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In this work we demonstrate that nonrandom mechanisms that
lead to single-particle localization may also lead to many-body
localization, even in the absence of disorder. In particular, we con-
sider interacting spins and fermions in the presence of a linear
potential. In the noninteracting limit, these models show the well-
known Wannier–Stark localization. We analyze the fate of this
localization in the presence of interactions. Remarkably, we find
that beyond a critical value of the potential gradient these mod-
els exhibit nonergodic behavior as indicated by their spectral and
dynamical properties. These models, therefore, constitute a class
of generic nonrandom models that fail to thermalize. As such,
they suggest new directions for experimentally exploring and
understanding the phenomena of many-body localization. We
supplement our work by showing that by using machine-learning
techniques the level statistics of a system may be calculated with-
out generating and diagonalizing the Hamiltonian, which allows
a generation of large statistics.

many-body localization | Stark | thermalization | ergodicity

S ince the phenomenon of many-body localization (MBL) was
repostulated more than a decade ago (1–3) it has attracted

a great deal of attention. It provides an example of a generic
quantum many-body system that cannot reach thermal equilib-
rium (4–7). In recent years, an enormous theoretical effort was
invested in understanding the nature of the MBL transition (8–
10), the dynamical (11–13) and entanglement (14–17) properties
of these systems, and their response to external probes (18, 19)
and periodic driving (20–22). Also, the experimental commu-
nity (23–27) has found interest in this field, in particular because
these systems have the potential of storing information about ini-
tial states for long times, and hence may implement quantum
memory devices. These systems may also be useful for dynam-
ical quantum control, as they allow the application of driving
protocols without heating the system to an infinite temperature.

A key ingredient for achieving the MBL phase is disorder (ran-
domness). The roots of this phase lie within the phenomenon of
Anderson localization (1), where noninteracting particles form
a localized nonergodic phase. Questioning the fate of Anderson
localization in the presence of interactions led to the discovery of
the MBL phase.

In this work we ask whether randomness is indeed an essential
ingredient in achieving generic nonergodic interacting phases.
Viewing MBL as a competition between single-particle local-
ization and interactions, one may wonder whether a localizing
mechanism that does not require disorder may produce similar
results. It was suggested that quasi-MBL may exist in a transla-
tionally invariant quantum system such as a quantum disentan-
gled liquid (28–31), where light particles evade thermalization
(for long times) by localizing on heavy particles (32–36). More-
over, it was shown that clean 1D systems with quasi-periodic
potentials may host an MBL phase (37–39). While quasi-periodic
systems are not considered disordered, they do not respect
exactly the discrete translational symmetry of the lattice either
and cannot be treated in momentum space. Other proposals
(e.g., ref. 40) suggested the appearance of nonergodic dynamics
for a large portion of states belonging to the low-energy subspace

of the cubic code Hamiltonian which involves eight-spin inter-
action terms. The model we propose in this work respects the
crystal symmetry exactly and hence in that regard it is a realiz-
able and a truly discrete translational invariant model. We show
that this model supports a phase that is indistinguishable from
the MBL phase based on all of the standard characteristics.

A well-known mechanism for localizing single particles is the
Wannier–Stark effect (41), in which particles living on a lattice
become localized in the presence of a linear potential. We refer
to this phenomenon as Bloch localization. Notice that besides
lacking randomness such systems also preserve translation invari-
ance as the linear potential represents a uniform force and may
be replaced by a time-dependent vector potential. One may con-
sider the Wannier–Stark effect as a particular case of dynamical
localization (42) with linear-in-time vector potential. While no
physical difference is expected between the different gauges, the
thermodynamic limit in the time-dependent gauge avoids the
existence of an infinite energy difference between the edges of
the system. Nevertheless, we chose to work in the static gauge
since in this work we are only interested in static forces and since
it dramatically reduces the numerical effort. In SI Appendix we
show that our numerical method is, as expected, indifferent to
the choice of gauge. The fate of dynamical localization in the
case of time-dependent fields has been discussed in refs. 43 and
44. The interplay between interactions and linear fields has been
investigated in the past. It was shown that the oscillatory part
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of the current, that is, Bloch oscillations (BO), decays as the
interaction strength increases (45, 46). It was also shown that
the presence of a uniform force changes the nature of the evolu-
tion of an initial state under the nonlinear Schrödinger equation
(NLSE) as the nonlinearity increases (e.g., for a large nonlinear-
ity the dynamics is localized). However, the ergodic properties
and the generality (stability) of these phases cannot be inferred
from these works. The absence of BO does not necessarily sig-
nify ergodicity and the dynamics of generic interacting models
cannot be captured by the NLSE, which is generally valid only as
a mean field description of weakly interacting bosons (47). More-
over, only the evolution of low-energy (near ground state) states
has been considered and the stability of the above phenomenon
was not analyzed. In this work we show that single-particle local-
ization that is not necessarily due to disorder results in a state
that is indistinguishable from the MBL state based on the typical
tools of assessment. We analyze the spectral and the dynamical
properties of 1D interacting fermions and spins in the presence
of both disorder and a linear potential. We show that by consid-
ering these two different localizing mechanisms, that is, disorder
(W ) and linear fields (F ), one may construct a 2D phase dia-
gram in the (F ,W ) space which hosts a connected nonergodic
(MBL) phase. We find that above a critical value Fc the MBL
phase extends down to the clean limit, that is, the W = 0 line.

It is worth mentioning that integrable models, such as the
1D Heisenberg and transverse field Ising models, are known
examples of clean models that fail to thermalize. While these
models fail to thermalize, they are sensitive to the existence of
small integrability-breaking terms such as disorder or longer-
range interactions and hopping. In this sense the model we
suggest is more generic, since the addition of disorder and/or
weak longer-range hopping and interactions does not lead to
thermalization.

The existence of generic clean models that fail to thermalize
may have important implications both theoretically and experi-
mentally. From the theory side, it can simplify dramatically the
numerical effort in analyzing these interacting systems. More-
over, the lack of randomness gives hope that the nature of the
MBL transition, the emergent conserved quantities, and the gen-
eralization to higher dimensions may be approached analytically.
From the experimental side the necessity of strong disorder is a
major drawback. In intrinsic systems it is not clear whether such
strong disorder generically exists. In controlled systems, such as
optical lattices, only quasi-random disorder or correlated disor-
der, for example speckle potentials, may be implemented and a
repetition over many realizations is needed due to the small size
of the systems (48, 49). In stark contrast, linear field (tilt in opti-
cal lattices) may be implemented relatively easily and it provides
the ability to experimentally realize these systems in a highly
reproducible way, and without the necessity of many repetitions.
Unlike integrable models, the inevitable existence of unwanted
terms such as weak disorder should not have a dramatic effect
on the dynamics.

Background and Model Definition
Bloch Localization. Our ultimate goal is to understand the fate of
Bloch localization in the presence of interactions. In this section
we briefly review the properties of noninteracting particles in the
presence of a uniform force (linear potential). Consider a 1D
lattice model in the presence of a linear potential,

H0 =
∑
j

t(c†j cj+1 + h.c)−Fjc†j cj , [1]

where cj annihilates a particle from lattice site j , t is the
nearest-neighbor (nn) hopping amplitude, and F is the uniform
force. The Hamiltonian can be diagonalized by the following
transformation:

bm =
∑
j

Jj−m (x )cj , [2]

withJn being the Bessel functions of the first kind and x = 2t/F .
Under this transformation Eq. 1 becomes

H0 =−
∑
m

Fmb†mbm . [3]

Since |Jn (x )|< e−|n| for x�n , all of the eigenstates are
localized for any F 6= 0. Each eigenstate, b†m |vac〉, is localized
around site m with an inverse localization length given by ξ−1≈
2 sinh−1(1/x ).

Unlike for Anderson localization, where the localization
length is energy-dependent (smaller near the middle of the
energy band), for the Bloch localization case the localization
length is an energy-independent quantity. Another prominent
difference between the two is the form of the density of states,
where in the case of Bloch localization the spectrum forms an
ordered ladder even deep in the localized phase.

Model Definition. The basic model we wish to analyze concerns
the interplay between the two mechanisms of single-particle
localization (disorder and linear field) and interactions. For that,
we consider a 1D lattice of interacting spinless fermions in the
presence of disorder and a uniform force,

H =
∑
j

t(c†j cj+1 + h.c)−Fjnj + hjnj +Unjnj+1, [4]

where cj annihilates a particle from lattice site j , nj = c†j cj is the
density, t is the nn hopping amplitude, F is the uniform force,
hj ∈ [−W ,W ] is a random on-site potential with strength W ,
and U is the nn interaction strength.

The above fermionic Hamiltonian may be mapped, via a
Jordan–Wigner transformation, into an equivalent spin-1/2
chain (Heisenberg),

H =
∑
j

J0(S x
j S

x
j+1 +S y

j S
y
j+1) + JzS

z
j S

z
j+1 +FjS z

j + hjS
z
j ,

[5]

with J0 = 2t and Jz =U while F and hj ∈ [−W ,W ] are defined
as before. In the rest of this paper we will analyze the local-
ization and dynamical properties of these Hamiltonians as a
function of the interaction strength, force, and disorder strength.
Since the particle number (fermionic model) or the total Sz (spin
model) are conserved, we focus our analysis on the half-filled
(Sz = 0) sector. Regardless, the results do not depend much on
the specific sector.

Results and Discussion
Level Statistics. A well-established signature for the transition
from ergodic to nonergodic dynamics is the level statistics of the
many-body spectrum. In particular, generic ergodic Hamiltoni-
ans belong to the Gaussian orthogonal ensemble (50, 51) and
their level spacings, δn = εn+1− εn , typically obey the Wigner–
Dyson distribution. However, for nonergodic systems the level
spacings typically obey the Poisson distribution. It should be
pointed out that in both cases symmetries may add high level
of degeneracies which lead to deviation from the Wigner–Dyson
distribution (nonergodic) and from perfect Poisson distribution
(ergodic). However, level spacing obtained from symmetry sec-
tors should not have these additional degeneracies. As in the
case of the disordered Heisenberg chain within the sector of zero
total magnetization, the transition from ergodic to nonergodic
is accompanied by a transition from Wigner–Dyson to Poisson
level statistics (9).

9270 | www.pnas.org/cgi/doi/10.1073/pnas.1819316116 van Nieuwenburg et al.
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Fig. 1. These plots constitute the main results of the paper and demonstrate the existence of a potential-gradient-induced MBL phase. (A) The r-index as
a function of disorder and field strength as calculated for the Hamiltonian in Eq. 5 with L = 16 and J0 = Jz = 1 (averaged over 125 realizations). Evidently, a
phase boundary exists between a region with r = 0.53 (Wigner–Dyson) for small values of W and F (the ergodic dome) to a region with r = 0.386 (Poisson).
(B) The averaged participation ratio (PR = 1/IPR) as a function of disorder and field strength for the same system as in A. Consistent with the level statistics,
inside the ergodic dome the PR is proportional to the Hilbert space dimension (D), while outside the dome it becomes small and independent of D. Notice
that in B the line W = 0 is included in the data. In both cases the red line serves only as a guide to eye and is a contour or r≈ 0.46.

Both distributions are often characterized by a single param-
eter, r = 〈min(δn , δn+1)/max(δn , δn+1)〉, which conveniently
avoids the need for unfolding the spectrum. For the Wigner–
Dyson distribution r ≈ 0.530, and r = ln 4− 1≈ 0.386 for the
Poisson distribution.

We diagonalize the Hamiltonian in Eq. 5 for L= 12, 14, 16, 18
spins using exact diagonalization, with J0 = Jz = 1 and for differ-
ent values of F and W . In SI Appendix we show that by using
machine-learning techniques, statistics for the r -value may be
generated from hj directly without the need of diagonalizing the
Hamiltonian.

In Fig. 1A we show the r value (averaged over different dis-
order realizations) in the space of (F ,W ). We find that the
ergodic phase lives in a dome-shaped region near the origin
of the (F ,W ) space. The line F = 0 corresponds to the often-
discussed MBL transition near the critical disorder strength Wc .
As F increases, the value of Wc decreases. Above a critical
value of F , the critical disorder appears to go to zero and the
nonergodic phase appears also in the clean nondisordered limit.

In Fig. 2 we show the r value for different system sizes as a func-
tion disorder (zero field) and as a function of the field (for a fixed
weak disorder). The critical values may be extracted by finite size
scaling through a scaling collapse. The case of zero field was ana-
lyzed in several works (8, 52–54) in which the critical disorder was
found to be in the rangeWc ∼ 7.5± 0.5 (notice a factor of 2 due to
a different definition of the spin matrices). For the weak disorder
case we plot the data (Fig. 2, Inset) as a function of L1/ν(F −Fc).
We find that the critical exponent is ν≈ 1 and the critical field is
Fc ≈ 2.2, for which the data collapse on one curve. In SI Appendix
we provide more details regarding the finite size scaling and show
that the above results are not sensitive to integrability-breaking
terms such as next-next-nn hopping and interactions.

Notice that in this part we always considered W > 0.2, since
for smal-enough disorder small systems behave as clean systems,
which leads to symmetry-related degeneracies in the spectrum.

Inverse Participation Ratio. Analyzing level statistics of clean sys-
tems requires a separation of the Hilbert space into momen-
tum sectors, since degeneracies due to symmetries have to
be removed. For finite systems and below a critical disorder
strength, the system behaves similar to a clean system. Therefore,

the level statistics become a less reliable measure for small dis-
order strengths since degeneracies start to appear due to the
emergence of translation symmetry. A quantity which is less sen-
sitive to symmetries is the inverse participation ratio (IPR). The
IPR is also a measure of the long-time return probability of arbi-
trary initial states. To see that, consider the return probability of
a state |ψ0〉,

P(t) =
∣∣∣〈ψ0|Û (t)|ψ0〉

∣∣∣2, [6]

where Û (t) is the time evolution operator. The state |ψ0〉 may
be expanded in terms of the Hamiltonian eigenstates, |ψ0〉=∑

n cn |φn〉, which allows us to write the IPR (long-time limit of
the return probability) as

IPR = lim
T→∞

1

T

T∫
0

dtP(t) =
∑
n,m

|cn |2|cm |2δεn ,εm . [7]

In the absence of degeneracies, Eq. 7 becomes IPR =
∑

n |cn |
4.

Clearly, if the initial state is an eigenstate then IPR = 1, while if
the initial states is an equal superposition of all of the eigenstates
then IPR = 1/D, where D is the Hilbert space dimension which
generically is exponential in the system size. In the following we

BA

Fig. 2. The r-index as calculated for the Hamiltonian in Eq. 5 with J0 =

Jz = 1 for different system sizes, L = 12, 14, 16, 18. In A the r-index is plotted
as a function of W for zero linear field. In B the r-index is plotted as a
function of F for a fixed disorder strength W = 0.5. (Inset) The data plotted
as a function of L(F− Fc) with Fc = 2.2.
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Fig. 3. The imbalance I as a function of time for different field strength
and for fixed weak disorder W = 0.2, where L = 24, Jz = J0 = 1. At t = 0, the
imbalance for each field strength starts at I(t = 0) = 1. For field strengths
above (and including) F = 2.0 we cannot identify decaying behavior at these
time scales. Error bars show statistical variance over 32 realizations of disor-
der. (Inset) The long time limit of the imbalance as a function of the field
(averaged over the last 50 time steps). Below a critical value F . Fc the long
time limit of I tends to zero, while above that value the long time limit
tends to a finite value that increases with the field. Notice that some of the
lower F curves have not yet reached their final value.

average the IPR over different initial states which we choose to be
eigenstates of some local operators, for example szj . For ergodic
systems, the IPR should be exponentially small in the system size
and the system should lose its memory of the initial state. In stark
contrast, in the localized phase the IPR converges to a positive
system-size-independent constant.

In Fig. 1A we present the averaged and normalized partic-
ipation ratio, 〈PR〉=D/IPR, in the space of (F ,W ). While
the IPR is a smooth function, there is a transition between a
region where the IPR is exponentially small to a region where the
IPR is independent of system size. These regions agree with the
results obtained in the previous section. Here also the line W = 0
behaves in a similar way (cf. Fig. 1B), where the IPR becomes
independent of system size as a function of F .

Dynamics and Experimental Measurables. The distinction between
ergodic and nonergodic dynamics is well captured by the level
statistics and the participation ratio, yet both these measures are
hard to access in experiments. As shown in refs. 24, 25, and 27,
the nature of the dynamics is examined by tracking the dynamics
of an initially prepared out-of-equilibrium density configuration.
We numerically show that the existence of a linear field prevents
thermalization. For concreteness, we consider a similar out-of-
equilibrium initial state as in ref. 24.

The system is prepared in an antiferromagnetic configuration
(or charge density wave for the fermions), where the spins on odd
sites point down (empty) and on even sites point up (full). We
then track the time evolution of the odd–even imbalance, I =
(S e

z ,↑−So
z ,↑)/(S

o
z ,↑+S e

z ,↑). We use a numerical method based
on Krylov subspaces via a reorthogonalized Lanczos imple-
mentation to do so (see SI Appendix for more information).

In Fig. 3, Inset we show the resulting long time limit as a func-
tion of F . Below a critical value F .Fc the long time limit of I
tends to zero, while above that value the long time limit tends
to a finite value that increases with the field. Computational
costs limit the available times we can access, and we remark that
not each of these curves has converged yet. Extrapolating the
available curves will move the estimated critical field to higher
values than suggested by the inset.

In ergodic systems, I is expected to decay to zero with a typ-
ical relaxation time τ . We show that while indeed this is the
case when the linear field is small, both for the clean case and
for weak disorder, beyond a critical field strength the long time
limit of I is different from zero. In Fig. 3 we show the imbal-
ance I in a system of 24 spins (sites) as a function of time for
different values of the field F and for a fixed weak disorder
strength (W = 0.2). The data and code for Fig. 3 are avail-
able at GitHub, https://www.github.com/everthemore/krylov-cpp
and CaltechData, https://data.caltech.edu/records/1089 (55, 56).
It is worth noticing that energetics gives an upper bound to this
relaxation process. In the fermionic language, the charge density
wave (CDW) configuration and the uniform configuration dif-
fer in their dipole moment D =

∑
j jnj by an extensive amount

∆D =N /4. In the absence of a field, the many-body bandwidth
of the Heisenberg model with all J = 1 is log(2)N . Hence, in the
presence of a field, if F∆D > log(2)N or F > 4 log(2)≈ 2.77 the
CDW configuration cannot evolve into a uniform configuration
at any time. In practice, the critical field obtained from the the
level statistics is around F ∼ 2.2, while it seems that the dynamics
suggests a slightly lower value (notice that not all of the imbal-
ance curves have converged yet). However, while the true critical
field (if it exists) should limit the dynamics of all processes, spe-
cific processes like the one considered here may show nonergodic
dynamics at lower values. Moreover, one may consider the pres-
ence of a prelocalized phase (or prethermal for that matter) that
appears in the dynamics. Our numerical data cannot confirm or
disprove the existence of such a phase. An analysis of larger sys-
tems, and more importantly much longer times, may resolve that
issue.

MBL in Two Dimensions
The lesson we learned about the effect of interaction on
the Anderson localized (AL) phase in 1D cannot be trivially
extended to higher dimensions. The nature, and even the exis-
tence, of a many-body-localized phase in D > 1 is a hotly debated
subject. While theoretical works (57–59) showed that locally
thermal regions in systems with true random disorder can desta-
bilize the MBL phase in two dimensions, experimental works (24,
26, 27) have shown indications for such a phase in D > 1.

Similar questions may be posed in the context of the uniform
field as a cause for single-particle localization. In stark contrast
to the AL phase, this phase is not sensitive to rare regions. In

Fig. 4. The level statistics (r value) as a function of the field strength, F,
and disorder strength, W , for a disordered 2D system of 4× 4 spins with an
incommensurate force F = F(

√
2, 1) (averaged over 32 realizations). The red

line is a guide to the eye and is given by a contour of r≈ 0.46.

9272 | www.pnas.org/cgi/doi/10.1073/pnas.1819316116 van Nieuwenburg et al.
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particular, if the field is applied at an irrational angle, the field
is nonzero along all lattice directions. This field can indeed be
arbitrarily small for specific lattice directions but can be chosen
such that lattice sites along directions at which the field is below
the critical value are separated by multiple hops. Since each of
these hopping processes has a component against a strong field,
and since the bare interaction is local, both the effective hopping
coefficient and the effective interaction along these directions
may be extremely small. How these renormalized hopping coeffi-
cients and interactions scale with the field along these direction,
and whether it is possible to choose the field such that along each
lattice direction the field is larger than the 1D critical field, is
an interesting question worth further investigation. Additionally,
along these same lattice directions the linear potential is not per-
fect and can be regarded as a combination of a linear field and
weak quasi-periodic disorder. This quasi-periodic disorder may
also help the localization along directions where the field is small.
Finally, the absence of rare regions [which are a main reason to
exclude MBL in high dimensions (58)] may help the survival of
the nonergodic behavior in the thermodynamic limit.

To further speculate on the existence of MBL in 2D, Fig. 4
shows the level statistics (r-index) of a 2D Heisenberg model as a
function of the uniform force F =F (

√
2, 1) and disorder. Similar

to the 1D case, we see a clear transition from a Wigner–Dyson
distribution to Poisson distribution. Since we are restricted to
very small system sizes (4× 4 lattice), these results should not
be taken as a claim of the existence of a 2D MBL phase. How-
ever, we hope that these ideas will stimulate further work in this
direction.

Dipole Moment Analysis
Single-particle Wannier–Stark localization may be thought of in
terms of energetic constraints imposed by the field. In the many-
body case, one may wonder whether interactions can help over-
come energetic constraints by reordering of particles. Heuristi-
cally, a many-body configuration can be described by its dipole
moment D (Dynamics and Experimental Measurables), which in
the presence of a fieldF is associated with an energyFD . In order
for such a configuration to evolve into a different configuration
with dipole moment D̃ , the internal structure of the system, that is,
hopping and interaction, must be able to supply the energy differ-
ence F (D − D̃). This condition is captured in the dipole moment
structure of the eigenstates. Clearly, in the infinite field limit of
our model the dipole moment becomes an exactly conserved quan-
tity. In that case an analogy with ref. 60 can be made, where it was
shown that nonergodic dynamics arises in a 1D random quantum
circuit model which is constrained to conserve both aU (1) charge
and the dipole moment of this charge.

The main question is to what extent the dipole moment
may be considered as a conserved quantity for finite fields.
In SI Appendix we show the results of exact diagonalization
of a half-filled fermionic system where each point represents

an eigenstate in the space of energy and dipole moment. As
expected, in a given energy window and for large field the many
body wave functions have well-defined dipole moment. Each
dipole moment sector is further split into subsectors of dou-
blon (occupied neighboring sites) number. Hence the dynamics
is effectively restricted to preserve the initial dipole moment and
the initial doublon number, which is predicted to yield noner-
godic dynamics (60). For a weak field, however, this is not the
case. The eigenstates in a given energy window span a range of
dipole moments and doublon numbers. Around the critical field,
we observe that while the eigenstates in a given energy have a
finite spread in the dipole moment, the different sectors become
distinct and the integer part of the dipole moment behaves as
a conserved quantity. Beyond this critical field we also observe
a separation into the subsectors of doublon number. While it
is hard to pinpoint the exact value of the transition using this
approach, the transition can be bounded and is consistent with
the value we obtained from the level spacing statistics.

Conclusions
In this work we analyzed the effect of interactions on single-
particle localization that arise both from disorder, W , and from
the existence of linear potentials F . With that, we showed that
the notion of an MBL phase may be generalized also to a class
of clean (nonintegrable) systems. In particular, we find that a
phase boundary in the space (F ,W ) exists, beyond which the
resulting phase fails to thermalize. We find that, unlike in clean
integrable models, this nonergodic phase is stable to perturba-
tions and shares all of the familiar fingerprints of the well-studied
MBL phase in the presence of disorder.

The existence of such a phase demonstrates that randomness
is not an essential ingredient for the emergence of stable noner-
godic interacting phases. Such a conclusion may have an impact
on the realization of these nonergodic phases. Unlike disorder
potentials, linear potentials are relatively easy to implement and
are highly tunable and may be controlled dynamically. The ability
to realize stable and generic nonergodic phases is an impor-
tant step toward the realization of quantum memory devices that
may store information for long times. Moreover, the lack of ran-
domness and the low sensitivity to dimensionality may render
these systems more accessible to a further theoretical investiga-
tion, both numerically and analytically. It came to our knowledge
that simultaneously to our work, ref. 61 studies the entangle-
ment entropy growth in the presence of a linear field. The results
presented in ref. 61 are in agreement with the conclusions we
presented in this work.
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