] which largely depends on the choice of master and slave surfaces may not 

be robust, and the method of the unidirectional polynomial interpolation of the displacement fields 

[8, 28] could require very high order polynomial interpolation functions.  

The Discontinuous Galerkin (DG) method is a popular method for weakly enforcing 

continuity of solution fields across naturally or artificially disjointed surfaces [29-33]. The DG 

method has been described as a promising method for enforcing PBC on RVE boundaries in scalar 

field problems [34], and subsequently employed to treat the higher-order continuity requirements 

of the macroscale problem for a second order computational homogenization scheme [35]. To the 
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best knowledge of the authors, this paper presents for the first time the development of 

Discontinuous Galerkin method for the microscale problem of the first order computational 

homogenization scheme of solid mechanics. This paper discusses the variational multiscale 

Discontinuous Galerkin (VMDG) method earlier applied in a continuum context for small and 

large strains [36-40]. 

The VMDG method is suitable for enforcing PBC on microstructures containing periodic and 

non-periodic meshes. While the existing methods generally only permit the macro-strain to drive 

the RVE boundary conditions, the rigorous derivation of the VMDG method provides a framework 

to accommodate either the macro-stress or macro-strain on the microscale boundary value problem. 

Macro-stress driven problems are appropriate for performing patch tests and convergence studies 

of the method and also for cases where displacement and traction conditions are specified, such as 

unconfined uniaxial tension. The VMDG method is a single field formulation that is free from 

stability concerns associated with mixed formulations like the mortar-type Lagrange multiplier 

method. The consistently-derived stabilizing terms require no calibration and account for element 

geometry and material properties along the boundary. Hence, the method is suitable for modeling 

deformation of both block and truly (self) periodic RVEs. As shown in Figure 1 (a), for block RVE 

the domain boundary cuts through geometric features such as grains or fibers. In the latter case for 

truly periodic RVEs in Figure 1 (b), the RVE boundary conforms to the geometric features, which 

can ease the mesh generation of quality element shapes and aspect ratios. Instead of focusing on 

only small or finite deformations, the VMDG method is developed in the finite deformation 

context and subsequently specialized to small deformation of RVEs. Contrary to earlier 

presentations in the literature that usually start from the weak form or minimization form [8, 16, 

18], this paper begins from the strong form of a microscale problem to derive from a LM 

formulation to an underlying stabilized DG method by reliance on variational multiscale (VMS) 

ideas. 
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The organization of the paper is as follows. We begin in Section 2 by giving a brief summary 

of the essentials of the microscale problem and PBC enforcement at the RVE boundaries as well 

as describing the governing equations and associated weak form of the Lagrange multiplier 

formulation. In Section 3, we describe the derivation which relies on variational multiscale ideas 

(VMS) for the stabilized formulation for enforcing PBC. The algorithmic modifications of the 

VMDG method are proposed in Section 4, and specialization of the VMDG formulation to RVE 

undergoing small deformation are briefly discussed in Section 5. In Section 6, multiple benchmark 

problems for error convergence analysis and method consistency tests for 2-D and 3-D 

microstructures are performed. Finally, we give concluding remarks in Section 7. 

  
(a) (b) 

Figure 1. RVE instantiations: (a) 2D block RVE; (b) 2D truly (self) periodic RVE  

 
 

2.  Microscale Modeling and Periodic Boundary Condition for RVE 

To motivate the formulation of the periodic VMDG method, we recall key concepts from 

mechanical multiscale theory [15]. This section begins by describing the kinematic fields in the 

context of the microscale region termed as a representative volume element (RVE) domain. Next, 
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the principle of scale separation is summarized as a means to link the deformation of constituents 

at the microscale with the average deformation and stress experienced at the macroscale, followed 

by the Hill-Mandel principle for energetic consistency as well as classes of kinematically 

admissible boundary conditions for the microscale problem. Lastly, the strong form and weak form 

are posed for the microscale problem with periodic boundary conditions, which is the focus of the 

VMDG derivations in Section 3. 

2.1.  Microscale domain and kinematics 

Let sdnΩ⊂   be an open bounded RVE domain with piecewise periodic boundary Γ , where 

2sdn ≥  is the number of spatial dimensions. The boundary Γ  is divided into two subsets 

ii
+ +Γ = Γ


 and ii
− −Γ = Γ


, where i  denotes an RVE boundary pair, and the subsets satisfy 

+ −Γ Γ = Γ ; see Figure 2. The RVE is deformed according to the motion ( ),tXφ  which maps 

the points ∈ΩX  in the reference configuration to points ( ),t=x Xφ  in the current 

configuration. The displacement ( ) ( ), t ,t= −u X X Xφ  is the difference between the locations in 

the current configuration and reference configuration while the deformation gradient F  is 

defined as follows: 

 ( ), GRADt ∂
= =
∂

xF X x
X

 (1)  



7 

 

 

Figure 2. The deformation of the RVE from reference to current configurations  

2.2.  Physical scale separation principles 

The concept of scale separation relies on the existence of an RVE associated to a material point 

M M∈ΩX  in the macroscale, as depicted in Figure 3, which has a characteristic length that is 

small compared to the continuum scale. 

 ( ) M +


φ φX = F  X  (2) 

 ( ) M, GRADt = +


φF X F   (3) 

The microscopic deformation map φ  can be decomposed into a linear mapping MF  X  and a 

deformation mapping fluctuation 


φ  according to (2). Thus, the microscale deformation gradient 

in (1) can also be expressed in terms of the macroscale deformation gradient as in (3).  

Macro-to-micro coupling of the kinematical constraint in physical scale separation usually requires 

the assumption that the volume average of the microscale deformation gradient is equal to the 

volume average of the microscale deformation gradient. 
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 ( ) ( )M M
0

1 d
V Ω

Ω∫F X = F X  (4) 

where ∈ΩX  and 0V  is the microscale domain volume. Evaluating the volume average of the 

microscale gradient (3) simplifies as follows after applying the divergence theorem on the second 

term: 

 ( ) ( ) ( )M M M M
0 0 0

1 1 1d GRAD d d
V V VΩ Ω Γ

Ω = + Ω= + ⊗ Γ∫ ∫ ∫F X F X F X N
 

φ φ  (5) 

where N  is the outward unit normal. By comparing (4) and (5), it is observed that the surface 

integral of the mapping fluctuation field must vanish, and several options for enforcing this 

condition are mentioned subsequently. 

The equally important Hill-Mandel principle [18, 41, 42] is also employed to satisfy macro-to-

micro energetic consistency by defining the volume average of the microscopic deformation 

energy to be equivalent to the macroscopic energy, where the δ  terms signify variational strains: 

 ( ) ( ) ( ) ( )M M M M
0

1: : d
V

δ δ
Ω

Ω∫P X F X = P X F X  (6) 

The fulfillment of the Hill-Mandel principle holds if and only if there is no work due to external 

surface traction and body force of the RVE:  

 d 0, d 0o oΓ Ω
⋅ Γ = ⋅ Ω =∫ ∫η t η b  (7) 

 ( ) ( ) ( ) ( )M
0 0 0

1 1 1: d d : d
V V V

δ δ δ
Ω Γ Γ

 
Ω = ⋅ ⊗ Γ + ⋅ ⋅ Γ 

 
∫ ∫ ∫



φP X F X N P X X F N P X  (8) 

 
According to [15], it has been shown that the right hand of (6) can be expressed as (8). Since the 
contribution of the mapping fluctuation field vanishes, the macroscopic first Piola-Kirchhoff (PK) 

stress tensor ( )M MP X  is equal to the volume average of the microscopic counterpart ( )P X :  
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 ( ) ( )M
0 0

1 1d d
V VΓ Ω

= ⋅ ⊗ Γ = Ω∫ ∫P N P X X P X  (9) 

The reader is referred to [15] for details of the derivation of the average theory.  

 

Figure 3. An RVE domain Ω  residing at the vicinity of M M∈ΩX  at the continuum scale 

Several methods exist to fulfill the condition whereby the mapping fluctuation field vanishes. The 

Taylor (Voigt) model simply assumes no fluctuations exists in the RVE volume such that it 

experiences an identically constant strain. The Sachs (Reuss) model assumes an identically 

constant stress in the RVE volume. The Taylor model generally produces a stiff estimate of the 

macroscopic overall mechanical response while the Sachs model produces a very compliant 

estimate. Although both models are computationally inexpensive and provide rough estimates, 

they do not simultaneously capture both equilibrium and compatibility of the microscale phases. 

The minimal kinematic boundary condition requires the boundary integral of the fluctuations on 

the boundary expressed in (5) to vanish. The uniform displacement boundary condition assumes 

that there is no fluctuation at the RVE boundary and the displacements at the RVE boundary are 

prescribed according to macroscopic deformation gradient. The uniform traction boundary 

condition allows the traction on the RVE boundary to be prescribed according to the macroscopic 
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stress. The uniform displacement boundary condition overestimates the macroscopic effective 

stiffness, while both the minimal kinematic condition and the uniform traction condition 

underestimate the macroscopic effective stiffness. 

The periodic boundary condition is suitable for RVE with geometrically periodic boundary 

Γ  which is divided into two subsets ii
+ +Γ = Γ


 and ii
− −Γ = Γ


, where i  denotes an RVE 

boundary pair. The microscopic deformation map φ  on the RVE boundary can be expressed by 

(2) with counterparts at two opposite boundaries of the RVE in Figure 2 (b). The key kinematical 

assumption is the periodicity of the fluctuation 


φ  along Γ  to ensure displacement compatibility: 

 ( ) ( )M
0 0

1 1d d
V VΓ Ω

= ⋅ ⊗ Γ = Ω∫ ∫P N P X X P X  (10) 

Herein, we consider +Γ  as the primary side and refer to points on −Γ  through the pairwise 

operator ℘ in Figure 4; the treatment of rectangular and non-rectangular RVE is systematic using 

these pairwise maps as discussed in [42]. The periodic boundary condition is widely used and 

considered more efficient for modeling of the underlying microstructure because the predicted 

results converge faster to the effective properties of RVE as size increases [5, 7, 8, 13, 14]. 

 

  

   

(a) (b) 
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Figure 4. Pairwise mapping of boundary quantities for (a) rectangular RVE and (b) hexagonal 

RVE 

2.3.  Microscale governing equations and weak form 

Adopting PBC for the kinematic constraint, the strong form of the microscale boundary value 

problem is posed as:  

 ( )DIV in= Ω0P F  (11) 

    M on += ΓF Xφ  (12) 

 ( )( ) ( ) ( )( ) ( )( )( ) ( ) on + + + + − += = − ℘ ΓP X N λ X P X N  (13) 

   0 Md V
+Γ

⊗ Γ =∫ λ X P  (14) 

The momentum balance equation (11) of the microscale domain is defined only in terms of the 

divergence of the first PK stress tensor according to the Hill-Mandel principle. The deformation 

jump 
 

φ  along +Γ  is constrained by the macroscale deformation gradient MF  according to 

(12) which derives from the decomposition (2) and the periodicity (10) conditions. Throughout, 

the vector valued jump operator is defined as 
 

( )( ) ( )( )+ −= −   . This constraint (12) is imposed 

through the Lagrange multiplier (LM) field λ  in (13) which also enforces the equilibrium of the 

tractions along the RVE boundary. Finally, the prescribed macroscale stress MP  transmits to the 

RVE surface according to (14). 

Note that both MF  and MP  belong to the space of second order tensors that can be described in 

component form as the space sd sd
1

n n
j== ⊗   with dimension sd sdn n×  once a coordinate system is 

specified. For a well-posed problem, exactly sd sdn n×  tensor components amongst the total 

( )sd sd2 n n×  strain and stress components can be prescribed within (12) and (14) while the 
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remaining components are unknowns along with φ  and λ . We denote these prescribed values 

as { } 1

Fn
M j

F
=

 and { } 1

Pn
M j

P
=

 with sd sdF Pn n n n×+ = . 

Remark: 

The distinguishing feature of this BVP compared to the strong forms underlying our previous 

VMDG developments are the non-zero displacement jump (12) and the surface integral of the 

tractions (14). In fact, for macro-stress driven problems when MP  is prescribed, then the macro-

strain MF  becomes an unknown that is solved for alongside the deformation field. Aspects of 

representing this unknown in the discrete setting are discussed in Section 3.3 and the Appendix. 

Subsequently, the governing equations (11) and (13) are multiplied by weighting function oη , 

integrated over their respective regions, and the divergence theorem is applied. Similarly, equation 

(12) is multiplied by weighting function μ , (14) is multiplied by a weighting tensor κ , and (12) 

is integrated over +Γ . Thus, the weak form of the microscale problem is expressed as: Find 

{ }M, , F∈ × ×λ F   φ  such that for all { } 0, ,o ∈ × ×η μ κ    : 

  

GRAD : d d 0o oV A
+Ω Γ

− ⋅ =∫ ∫η P λ η  (15) 

    ( )M d 0A
+Γ

− ⋅ − =∫ μ F Xφ  (16) 

  ( ) ( )( )M d 0A
+

+

Γ
− ⋅ − =∫ κ X λ P N  (17) 

The appropriate functional spaces for the functions in the weak form are expressed as (18) – (21): 

 ( ) ( )( ){ }sd1 , det 0
n

H = ∈ Ω >  F φ φ φ  (18) 

 ( ) sd1
2

I

n
H −  = ∈ Γ   

λ λ  (19) 
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 { }, ,, for 1 to F M M M j M j FF F j n= ∈ = =F F   (20) 

 { }0 , 0 for 1 to j Fj nκ= ∈ = =κ κ   (21) 

where ( )1H Ω  and 
1
2H −  are standard Sobolev spaces. Notice that the integration of the surface 

terms in (15) – (17) is performed on +Γ  only, which is an outcome of the node pair mapping ℘ 

that identifies a unique ( )−X  for each ( )+X . For example, the conversion between one term in 

(17) and (14) proceeds as follows: 

 
 ( ) ( )( ) ( ) ( )M M 0 Md d tr d :T

M V
+

+

Γ Γ Ω
 ⋅ Γ = ⋅ Γ = ∇ Ω = ∫ ∫ ∫κ X P N κX P N P κ X P κ  (22) 

This surface mapping is not limited to rectangular RVE in Figure 4(a) but could be carefully 

performed on hexagonal shaped RVE as in Figure 4(b) and on irregular and complex 3-D RVE 

domains; see examples in [43] and Section 6.4 herein. Also, while the definition of the interface 

jump depends on the ordering of the boundaries as in [36], the final weak form obtained at the 

completion of the derivations is independent of the ordering. 

For completeness, we remark that the weak form in the case of hyperelastic materials 

( ( ) W= ∂ ∂P F F ) can be shown to be equivalent to the saddle point of the following functional: 

 ( ) ( )( )    ( )  ( )M M Md : d : dW
+ +

+

Ω Γ Γ
Ω − ⊗ − Γ − Γ∫ ∫ ∫F λ N F X P F Xφ  (23) 

where 
 

( )( ) ( ) ( )( ) ( )+ −+ −= ⊗ + ⊗N N    is the tensorial jump operator. 

3.  Multiscale decomposition 

The weak form (15) – (17) has been solved traditionally using a collocation approach for the 

LM field (i.e. multi-point constraints of paired nodes), but this is possible only if the discretization 

of Γ  is periodic. In general, the mixed weak form (15) – (17) has two main drawbacks: it requires 

solving for an additional unknown LM field, and the discretized form must satisfy the Babuska-

Brezzi condition [44, 45] to avoid stability issues, the latter being difficult for non-periodic meshes. 
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In the steps that follow, the LM formulation is converted to the single-field formulation with 

enhanced stability by systematically condensing out λ  using variational multiscale ideas [46-48]. 

Although the key concepts in the context of small and large deformations can be found in our 

previous works [36, 37, 40, 49], the additional terms from enforcing the PBC (12) motivate us to 

revisit both the fine-scale models and the coarse-scale embedding. 

An overlapping decomposition into coarse and fine scales is assumed within the microscale 

BVP of the deformation map φ  and weighting function oη  within the RVE:  

 ˆ ˆ, o o o= = +η η η


φ φ φ  (24) 

where   denotes the composition of mapping functions between the fine scale deformation φ  

and the coarse scale deformation φ̂ . The coarse-scale deformation map φ̂  is associated to the 

discrete function space and the fine scale φ  can be considered as the error filtered out by the 

finite element mesh. The weighting functions ˆoη  and oη  are associated with the coarse and fine 

scales. The linearity of the weak form (15) – (17) with respect to oη  enables the separation into 

a coarse-scale problem (25) – (27) and a fine-scale problem (28): 

Coarse-scale problem 

 ( )    

( )( )M
ˆˆ ˆ ˆ ˆ; , , GRAD : d d d 0o o oR V A A

+ +

+

Ω Γ Γ
= − ⋅ − ⋅ − =∫ ∫ ∫η λ η P λ η κ X λ P Nφ φ  (25) 

 ( )
 

( )( )M
ˆ ; d 0R A

+

+

Γ
=− ⋅ − =∫κ κ λ κ X λ P N  (26) 

 ( )  ( )M M
ˆ ˆˆ , , , d 0R Aµ +Γ

= − ⋅ − =∫μ F μ F X 

 



 

 

φ φ φ φ  (27) 

Fine-scale problem 

 ( )  

( )ˆ; , , GRAD : d d 0o o oR V Aα
+Ω Γ

= − ⋅ =∫ ∫η λ η P λ η

  φ φ  (28) 
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3.1.  Modeling of fine scales 

It is worth mentioning that the fine-scale problem in (28) produced from the multiscale 

decomposition of the microscale weak form is similar to those in our previous VMDG interface 

formulations for compatible and equilibrated domains [40] and weak and strong discontinuities 

[37]. Namely, in [50], a body force is included and the surface integral is over an interface rather 

than +Γ . Although these earlier formulations were applied in a continuum setting, the versatility 

of the VMDG method is manifested by the similarity of the fine-scale equations for the microscale 

problem. Hence, the fine-scale modeling details translate directly from [50], and we summarize 

the three key steps leading to the analytical fine-scale solution. 

First, the coarse-scale fields are discretized using finite elements eΩ  to cover Ω . The fine-

scale fields are assumed to be localized only within the elements adjoining Γ  and approximated 

using sufficiently higher-order edge bubble functions sb  over the sectors s eω ⊆ Ω  such that it 

satisfies the requisite property for vanishing along all sector edges except the boundary segment 

sγ ⊂ Γ  [36]. A complete listing of sb  for two and three dimensional element shapes is given in  

[51]. The bubble functions effectively localize (28) into a series of problems posed over pairs of 

conforming sectors; namely, the sectors are chosen such that each point ( ) ( )closures sγ ω+ + +∈ ⊂X  

has an image ( ) ( )( ) ( )closures sγ ω− + − −=℘ ∈ ⊂X X  where the sectors lie within single elements 

e
+Ω  and e

−Ω . The segments are disjoint, and their unions cover +Γ  and −Γ ; see the useful 

illustrations in [50]. 

Second, the fine scales are treated as a small perturbation such that ˆ ˆ + ∆u


 φ φ φ , and the 

fine-scale problem is linearized to facilitate the substitution of the edge bubble functions and an 

analytical solution. The linearized weak form is expressed in terms of the acoustic tensor 
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( )( ) ( )α αFA  of the material moduli given in (29) as well as [37, 40, 51, 52], where the superscript 

α  takes the value +  or −  on the boundary +Γ  and −Γ , respectively. A detailed discussion of 

the linearization procedure that exposes the geometric and material nonlinearity within the acoustic 

tensor can be found in [47].    

 ( )
2 ( )

( ) ( ) W α
α α ∂

=
∂ ∂

F
F F

A  (29)  

Third, we solve for the fine-scale field in terms of the coarse scales fields φ̂  and λ  and 

assume that the fine-scale bubble function is orthogonal to the coarse-scale residual by neglecting 

the interior residual terms. The resulting fine-scale solution on either boundary is as follows: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),s s
+ + + + − − − −   ∆ = ⋅ − − ⋅ ∆ = ⋅ − ⋅   u τ λ P N u τ λ P N   (30)  

where 

 ( ) ( )21( ) ( ) ( )meas d
s

s s s sb Aα α α

γ
γ

−
=    ∫τ τ  (31) 

 ( )

1
( ) ( ) ( ) ( )GRAD : :GRAD d

s
s s s V

α

α α α α

ω

−
 =   ∫τ b b A  (32)  

These three assumptions enable the analytical representation of the fine scales in terms of the 

boundary residual on either side of the periodic domain according to (30), in a manner similar to 

the development of stabilized finite element formulations [48, 53-55]. Hence, the stability tensor 

( )τ s
α  that scales the residual is not a free tuning parameter but rather emerges from the consistent 

derivation, where the tensor depends on the element size, element shape, polynomial order and the 

acoustic tensor of the material.  

3.2.  Variational embedding into the coarse-scale problem 

Recall that the fine-scale field is small and localized only at the adjoining interface. Therefore, 

the deformation jump operator can be linearized as 
 

ˆ ˆ + ∆   




 

   

   

uφ φ φ  according to [40]. 
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Substituting this linearization along with the fine-scale solution (30) into the continuity equation 

(16) produces (33).  

 ( ) ( )  

( ) (+) (+) ( ) ( ) ( )
M

ˆ d 0s s A
+

+ − − −

Γ
 − ⋅ − ⋅ − ⋅ + ⋅ − − ⋅ − = ∫ μ τ λ P N τ λ P N F X 

 

 

φ  (33)  

Because of the enhanced stability derived from the fine-scale model, this expression can be solved 

pointwise by selecting the Lagrange multiplier space   to encompass all 2L  functions on +Γ ,  

resulting in a locally defined expression on each segment sγ  that is a function of the weighted 

average traction. 
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φ  (34)  
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s s
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The flux weighting tensor ( ) ( )
s s s
α α= ⋅δ τ τ  and stability tensor ( ) 1(+) ( )

s s s

−−= +τ τ τ  are expressed 

in terms of ( )τ s
α  and thus inherit the dependency on the element configuration and material 

properties. A distinguishing feature of (34) compared to previous VMDG methods is that the 

Lagrange multiplier field is driven by the macroscale deformation gradient MF . 

The expression (34) is substituted into (30), and both are placed within the coarse-scale equilibrium 

equation (25). Simplifying the result along the lines of [50], these steps yield a modified coarse-

scale problem (36) that is stable and is free from the additional LM field.  

Modified coarse-scale problem 
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where ( ) ( )
11 1(+) ( )

s s s

−− −− = +  
δ τ τ  is the additional stability tensor that arises due to the 

dependence of ∆u  on the traction jump 
 

P N⋅  through (30) and (34). The traction jump term 

along with the derived stability tensors distinguish the VMDG method from the popular Nitsche 

and interior penalty Galerkin methods. Similar to our previous work on VMDG [37, 39, 40], we 

neglect the traction jump term to simplify the formulation and reduce computational costs since 

the term is often relatively small [37, 40, 49]. The final form of the consistently derived and 

stabilized VMDG formulation for microscale deformation is then provided below as (37). 

 

( )
 

( )

       ( )

   
{ }

( ){ }    ( )

M M

0

M

1

2

M

3

, ; , GRAD : d d

d

d

GRAD : d 0

o o

R

o s

R

o

R

o

R

R V A

A

A

A

+

+

+

+

+

Ω Γ

Γ

Γ

Γ

= − ⋅

 + − ⋅ ⋅ − 

 − − ⋅ ⋅ 

− ⋅ ⋅ − =

∫ ∫

∫

∫

∫

η  κ F η P κ X P N

η κ X τ F X

η κ X P N

η N F X









φ
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φA

 (37)  

For later elaborations on algorithmic modifications, we identify specific terms in the VMDG 

formulation. The volume integral in 0R  weakly enforces equilibrium within the RVE while the 

surface integral imposes the macro-to-micro driving stress MP  and is the sole external driving 

force of the problem. The penalty term 1R  stabilizes the VMDG formulation, and the consistent 

term 2R  weakly enforces anti-periodicity of the tractions along Γ , thereby ensuring the VMDG 

method is variationally consistent. Besides ensuring that the VMDG method is symmetric, the 

symmetrizing term 3R  also weakly imposes the periodicity of φ  along Γ . 

The most significant contributions of the present paper that set it apart from our previous 

VMDG formulations are (a) the appearance of macroscopic or homogenized deformation gradient 

tensor MF  in the penalty and symmetrizing terms, (b) the presence of weighting tensor κ  in the 

penalty and consistent terms, and (c) the coupling of finite element surfaces along opposite 
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boundaries separated by 
 

X  instead of across a closed interface. These tensors MF  and κ  

constitute global variables that are collectively associated to boundary Γ  as opposed to the local 

inelastic gap or damage variable ζ  defined pointwise along interfaces in [37-39]. These 

contributions collectively extend the VMDG framework to enable imposition of periodic boundary 

conditions on conforming and non-conforming meshes. Thus, the framework is now suited for 

micro-scale modeling of RVE with the goal of determining the overall effective properties of 

heterogeneous materials and alloys. 

Remark: 

Typically, stabilized methods require the calibration of stability parameters to ensure 

accuracy. While possibly requiring some effort, the use of carefully chosen constant parameters 

for each material region along the RVE boundary could still be appropriate for block shaped RVEs 

with periodic meshes. However, the use of spatially uniform parameters for microscale modeling 

of either non-periodic meshes or non-block RVEs could cause stability and accuracy issues since 

the interfacial physics between material regions on either side needs to be properly captured. The 

dependence of the stability tensor of the VMDG formulation on material properties of the two 

materials at the opposite boundaries naturally accommodates block RVE and self-periodic RVE 

modeling. Examples of spatial and temporal variations in VMDG stability tensors are given in 

[51]. 

3.3.  Summary of consistent linearization and implementational aspects 

The consistent linearization of the VMDG formulation in (37) is needed for the tangent 

stiffness matrix within the Newton-Raphson algorithm for solving the non-linear microscale 

behavior. We summarize the linearized form of the interface flux, jumps and material acoustic 

tensor in the Appendix. The reader is encouraged to refer to the Appendix and [40] for details 

regarding the linearization of the interface terms and [56] for the bulk terms. The contributions 
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from the interface flux terms ;o
Kη φ  are then highlighted below in (38). The final linearized 

tangent stiffness components for the microscale behavior are presented in (39) - (42).  
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(38)  

where the curvature tensor ( )Ξ F  is a sixth-order tensor of material moduli defined as in (39): 

 ( )
3

Ξ W∂
=
∂ ∂ ∂

F
F F F

 (39)  
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(42)  

In our previous studies [36, 39, 51], we have shown that the interface tangent stiffness ;o
Kη φ  

is symmetric due to the existence of the interface potential functional for the VMDG method. It is 

obvious by inspection that the fourth tangent stiffness matrix in (42) is symmetric with respect to 

the variation κ  and the incremental strain M∆ε . Notice that the third tangent stiffness matrix 

;Kκ φ  in (40) is the transpose of the second tangent stiffness matrix 
M;o

Kη F in (41).  

The implementation of the VMDG formulation into standard pure-displacement finite element 

(FE) codes requires two straightforward additions: (a) adding variables for MF  and (b) 

computing force and stiffness terms along +Γ . The macroscale tensor MF  is straightforward to 
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represent as sd sdn n×  generalized degrees of freedom (DOFs) as proposed for example within [57]. 

A natural way to assign these DOFs into the FE code is to add sdn  so-called “macro” nodes into 

the model each having sdn  DOFs, and these nodes are appended to the connectivity of the 

“interface” elements mentioned in the next paragraph. The imposed components of the macroscale 

1st Piola-Kirchhoff stress { } 1

Pn
M j

P
=

 are simply multiplied by the RVE volume 0V  and assigned as 

“nodal forces” to the macro-nodes. Constrained macroscale deformation gradient values { } 1

Fn
M j

F
=

 

analogously give rise to nodal reactions { }0 1
Fn

M j
V P

=
 that are obtained by the usual post-process 

method of FE displacement-based solutions. Also note that rigid body modes need to be suppressed 

in the discretization of the RVE microscale displacement field, e.g. by fixing node and partially 

constraining its neighbors. 

Due to the element-local fine-scale representation, the smallest computational unit of the 

VMDG terms is an integral along a single boundary segment sγ
+⊂ Γ  such as in (31). The 

displacement and traction fields in these integrals require the nodes of the solid elements from 

sectors ( )ω +  and ( )ω −  adjacent to the segment and its image ( ) ( )( )γ γ− +=℘  as well as the 

macro nodes associated with MF . For example, in the case of an RVE meshed with linear 4-node 

quadrilateral elements, all quantities for the surface integrals in (38) – (42) are computable in the 

discrete setting from the nodal displacements of two solid elements adjacent to sγ  and the macro 

nodes, implying a generalized “interface” element with (4+4+2)=10 nodes. The explicit form of 

the stiffness matrix for this VMDG interface element is given in equation (74) of the Appendix; 

note that one submatrix term turns out to be equivalent to previous forms of the VMDG stiffness 

matrix and thus analogous to symmetric interior penalty DG stiffness matrices. Also, small 

deformation counterparts (presented in Section 5) of these elements are implemented in MATLAB 
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within the open-source interface mesh generation program DEIP [58], which has been extended to 

address periodic meshes in [43]. 

3.4.  Macroscale material tangent modulus 

While the emphasis on the computed results in Section 6 are on the microscale problem alone, the 

VMDG formulation is naturally suited for computing the macroscale material tangent moduli 

required for computational homogenization methods. Due to the location of the macroscale stress 

MP  in the residual form (37), the computation of the total derivative M Md dP F  follows from the 

linearized terms given in Section 3.3 and the Appendix after a short algebraic manipulation, along 

the lines of [10, 16]. Let ;o
Kη φ , 

M;o
Kη F , ;Kκ φ , and 

M;Kκ F  denote the global assembled stiffness 

matrices from the RVE interior and boundary given in the Appendix, with rigid translation 

suppressed in ;o
Kη φ . Then the macroscale material tangent components follow as: 

 ( )M M

1

M, M, ; ; ; ;
0 0

1 1
o oij kl ijkl ijkl

dP dF
V V

−  = −    
K K K Kκ F κ η η Fφ φ  (43)  

We emphasize that these matrices are identical to those needed by the Newton-Raphson algorithm 

with zero modification or manipulation, making this calculation easy to implement. 

4. Algorithmic modifications to VMDG method 

The attractive features of the proposed VMDG formulation for microscale modeling lie with the 

consistently derived expressions for the stability tensors and numerical fluxes, which account for 

material and geometric nonlinearity. The complexity and implementational cost of the method can 

be reduced by adjusting the residual force vector and tangent matrix, with possible consequences 

to the stability, accuracy and consistency of the method. These simplifications are summarized in 

Table 1 and range from removing the curvature tensor Ξ , to removing the symmetric term, to 

freezing the acoustic tensor during iterations. However, these modifications could affect the 

variational, adjoint or/and algorithmic consistencies of the method. The reader is referred to [51] 
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for the definition of the three types of consistency as well as other comments. In particular, loss of 

adjoint consistency can reduce the convergence rate of the 2L  displacement error norm with 

respect to mesh refinement, and loss of algorithmic consistency may reduce the convergence rate 

of the iterated residual within the Newton-Raphson method. These modifications are assessed 

numerically in Section 6. 

Table 1. Summary of the residual and tangent stiffness terms 

 Method Residual Tangent matrices 

   ;o
Kη φ  ;o

Kη F  
Algo. 

cons. 

Tang. 

Symm.  

1 VMDG 1, 2, 3R R R  1, 2, 3, 4K K K K  1, 3K K  Y Y 

2 VMDGs 1, 2, 3R R R  1, 2, 3K K K  1, 3K K  N Y 

3 IVMDG 1, 2R R  1, 2K K  1K  Y N 

4 IVMDGs 1, 2R R  1, 2, 3K K K  1, 3K K  N Y 

5 RVMDG 1, 2, 3oR R R  1, 2, 3oK K K  1, 3oK K  Y N 

6 RVMDGs 1, 2, 3oR R R  1, 2, 3K K K  1, 3K K  N Y 

4.1.  VMDGs method 

 The derivation of the closed form of the curvature tensor Ξ , a sixth order tensor, can be very 

involved especially for complex material models. For example, the case of Von Mises plasticity 

requires more than the second variational derivative of radial return algorithm and the 

accompanying nonlinear kinematic tensors [50]. However, the contribution of the 4K  term 

containing Ξ  can be very small when the discretized deformation jump 
 

φ  is close to zero. 

Therefore we define the VMDGs method by removing the 4K  term from the tangent stiffness 
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matrix while still retaining the VMDG residual force vector, where “s” refers to shortening or 

symmetrizing. Row 2 of Table 1 shows that VMDGs retains all the terms in VMDG except the 

reduction of ;o
Kη φ  to the form expressed in (44). While this new formulation does not possess 

algorithmic consistentency, it is variationally consistent, adjoint consistent, and symmetric. Hence, 

the VMDGs is simple to implement and provide computational cost savings.  
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 (44)  

4.2.  IVMDG/ IVMDGs method: incomplete interior penalty method 

The IVMDG method is a further modification of VMDG formulation where the symmetrizing 

term is removed from the residual force vector and the tangent stiffness matrix, analogous to the 

“Incomplete” interior penalty method. Hence, the method inherits the algorithmic consistency 

properties but is non-symmetric. The third row of Table 1 highlights the terms present in the 

residual vector and tangent matrix. For completeness, the reduced residual and linearized weak 

form are expressed in (45) – (47). 
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(47)  

While this method is the simplest that retains variational consistency, the loss of adjoint 

consistency leads to some drawbacks, including possible reduced accuracy, reduced convergence 

rate of displacement error, and extra data requirements for non-symmetric solvers. To combat the 

latter similar to [51], the IVMDGs is proposed by restoring the symmetry according to the fourth 

row of Table 1, namely using the tangent of the VMDGs method. Therefore, this method lacks 

both adjoint consistency and algorithmic consistency, and this trade-off may impact its numerical 

performance.  

4.3.  RVMDG/ RVMDGs method: reference configuration acoustic tensor oA  

The RVMDG method is designed as a compromise between the original VMDG and IVMDG 

methods by freezing the deformation gradient = 1F  to the reference configuration (denoted by 

“R”) and consequently freezing the acoustic tensor o=A A  in the symmetrizing term. The 

residual force and tangent matrix in the fifth row of the Table 1 are then defined in terms of 3oR  

and 3oK . For completeness, the reduced residual force vector and linearized weak form are 

expressed in (48) – (50). 
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While the RVMDG residual has the same structure as VMDG, the linearized weak form does not 

contain the curvature tensor due to the fixed acoustic tensor in the symmetric term. Note that 

RVMDG has a non-symmetric tangent stiffness similar to IVMDG and has a number of terms 

similar to VMDGs. Like IVMDGs, the RVMDGs method is developed by sacrificing the 

algorithmic consistency of the RVMDG method to recover tangent symmetry by substituting 3oK   

for 3K ; see the sixth row of Table 1. We remark that since 3K  is the transpose of 2K , 

RVMDGs is less expensive in comparison with RVMDG. 

5.  Specialization of the VMDG formulation to small strains 

The VMDG method can be specialized to enforce PBC on RVE undergoing small 

displacements and strains; the small strain kinematics formulation is presented for completeness. 

When the deformation is small, the second order terms in the Green-Lagrange strain are negligible, 

and the displacement gradient evaluated in the undeformed configuration can be approximated 

with that evaluated in the current configuration. Hence, the VMDG method can be formulated 

based on the current configuration ( ),t=x Xφ . The microscopic displacement u  is split into 

the linear displacement Mε  x  from the macroscale and the displacement fluctuation u  

according to (51), where the fluctuations at each pair ( ) ( ){ },+ −x x  are set equal to enforce the 

periodicity condition. The displacement jump at the RVE boundaries can then be expressed as (52).  

 ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )M ,α α α α + + − −+u x = ε  x u u x = u x    (51) 
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  

( ) ( )
M

+ −− =u u ε x  (52) 

The associated strong form and weak form of the mixed RVE problem at small strains is then posed 

in terms of the displacement and Lagrange multiplier fields. The ensuing steps of variational 

multiscale modeling are then followed with analogy to the large strain context, where the fine-

scale problem is already linear and thus simpler. The resulting small strain VMDG formulation 

emerges as: Find { }M, F∈ × u ε  such that for all { } 0, ∈ × w κ : 

 

( ) ( )
   ( )    ( )

   ( ) ( ){ } ( ){ }    ( )

0 M

0 1

M

2 3

: : d : d

: d : d 0

M s

R R

R R

V V
+

+ +

Ω Γ

Γ Γ

− + − ⋅ ⋅ − Γ

− − ⋅ ⋅ Γ − ⋅ ⋅ − Γ =

∫ ∫

∫ ∫

ε w ε u κ σ w κ x τ u ε x

w κ x ε u n ε w n u ε x

 

 

C

C C
 (53)  

where w  is the weighting function, ε  is the symmetric gradient operator, and the moduli tensor 

C  is obtained from the Cauchy stress σ  operator ( ) ( ):=σ u ε uC . The deformation of the 

microscale domain is driven by the macroscale Cauchy stress Mσ  and engineering strain Mε ; as 

before, only one component of stress or strain is imposed at a time. The appearance of the 

formulation in the small strain context (53) resembles the large strain counterpart in (37). The bulk 

term 0R , the penalty term 1R , the consistency term 2R , and the symmetric term 3R  are 

present. However, the sixth-order curvature tensor does not appear in the stiffness matrix since the 

problem is linear. Hence, the implementation is simpler and straightforward. In the numerical 

section, we will argue that the VMDG method is very robust and stable for RVE undergoing both 

finite and small strains. 

6. Numerical Results 

In this section, we investigate the performance of the proposed interface formulation across a 

range of 2-dimensional and 3-dimensional RVE domains subjected to small and large strains. The 

following compressible Neo Hookean material model is employed for modeling large strain, and 
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plane strain conditions are assumed in all 2-dimensional cases: 

 ( ) ( ) ( ) ( )( )21 1det 1 ln det tr 3
2 2

Tψ λ µ µ= − − + −F F F F F  (54)  

 ( ) ( )det det 1 T Tλ µ− −= − + +P F F F F F  (55)  

The bubble functions ( )
sb α  used for evaluating the stability tensors ( )

s
ατ  for 2-dimensional and 

3-dimensional (2-D and 3-D) element types are listed in [51], and all calculations are done using 

full numerical quadrature. The first example highlights the stress driven capability of the method 

while the other examples are strain driven problems. In the first numerical example, a patch test 

using a composite rectangular block is implemented in the small strain context to check the 

variational consistency and accuracy of the FE solutions produced from enforcing PBC on RVE 

using the VMDG method. Convergence rates of displacement error in the  norm and  

semi-norm are performed for different element types. 

The accuracy and variational consistency of the VMDG method for enforcing PBC on periodic 

and non-periodic RVE are evaluated in the second example in comparison with the mortar method. 

Reference solutions are taken from highly refined meshes, which is justified when a formulation 

does not exhibit stability issues. This is followed by another numerical example where a 2-D RVE 

consisting of periodic microstructures is subjected to an average tensile strain. The model example 

is designed as a polycrystalline sample of a metallic alloy to serve as a practical application with 

interest to the broader research community. The effectiveness of the standard VMDG method is 

first studied for representing the material response and required periodicity of the solution fields 

across RVE domain before exploring the robustness, accuracy and computation cost associated 

with other methods belonging to the VMDG algorithmic family. 

Finally, the accuracy and robustness of the VMDG method to weakly enforce PBC on complex 

truly periodic 3-D microstructures are studied. Initially, isotropic material behavior is employed in 

a patch test to compare with the LM method. Then, the anisotropic properties of a single phase 

2L 1H
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α −Ti-6Al alloy are assigned in a periodic RVE consisting of a 100-grain microstructure. Instances 

of random and fiber textures are modeled to assess the VMDG method’s performance for 

polycrystalline materials. 

Remark: 

The following numerical problems all employ hyperelastic materials such that the VMDG 

method has an underlying potential energy form. Allowing for inelastic material response requires 

that the material history is also tracked at the quadrature points along the boundary segments due 

to the appearance of the stress tensor in the flux terms. Additionally, the derived fine-scale stability 

terms should account for the material history dependence. Such aspects were addressed for the 

VMDG method [50] in the context of small deformation isotropic plasticity. A forthcoming work 

will establish the algorithmic performance of the VMDG method for anisotropic crystal plasticity 

with interfacial debonding.  

6.1. Rectangular composite block  

Herein, we evaluate the variational consistency of the VMDG method by performing a 

convergence rate study using different element types. The coarsest meshes are shown in Figure 5, 

and the refined meshes are obtained using uniform bisection. The details of the mesh hierarchy are 

presented in Table 2. We model a macro-stress driven RVE problem where an average shear stress 

M,xy 10 MPaσ =  and zero axial stresses are prescribed on a 4 mm × 4 mm rectangular composite 

domain consisting of two materials. The elastic moduli of the central rectangular domain and outer 

domain are 1E 500 MPa=  and 2E 100 MPa= , respectively, while the Poisson ratios are the same 

with 1 2 0.25υ υ= = . Figure 6 shows the average strain Mγ  response plotted against the 

characteristic mesh parameter h . For all element types considered, the predicted average strains 

approach the reference value as the mesh is refined, where the reference is obtained on a further 

refined grid. The percent errors in the average strain from the coarsest approximation are 
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0.93%,  0.55%,  0.12% and 0.06%  for T3, Q4, T6 and Q9 elements respectively. This trend is 

consistent with the behavior of other stabilized methods such as in [48]. 

The reference error f h= −e u u  between the computed hu  and highly refined fu  

solutions are evaluated in the 2L  norm and 1H  semi norm using (56) and (57) to estimate the 

global measure of accuracy of the numerical results. 

 ( ) d
2L w w

⋅ Ω∫v = v v  (56) 

 ( )1 : d
H w w

∇ ∇ Ω∫v = v v  (57) 

The results presented in Figure 7 show that the convergence rates of the linear elements are 

consistent with finite element definition of the rate of convergence of a primal field. These values 

which are approximately 2 and 1 correspond to 1k +  and k  for 2L  norm and 1H  semi norm, 

where k  is the highest degree of the polynomial basis functions. However, the rates of the 

convergence of the quadratic elements are affected by the low regularity of the displacement field 

solution attributed to the sharp corners of the inner domain. Nonetheless, the average strain as well 

as the microscale displacement field from all element types converges as the element size is 

reduced. 

Table 2. Listing of elements and nodes in the mesh hierarchy 

Mesh name 
Q4 Q9 T3 T6 
Elements Nodes Elements Nodes Elements Nodes Elements Nodes 

Coarse 64 81 64 289 128 81 128 289 
Medium 256 289 256 1089 512 289 512 1089 
Fine 1024 1089 1024 4225 2048 1089 2048 4225 
Very fine 4096 4225 4096 16641 8192 4225 8192 16641 
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(a) (b) (c) (d) 

Figure 5. Mesh hierarchy: (a) 64 elements Q4; (b) 64 elements Q9; (c) 128 elements T3; (d) 128 

elements T6 

 

Figure 6. Convergence of average strain Mγ  for different element types 
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Figure 7. Convergence rates of the error: (a) 2L  norm of displacement; (b) 1H  semi norm of 

displacement 

For a visual comparison, a domain consisting of uniform material properties E 100 MPa= , 

0.25υ =  is simulated, and the contour plot of displacement xu  is presented in Figure 8 (a), 

where the deformed shape has been exaggerated by a factor of 10. The maximum displacement of 

0.0625 mm  is produced at the top edge, and uniform gradient fields 0.0156xyγ =  and 10xyσ =  

MPa are reproduced. The displacement xu  contour plot of the composite block RVE is shown 

in Figure 8 (b), where maximum displacement equals 0.0481mm . The reduced displacement and 

warping deformed shape of the composite block are attributed to the presence of a stiffer material 

at the center.     

 

  
(a) (b) 



33 

 

  
(a) (b) 

Figure 8. Displacement xu  (mm) on deformed configuration 10× : (a) homogenous block; (b) 

composite block  

6.2. Periodic and Non-Periodic RVE mesh with circular voids  

The efficiency of the proposed method for enforcing PBC on periodic and non-periodic meshes is 

evaluated herein. A 2 mm 2 mm×  RVE with four circular voids, each having a radius of 0.2 mm  

and centered within 1mm 1mm×  squares, is subjected to a small deformation gradient MF  with 

shearing components according to (58) applied in twenty equal load steps. The material properties 

are specified as E 70GPa=  and 0.3υ = . The discretized RVE containing a periodic mesh of 

1600 linear quadrilateral elements is shown in Figure 9(a), and its non-periodic counterparts 

containing 1880 linear quadrilateral elements are shown in Figure 9(b) – (c). The non-periodic 

mesh A is a mirror image of the non-periodic mesh B. The RVEs with the same material definition 

and mesh resolution described herein have been modeled earlier in [18] using the mortar method. 

The 12P  component of the first PK stress tensor obtained from the RVE modeling using the 

proposed VMDG method are compared with those from the mortar method in [18]. For a highly 

refined mesh, 12P  produced from the VMDG method is equal to 3582.3MPa  for both the 

periodic mesh and non-periodic mesh. This value is used as the reference value to compute 



34 

 

percentage error instead of using 12P  from coarser periodic mesh in [18]. The results presented in 

Figure 10 show that the first PK stress tensor produced from the VMDG method are 

3636.41MPa, 3633.53 MPa and 3633.54 MPa  for the periodic mesh, non-periodic mesh A and non-

periodic mesh B while the equivalent stresses produced by mortar method are recorded from [18] 

as 3658.73MPa, 3654.43 MPa and 3653.75 MPa . The VMDG solutions have a percentage error of 

1.51%,  1.43% and 1.43% while the mortar method solutions have a percentage error of 

2.13%,  2.01% and 1.99%  for periodic, non-periodic A and non-periodic B meshes. The VMDG 

solutions are very close to the solutions from mortar method, and the VMDG method produced 

quite similar stress results for both non-periodic mesh A and non-periodic mesh B. Note that exact 

form of the neo-Hookean material model is not recorded in [18], which precludes making an exact 

comparison. 

 M

1.0 0.1
0.1 1.0
 

=  
 

F  (58)  

 

   

(a)  (b) (c) 

Figure 9. Finite element RVE with (a) periodic mesh:1600 linear quadratic elements; (b) Non-

periodic mesh A: 1880 elements; (c) Non-periodic mesh B: 1880 elements 

To briefly report the methods’ algorithmic efficiency, the iterated residual norms from the Newton 
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solver during one of the twenty equally spaced load increments are tabulated in Table 3. The results 

show that the VMDG method is fully linearized and algorithmically converged faster than the 

mortar method. 

 

Figure 10. Comparison of first Piola-Kirchhoff stress from each method versus refined solution 

Table 3. Evolution of the residual 2L  norm for each method 

Iteration number Mortar Method [18] VMDG 
1 8.47687 0.288937×10-4 
2 0.203536 0.812551×10-9 
3 0.134021×10-4 0.311889×10-15 
4 0.358867×10-11 - 

 

Next, we further analyze the features of the VMDG computed response on the periodic and non-

periodic meshes. The shear stress 12σ  contour plot of the results from the VMDG formulation are 

presented in Figure 11. There is no appreciable difference in the contour plots from all meshes 

considered except nearby the voids. A similar value of local maximum shear stress of 1734 MPa 

is produced by both the periodic and non-periodic meshes. Additionally, refinement by mesh 

subdivision was carried out, and the macroscale stress M,12P  for each mesh is recorded in Figure 



36 

 

12. The periodic mesh and the non-periodic mesh results clearly converge towards each other with 

reduced element size h . Also, the computed stress slightly decreases with refinement, which is 

logical since the macroscale strain is prescribed and the FE approximation generally becomes less 

stiff with refinement. 

 

  
  

(a) (b) (c)  

Figure 11. The Cauchy shear stress 12σ  contour plot: (a) periodic mesh (b) non-periodic mesh 

A (c) non-periodic mesh B 

 

Figure 12. Convergence of macroscale stress for periodic and non-periodic meshes 
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6.3. 2-D microstructure containing 6 grains 

The trade-offs in efficiency and accuracy of the VMDG family of methods is studied herein for 

enforcing PBC on a polycrystalline microstructure. The 6-grain periodic RVE is generated in 2 

steps: (1) a standard non-periodic microstructure is generated using an open-source program, and 

(2) adjustments are made to selected nodes and regions along the domain edges. First, a 1 mm × 1 

mm two-dimensional RVE non-periodic microstructure containing 10 grains is generated using 

Neper open source software package [59] as shown in Figure 13 (a). The reader is encouraged to 

consult its user manual for details on the commands for tessellating and meshing the standard 10 

grain microstructure. 

 

 
 

(a) (b) 

Figure 13. Two-dimensional RVE with color indicating the grain ID: (a) non-periodic 

microstructure containing 10 grains; (b) periodic microstructure containing 6 grains 

Next, the grain ID and nodes at the top and left edges are adjusted to produce a 6-grain-periodic 

microstructure containing 466 constant strain triangular (CST) elements and 263 nodes in Figure 

13 (b). Notice that the nodes, elements, and grains in the bottom-right section of the RVE are 

preserved between the original and modified microstructures. A list of the Young’s moduli and 
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Poisson’s ratios for the elastic material assigned to each grain is listed in Table 4. Note that the 

materials are not permitted to yield and thus the problem is hypothetical; however, this problem 

tests the VMDG method under large strains and material mismatch. The RVE problem is modeled 

in a finite strain context, and the microstructure is subjected to 50% tensile average strain using 

deformation gradient MF  in (59) applied over 20 equally spaced increments.   

 M

1.0 0
0 1.5

 
=  
 

F  (59)  

 

 

Table 4. Material properties of the grains in the RVE 

Grains IDs 1 2 3 4 5 6 

Elastic modulus (GPA) 101 200 73.1 85 120 80 

Poisson’s ratio 0.35 0.32 0.35 0.27 0.36 0.28 

The contour plots of the stress and displacement results from the VMDG formulation are first 

presented in Figure 14 and Figure 15, followed by comparing the methods belonging to the VMDG 

family. The stress and displacement contour plots show that the maximum stress and displacement 

are 17 MPa  and 0.1mm . Higher stress values are observed in grains 1, 2, and 5 that form a chain 

of stiffer grains along the direction of the applied axial strain. Stress gradients appear near the grain 

boundaries, although a finer mesh would be needed to resolve the features more clearly [60]. A 

larger instantiation of the 6-grain microstructure shown in Figure 15 (a) is obtained by duplication 

and translation. The transformed displacement contour plot in Figure 15 (b) shows that the 

displacement field yu  of the smaller RVE from Figure 14 (b) corresponds with its location within 

the larger RVE similar to [43], confirming that the computed displacement field is periodic. 
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(a)  (b)  

Figure 14. Solution fields on deformed configuration: (a) tensile stress yyσ  (MPa); (b) 

displacement yu  (mm)  
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(a)  (b) 

Figure 15. Larger RVE instantiation: (a) consisting of six repeating grains; (b) displacement yu

contour plot on deformed configuration 5×   

 

 

 Figure 16. Number of Newton-Raphson iterations for each method at 25% and 75% load level 

Computational cost is an important consideration for method development at finite strain. A 

key driver of cost is the number of Newton iterations, reflecting the number of times the stiffness 

matrix is formed and factorized. Therefore, each method from the VMDG family is applied to 

model this RVE, and the number of iterations required to reach a relative convergence tolerance 

of 144 10−×  at the 5th and 15th load steps are presented in Figure 16. The overall trends for the 

larger and smaller iteration counts match with those observed in [51] for the VMDG method 

applied to interfaces and discontinuous interpolations. Only 3 or 4 iterations are required by the 

VMDG, IVMDG, and RVMDG methods, although the load amplitude is small. Thus, choosing 

between these methods is governed by accuracy and adjoint consistency as discussed next, as well 
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as noting that IVMDG and RVMDG have non-symmetric tangent matrices. The symmetrized 

methods require more iterations to reach the same tolerance than the original methods, though only 

a mild increase for VMDGs. Adding these few extra iterations may offset the implementation and 

runtime costs associated with evaluating the sixth-order curvature tensor Ξ . 

Table 5. Computed average stress MP  from VMDG method family 

Methods Average stress (GPa) 

VMDG 
55.361 0.3789

0.5750 69.422
− 
 − 

 

VMDGs 
55.361 0.3789

0.5750 69.422
− 
 − 

 

IVMDG 
55.709 0.385

0.5767 69.682
− 
 − 

 

IVMDGs 
55.709 0.385

0.5767 69.682
− 
 − 

 

RVMDG 
55.599 0.3636

0.5516 69.498
− 
 − 

 

RVMDGs 
55.599 0.3636

0.5516 69.498
− 
 − 

 

The average stress result from modeling the 2-D microstructure using the VMDG family of 

algorithms are reported in Table 5. All the methods produce 22P  stresses within 0.1% of each 

other, and the symmetrized methods give results matching to their original counterparts. This 

degree of similarity is somewhat expected since the weak discontinuities for this problem are 

confined only to the RVE surface. Thus, the VMDGs method’s balance of accuracy, number of 

iteration, and reduced implementation cost merit its use for periodic RVE modeling. Overall, these 
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results are consistent with our previous study [51].    

6.4. 3-D microstructure containing 100 grains 

The final numerical tests evaluate the performance of the VMDG method for enforcing PBC on 

complex 3-D RVE models. Most existing studies have employed synthetic block-shaped 3-D RVE 

for multiscale modeling due to their ease for enforcing PBC. However, the truly/self-periodic 3-D 

RVE model is an instantiation of a synthetic polycrystalline microstructure that is free from 

artificial slices through grains. Though it is more difficult to enforce PBC on a truly periodic model 

such as Figure 17, the benefits of using such models, for example to represent grain boundary 

sliding, can be appealing [43].  

A 3-D truly periodic 100-grain microstructure in Figure 17 (a) is generated using Neper 3.1.0. The 

discretized model contains 36172 linear tetrahedral elements and 8324 nodes. We show that the 1 

mm3 RVE volume is part of a larger periodic microstructure in Figure 17 (b) by translation. The 

VMDG method is first compared with the classical LM method for nodal constraints described in 

our previous study [43]. This is followed by another study to examine the robustness of the VMDG 

method by modeling transversely isotropic materials in 3-D RVE. 

6.4.1 Verification against LM nodal constraint method 

The 3-D microstructure RVE in Figure 17 is modelled with uniform isotropic elastic properties 

E 100GPa=  and 0.25υ =  in all grains to verify that both the VMDG and LM methods produce 

constant stress by consistent enforcement of the periodicity of the microstructure. A combination 

of tension and shear are applied as the macroscale strain Mε  according to (60). Both methods 

produced a constant tensile stress xxσ  of 1200 MPa and maximum displacement of 0.01 mm, and 

the displacement contours of the two methods in Figure 18 are essentially identical. As further 

quantification, we evaluated the surface integral of the periodic constraint 
   M−u ε x  from (52) 
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for the VMDG method. Despite the weak enforcement, this integral (evaluated over half of the 

total surface area 28.1436 mm   of the RVE in Figure 17 (a)) is a zero value up to machine precision. 

These results demonstrate essential agreement between the strong and weak enforcement of the 

PBC for this complex RVE problem. Recall that the VMDG method has favorable attributes versus 

the LM method; namely, the VMDG symmetric stiffness matrix has all positive diagonal entries 

as opposed to the zeros in the extra rows of the LM constraint equations which can only be avoided 

by direct condensation during assembly, an added implementational hurdle.  

 

 

 
 

(a) (b)  

Figure 17. 3-D RVE containing a truly periodic 100-grain microstructure: (a) smaller RVE; (b) 

larger RVE 
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(a) (b)  

Figure 18. Displacement xu  (mm) on deformed configuration: (a) VMDG method; (b) 

Lagrange multiplier method 

 M

0.01 0.01 0
0 0 0
0 0 0

 
 =  
  

ε  (60)  

6.4.2 Ti-6Al alloy with transversely isotropic properties 

The robustness of the VMDG method is examined herein by modeling a 100-grain microstructure 

representing a single phase α −Ti-6Al alloy. The transversely isotropic elasticity parameters ijC  

associated to hexagonal close packed α −phase titanium at room temperature are taken from [61, 

62] as 11 22C C 136GPa,= = 12C 78GPa,= 13 23C C 68GPa,= = 33C 163GPa,= 44C 29GPa,=

55 66C C 40GPa= = and all other ' 0ijC s = . Two orientation distribution functions (ODF), a weak 

(random) ODF and a strong (fiber) ODF, were generated using MTEX [63] to represent the 

probability of finding a given lattice orientation within a reference volume. Two statistical samples 

of 100 orientations were taken from each ODF to provide four instantiations of Ti-6Al texture that 
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are characterized using the pole figures in Figure 19. The Kocks Euler angles from each orientation 

are then used to transform the transversely isotropic stiffness tensor in the lattice coordinate frame 

into the global coordinate frame, and that transformed stiffness tensor is assigned to all finite 

elements of the grain with the associated orientation. Subsequently, the macro and micro scale 

mechanical response of these RVEs is examined for the two down-samplings of the two different 

ODF. 

The four RVEs are subjected to the same imposed strain defined in (60), and the computed local 

tensile stress fields are plotted in Figure 20. Gradients in stress are now present within many of the 

grains as compared to the uniform stress in the previous section. In general, the local stress in each 

grain is a function of its transformed stiffness tensor as well as the stresses in its surrounding 

grains. The maximum local tensile stress xxσ  in each texture respectively is 150.3 MPa, 186 

MPa, 142.8 MPa, and 148.6 MPa and the minimum local tensile stress xxσ  in each texture is 87.2 

MPa, 64 MPa, 125.2 MPa, and 123.8 MPa. The differing positions of these maximum and 

minimum values within the microstructure may be connected with the difference in misorientation 

across the grain boundaries. Since the misorientation between grains is generally larger in the weak 

texture than the strong texture case, higher stress concentrations are expected and indeed occur in 

the weak texture models. Note that the behavior herein is elastic; response due to crystal plasticity 

may not follow this trend. 

 

Texture 1 Texture 2 Texture 3 Texture 4 
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Figure 19. Pole figures for instantiated random and fiber textures of α −Ti-6Al alloy 

The macroscopic Cauchy stress tensor Mσ  is listed for all four textures in Table 6. In contrast to 

the local stress variations, the volume average stresses are fairly close for the two discrete textures 

from the same ODF, with a relative difference in the xxσ  component of less than 0.7%. This 

behavior is expected since the homogenized stiffness for RVE of polycrystalline elastic materials 

having the same ODF converges rather quickly with higher number of grains [2, 64, 65], though 

this convergence typically requires more than 100 grains. However, the homogenized stress from 

the strong texture cases is noticeably different from the weak texture cases in Table 6, large enough 

to be attributed to the difference in the underlying ODF. Indeed, the slightly larger xxσ  stress for 

the strong texture case may be associated with the alignment of most grains’ [0001] axis with the 

loading x-direction as opposed to the less stiff response of the weak texture case. Additionally, the 

surface integral of the displacement periodic constraint (52) is reported in the third column of Table 

6 for each RVE; note as before that a zero value of the integral means that the error in the PBC is 

zero. Similar textures produced periodic constraint values that are close to each other. Though 
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these values are all small relative to the 28.1436 mm   surface area, the lower value in the strong 

texture case may be attributed to the expected higher accuracy of the solution with lesser stress 

gradients compared to the weak texture case. Hence, for this problem with mismatched elastic 

properties across grain boundaries and others with large applied strain and nonconforming meshes, 

the VMDG provides accurate weak enforcement of the PBC such that it can reliably provide the 

homogenized mechanical response and capture interesting features of microscale problems. 

   
(a) (b)  

   
(c) (d)  

Figure 20. Tensile stress xxσ  (MPa) on the deformed configuration: (a) texture 1; (b) texture 2; 

(c) texture 3; (d) texture 4   
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Table 6. Volume average stress computed for the titanium textures  

 Average stress (MPa) Periodic constraint 

Texture 1 
120.1307 30.6514 0.2487
30.6514 58.5810 0.2088
0.2487 0.2088 -60.6220

− − − 
 − − 
 − 

 2.13334×10-7 mm3 

Texture 2 
119.3662 30.5088 0.3757
30.5088 60.0456 0.5832
0.3757 0.5832 59.9275

− − − 
 − − 
 − − 

 2.02474×10-7 mm3 

Texture 3 
136.1784 33.1791 -0.4446
33.1791 56.7330 0.3572
0.4446 0.3572 56.8308

− − 
 − − − 
 − − − 

 5.99651×10-8 mm3 

Texture 4 
135.2728 33.2870 0.0636
33.2870 56.8135 0.0235
0.0636 0.0235 56.7669

− − − 
 − − − 
 − − − 

 6.56123×10-8 mm3 

 

7. Conclusions 

This paper derives a stabilized DG method from an underlying LM formulation of a periodic 

microscale boundary value problem by relying on variational multiscale (VMS) ideas. While 

existing methods for periodic constraints of multiscale problems typically only permit the macro-

strain to drive the microscale problem, the rigorous derivation of the VMDG method provides a 

framework to accommodate either the macro-stress or macro-strain to drive the RVE response. 

The novelty of the method essentially derives from the idea of imposing the product of the macro-

strain times the domain diameter as a non-zero displacement jump within the DG terms on the 

RVE surfaces. The method does not require solving for additional unknown fields as in mortar-

type methods and does not encounter stability concerns that can arise when selecting the function 

space of the Lagrange multiplier field [18-20]. The method is suited toward enforcing PBC on 
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periodic or non-periodic meshes by partitioning the elements along the boundary surface and 

representing the fine-scale displacement with bubble functions on sectors. Instead of focusing on 

only small or finite deformations, the VMDG method is developed in the finite deformation 

context and subsequently specialized to small deformation of RVEs. Several algorithmic 

modifications of the method are proposed to provide tradeoffs between variational consistency, 

algorithmic consistency, adjoint consistency and tangent symmetry.  

Several numerical tests confirm the features of the VMDG method. Convergence rate studies 

on a rectangular composite block evaluate the displacement error in the 2L  norm and 1H  semi 

norm using different element types. While the linear elements converge optimally, the quadratic 

elements exhibit suboptimal convergence due to the sharp corners of the inclusions. Next, an RVE 

with circular voids is loaded by a finite shear strain to compare the performance of the VMDG 

method for periodic and non-periodic meshes. The resultant macroscale shear stress is found to 

match closely with values obtained from a reference mortar method for PBC and to not depend on 

the conformity of the boundary mesh. The consistent linearization of the VMDG method was also 

verified numerically. Both the rectangular inclusion and circular void problems exhibit 

convergence of the macroscale stress versus strain response with mesh refinement. The third 

numerical problem uses a polycrystalline 2-D microstructure to probe the accuracy and 

computational cost of various members of the VMDG algorithmic family. All variants of the 

family captured the PBC correctly and produced very similar average stress results. The changes 

in computational cost (time and memory) arise due to dropping certain boundary terms in the 

residual vector or tangent matrix. One attractive balance is struck by the VMDGs method which 

avoids evaluating the sixth order curvature tensor of material moduli, while the IVMDG method 

possesses the fewest terms and a non-symmetric tangent matrix. Lastly, the VMDG method is used 

to model a complex 3-dimensional self-periodic RVE containing first isotropic and then 

anisotropic materials. The former case with uniform material properties confirms that the weakly 
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enforced PBC through the VMDG method produced the same stress and displacement results as 

the strongly enforced PBC by the LM method. The latter case models consisting of samples of 

weak and strong textures of a single phase α −Ti-6Al alloy within a 100-grain microstructure 

showed that all textures produced very small errors in the periodic constraint although the error 

values differed between textures by about a factor of three. The computed volume average stresses 

under combined tension and shear strain exhibit only 0.7% relative difference between each 

instantiation, which is reasonable for RVE with a small number of grains. Local stress gradients 

and periodic surface constraints are well-resolved by the VMDG method.  
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Appendix. Consistent Linearization 

The consistent linearization of the stabilized formulation is performed herein to produce the 

tangent matrix required to solve the nonlinear microscale behavior using the Newton-Raphson 

algorithm. We summarize the linearized form of the interface flux, jumps and material acoustic 

tensor in (61) – (64). The reader is encouraged to refer to [40] for details regarding the linearization 

of the interface terms and [56] for bulk terms. 

 ( )  
( )

( )  
( )

 

D D
φ φ+ −

+ −   ⋅∆ + ⋅∆ = ∆   u u uφ φ  (61)  

 
( ) { } ( )

( ) { } ( ) ( ){ }D D :GRAD
φ φ+ −

+ −⋅ ⋅∆ + ⋅ ⋅∆ = ∆ ⋅      P N u P N u u NA  (62)  

 
( ) [ ] ( ) ( ) ( )D :GRADα

α α α

φ
⋅∆ = ∆Ξu uA  (63)  

 
   M M MD

MF   ⋅∆ = ∆ F X ε ε X  (64)  

For brevity, we show the key steps involved in the linearization procedure for deriving the 

tangent stiffness associated with the interface terms. We then present for the first time the tangent 

stiffness associated with the periodic domain boundaries. The integrals will be evaluated by 
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numerical quadrature segment-wise over the union ss
γ += Γ



. 

The first contribution is obtained by linearizing the residual ( );oR η φ  using the directional 

derivative Dφ : 

 

( ) ( ) ( ) ( )
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+ −

+ −
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+ −

+ −

= ∆ = ⋅∆  

   = ⋅ ⋅ ⋅∆ + ⋅∆   

− ⋅ ⋅ ⋅∆ + ⋅ ⋅∆      
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η η u η u

η τ u u

η P N u P N u

η N u u

η u  u N F X

φ φ φ

φ φ

φ φ

φ

A

A A

 (65)  

The substitution of the linearized forms into (65) yields the final linearized tangent stiffness ;o
Kη φ  

for the interface:  
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− ∆ ⋅ ⋅ −

∫

∫ ∫

∫ Ξ



 
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η η τ u

η u N η N u

η u N F X

φ

φ

A A  
(66)  

where the curvature tensor ( )Ξ F  is a sixth-order tensor of material moduli defined as: 

 ( )
3

Ξ W∂
=
∂ ∂ ∂

F
F F F

 (67)  

Additionally, the tangent stiffness 
M;o

Kη F  is obtained by linearizing the residual ( )M;oR η F  

using the directional derivative 
M

DF : 
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∫

η F F

F

F

η ε F η F ε

η τ F X ε
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 (68)  

The substitution of the linearization (64) into (68) yields the final linearized tangent stiffness 

M;o
Kη F  in (69).  

    
( ){ }  

M; M M

1 3

d GRAD : d
o

s s
o s o

K K

K A A
γ γ
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A  
(69)  

The tangent stiffness ;Kκ φ  is obtained by linearizing the residual ( );R κ φ  using the directional 

derivative Dφ : 
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∫

∫

κ κ u κ u

κ X τ u u

κ X P N u P N u

φ φ φ

φ φ  (70)  

The substitution of the linearized forms into (70) yields:  

      
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1 2

d :GRAD d
s s
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K A A
γ γ
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φ A  
(71)  

The tangent stiffness 
M;Kκ F  is obtained by linearizing the residual ( )M;R κ F  using the 

directional derivative 
M

DF : 
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M M
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γ
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κ F F

F

κ ε F κ F ε

κ τ F X ε
 (72)  

The substitution of the linearization (69) into (72) yields the final tangent stiffness: 
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K A
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(73)  
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Notice that the tangent stiffness is symmetric with respect to its arguments because 

( ); ,
o oK ∆ =η η uφ ( ); ,

o oK ∆η u ηφ , ( )
M; M,

o oK ∆ =η F η ε ( ); M , oK ∆κ ε ηφ , and ( )
M; M,K ∆ =κ F κ ε

( )
M; M ,K ∆κ F ε κ , which is expected due to the existence of the potential functional (23). 

The VMDG formulation can be straightforwardly implemented into standard pure-displacement 

finite element codes by discretizing the four linearized forms with shape functions, converting to 

matrix form, grouping the ( )+  terms together and the ( )−  terms together, and carefully 

arranging the resulting sub-matrices into a total element stiffness matrix (74).  

 ( ) ( ) ( ) ( )
M M; ; M ; ; M, , , ,

o o

h h h h h h h h T
o oK K K K∆ + ∆ + ∆ + ∆ = W KUη η F κ κ Fη u η ε κ u κ εφ φ  (74) 
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*
; ; ;

* ** * **
; ; ;

, ,
o o o

o o o

++ +− + + +

−+ −− − − −

+ −

     
     = = =     
         

K K K w u
K K K K W w U u

κ εK K K

η η η F

η η η F

κ κ κ F

φ φ

φ φ

φ φ

 (75) 

 

The further decomposition of K  into ( )+ , ( )−  and ( )∗ components is analogous to the 

decomposed interface stiffness matrix for the discontinuous Galerkin method presented in [39]. 

Taking for example the linear quadrilateral element mentioned in Section 3.3, the vector +u  

contains the x and y degrees of freedom for the four nodes of the element e
+Ω  containing the 

sector sω
+  adjacent to sγ , vector −u  contains the eight degrees of freedom from element e

−Ω , 

and ε  contains the x and y degrees of freedom for the two “macro” nodes of the RVE.  

Notice that the all derivations herein are done in the reference configuration. Similar to [40], this 

method could be easily implemented in the current configuration. The reader is referred to the 

appendix of [40] for details. 
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