

¹ **Radio beacon and radar assessment and forecasting of
² equatorial *F* region ionospheric stability**

D. L. Hysell¹, M. A. Milla², and K. Kuyeng²

¹Earth and Atmospheric Sciences, Cornell

University, Ithaca, NY, USA

²Radio Observatorio de Jicamarca, Instituto
Geofísico del Peru, Lima, Peru

3 Abstract. Ionospheric conditions on two adjacent nights in March, 2019, were
4 observed at the Jicamarca Radio Observatory using a combination of incoher-
5 ent scatter, coherent scatter, and HF radio modes. The HF data came from a net-
6 work of beacons consisting of three transmitters and six receivers operating at
7 two frequencies and deployed regionally. The HF beacons employ pseudoran-
8 dom noise (PRN) coding and can be used to measure group delay (pseudorange)
9 and Doppler shift, the time derivative of optical path length. A method for in-
10 ferring volumetric estimates of electron density regionally from the HF data is
11 described. The radar and HF data are interpreted in light of a direct numerical
12 simulation (DNS) of the ionospheric interchange instability to elucidate why con-
13 vective plumes and equatorial spread *F* (ESF) conditions occurred on one night
14 but not the other. The numerical simulation accurately predicted whether con-
15 vective plumes would develop on a given night, utilizing initial conditions and
16 forcings derived from the incoherent scatter data. The HF data were consistent
17 with the incoherent scatter observations and remained intelligible throughout the
18 ESF event. Crests in the bottomside electron density associated with convective
19 plumes at higher altitudes could be seen propagating through the region in the
20 HF data. It should be possible to incorporate HF data in assimilative simulations
21 of interchange instabilities in order to predict where and when individual con-
22 vective plumes emerge.

Introduction

23 That the equatorial ionosphere is unstable and prone to generating broadband plasma density
24 irregularities after sunset has been known since the earliest days of radio science [Booker and
25 Wells, 1938]. Plasma interchange instabilities are believed to be mainly responsible for the
26 irregularities. Interchange instabilities are driven by the free energy in the steep bottomside
27 vertical plasma density gradient in the postsunset F region. The critical agents of instability are
28 currents driven by the background zonal electric field, gravity, and thermospheric winds. The
29 demand that the total current be solenoidal in the plasma causes the ionosphere to polarize and
30 deform. Background plasma inhomogeneity is thereby mixed and transported to smaller scales
31 where it can be dissipated by diffusion. The rate at which this happens depends on the strength
32 of the currents and the steepness of the initial gradients. Theoretical reviews have been given
33 by Zargham and Seyler [1989]; Retterer [2005]; Woodman [2009] among others.

34 The instability is associated with equatorial spread F (ESF), the characteristic spreading of
35 ionogram traces that led to the discovery of the phenomenon. Other effects of instability in-
36 clude radio scintillations which can degrade the performance of radio communication, nava-
37 gation, tracking, and imaging systems. Instability is not a direct result of geomagnetic activity and
38 occurs during intervals of low and high solar flux, although the effects are most noticeable dur-
39 ing high solar-flux periods. Instability in the equatorial ionosphere is an important and frequent
40 facet of space weather [Makela *et al.*, 2006; Kelley *et al.*, 2011].

41 Analysis and computation has been used to elucidate and reproduce most of the important
42 observed characteristics of the instability including the gross morphology of the irregular wave-
43 forms, the range of altitudes they occupy, their climatology, and their overall rates of devel-
44 opment [Retterer, 2010; Huba *et al.*, 2011; Yokoyama *et al.*, 2014]. Reliable forecasting re-

45 mains elusive, however, as day-to-day variability in the equatorial ionosphere is considerable
46 and incompletely understood [Fejer and Scherliess, 1995; Mendillo *et al.*, 2001; Tsunoda, 2005;
47 Pedatella *et al.*, 2012; Chau *et al.*, 2012]. Where this paper discusses forecasting, it refers to pre-
48 dicting whether ionospheric irregularities occur given a specification of the initial ionospheric
49 conditions and background forcing. Predicting the forcing is a global as well as a regional
50 problem and is beyond the scope of this work.

51 This paper combines multiple data sources and modeling strategies in an attempt to expand
52 our forecast capability. One is incoherent scatter. The incoherent scatter radar (ISR) technique
53 remains the most incisive and unambiguous means of measuring ionospheric state parameters
54 from the ground. ISR measurements of plasma densities and drifts from the Jicamarca Radio
55 Observatory will be used to characterize the equatorial ionosphere before and during the emer-
56 gence of irregularities associated with ESF. The data will be used both to initialize and force
57 a direct numerical simulation (DNS) of the equatorial ionosphere capable of producing plasma
58 density irregularities characteristic of ESF. Jicamarca also observes coherent scatter which gives
59 a detailed, vivid picture of the emergent irregularities. The Jicamarca measurements are com-
60 plemented by measurements from a regional network of HF beacon transmitters and receivers.
61 The beacons contribute contextual information and allow a more complete specification of the
62 initial conditions for the simulations. A specification of the electron number density in a volume
63 surrounding the beacon network can be inferred from the beacon data using statistical inverse
64 methods. Congruity between the overall set of observations, models, and simulations consti-
65 tutes evidence that the phenomenon is well characterized and understood and that forecasting is
66 possible.

Radar observations

67 We concentrate on two sets of measurements made during an experimental campaign in
 68 March, 2019. Plasma density irregularities associated with ESF were not observed on March
 69 22nd but were on March 23rd. Jicamarca observations for March 22nd and 23rd are summarized
 70 in Figs. 1 and 2, respectively.

71 During the campaign, the Jicamarca main antenna was subdivided into parts used for differ-
 72 ent observing modes. One mode utilized the north and south quarters of the array for a Faraday
 73 double-pulse experiment like the one described by *Pingree* [1990]. This mode is used to mea-
 74 sure absolute electron number densities and electron and ion temperatures at *F*-region altitudes.
 75 Another mode used the east and west quarters of the array to measure line-of-sight *F*-region
 76 plasma drifts along two closely-spaced beams in the magnetic equator. From this information,
 77 vertical and zonal plasma drift profiles can be estimated simultaneously [*Kudeki et al.*, 1999].
 78 Note that time-division multiplexing is used for switching between the two modes which, along
 79 with antenna subdivision, causes data quality to suffer. This is the price paid for measuring all
 80 plasma state variables at once.

81 Finally, eight modules (64ths) of the antenna array were isolated and used to measure coherent
 82 scatter. A single module was used for transmission, affording a broad beam for illumination.
 83 Aperture synthesis imaging methods are used at Jicamarca to compute in-beam radar images of
 84 the coherent scatter which are not subject to space-time ambiguity [*Hysell and Chau*, 2006].

85 In the top row of Fig. 1, the leftmost panel depicts electron number density versus altitude and
 86 universal time (UT = LT + 5 hr). Incoherent scatter is obscured by coherent scatter at Jicamarca,
 87 something which is indicated by missing data values in this and other panels in the figure. The
 88 green curve in the next panel to the right shows a single electron number density profile at 1800

89 LT (2300 UT). The blue curve is a model result which will be discussed later. The next panel to
90 the right shows zonal plasma drifts. The rightmost panel shows vertical plasma drifts. Plotter
91 symbols in this panel represent altitude-averaged vertical drifts. A curve which has been fit to
92 the average vertical drifts is superimposed.

93 In the bottom row of Fig. 1, the panel on the left shows zonal plasma drifts at 1800 LT (2300
94 UT) as green plotter symbols with error bars. The blue curve is a model result which will be
95 discussed later. The panel to the right, meanwhile shows coherent scatter for the entire event.
96 The coherent scatter is plotted in RTDI (range time Doppler intensity) format. The brightness
97 of the pixels here represent the signal-to-noise ratio. The hue represents Doppler shift such
98 that red (blue) tones denote ascent (descent). The saturation represents spectral width such that
99 saturated (pastel) tones represent narrow (broad) spectra.

100 The March 22, 2019, observations occurred during a period when the F10.7 solar flux index
101 was close to 80, and the observations themselves are typical of conditions over Jicamarca during
102 periods of very low solar flux. A thin bottom-type coherent scattering layer appeared at about
103 1930 LT (0030 UT) and persisted until after 0000 LT (0500 UT). No backscatter plumes indica-
104 tive of strong ESF conditions and large-scale interchange instability were observed, although
105 the bottom-type layer swelled slightly and became slightly red-shifted at about 2100 LT (0200
106 UT) as it reached its peak altitude.

107 Vertical plasma drifts were modest throughout the event and exhibited a sinusoidal variation
108 with a period of about 105 min. in the pre-midnight sector as if there were a double pre-reversal
109 enhancement. Zonal plasma drifts were also modest prior to local midnight and exhibited verti-
110 cal shear in the pre-midnight sector as is typical.

111 The observations for March 23, 2019, shown in Fig. 2 differ markedly from the March
112 22 dataset. One obvious difference is that the vertical drifts, while still modest, were larger
113 on average in the pre-midnight sector, following an approximately sinusoidal variation with a
114 long period in time. A thin bottom-type scattering layer appeared at 1900 LT (0000 UT) and
115 ascended steadily. Radar plumes characteristic of strong ESF conditions appeared at about 2010
116 LT (0110 UT). Topside plumes extending above 500 km altitude passed over the radar between
117 about 2030–2115 LT (0130–0215 UT). Additional radar plumes, including topside plumes, were
118 observed throughout the pre-midnight sector.

119 The topside echoes observed over Jicamarca between 2030–2115 LT (0130–0215 UT) were
120 actually composed of three distinct, major convective plumes surrounded by minor upwellings.
121 This can be appreciated best using in-beam radar imaging (e.g. *Hysell and Chau* [2006]). Fig. 3
122 shows images for the times when each of the three plumes was directly above the radar. The
123 scattering regions are narrow and suggest channels no more than about 20 km wide and often
124 much narrower. They were structured but unbifurcated in this instance and exhibited backward
125 “C” shapes, bending eastward at middle heights, as is typical. Previous comparisons with in situ
126 observations indicate that the backscatter arrives from them most deeply depleted veins within
127 broader depletions [*Hysell et al.*, 2009]. Echoes from topside plumes tend to be frequency
128 aliased such that it is generally not possible to infer Doppler velocities from ordinary pulse-to-
129 pulse modes unambiguously. In animated sequences of images, these three plumes exhibited
130 rapid evolution as they pass overhead.

HF beacon observations

131 We turn now to a description of data gathered from a network of HF beacons deployed across
132 Peru. The network, shown in Fig. 4 employs three transmitters in Ancon, Ica, and Sicaya and

¹³³ six receivers in Barranca, Huancayo, Jicamarca, La Merced, La Oroya, and Mala. The receive
¹³⁴ stations at Jicamarca and Huancayo actually employ two receivers with spatially displaced an-
¹³⁵ tennas that can be used for interferometry. Hardware specifications for the transmitters and
¹³⁶ receivers were given by *Hysell et al.* [2018a].

¹³⁷ The network operates at two HF frequencies, 2.72 MHz and 3.64 MHz. It furthermore em-
¹³⁸ ploys pseudo-random noise (PRN) binary phase coding. This allows receivers to distinguish
¹³⁹ signals from different transmitters and also affords code gain with a very high compression ra-
¹⁴⁰ tio of 10,000. Most importantly, it allows for a measurement of pseudo-range or time of flight.
¹⁴¹ The other observable currently utilized is Doppler shift which can be used to calculate optical
¹⁴² path length within an additive constant. Other observables including amplitude, polarization,
¹⁴³ and bearing (from interferometry) are available in principle but are not yet being exploited.

¹⁴⁴ Together, the six receivers and three transmitters operating at two frequencies imply 36 dis-
¹⁴⁵ tinct paths and 72 observables which can be used to diagnose the bottomside *F*-region iono-
¹⁴⁶ sphere. These can be combined with information from the incoherent scatter radar and other
¹⁴⁷ instruments at and near Jicamarca including the sounders, magnetometers, and GPS receivers
¹⁴⁸ associated with the LISN network [*Valladares and Chau*, 2012]. In practice, the electron density
¹⁴⁹ profile measured by the Jicamarca ISR overhead is incorporated into the ionospheric retrievals
¹⁵⁰ described below. The goal of our network is to provide a regional specification of the ionosphere
¹⁵¹ to complement the local specification provided by the incoherent and coherent scatter radars to
¹⁵² improve ESF diagnostics and, ultimately, forecasting.

¹⁵³ Representative HF data for March 22 and 23, 2019 are shown in Fig. 5 for the Jicamarca-
¹⁵⁴ Ica paths and a frequency of 3.64 MHz. The pseudorange is found by identifying the group
¹⁵⁵ delay of the first HF hop in range-time spectrograms. The relevant Doppler shift is the one

¹⁵⁶ corresponding to that delay bin. Optical path length is found by integrating the Doppler shift in
¹⁵⁷ time. This implies an arbitrary offset which is only required for plotting. We set it here such
¹⁵⁸ that the optical path length and pseudorange match at 19 LT.

¹⁵⁹ The curves for March 22 and 23, 2019, are very similar before about 19 LT. In both cases, the
¹⁶⁰ optical path length increases faster than the pseudorange. This illustrates how recombination
¹⁶¹ affects the two parameters differently. After about 19 LT, the optical path lengths and pseudo-
¹⁶² ranges follow more similar but still distinct trajectories. The incoherent scatter radar indicated
¹⁶³ that the ionosphere was rising more quickly on March 23 than on March 22, and that feature
¹⁶⁴ is evident in the HF data. Sharp perturbations are also evident in the pseudorange parameters
¹⁶⁵ later in the evening. These perturbations correspond to times when the range-Doppler spec-
¹⁶⁶ trograms computed from the HF data become multi-valued as irregularities begin to form in
¹⁶⁷ the bottomside *F* region. In most of the HF data, the perturbations are stronger in the March
¹⁶⁸ 23 data than in the March 22 data. It is noteworthy, however, that the perturbations exist even
¹⁶⁹ when ESF plumes are not observed directly over Jicamarca. It is also noteworthy that the HF
¹⁷⁰ beacons continue to produce intelligible data even when ESF plumes are in the region. The HF
¹⁷¹ frequencies were evidently low enough for the rays to pass below the most disturbed regions of
¹⁷² the ionosphere. Finally, we note that neither the HF optical path length nor the pseudorange is a
¹⁷³ very good proxy for vertical plasma drifts as measured with the ISR. The relationship between
¹⁷⁴ HF characteristics and plasma state parameters was spelled out clearly by *Bennett* [1972] (see
¹⁷⁵ also *Woodman et al.* [2006]).

Modeling and simulation

¹⁷⁶ The observations reported above are more easily interpreted in the context of numerical mod-
¹⁷⁷ eling and simulation. We first describe a simulation of interchange instabilities in the postsunset

¹⁷⁸ equatorial ionosphere. We then incorporate the HF beacon data in a model reconstruction of the
¹⁷⁹ regional ionosphere. The results from both efforts inform one another and help to elucidate
¹⁸⁰ ionospheric conditions during the March campaign.

Direct numerical simulation

¹⁸¹ The numerical simulation is a three-dimensional fluid code that solves the initial boundary
¹⁸² value problem for four ion species (O^+ , NO^+ , O_2^+ , and H^+ plus electrons) in a magnetic dipole
¹⁸³ coordinate system. Ion inertia is neglected, and so the ion and electron velocities and associated
¹⁸⁴ current density can be calculated explicitly. While diamagnetic currents are among the currents
¹⁸⁵ calculated, they have little impact on the evolution of the plasma, and their contribution to
¹⁸⁶ the total current density will not be plotted in the simulation diagnostic presented below. A
¹⁸⁷ potential solver computes the electrostatic potential by enforcing the quasineutrality condition,
¹⁸⁸ fully in three dimensions. This is an elliptic partial differential equation which is solved using a
¹⁸⁹ preconditioned stabilized biconjugate gradient method. Robin boundary conditions are enforced
¹⁹⁰ on all the simulation boundaries.

¹⁹¹ Time advance is performed with a flux assignment scheme built around the total variation
¹⁹² diminishing condition (TVD) [Harten, 1983]. The specific approach is to use MUSCLs (mono-
¹⁹³ tone upwind schemes for conservation laws) incorporating upwind differencing and flux lim-
¹⁹⁴ iting so that the TVD scheme is second order (see *Van-Leer* [1974], *Trac and Pen* [2003].)
¹⁹⁵ The approach is extended to three dimensions with the use of dimensional splitting techniques
¹⁹⁶ [*Strang*, 1968]. Time advance is performed with a 2nd-order Runge Kutta scheme employing
¹⁹⁷ Neumann boundary conditions on all boundaries. Overall, the size of the voxels in simulation
¹⁹⁸ is a few km on each side, and the time step is 7.5 s.

199 The simulation is initialized using electron densities imported from the SAMI2 model [Huba
 200 *et al.*, 2000]. SAMI2 is run under conditions matching those of the observations. Two free
 201 parameters, the solar flux index and the scale factor applied to the Fejer-Scherliess electric field
 202 model (**note new reference**) [Fejer and Scherliess, 1997], are tuned to maximize congruity
 203 between the electron density profile measured by Jicamarca at the simulation start time and the
 204 profile predicted by the model at Jicamarca's location. The latter is shown by the blue curve in
 205 the upper panel in Fig. 2. Neutral winds to drive the simulation are imported from the Horizontal
 206 Wind Model [Drob *et al.*, 2015]. Once again, a simple scale factor is employed to maximize
 207 the congruity between the zonal plasma drifts measured by Jicamarca at the simulation start
 208 time and those predicted by the simulation at Jicamarca's location. The latter is shown by the
 209 blue curve in the lower panel of Fig. 2. In addition, initial ion composition is imported from
 210 the IRI-2016 model [Bilitza *et al.*, 2016]. Background neutral atmospheric parameters used
 211 to calculate transport coefficients are imported from the NRLMSISE-00 model [Picone *et al.*,
 212 2002]. Further details regarding the simulation code architecture can be found in Hysell *et al.*
 213 [2018b].

214 Fig. 6 shows simulation results for March 22, 2019. The simulation was initialized at 1800
 215 LT (2300 UT). Initial conditions and subsequent forcing by the background electric field were
 216 derived from the incoherent scatter data reviewed in Fig. 1. The left panel in Fig. 6 depicts
 217 conditions 60 min. into the simulation run, at 1900 LT (0000 UT). The right panel depicts
 218 conditions 160 min. into the run, at 2040 LT (0140 UT).

219 By 1900 LT, irregularities were forming at the base of the bottomside *F* region where the bot-
 220 tomside joins the valley – at about 250 km altitude. The irregularities have scale sizes of a few
 221 tens of km and are tilted from the vertical such that depletions extend upward and westward.

222 The irregularities are generated by vertical currents that flow in the bottomside. Such currents
223 arise because the *F*-region dynamo has finite efficiency [Haerendel *et al.*, 1992; Haerendel and
224 Eccles, 1992]. The currents are associated with the vertical shear in the horizontal flow that char-
225 acterizes equatorial ionospheric dynamics in the post-sunset sector [Kudeki and Bhattacharyya,
226 1999]. The current density that drives the growth of the irregularities is proportional to the
227 difference between the zonal plasma drift and neutral wind speeds and is often the dominant
228 current in the plane perpendicular to the magnetic field.

229 Bottomside irregularities driven by vertical currents cannot evolve far from the strata where
230 strong shear flow exists [Hysell and Kudeki, 2004]. Because the background zonal electric field
231 remained modest on March 22, 2019, and because currents driven by gravity are negligible at
232 250-km altitude, there was no mechanism for the irregularities to excite collisional interchange
233 instabilities that might ultimately propel irregularities toward the *F* peak and into the topside.
234 The irregularities can persist until either the shear flow ceases or the upward background density
235 gradient in the shear zone erodes. In the late stage of the simulation, the bottomside irregular-
236 ities are still present but becoming less distinct. In nature, the bottom-type scattering layers
237 associated with the irregularities persisted past midnight, but deep depletions and convective
238 plumes associated with ESF conditions never developed.

239 The situation in Fig. 7 which represents conditions on March 23, 2019, is quite different.
240 Initially, the two simulations evolved similarly. A thin band of irregularities formed at the base
241 of the bottomside region under the action of vertical currents and bottomside shear flow. The
242 irregularities evolved somewhat more rapidly than in the March 22, 2019 simulation because the
243 thermospheric winds were scaled to be somewhat stronger in accordance with ISR observations
244 of zonal plasma drifts and because the vertical shear in the zonal flow was ultimately larger.

245 This is consistent with coherent scatter radar observations of thin bottom-type layers appearing
246 earlier on the 23rd than the 22nd [Hysell and Kudeki, 2004].

247 As time progressed, the background zonal electric field imposed on the simulation grew in
248 amplitude in agreement with the incoherent scatter radar findings. By the late stages of the sim-
249 ulation, the background plasma ascent rate was about 8 m/s. The modest but steadily growing
250 background electric field was sufficient to drive collisional interchange instability and to expe-
251 dite the development of the bottomside irregularities. Depletion plumes started appearing to
252 the east of Jicamarca's location by about 1930 LT. The largest of these began escaping the top
253 simulation boundary by about 2000 LT. New plume creation marched westward, following the
254 earlier progression of the solar terminator. (In imposing the background electric field forcing
255 inferred from Jicamarca observations, the equivalence of longitude and local time is assumed.)
256 By the late stages of the simulation, plumes were beginning to form overhead. By 2050 LT (not
257 shown), a convective plume directly over Jicamarca's location had risen to 500 km altitude in
258 the simulation. Between the major convective plumes, minor depletions separated by a few tens
259 of km and characteristic of bottomside layers predominate [Woodman and La Hoz, 1976].

Ionospheric recovery model

260 The simulation code described above is essentially free running. Initialized with incoherent
261 scatter data, it evolves the state equations for the plasma untethered from observations save for
262 the background zonal electric field, which is measured, and the thermospheric winds, which are
263 scaled to make the initial plasma drift predictions congruent with observations.

264 In principle, the HF data could govern the evolution of the plasma number density throughout
265 the simulation by data assimilation or other methods. Here, we instead model the electron
266 number density regionally on the basis of HF data alone for an independent assessment of

267 ionospheric evolution. We are mainly interested in evaluating data quality and consistency
268 while also assessing crucial factors that might be absent in the direct numerical simulation. For
269 example, the meridional winds are presently unconstrained by measurements from Jicamarca
270 but might be adjusted on the basis of regional electron number density measurements from the
271 regional beacon network.

272 If the electron number density were known in the region where the HF beacons are deployed,
273 it would be possible to predict the pseudorange and Doppler shift of each of the 36 ray paths.
274 Rays could be traced from the transmitters to the receivers using the methods of geometric
275 optics and shooting, and the observables could be calculated using the formalism of *Jones and*
276 *Stephenson* [1975]. Discrepancies between predictions and observations could be combined in
277 an objective function based on the chi-squared parameter. The objective function would also
278 incorporate discrepancies with the electron number density profiles measured by the ISR.

279 In the inverse problem, a parametrized ionosphere is constructed, and the parameters are
280 set through the minimization of the objective function. Here, we parametrize the ionosphere
281 by assuming a three-parameter Chapman function in the vertical, each of the three parameters
282 being described in the horizontal by a bicubic B-splines (e.g. [De-Boor, 1978]). We use a
283 15×15 horizontal grid for the bicubic B-splines, implying 675 parameters in total to set. By
284 comparison, the observables, which include the pseudorange and Doppler shifts measured for
285 each ray path and frequency together with information about the electron number density profile
286 measured directly over Jicamarca, number just 75. Since the problem is underdetermined and
287 poorly conditioned, regularization is incorporated in the problem by adding the curvature of
288 the volumetric electron number density to the objective function [Hansen, 2010]. The overall
289 optimization problem is solved using a Levenberg Marquardt algorithm in which the Jacobian

290 matrix is calculated numerically. Additional details about the inverse method were given by

291 *Hysell et al. [2018a]*.

292 Fig 8 shows the results of ionospheric reconstructions for March 22, 2019, based on HF
 293 beacon data for the selected local times indicated. Each panel shows isodensity contours for
 294 $N_e = 3\text{E}11 \text{ m}^{-3}$ (green) and $5\text{E}11 \text{ m}^{-3}$ (cyan). In the background are the coastline of Peru
 295 together with the locations of the HF beacon stations. Superimposed are 36 rays linking the
 296 three transmitters with the six receivers. Electron number densities are estimated at a cadence
 297 of once per minute such that the predicted and observed pseudoranges and optical path lengths
 298 are congruent.

299 The individual datasets like those in Fig. 5 all exhibit mainly gradual, secular changes in
 300 pseudorange and optical path length, free of waves or perturbations which might be suggestive
 301 of medium-scale traveling ionospheric disturbances (TIDS) or related phenomena. They are
 302 also all similar in shape. Consequently, the reconstructions are also free of waves and steep
 303 gradients and are nearly horizontally homogeneous.

304 Between 1800-1900 LT, the reconstructions merely suggest gradual, nearly uniform elevation
 305 in layer height (causing the isodensity contours to move upward) together with a steepening
 306 of the bottomside (causing the isodensity contours to move closer together). Both are conse-
 307 quences of postsunset recombination combined with a very modest prereversal enhancement of
 308 the background zonal electric field.

309 There were no significant meridional gradients in the electron density estimates at any time
 310 on March 22, 2019, suggesting that meridional winds did not play a drastic role in stabilizing
 311 the bottomside ionosphere. The only significant zonal gradients in the electron density occurred
 312 between 2045–2125 LT. During this time, the isodensity contours became elevated first on the

313 western side of the field of view, then in the middle, and finally to the east. The crest traveled
314 eastward until, by 2130 LT, the isodensity contours were essentially level again. The effect was
315 as if a small crest in the bottomside propagated from west to east. We can associate the crest
316 with the apparent peak in the bottom-type layer seen in Fig. 1 where the coherent scatter became
317 red shifted briefly. It may have been that a small convective plume was beginning to form here.

318 The results for March 23, 2019, shown in Fig. 9 are qualitatively similar to those for March
319 22. The first hour of the event was characterized by the ascent and steepening of the *F* layer
320 consistent with a combination of recombination and the prereversal enhancement of the zonal
321 electric field. There were no significant meridional gradients in electron density at any time
322 during the event. Horizontal gradients evolved in such a way as to suggest the transit of an ion-
323 ization crest from west to east in the interval between 2030-2115 LT. By 2130 LT, the isodensity
324 contours were level.

325 The difference between March 22 and 23 was quantitative. The ascent of the layer was more
326 rapid and prolonged on March 22nd, and the crest was much more distinct. Inspection of Fig. 2
327 suggests that the crest was a broad, deep bottomside deformation beneath a system of topside
328 convective plumes. Such deformations can be seen in the simulation results in Fig. 7. In that
329 figure, a broad bottomside depletion was forming in the center of the simulation by 2040 LT.
330 This is the low-altitude counterpart of convective plumes extending upward through the *F* peak
331 into the topside.

Assessment and summary

332 In this work, incoherent scatter, coherent scatter, and HF radar observations of the equato-
333 rial ionosphere during ESF conditions were combined with a direct numerical simulation of the
334 ionospheric interchange instability and an inverse model of the background ionosphere. The

335 purpose was to construct a comprehensive picture of the state of the ionosphere on consecutive
336 nights when convective plumes did and did not occur and to identify differences in the
337 background state parameters which could be causative or correlative with ESF.

338 One of the findings of the work is that the HF beacons and the method for inverting data from
339 the network can function when bottom-type scattering layers, bottomside layers, and convective
340 plumes are overhead. The rays at the beacon frequencies have turning points below the altitudes
341 where excessive spreading makes it impossible to distinguish the group delay of the signals.
342 While this result inevitably depends on the local conditions and may not be robust, it suggests
343 that HF beacons can be used to monitor the ionosphere during and not just prior to the formation
344 of deep depletions.

345 It is also remarkable that the HF observations for March 22 and 23, 2019, were qualita-
346 tively similar if quantitatively different even though the coherent scatter observations for the
347 two nights were essentially different. There were no strong meridional gradients in the electron
348 densities, suggesting that meridional winds played little or no part in stabilizing or destabilizing
349 the ionosphere on either night. There were no regular waves suggestive of MSTIDs in the low-
350 level data (and so none in the final electron density retrievals). This is atypical of the beacon
351 network data which often show periodic variations suggestive of typical MSTID periods [Hysell
352 *et al.*, 2016, 2018a]. Crests in electron density propagating with the background zonal plasma
353 drift were seen on both nights. The crest observed on March 23 was the bottomside foundation
354 of a series of closely-spaced convective plumes. The much less distinct crest seen on March 22
355 was possibly the forerunner of marginal convective instability. Numerical simulations like the
356 one shown in Fig. 7 indicates that crests like these are parts or consequences of ionospheric
357 interchange instabilities rather than causes.

358 Based on the aforementioned results, it should be possible to incorporate the HF data directly
359 in assimilative simulations of plasma convective instability. The object here would be to pro-
360 duce simulations like those in Figs. 6 and 7 only with the convection plumes forming in spatial
361 positions actually indicated by the data. (Presently, we use the simulations to ascertain whether
362 convective plumes form; precisely where they form is essentially random.) The combination of
363 ISR data, which specify initial conditions and forcing, and HF data, which specify the local phe-
364 nomenology, would represent an unprecedented degree of fidelity in space-weather nowcasting
365 and forecasting.

366 An additional improvement to the method would be to incorporate GPS TEC measurements
367 from the LISN network and other instruments deployed regionally. The HF data give no infor-
368 mation about altitudes above their turning points and, certainly, no information from the topside.
369 Incorporating GPS TEC measurements in the electron density inversion would rectify the prob-
370 lem and contribute to more accurate assessments of the vertical electron density structure.

371 As to the question of ESF causality, the most important difference in the ionospheric mea-
372 surements on March 22 and 23, 2019, prior to the observations of convective plumes in the
373 latter event was the time history of the background vertical plasma drifts. ESF conditions never
374 emerged on March 22 when the vertical drifts were consistently small. ESF conditions and
375 convective plumes formed, albeit relatively late in the evening, on March 23 after modest post-
376 sunset vertical drifts were sustained for about two hours. This, together with somewhat larger
377 zonal thermospheric winds, caused March 23 to be active whereas March 22 was not.

378 **Acknowledgments.** This work was supported by award FA9550-12-1-0462 from the Air
379 Force Office of Scientific Research to Cornell University. The Jicamarca Radio Observatory is a
380 facility of the Instituto Geofísico del Perú operated with support from NSF award AGS-1732209

381 through Cornell. The help of the staff is much appreciated. Data used for this publication are
 382 available through the Madrigal database (see <http://www.openmadrigal.org.>)

References

383 Bennett, J. A., The ray theory of Doppler frequency shifts, *Aust. J. Phys.*, 21, 259, 1972.

384 Bilitza, D., D. Altadill, B. Reinisch, I. Galkin, V. Shubin, and V. Truhlik, The International
 385 Reference Ionosphere: Model Update 2016, in *EGU General Assembly Conference Abstracts*,
 386 vol. 18, p. 9671, 2016.

387 Booker, H. G., and H. W. Wells, Scattering of radio waves by the *F* region., *Terres. Magn.*, 43,
 388 249, 1938.

389 Chau, J. L., L. P. Goncharenko, B. G. Fejer, and H. L. Liu, Equatorial and low latitude iono-
 390 spheric effects during sudden stratospheric warming events, *Space Science Reviews*, 168,
 391 385–417, DOI:10.1007/s11214-011-9797-5, 2012.

392 De-Boor, C., *A Practical Guide to Splines*, Springer Verlag, New York, 1978.

393 Drob, D. P., et al., An update to the Horizontal Wind Model (HWM): The quiet time thermo-
 394 sphere, *Earth and Space Science*, 2, doi:10.1002/2014EA000,089, 2015.

395 Fejer, B. G., and L. Scherliess, Time dependent response of equatorial ionospheric electric fields
 396 to magnetospheric disturbances, *Geophys. Res. Lett.*, 22, 851, 1995.

397 Fejer, B. G., and L. Scherliess, Empirical models of storm-time equatorial zonal electric fields,
 398 *J. Geophys. Res.*, 102, 24,047, 1997.

399 Haerendel, G., and J. V. Eccles, The role of the equatorial electrojet in the evening ionosphere,
 400 *J. Geophys. Res.*, 97, 1181, 1992.

401 Haerendel, G., J. V. Eccles, and S. Cakir, Theory for modeling the equatorial evening ionosphere
402 and the origin of the shear in the horizontal plasma flow, *J. Geophys. Res.*, 97, 1209, 1992.

403 Hansen, P. C., *Discrete Inverse Problems: Insight and Algorithms*, Siam, Philadelphia, 2010.

404 Harten, A., High resolution schemes for hyperbolic conservation laws, *J. Com. Phys.*, 49, 357,
405 1983.

406 Huba, J. D., G. Joyce, and J. A. Fedder, Sami2 is another model of the ionosphere (SAMI2): A
407 new low-latitude ionospheric model, *J. Geophys. Res.*, 105, 23,035–23,054, 2000.

408 Huba, J. D., G. Joyce, and J. Krall, Three-dimensional modeling of equatorial spread f, in
409 *Aeronomy of the Earth's Atmosphere and Ionosphere*, edited by M. A. Abdu and D. Pancheva,
410 vol. 2, pp. 211–218, IAGA Spec. Sopron Book Ser., 2011.

411 Hysell, D. L., and J. L. Chau, Optimal aperture synthesis radar imaging, *Radio Sci.*, 41,
412 10.1029/2005RS003,383, RS2003, 2006.

413 Hysell, D. L., and E. Kudeki, Collisional shear instability in the eqautorial F region ionosphere,
414 *J. Geophys. Res.*, 109, (A11,301), 2004.

415 Hysell, D. L., R. B. Hedden, J. L. Chau, F. R. Galindo, P. A. Roddy, and R. F. Pfaff, Comparing
416 F region ionospheric irregularity observations from C/NOFS and Jicamarca, *Geophys. Res.*
417 *Lett.*, 36, L00C01, doi:10.1029/2009GL038,983, 2009.

418 Hysell, D. L., M. A. Milla, and J. Vierinen, A multistatic HF beacon network for ionospheric
419 specification in the Peruvian sector, *Radio Sci.*, 51, 392–401, doi:10.1002/2016RS005,951,
420 2016.

421 Hysell, D. L., Y. Baumgarten, M. A. Milla, A. Valdez, and K. Kuyeng, Ionospheric specification
422 and space weather forecasting with an HF beacon network in the Peruvian sector, *J. Geophys.*
423 *Res.*, 123, 6851–6864, <https://doi.org/10.1029/2018JA025,648>, 2018a.

424 Hysell, D. L., M. F. Larsen, D. C. Fritts, B. Laughman, and M. P. Sulzer, Major upwelling and
425 overturning in the mid-latitude f region ionosphere, *Nature Comm.*, 9, 10.1038/s41467-018-
426 05,809-x, 2018b.

427 Jones, R. M., and J. J. Stephenson, A versatile three-dimensional ray tracing computer program
428 for radio waves in the ionosphere, *Tech. Rep. 75-76*, U. S. Department of Commerce, 1975.

429 Kelley, M. C., J. J. Makela, O. de la Beaujardiere, and J. Retterer, Convective ionospheric
430 storms: A review, *Rev. Geophys.*, 49, doi:10.1029/2010RG000,340, 2011.

431 Kudeki, E., and S. Bhattacharyya, Post-sunset vortex in equatorial F-region plasma drifts and
432 implications for bottomside spread-F, *J. Geophys. Res.*, 104, 28,163, 1999.

433 Kudeki, E., S. Bhattacharyya, and R. F. Woodman, A new approach in incoherent scatter F
434 region E x B drift measurements at Jicamarca, *J. Geophys. Res.*, 104, 28,145–28,162, 1999.

435 Makela, J. J., M. C. Kelley, and O. Beaujardiere, Convective ionospheric storms: A major space
436 weather problem, *Space Weather*, 4, doi:10.1029/2005SW000,144, 2006.

437 Mendillo, M., J. Meriwether, and M. Biondi, Testing the thermosphereic neutral wind suppres-
438 sion mechanism for day-to-day variability of equatorial spread F, *J. Geophys. Res.*, 106,
439 3655, 2001.

440 Pedatella, N. M., H. L. Liu, A. D. Richmond, A. Maute, and T. W. Fang, Simulations of solar
441 and lunar tidal variability in the mesosphere and lower thermosphere during sudden strato-
442 sphere warmings and their influence on the low-latitude ionosphere, *J. Geophys. Res.*, p.
443 doi:10.1029/2012JA017858, 2012.

444 Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin, NRLMSISE-00 empirical model of
445 the atmosphere: Statistical comparisons and scientific issues, *J. Geophys. Res.*, 107, A12, doi:
446 10.1029/2002JA009,430, 2002.

447 Pingree, J. E., Incoherent scatter measurements and inferred energy fluxes in the equatorial
448 *F*-region ionosphere, Ph.D. thesis, Cornell Univ., Ithaca, N. Y., 1990.

449 Retterer, J. M., Physics based forecasts of equatorial radio scintillation for the Com-
450 munication and Navigation Outage Forecasting System (C/NOFS), *Space Weather*, 3,
451 doi:10.1029/2005SW000,146, 2005.

452 Retterer, J. M., Forecasting low-latitude radio scintillation with 3-D ionospheric plume models:
453 1. Plume model, *J. Geophys. Res.*, 115, A03306, doi:10.1029/2008JA013,839, 2010.

454 Strang, G., On the construction and comparison of difference schemes, *SIAM J. Num. Anal.*, 5,
455 506–517, 1968.

456 Trac, H., and U. L. Pen, A primer on Eulerian computational fluid dynamics for astrophysicists,
457 *Astrophysics*, 115, 303–321, 2003.

458 Tsunoda, R. T., On the enigma of day-to-day variability in equatorial spread *F*, *Geophys. Res.*
459 *Lett.*, 32, L08,103, doi:10.1029/2005GL022,512, 2005.

460 Valladares, C. E., and J. L. Chau, The Low-Latitude Ionosphere Sensor Network: Initial results,
461 *Radio Sci.*, 47, doi: 10.1029/2011RS004,978, 2012.

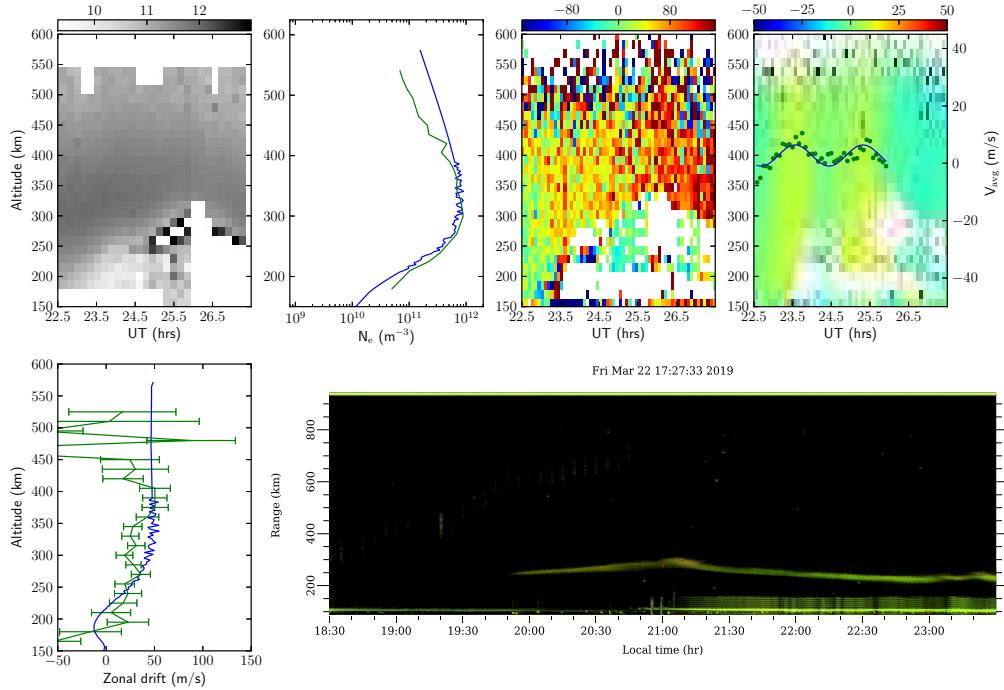
462 Van-Leer, B., Towards the ultimate conservation difference scheme. II. Monotonicity and con-
463 servation combined in a second-order scheme, *J. Comp. Phys.*, 14, 361, 1974.

464 Woodman, R. F., Spread F- An old equatorial aeronomy problem finally resolved?, *Ann. Geo-*
465 *phys.*, 27, 1915–1934, 2009.

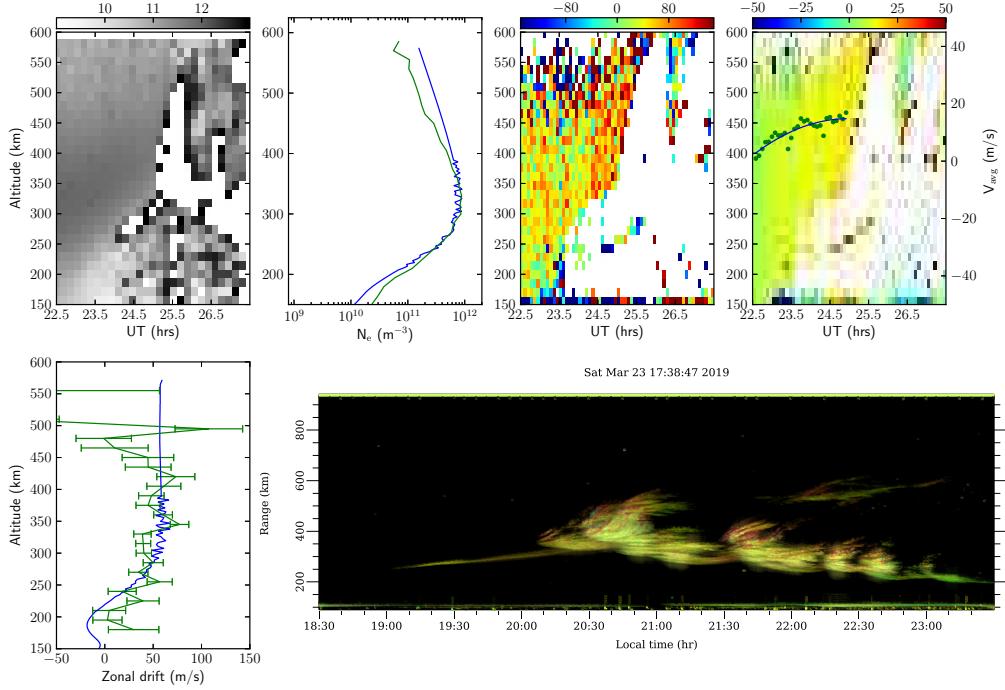
466 Woodman, R. F., and C. La Hoz, Radar observations of *F* region equatorial irregularities, *J.*
467 *Geophys. Res.*, 81, 5447–5466, 1976.

468 Woodman, R. F., J. L. Chau, and R. R. Ilma, Comparison of ionosonde and inco-
469 herent scatter drift measurements at the magnetic equator, *Geophys. Res. Lett.*, 33,

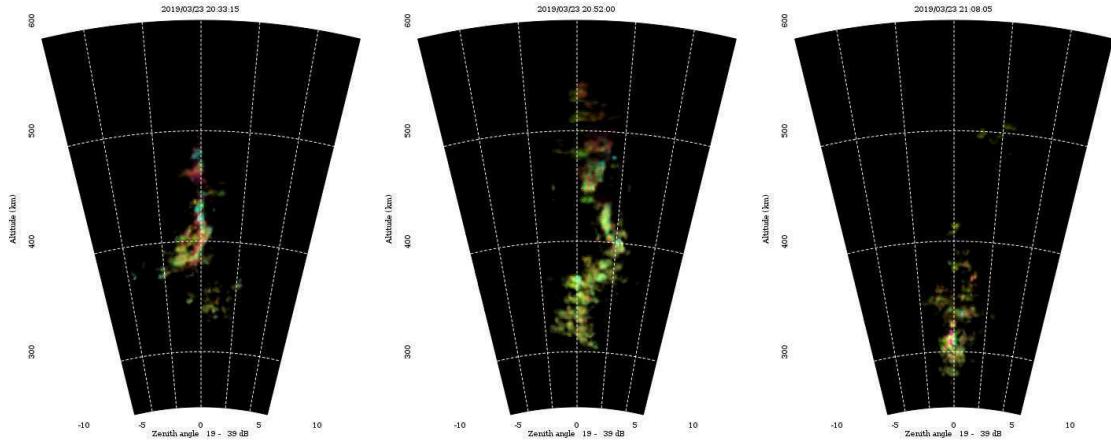
470 doi:10.1029/2005GL023,692, 2006.

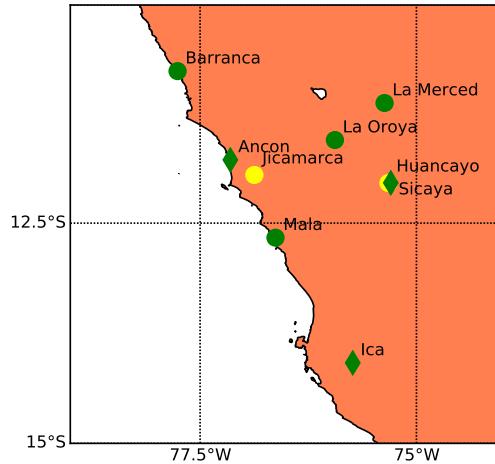

471 Yokoyama, T., H. Shinagawa, and H. Jin, Nonlinear growth, bifurcation and pinching of equa-

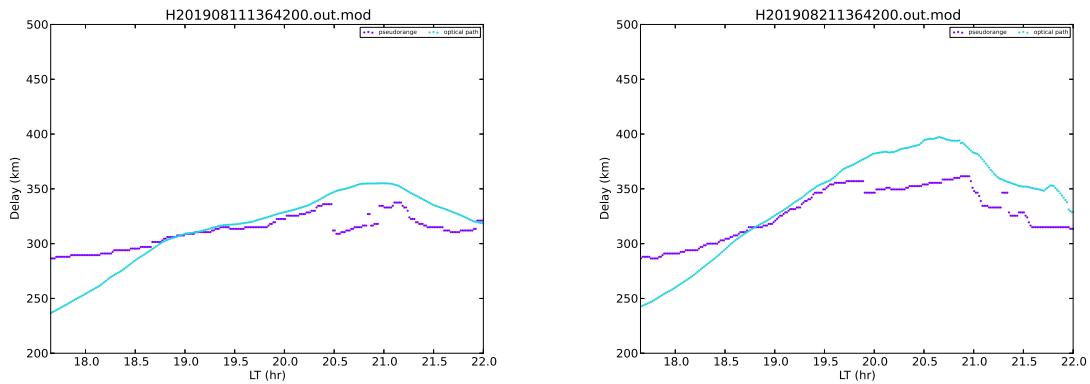
472 torial plasma bubble simulated by three-dimensional high-resolution bubble model, *Journal*

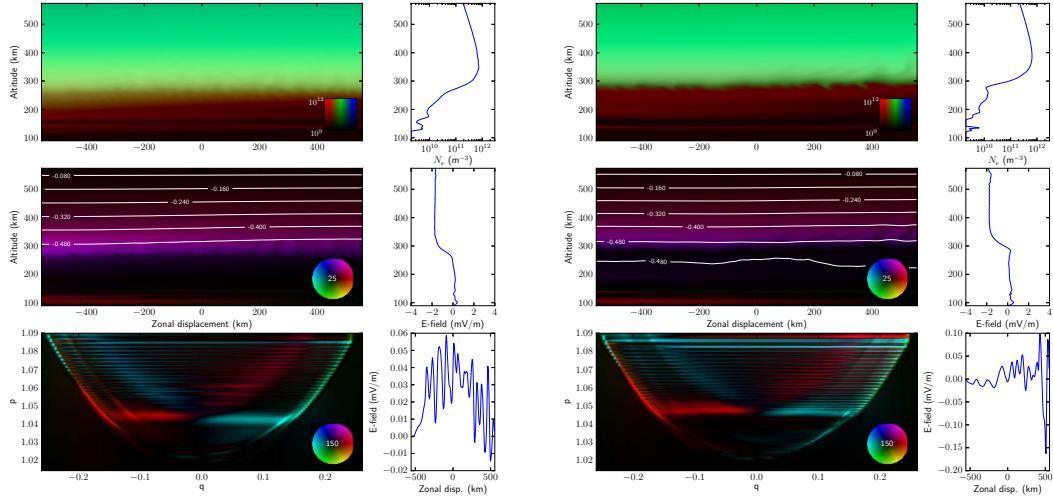

473 *of Geophysical Research: Space Physics*, 119, 10,474–10,482, 2014.

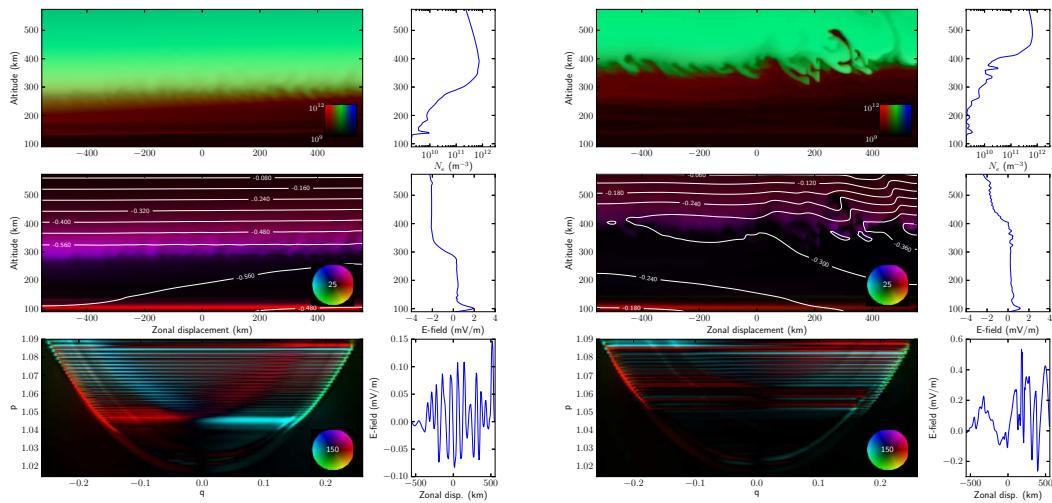
474 Zargham, S., and C. E. Seyler, Collisional and inertial dynamics of the ionospheric interchange


475 instability, *J. Geophys. Res.*, 94, 9009, 1989.


Figure 1. Incoherent scatter radar observations for March 22, 2019. Top row: electron number density, electron density profile at 2300 UT (1800 LT), zonal plasma drifts, and vertical plasma drifts. Bottom row: zonal plasma drift profile at 2300 UT (1800 LT), coherent scatter in range time Doppler intensity (RTDI) format. In this event, ESF plumes did not occur.


Figure 2. Same as Fig. 1 except for March 23, 2019. ESF plumes were seen in this event.


Figure 3. Aperture-synthesis radar images of three closely-spaced radar plumes that passed over the radar between 2030–2115 LT (0130–9215 UT).


Figure 4. Map of HF beacon stations in Peru. Circles represent receivers and diamonds transmitters. Pairs of receivers with spaced antennas are deployed where yellow symbols are plotted.

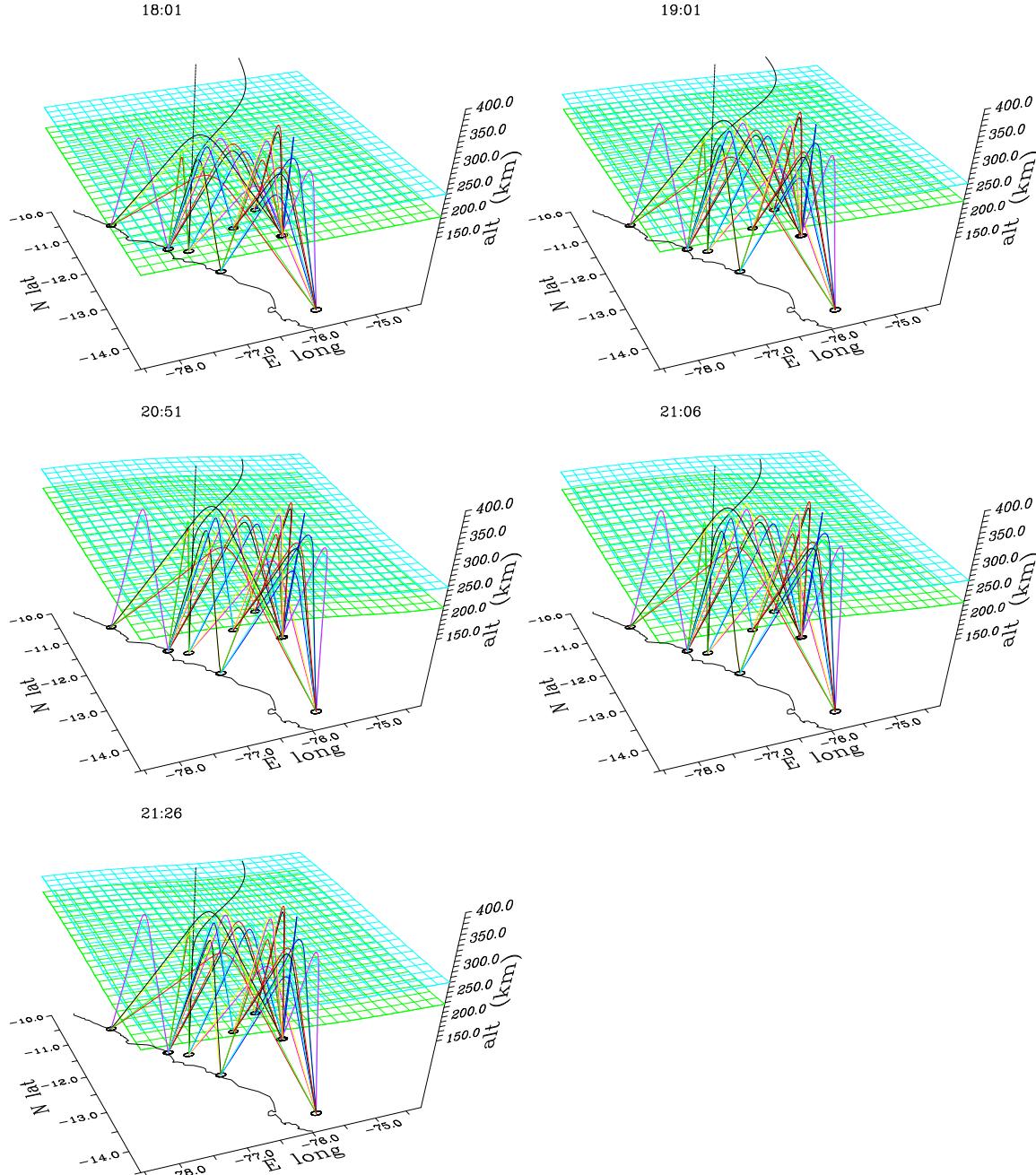

Figure 5. HF data for the 3.64 MHz Jicamarca-Ica paths on March 22 (left) and 23 (right), 2019. The violet curves represent pseudorange, and the cyan curves optical path length. The vertical offset of the latter is arbitrary and has been set so that the two curves overlap at 19.0 LT.

Figure 6. Numerical simulation of the March 22, 2019, ESF event. The simulation start time was 1800 LT (2300 UT). The left panel depicts conditions 60 min. after the start or at 1900 LT (0000 UT), and the right panel 160 min. after the start or at 2040 LT (0140 UT). The top panel in either case shows ion density, with red, green, and blue tones representing molecular ions, atomic ions, and hydrogen ions, respectively. A vertical cut of the electron density through the center of the simulation volume appears to the right. The middle panel shows equipotential lines superimposed on current density in the equatorial plane. The color wheel indicates the magnitude and direction of the current density, with full scale being 25 nA/m². A vertical cut of the vertical electric field through the center of the simulation is shown to the right. The bottom panel shows current density in the meridional plane in magnetic coordinates (p, q). Full scale is 150 nA/m². A horizontal cut of the zonal electric field through the center of the simulation is shown to the right.

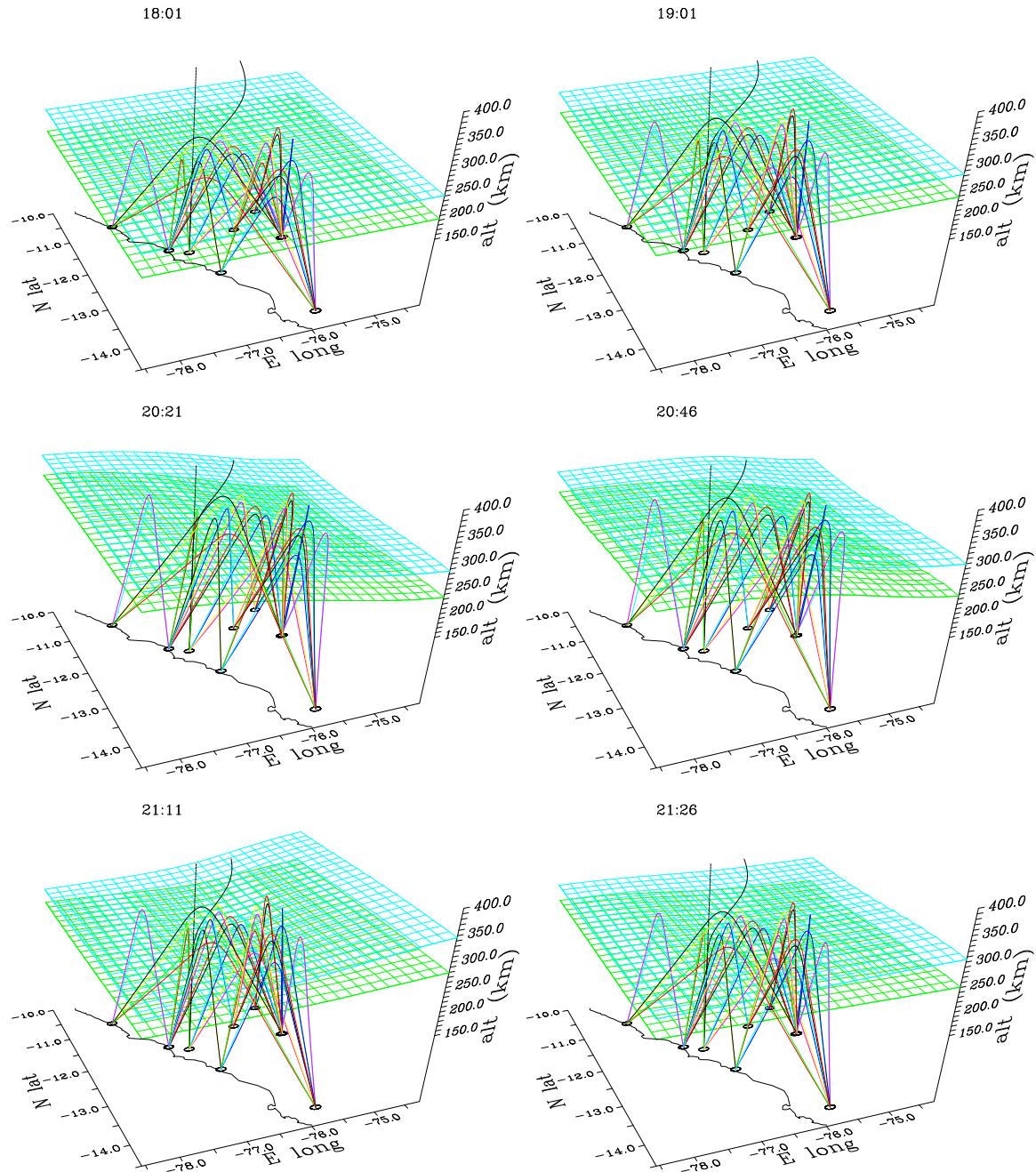


Figure 7. Same as Fig. 6 except for March 23, 2019.

Figure 8. Ionospheric reconstructions deduced from HF beacon data for March 22, 2019.

Each frame shows computed ray paths through a model ionosphere. The green and cyan meshes represent isodensity contours for $N_e = 3\text{E}11$ and $5\text{E}11 \text{ m}^{-3}$, respectively. The black profile is an electron density profile at Jicamarca's location plotted on a linear scale.

Figure 9. Same as Fig. 8 except for March 23, 2019.