

Aperture-synthesis radar imaging with compressive sensing for ionospheric research

D. L. Hysell¹, P. Sharma², M. Urco³, and M. A. Milla⁴

¹Earth and Atmospheric Sciences, Cornell

University, Ithaca, NY, USA

²Electrical and Computer Engineering,

Cornell University, Ithaca, NY, USA

³Leibniz Institute for Atmospheric Physics,

Kuehlungsborn, Germany

⁴Jicamarca Radio Observatory, Lima, Peru

Key Points.

1. Compressed sensing inverse methods applied to aperture synthesis radar imaging of ionospheric plasma density irregularities.
2. Performance of basis pursuit denoising (BPDN) and orthogonal matching pursuit (OMP) generally inferior to that of maximum-entropy method (MaxENT).
3. Computational speed of OMP is attractive and prompts research into more suitable function library.

3 Inverse methods involving compressive sensing are tested in the application
4 of two-dimensional aperture-synthesis imaging of radar backscatter from field-
5 aligned plasma density irregularities in the ionosphere. We consider basis pur-
6 suit denoising (BPDN), implemented with the FISTA algorithm, and orthogo-
7 nal matching pursuit (OMP) with a wavelet basis in the evaluation. These meth-
8 ods are compared with two more conventional optimization methods rooted in
9 entropy maximization (MaxENT) and adaptive beamforming (Linear Constrained
10 Minimum Variance or LCMV or often “Capon’s Method.”) Synthetic data cor-
11 responding to an extended ionospheric radar target are considered. We find that
12 MaxENT outperforms the other methods in terms of its ability to recover im-
13 agery of an extended target with broad dynamic range. FISTA performs reason-
14 ably well but does not reproduce the full dynamic range of the target. It is also
15 the most computationally expensive of the methods tested. OMP is very fast com-
16 putationally but prone to a high degree of clutter in this application. We also point
17 out that the formulation of MaxENT used here is very similar to OMP in some
18 respects, the difference being that the former reconstructs the logarithm of the

₁₉ image rather than the image itself from basis vectors extracted from the obser-
₂₀ vation matrix. MaxENT could in that regard be considered a form of compres-
₂₁ sive sensing.

1. Introduction

Aperture-synthesis methods have been used in radio astronomy since the 1950s to form images of distant radio sources from spaced-receiver interferometry data. The signals from the receivers are stochastic and exhibit jointly-normal multivariate statistics. All of the information is therefore contained in the second-order statistics or the spatial covariances or “visibilities.” The transformation between the measured visibility data and the desired brightness function, which specifies the radiation intensity versus bearing, is linear and closely related to a Fourier transform [Thompson, 1986]. Aperture-synthesis methods are inverse methods for computing the transformation on the basis of sparse and noisy data.

The problem is generally underdetermined and poorly conditioned.

Only fairly recently have aperture synthesis methods been applied to radar observations of the upper atmosphere and ionosphere (see e.g. *Kudeki and Süriüçü* [1991]; *Hysell* [1996]; *Hysell et al.* [2002, 2004]; *Saito et al.* [2006]; *Hysell et al.* [2008]; *Saito et al.* [2008]; *Sommer and Chau* [2016]; *Urco et al.* [2018a, b]). The problem is similar to the one in radio astronomy with a few important differences. For one, the number of receivers used in upper-atmospheric radar applications has so far been relatively small, spaced-receiver imaging being mainly an afterthought in radar design. For another, the required cadence of measurements in upper-atmospheric radar applications can be very high. Images typically need to be formed in tens of Doppler frequency bins and in hundreds or thousands of range gates at an experimental cadence of about once per second. This makes computational efficiency critical.

42 Most crucially, whereas astronomical images are typically characterized by point
 43 sources, radar targets in the upper atmosphere and ionosphere tend to be spatially ex-
 44 tended and “blobby.” The targets are much weaker at the periphery than at the center, and
 45 preserving the boundaries requires methods with high dynamic range. **The faithful recon-**
 46 **struction of edges is also important for inferring velocities from time series.** Metrics
 47 for evaluating competing methods should be designed around this requirement.

48 The most widely-used imaging methods in upper-atmospheric research include adap-
 49 tive beamforming methods like the one described by *Capon* [1969], iterative deconvolu-
 50 tion methods like CLEAN [*Högbom*, 1974], and Bayesian optimization methods rooted in
 51 maximum entropy (e.g. [*Skilling and Bryan*, 1984]). In this paper, we consider methods
 52 arising from recent advances in the field of compressive sensing. Compressive sensing for
 53 one-dimensional imaging was evaluated recently by *Harding and Milla* [2013] who exam-
 54 ined coherent backscatter from ionospheric plasma density irregularities at the magnetic
 55 equator. We pursue the same problem, this time considering imaging in two dimensions.
 56 The results should apply equally well to ionospheric scatter at low, middle, and high lati-
 57 tudes as well as to scatter from index-of-refraction variations in the neutral lower, middle,
 58 and upper atmosphere.

2. Compressive sensing and radar imaging

59 Compressive sensing has occupied a central role in image processing research for more
 60 than a decade and has significantly increased the acuity of any number of experimental
 61 modalities (see *Mackenzie* [2009] and references therein for review). The idea involves re-

62 producing undersampled signals accurately by exploiting inherent sparseness of the sam-
 63 ples in an appropriately-chosen basis. Two-dimensional photographic images can often
 64 be represented very accurately by a small number of nonzero coefficients when expressed
 65 in a wavelet basis, for example. This implies not only the efficacy of image compres-
 66 sion but also an opportunity for novel sampling strategies that incorporate sparseness into
 67 their design. The practical advantages of restoring a signal from sparse samples, as op-
 68 posed to sampling the signal fully in the Nyquist sense, compressing the results, and then
 69 decompressing them later, are obvious. Moreover, the prospect of recovering complex sig-
 70 nals from a small number of samples or from a small number of non-adaptive sensors has
 71 tremendous appeal in scientific realms where dense sensor arrays may be impractical to
 72 deploy to begin with. Aperture-synthesis radar imaging, which seeks the best estimate of
 73 the image brightness on the basis of a few measurements of the visibility, belongs in this
 74 realm.

The obvious objective function for evaluating sparseness is the l_0 pseudonorm, $\|x\|_0$, the
 number of nonzero entries in the vector x . If $x \in \mathbb{R}^m$ is a state vector which is s -sparse
 (has at most s nonzero entries) and is constrained by a data vector $y \in \mathbb{R}^n$ through an
 observation model $Ax = y$, where $A \in \mathbb{R}^{n \times m}$ is a non-invertible observation matrix, then
 a reasonable model for x could be **a vector with the smallest number of non-zero values**
which satisfies the observation model, viz.:

$$x = \underset{x}{\operatorname{argmin}} \|x\|_0 : Ax - y = 0 \quad (1)$$

75 which is a constrained optimization problem. This model yields not just accurate but exact
 76 recovery of undersampled state vectors under the condition that A is one-to-one in all

⁷⁷ 2s-sparse vectors. However, this is prohibitively complex (hard) optimization problem in
⁷⁸ computational enumeration.

In practice, the problem in (1) may be replaced by a closely related problem known as basis pursuit [Donoho, 2006]. Here, the l_0 pseudonorm is relaxed to the l_1 norm, i.e.

$$x = \underset{x}{\operatorname{argmin}} \|x\|_1 : Ax - y = 0 \quad (2)$$

⁷⁹ **where the l_1 norm enforces sparsity in a manner similar to the l_0 norm. The simple**
⁸⁰ **modification** transforms the task from an enumeration problem to a problem in convex
⁸¹ optimization which can be solved practically using linear programming methods.

Numerous sufficient conditions for unique recovery of an s-sparse vector x from basis pursuit and related approaches are discussed in the literature including the restricted isometry property (RIP) [Candès *et al.*, 2006; Candès and Tao, 2006], the exact recovery condition (ERC) [Tropp, 2004, 2006], and the mutual incoherence condition (MIC) [Donoho and Huo, 2001; Tropp, 2006]. The last of these options is the **most intuitive and** most practical to evaluate. The mutual coherence for a matrix A with columns with unity l_2 norms is defined in terms of

$$\mu_A = \max_{i \neq j} |A_i^T A_j|, \quad (3)$$

⁸² i.e., the maximum pairwise column correlation. The sufficient condition for sparse signal
⁸³ recovery is that $\mu_A < (2s - 1)^{-1}$. This is also the worst-case necessary condition [Tropp,
⁸⁴ 2004].

3. Basis Pursuit Denoising (BPDN)

Signal sparsity is approximate rather than exact in practice, and the samples themselves are contaminated by noise. In this case, the basis pursuit problem is further relaxed to the nearby basis pursuit denoising (BPDN) problem which includes the provision for a finite residual which is weighted together with the sparsity penalty in the objective function:

$$x = \underset{x}{\operatorname{argmin}} \left(\|Ax - y\|_2^2 + \lambda \|x\|_1 \right) \quad (4)$$

Eq. 4 has the form of a regularized least-squares regression problem with λ being the regularization parameter. While eq. 4 is sometimes referred to as having Lagrangian form, λ is not an undetermined Lagrange multiplier here since the l_1 norm term does not function as a constraint. The λ parameter merely represents the tradeoff between the fidelity of the experiments and the noise sensitivity.

Note that two other problems are closely related to BPDN:

$$x = \underset{x}{\operatorname{argmin}} \|x\|_1 : \|Ax - y\|_2^2 \leq \epsilon \quad (5)$$

$$x = \underset{x}{\operatorname{argmin}} \|Ax - y\|_2^2 : \|x\|_1 \leq \epsilon \quad (6)$$

where ϵ is a tunable parameter like λ . All three problems have the same solutions for the appropriate choices of λ and ϵ which will depend on the data. The variant of the problem in 5 will be discussed further below. The variant in 6 incorporates the least absolute shrinkage and selection operator (Lasso) [Tibshirani, 1996]. An “elastic net” variant of the problem adds a regularization term based on the l_2 -norm of x to the objective function.

96 While the observation matrix and the data in radar imaging experiments are complex,
 97 we consider the real and imaginary parts of the observing model separately, making n
 98 twice the number of interferometry baselines. This greatly simplifies the handling of the
 99 l_1 norm but necessitates an explicit treatment of the real and imaginary parts of the data in
 100 the error analysis [Hysell and Chau, 2006]. The positive definite symmetric inverse error
 101 covariance matrix C_d^{-1} given there can be factored as $C_d^{-1} = C_d^{-T/2} C_d^{-1/2}$. In order to
 102 incorporate error propagation, A and y are pre-whitened through scaling by the square root
 103 information matrix $C_d^{-1/2}$, i.e. $(Ax - y) \rightarrow C_d^{-1/2}(Ax - y)$.

104 Likewise, a change of basis can be accommodated through the transformation $Ax \rightarrow$
 105 $(AW^{-1})(Wx)$ where W is a linear transformation from state space to a basis where spar-
 106 sity is optimized. **For example, as discussed below, it is commonplace in compressive**
 107 **sensing to transform to a wavelet basis in which imagery can sometimes be repre-**
 108 **sented very sparsely.** The MIC condition then applies to the new observation matrix
 109 AW^{-1} . In this case, the last step of the algorithm is the transformation of the solution
 110 vector x back to image space.

111 Note, finally, that the l_1 regularization problem can be cast in the form of a constrained
 112 quadratic optimization problem by defining $x = u - v$, where u and v are the parts of
 113 x that are positive and negative, respectively, and restricting the solution domain to the
 114 region $u \geq 0, v \geq 0$ so that $\|x\|_1 \rightarrow u + v$. This reformulation invites the application of
 115 any number of popular optimization methods rooted in linear programming. The penalty
 116 is the doubling in length of the solution vector.

117 A range of approaches can be applied to BPDN and related problems (see *Yang et al.*
 118 [2013]; *Rani et al.* [2018] for reviews). Here, we pursue the fast iterative shrinkage
 119 thresholding algorithm (FISTA), a fast gradient algorithm which is simple to implement
 120 for aperture-synthesis imaging [*Beck and Teboulle*, 2009]. The algorithm depends on the
 121 concept of the proximal gradient which is summarized briefly below.

122 Gradient algorithms must cope with the fact that l_1 norm of a function is nondiffer-
 123 entiable. An option for convex nondifferentiable functions is to substitute the gradient
 124 operator with the subgradient operator which bounds the gradient. The subgradient of the
 125 l_1 norm of x is simply $\text{sign}(x)$. The subgradient method applied to BPDN can be solved
 126 iteratively using a conventional gradient descent method, but convergence will be slow.

In a proximal gradient method, which can be viewed as a generalized gradient descent
 method, the objective function is divided into two parts, i.e. $x = \text{argmin}_x (g(x) + h(x))$,
 where $g(x)$ is convex and differentiable and $h(x)$ is convex and possibly nondifferentiable.
 Eq. 4 is obviously in this form. The idea then is to iteratively minimize the sum of h and a
 quadratic local model of g . Toward this end, define the proximal operator of the function
 h about z as:

$$\text{prox}_{\alpha h}(z) = \text{argmin}_x \left(h(x) + \frac{1}{2\alpha} \|x - z\|_2^2 \right) \quad (7)$$

Each iteration proceeds from the results of the last, shifted opposite the direction of the
 local gradient of g , viz.

$$x^k = \text{prox}_{\alpha_k h}(x^{k-1} - \alpha_k \nabla g(x^{k-1})) \quad (8)$$

127 where the step size α_k can either be a fixed constant or determined by a line search. For
 128 the l_1 -regularized quadratic regression problem, stability is guaranteed by setting α_k to a
 129 constant equal to the reciprocal of the smallest Lipschitz constant of ∇g which is twice the
 130 largest eigenvalue of $A^T A$. This in turn can be calculated using the power method with
 131 negligible computational burden.

In the case of the regularized least squares problem, $g(x)$ is quadratic, and its gradient has an elementary linear form, i.e., $A^T(Ax - y)$. Furthermore, for $h(x) = \lambda||x||_1$, the proximal operator or shrinkage function is given by the iterative soft thresholding function:

$$\text{prox}_{\lambda h}(y) = \begin{cases} y - \text{sign}(y)\lambda & |y| \geq \lambda \\ 0 & \text{otherwise} \end{cases} \quad (9)$$

132 In the event that only positive values of x are admissible, as is the case for some formula-
 133 tions of the radar-imaging problem, that condition can be readily incorporated in eq. 9 as
 134 well.

The iterative shrinkage thresholding algorithm (ISTA) implied by eq. 8 can be shown to converge at a rate that is linear in k like a standard gradient descent method under the condition that ∇g is continuous in the L -Lipschitz sense, for both fixed and variable step sizes. The FISTA algorithm, meanwhile, is able to achieve a quadratic rate of convergence by incorporating Nesterov's acceleration method [Nesterov, 1983]. The modified algorithm for FISTA, including acceleration, is [Beck and Teboulle, 2009]

$$z^k = \text{prox}_{\alpha_k \lambda h}(x^{k-1} - \alpha_k \nabla g(x^{k-1})) \quad (10)$$

$$t_k = \frac{1}{2} \left(1 + \sqrt{1 + 4t_{k-1}^2} \right) \quad (11)$$

$$x^k = z^k + \frac{t_{k-1} - 1}{t_k} (z_k - z_{k-1}) \quad (12)$$

135 with eq. 9 giving the proximal gradient. The algorithm is iterated to convergence with
 136 convergence criteria typically being based on the norm of $x^k - z^k$.

137 Note that a parallelized version of FISTA (pFISTA) has been developed by *Peng et al.*
 138 [3–6 Nov., 2013]. For the aperture-synthesis imaging application, parallelization can be
 139 exploited without reformulating the basis algorithm simply by computing images for dif-
 140 ferent Doppler spectral bins and range gates in separate processes.

4. Orthogonal Matching Pursuit (OMP)

141 A computationally expedient and highly intuitive alternative for sparse least-squares es-
 142 timation is orthogonal matching pursuit (see e.g. *Tropp and Gilbert* [2007]; *Cai et al.*
 143 [2010]; *Cai and Wang* [2011]). This is a greedy algorithm that formulates estimates of the
 144 state vector by applying the least-squares pseudoinverse to a submatrix of the original mea-
 145 surement matrix A . The submatrix starts from a null matrix and grows with each iteration
 146 with the addition of a column selected and copied from A . The column selected is the one
 147 with the highest correlation with the current residual. Iteration continues until a stopping
 148 criterion is met.

149 **At this point, the state estimate is consistent with the data while being maximally**
 150 **sparse. In terms of the discussion above, OMP solves the compressive sensing prob-**
 151 **lem stated in 5 which, like BPDN, makes allowance for observation noise. OMP be-**
 152 **gins from an essentially minimalist representation of the state vector and expands it in**
 153 **the l_1 -norm sense until the residual falls below a specified threshold. As with BPDN,**

¹⁵⁴ **it is often expedient to transform the problem using a basis in which the solution is**
¹⁵⁵ **especially sparse.**

Define $A_k \in \mathbb{R}^{n \times k}$ to be a submatrix of A with its k columns having been copied from A . At each iteration, k is increased as the column of A most highly correlated with the current residual r is appended to A_k . The residual at the k th iteration is defined as:

$$r^k = y - A\hat{x}^k \quad (13)$$

$$= (I - A\tilde{A}_k)y \quad (14)$$

$$\tilde{A} \equiv (A^T A)^{-1} A^T \quad (15)$$

¹⁵⁶ Here, \tilde{A} is the standard least-squares pseudoinverse, and the estimator $\hat{x}^k = \tilde{A}_k y \in \mathbb{R}^m$ is
¹⁵⁷ defined so as to have $k < m$ nonzero elements with indices that correspond to the indices
¹⁵⁸ of the columns copied from A in the order in which they were copied. The index of the
¹⁵⁹ selected column is the index of the term in $A^T r$ with the largest modulus.

¹⁶⁰ Allowances for statistical errors can be introduced through incorporation of the square-
¹⁶¹ root data covariance matrix $C_d^{-1/2}$ described earlier. Note also that additional regularization
¹⁶² can be introduced here through the appropriate augmentation of the least-squares pseudoin-
¹⁶³ verse. Stopping criteria may be based either on the size of the residual or the anticipated
¹⁶⁴ sparsity of the solution. Absent the explicit introduction of regularization, OMP has no
¹⁶⁵ tuning parameters comparable to the λ parameter in BPDN. The choice of stopping con-
¹⁶⁶ ditions in the standard algorithm is subjective, however, particularly if neither the sparsity
¹⁶⁷ nor the data error covariances are known a priori [Kallummil and Kalyani, 2017]. Note that
¹⁶⁸ the number of iterations can be no larger than the number of data n . When the number of

¹⁶⁹ basis functions is larger than the number of data, the problem becomes underdetermined,
¹⁷⁰ and the least-squares pseudoinverse ceases to exist. After n iterations, the problem is even
¹⁷¹ determined, and the residual is identically zero.

5. Comparison using synthetic data

¹⁷² It is illustrative to benchmark the most common algorithms applied to the aperture syn-
¹⁷³ thesis imaging problem. Among them is the adaptive beamforming method often attributed
¹⁷⁴ to *Capon* [1969] and referred to as the linearly-constrained minimum variance (LCMV) or
¹⁷⁵ the minimum variance distortionless response (MVDR) method (**or simply as “Capon’s**
¹⁷⁶ **method.”**) We also consider the maximum entropy method (MaxENT) as formulated by
¹⁷⁷ *Wilczek and Drapatz* [1985]. The relative performance of the two methods applied to the
¹⁷⁸ aperture-synthesis imaging problem has been evaluated by *Yu et al.* [2000]. Another popu-
¹⁷⁹ lar algorithm for aperture synthesis imaging is CLEAN [*Högbom*, 1974]. In hindsight, this
¹⁸⁰ can be viewed as a special case of OMP and so will not be considered explicitly here.

¹⁸¹ We consider synthetic data comparable to what would be acquired by the Jicamarca
¹⁸² Radio Observatory measuring coherent scatter from field-aligned plasma density irregular-
¹⁸³ ities in the equatorial ionosphere. The typical receiving antenna configuration is shown in
¹⁸⁴ Fig. 1. Reception is performed using eight antenna sub-modules. Eight antennas imply 28
¹⁸⁵ non-redundant interferometry baselines or 29 including the zero baseline. (The number of
¹⁸⁶ data, n , is therefore 58). The radar operates at 50 MHz, and so the longest interferometry
¹⁸⁷ baseline, 569 m, is approximately 95 wavelengths long.

188 Since the scattering irregularities are aligned with the geomagnetic field, the spatial cor-
189 relation length of the backscatter in the north-south direction is very long and just barely
190 measurable at Jicamarca [Farley *et al.*, 1981]. The most important information is to be
191 found in the correlation length of the backscatter in the east-west direction, but there is util-
192 ity in measuring the centroid of the backscatter in the north-south direction which varies
193 somewhat with range.

194 We consider an imaging domain spanning ± 0.1 rad. in the plane of the magnetic equator
195 and ± 0.02 rad. in the plane of the magnetic meridian. The former figure is roughly the
196 effective field of view illuminated by the Jicamarca radar in imaging mode. The synthetic
197 target is an elongated Gaussian ellipsoid with a half-width in the plane of the magnetic
198 equator 10 times wider than in the plane of the magnetic meridian. The image will be
199 constructed in a domain 128 pixels in the plane of the magnetic equator by 32 pixels in the
200 plane of the magnetic meridian. The observing matrix for the problem is given by *Hysell*
201 and *Chau* [2006].

202 Normally distributed independent noise is added to the synthetic visibility data for
203 nonzero lags at the 2% level. This is a simplified treatment for observation noise and rep-
204 resents an upper bound for the experimental uncertainty associated with a signal-to-noise
205 ratio larger than unity and averages of 2500 statistically-independent samples. In actual ex-
206 periments, noise bias in the zero-baseline data is estimated and removed, and so no noise
207 bias will be added here. For an exhaustive treatment of error analysis and propagation in
208 aperture-synthesis imaging, see *Hysell and Chau* [2006].

209 Fig. 2 shows the results of image recovery using the LCMV method which serves here as
 210 a baseline. Grayscales indicate relative backscatter intensity in dB relative to the intensity
 211 at the center of the target. We plot 30 dB of dynamic range in the figure. In practical radar
 212 experiments, radar clutter from pulse coding is generally present at the level of about -22
 213 to -25 dB. We desire about 30 dB of usable dynamic range from imaging methods so that
 214 pulse coding rather than radar imaging will be the limiting factor for radar clutter. The
 215 elliptical contours represent the truth model and indicate backscatter at the -10 dB, -20 dB,
 216 and -30 dB levels, respectively.

217 LCMV has no tuning parameters and also no means of incorporating estimates of mea-
 218 surement confidence levels in the analysis. The method has accurately recovered the
 219 strongest intensity region within the 10-dB contour. However, the method has done a
 220 poor job of rejecting clutter outside the 30-dB contour. (We define clutter as extraneous in-
 221 tensity outside the 30-dB boundary of the truth model.) Strong artifacts are present across
 222 the image. The clutter level rises sharply as the level of random fluctuations added to the
 223 synthetic data is increased.

224 Fig. 3 shows the results of image recovery using the FISTA algorithm. For this test,
 225 we do not incorporate wavelet transforms and simply minimize the l_1 norm of the im-
 226 age brightness itself. Since the intensity is non-negative, we can and do incorporate that
 227 information in the computation of the proximal gradient to speed computation.

228 There is one tunable parameter in FISTA – the regularization parameter λ . The larger
 229 the value of λ , the greater the tendency toward sparse solutions. Here and in the methods
 230 to follow, λ has been adjusted so as to make the chi-squared parameter equal to the number

231 of data n . This has the effect of limiting clutter while adequately filling the truth-model
 232 contours.

233 FISTA recovers an elliptical target with approximately the same width in the zonal di-
 234 rection as the truth model but with more than twice the width in the meridional direction.
 235 This is a consequence of the fact that the interferometry baselines in the meridional di-
 236 rection are relatively short while the target itself is relatively narrow. (**Note that highly**
 237 **field-aligned targets have long spatial correlation lengths and elongated visibilities in**
 238 **the direction of the magnetic meridian and, consequently, narrow angular meridional**
 239 **widths in brightness imagery.**) This is not an important shortcoming in practice where
 240 1D images are normally extracted from the 2D images either by taking a horizontal cut or
 241 by averaging over a narrow range of meridional coordinates. The imaging resolution in
 242 the meridional direction need only be sufficient to allow us to estimate the centroid of the
 243 backscatter.

244 Clutter is mainly limited to bleedthrough in the direction of the magnetic meridian. Clut-
 245 ter is largely excluded from the horizontal bisector of the image corresponding to the mag-
 246 netic equator. Clutter associated with interferometry sidelobes is completely suppressed.
 247 However, the dynamic range of the FISTA image is also limited; pixels appear to be either
 248 fully set or fully unset throughout most of the image. Gradation in image intensity appears
 249 to be largely lost using this **and any method rooted in compressive sensing**.

250 Fig. 4 shows the results of image recovery using the OMP algorithm. For this test,
 251 we have used a transformation W consistent with a two-dimensional wavelet transform.

252 **Wavelet transforms are widely used for image analysis generally and for analysis of**

253 **astronomical data in particular (e.g. Starck and Bobin [2009] and references therein).**
 254 **The reason is that wavelets are efficient in reproducing the kind of hierarchical,**
 255 **fractal-like features that typify astronomical datasets. The experience base in iono-**
 256 **spheric imaging is much narrower, but the similarity with astronomy in terms of the**
 257 **targets at issue and the methods in use prompts trials with wavelets for the same**
 258 **reason.**

259 Here, we implement the pyramidal scheme of *Press et al.* [1988]. Daubechies d20
 260 wavelets were used, but qualitatively similar results were obtained using d12 and d4
 261 wavelets. This can be attributed to the fact that most of the information in the synthetic
 262 image is contained in the low-frequency components and so using larger filters makes little
 263 difference.

264 The tunable parameter for OMP is the number of iterations. The example shown here
 265 used 13 iterations, yielding a chi-squared value close to the number of data n . Using fewer
 266 iterations leads to images composed of simple two-dimensional shapes with a blocky ap-
 267 pearance. More iterations leads to a somewhat more elliptically-shaped center image and
 268 to clutter forms with different and more complicated shapes. In the noiseless case, the ad-
 269 ditional iterations beyond the expected number of nonzero values increases the probability
 270 of signal recovery [*Sahoo and Makur*, 2015]. However, in cases with noise, additional
 271 stopping criteria are required to avoid the selection of the zero components. *Cai and Wang*
 272 [2011] (eq. 5) propose a stopping condition to ensure signal recovery in the case of Gaus-
 273 sian noise. In this work, a chi-squared value equal to the number of data is used as the

274 stopping condition. **This is readily enforced for all the methods considered here and is**
 275 **consistent with Morozov's discrepancy principle for regularization [Morozov, 1966].**

276 The algorithm has done a reasonable job recovering the elliptical target although the
 277 stretching in the meridional direction is more severe than with the other methods. How-
 278 ever, considerable clutter is evident across the image. Like LCMV and unlike FISTA
 279 (and MaxENT as we will see), the results of **OMP with Daubechies wavelets** are not im-
 280 proved significantly by taking 1D cuts or averages since the clutter is widespread. Unlike
 281 all the other methods, OMP with Daubechies wavelets produces clutter which is not odd
 282 symmetric. When the number of iterations is increased, the clutter becomes completely
 283 asymmetric. This is particularly problematic since clutter lacking odd symmetry would be
 284 more likely to be mistaken for an interesting feature in actual imagery.

285 Note that qualitatively similar results were obtained using Daubechies wavelets with the
 286 FISTA algorithm albeit with much greater computational cost. Using the OMP algorithm
 287 without wavelet transforms, meanwhile, produces very unsatisfactory results. The algo-
 288 rithm simply selects and activates a number of pixels equal to the number of iterations in
 289 that case. Most but not all of the pixels fall within the 30-dB contours in the figure. Given
 290 a number of iterations equal to the number of data, the residual is identically zero, but the
 291 recovery of the truth image is poor. **OMP with the Dirac (or identity) basis** evidently
 292 does not perform well with distributed targets. It is known that BPDN requires fewer mea-
 293 surements than OMP to recover a signal with the same probability. Whereas OMP needs
 294 of the order of $k \ln(m)$ measurements, BPDN needs $k \ln(m/k)$ measurements [Tropp and
 295 Gilbert, 2007]. This can explain why FISTA works without transforming the domain while

296 OMP does not. The synthetic image is not sparse enough for the original basis to apply to
 297 **OMP, i.e., the MIC is not met.**

298 It is noteworthy also that the non-negativity of the image solution is not enforced when
 299 wavelet bases are incorporated in the manner described here. For references on preserving
 300 the non-negativity condition, see *Yaghoobi et al.* [2015] and *Nguyen et al.* [Sep., 2017].

301 Finally, Fig. 5 shows the results of image reconstruction using the MaxENT algorithm,
 302 following the prescription of *Hysell and Chau* [2006]. The MaxENT algorithm has a
 303 tuning parameter which is the design value for the chi-squared parameter. Here and in
 304 actual imaging experiments, we again force chi-squared to equal the number of data n .

305 Like FISTA, the MaxENT algorithm recovers an elliptical target with approximately
 306 the same width in the zonal direction as the truth model but with more than twice the
 307 width in the meridional direction. Overall, the algorithm recovers the dynamic range of
 308 the truth model with a minimum of clutter. A small amount of clutter associated with the
 309 interferometry sidelobes is visible in the upper-left and lower-right corners of the image.

310 A quantitative comparison of the four imaging methods is made in Tab. 1. For each of
 311 the methods, the relative computational cost is shown. This number is the computation
 312 time in ms on a single i7 960 CPU core with a 1733 MHz CPU speed. The four methods
 313 were implemented in C and compiled with gcc with full optimization. The implementa-
 314 tions make use of LAPACK for linear algebra operations. Computation times vary with
 315 different algorithm parameters and truth models, and the figures shown are meant to be
 316 only representative.

317 Tab. 1 also shows the RMS discrepancy between the recovered image and the truth
 318 model in dB. Assessing penalties in terms of dB quantities prevents the overemphasis of
 319 just the strongest portions of the targets, a common practice that undervalues the impor-
 320 tance of dynamic range in image construction.

321 The RMS figure of merit was computed by first thresholding the recovered image and
 322 the truth model and then summing the squares of the differences between the model and
 323 the image in dB across pixels. Thresholding means setting a -30 dB floor for both the
 324 model and the image prior to computing the metric. The rationale for thresholding is to
 325 de-emphasize discrepancies in regions of the image that are too weak to be meaningful.
 326 The two RMS error terms for each method refer to the result for the entire image and to
 327 a 1D cut through the horizontal bisector through the image, respectively. The latter is the
 328 better metric for applications involving radar backscatter from field-aligned irregularities.

329 Most of the RMS error in the tests is due to spurious clutter, although FISTA and OMP
 330 also suffer from underpredicting brightness at the periphery of the radar target. Tab. 1
 331 suggests that the imaging methods fall into two categories: slow methods that resist clutter
 332 and fast methods that are prone to clutter. In the case of the slow methods, most of the
 333 clutter in the tests is removed by considering horizontal cuts or averages through the 2D
 334 images. This is not true for the fast methods where the clutter is more widespread in the 2D
 335 images. Overall, neither FISTA nor OMP appear to offer improved performance over the
 336 more conventional methods, LCMV and MaxENT, at least as they have been formulated
 337 here.

338 We point out, however, that our formulation of MaxENT is actually similar to OMP
339 in some respects and so may also be considered a form of compressive sensing in that
340 regard. OMP attempts to form an image from a superposition of basis vectors (atoms)
341 drawn from the observation matrix such as to restrain the norm of the residual in a least-
342 squares sense. No more than n vectors may be involved. MaxENT, meanwhile, attempts
343 to reconstructs the logarithm of the image from exactly n basis vectors also drawn from
344 the observation matrix. The logarithm relationship derives from the form of Shannon's
345 entropy. To reproduce a Gaussian ellipsoid, MaxENT need therefore only construct a
346 paraboloid from the available basis vectors. This helps to explain its comparative success
347 in the tests posed in this study.

348 **We conclude this section with an analysis of the performance of the various radar**
349 **imaging methods under different levels of statistical uncertainty. Radar backscatter**
350 **from soft targets is stochastic, and uncertainty is associated with visibility estimates**
351 **based on finite time averages. The uncertainty is a function of the number of statisti-**
352 **cally independent samples, the signal-to-noise ratio, and the data themselves [Hysell**
353 **and Chau, 2006]. The associated fluctuations in the experimental visibility estimates**
354 **contribute to imaging errors.**

355 **Regularization in imaging methods is used to limit the growth of fluctuations as**
356 **they propagate from visibility estimates to brightness estimates. The penalty for reg-**
357 **ularization is bias, and the balance between fluctuations and bias is exemplified in**
358 **Fig. 6 which shows the 1D RMS error parameter as a function of the relative stan-**
359 **dard deviation of the visibility estimates (standard deviation relative to mean value).**

360 The results for the four imaging methods considered in this paper are shown. In each
 361 case, bias dominates fluctuations at small values of σ/μ where the error parameter
 362 tends to reach a floor asymptotically. The situation reverses at large values where the
 363 error parameter is an increasing function of σ/μ .

364 The transition from bias to fluctuation is different for the four methods considered.
 365 The LCMV method shows performance comparable to FISTA and MaxENT for small
 366 values of σ/μ , but performance degrades immediately as σ/μ increases. LCMV in-
 367 cludes no explicit regularization and so is nowhere bias-limited. It functions best
 368 when fluctuations in the data are small, in the large signal-to-noise ratio limit for ex-
 369 ample, but is prone to instability when fluctuations are large and the data covariance
 370 matrix becomes poorly conditioned. The results become erratic for large σ/μ .

371 OMP with a wavelet basis, meanwhile, appears to be bias-limited up through large
 372 values of σ/μ . This prevents the method from capitalizing on high-quality data that
 373 might be available, for example, in the high signal-to-noise ratio limit. The preference
 374 for sparse solutions appears to represent a strong bias that conceals image features
 375 even when they have support in the data. MaxENT and FISTA are superior in this
 376 regard in that their performance benefits from values of σ/μ as small as about 1%.
 377 Even smaller values would be difficult to achieve in practical experimental applica-
 378 tions.

Summary

379 This paper set out to compare and contrast four methods for inverting spaced-receiver
380 radar observations of field-aligned plasma density irregularities in the ionosphere. **Mea-**
381 **sured visibility data are related to desired radar images through a linear transfor-**
382 **mation similar to a Fourier transform, but the sparse and incomplete sampling of the**
383 **former necessitates the use of inverse methods in forming the latter.** Two new methods,
384 basis pursuit denoising (using FISTA) and orthogonal matching pursuit, were considered
385 along with two conventional methods based in entropy maximization (MaxENT) and adap-
386 tive beamforming (LCMV). Realistic synthetic data as might be acquired by the imaging
387 array used at the Jicamarca Radio Observatory were used for the study.

388 Choosing the right metric evaluation is important. The goal of aperture-synthesis imag-
389 ing, an underdetermined problem, is not the minimization of the norm of the residual.
390 For the MaxENT, FISTA, and OMP runs conducted here, the chi-squared parameter was
391 made to be equal to the number of data elements n in each case. The goal instead is the
392 accurate recovery of the $m \gg n$ elements of the truth model. However, the RMS discrep-
393 ancy between the truth model and the recovered image would not be a very appropriate
394 metric given the importance of dynamic range in radar imaging. All of the methods con-
395 sidered here would have scored well by this metric since they were all able to reproduce
396 the strongest parts of the truth model. We instead considered the RMS discrepancy in the
397 logarithms of the truth model and the recovered image. A threshold was set at -30 dB in the
398 calculation to avoid overemphasizing discrepancies in parts of the images that were neg-
399 ligibly small, however. By this metric, MaxENT outperformed the other methods. Basis

400 pursuit denoising performed adequately but did not reproduce the desired gradation at the
 401 boundary of the truth-model target. Neither LCMV nor OMP provided adequate clutter
 402 suppression outside the boundary of the target.

403 We note again that none of the methods tested here were able to resolve the synthetic
 404 radar target in the direction of the magnetic meridian. Radar backscatter from field-aligned
 405 irregularities occurs within a very narrow range of meridional angles, and we do not expect
 406 or even attempt to measure magnetic aspect width using imaging in practice. The important
 407 metric is the ability to recover the shape of the backscatter in the appropriate 1D cut through
 408 the 2D imagery. There are advantages in formulating the imaging problem in 2D, however,
 409 including the ability to measure the direction of the centroid of the backscatter.

410 Moreover, overestimating the width of targets in the meridional direction could pose a
 411 problem to the extent that it makes the method prone to underestimating the width in the
 412 zonal direction, a feature exhibited to some extent by all of the test cases considered here.

413 **Target widths in the two directions are coupled since the moments are approximately**
 414 **conserved.** This observation may warrant a redesign of the imaging array used routinely
 415 at Jicamarca which presently does not include long meridional baselines.

416 Methods rooted in BPDN and OMP may yet be able to perform well in the aperture-
 417 synthesis imaging problem. The impressive speed of OMP warrants an examination of
 418 different basis functions which may be more suitable for extended 2D radar targets. One
 419 intriguing possibility is the use of curvelet transforms which have proven expedient in
 420 applications similar to this one [Ma and Plonka, 2010].

421 **Acknowledgments.** This research was supported by awards AGS-1818216 from the
 422 National Science Foundation and DE-AR0000946 from ARPA-E to Cornell University.
 423 Support was also received from the Deutsche Forschungsgemeinschaft (DFG, German Re-
 424 search Foundation) under SPP 1788 (CoSIP)-CH1482/3-1. The Jicamarca Radio Observa-
 425 tory is a facility of the Instituto Geofísico del Perú operated with support from NSF award
 426 AGS-1732209 through Cornell.

References

427 Beck, A., and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear
 428 inverse problems, *SIAM J. Imag. Sci.*, 2, 183–202, 2009.

429 Cai, T., and L. Wang, Orthogonal matching pursuit for sparse signal recovery with noise,
 430 *IEEE Trans. Inf. Theory*, 57, 4680–4688, 2011.

431 Cai, T. T., L. Wang, and G. Xu, Stable recovery of sparse signals and an oracle inequality,
 432 *IEEE Trans. Inf. Theory*, 56, 3516–3522, 10.1109/TIT.2010.2048506, 2010.

433 Candés, E. J., and T. Tao, Near-optimal signal recovery from random projections: universal
 434 encoding strategies?, *IEEE Trans. Inf. Theory*, 52, 5406–5425, 2006.

435 Candés, E. J., K. Romberg, and T. Tao, Robust uncertainty principles: Exact signal recon-
 436 struction from highly incomplete frequency information, *IEEE Trans. Inform. Theory*,
 437 52, 489–509, 2006.

438 Capon, J., High-resolution frequency-wavenumber spectrum analysis, *Proc. IEEE*, 57,
 439 1408, 1969.

440 Donoho, D., Compressed sensing, *IEEE Trans. Inform. Theory*, 52, 1289–1306,
 441 doi:10.1109/TIT.2006.871,582, 2006.

442 Donoho, D. L., and X. Huo, Uncertainty principles and ideal atmnoic decomposition, *IEEE*
 443 *Trans. Inf. Theory*, 47, 2845–2862, 2001.

444 Farley, D. T., H. M. Ierkic, and B. G. Fejer, Radar interferometry: A new technique for
 445 studying plasma turbulence in the ionosphere, *J. Geophys. Res.*, 86, 1467–1472, 1981.

446 Harding, B. J., and M. A. Milla, Radar imaging with compressed sensing, *Radio Sci.*, pp.
 447 582–588, DOI: 10.1002/rds.20,063, 2013.

448 Högbom, J. A., Aperture synthesis with a non-regular distribution of interferometer base-
 449 lines, *Astron. Astrophys. Supp.*, 15, 417–426, 1974.

450 Hysell, D. L., Radar imaging of equatorial *F* region irregularities with maximum entropy
 451 interferometry, *Radio Sci.*, 31, 1567, 1996.

452 Hysell, D. L., and J. L. Chau, Optimal aperture synthesis radar imaging, *Radio Sci.*, 41,
 453 10.1029/2005RS003,383, RS2003, 2006.

454 Hysell, D. L., M. Yamamoto, and S. Fukao, Imaging radar observations and theory of type
 455 I and type II quasi-periodic echoes, *J. Geophys. Res.*, 107 (A11), 1360, 2002.

456 Hysell, D. L., M. F. Larsen, and Q. H. Zhou, Common volume coherent and incoherent
 457 scatter radar observations of mid-latitude sporadic *E*-layers and QP echoes, *Ann. Geo-*
 458 *phys.*, 22, 3277–3290, 2004.

459 Hysell, D. L., G. Michhue, M. F. Larsen, R. Pfaff, M. Nicolls, C. Heinselman, and H. Bah-
 460 civan, Imaging radar observations of Farley Buneman waves during the JOULE II ex-
 461 periment, *Ann. Geophys.*, 26, 1837–1850, 2008.

462 Kallummil, S., and S. Kalyani, Tuning free orthogonal matching pursuit, *arXiv.org*, p.
463 arXiv:1703.05080v1, 2017.

464 Kudeki, E., and F. Sürçü, Radar interferometric imaging of field-aligned plasma irregu-
465 larities in the equatorial electrojet, *Geophys. Res. Lett.*, 18, 41, 1991.

466 Ma, J., and G. Plonka, The curvelet transform, *IEEE Sig. Proc. Mag.*, 2, 118–133, 2010.

467 Mackenzie, D., *What's Happening in the Mathematical Sciences*, vol. 7, American Math-
468 ematical Society, Providence, RI, 2009.

469 Morozov, V. A., On the solution of functional equations by the method of regularization,
470 *Soviet Math. Dokl.*, 7, 414–417, 1966.

471 Nesterov, Y. E., A method for solving a convex programming problem with convergence
472 rate $O(1/k^2)$, *Soviet Math. Doklady*, 27, 372–376, 1983.

473 Nguyen, T. T., C. Soussen, J. Idier, and E.-H. Djermoune, An optimized version of non-
474 negative OMP, XXVIE Colloque GRETSI Traitement du Signal & des Images, GRETSI
475 2017, Juan-les-Pins, France, Sep., 2017.

476 Peng, Z., M. Yan, and W. Yin, Parallel and distributed sparse optimization, Paper presented
477 at the 2013 Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
478 CA, USA, 3–6 Nov., 2013.

479 Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, *Numerical Recipes in*
480 *C*, Cambridge Univ. Press, New York, 1988.

481 Rani, M., S. B. Dhok, and R. B. Deshmukh, A systematic review of compressive
482 sensing: Concepts, implications, and applications, *IEEE Access*, 6, 4875–4894,
483 DOI:10.1109/ACCESS.2018/2793,851, 2018.

484 Sahoo, S. K., and A. Makur, Signal recovery from random measurements via extended
485 orthogonal matching pursuit, *IEE Trans. Sig. Proc.*, p. doi: 10.1109/TSP.2015.2413384,
486 2015.

487 Saito, S., M. Yamamoto, H. Hashiguchi, and A. Maegawa, Observation of three-
488 dimensional signatures of quasi-periodic echoes associated with mid-latitude sporadic-
489 E layers by MU radar ultra-multi-channel system, *Geophys. Res. Lett.*, 33, L14109,
490 doi:10.1029/2005GL025,526, 2006.

491 Saito, S., M. Yamamoto, and H. Hashiguchi, Imaging observations of nighttime mid-
492 latitude F-region field-aligned irregularities by an MU radar ultra-multi-channel system,
493 *Ann. Geophys.*, 26, 2345–2352, 2008.

494 Skilling, J., and R. K. Bryan, Maximum entropy image reconstruction: General algorithm,
495 *Mon. Not. R. Astron. Soc.*, 211, 111, 1984.

496 Sommer, S., and J. L. Chau, Patches of polar mesospheric summer echoes characterized
497 from radar imaging observations with MAARSY, *Ann. Geophys.*, 34, 1231–1241, 2016.

498 Starck, J.-L., and J. Bobin, Astronomical data analysis and sparsity: from wavelets to com-
499 pressed sensing, *Astronomical Data Analysis*, p. <https://arxiv.org/pdf/0903.3383.pdf>,
500 2009.

501 Thompson, A. R., *Interferometry and Synthesis in Radio Astronomy*, John Wiley, New
502 York, 1986.

503 Tibshirani, R., Regression shrinkage and selection via the Lasso, *J. Roy. Stat. Soc.*, 58,
504 267–288, 1996.

505 Tropp, J., Greed is good: Algorithmic results for sparse approximation, *IEEE Trans. Inf.*

506 *Theory.*, 50, 2231–2242, 2004.

507 Tropp, J., Just relax: Convex programming methods for identifying sparse signals in noise,

508 *IEEE Trans. Inf. Theory.*, 52, 1030–1051, 2006.

509 Tropp, J., and C. Gilbert, Signal recovery from random measurements via orthogonal

510 matching pursuit, *IEEE Trans. Inf. Theory.*, 53, 4655–4666, 2007.

511 Urco, J. M., J. L. Chau, M. A. Milla, J. P. Vierinen, and T. Weber, Coherent

512 MIMO to improve aperture synthesis radar imaging of field-aligned irregularities:

513 First results at Jicamarca, *IEEE Trans. Geosci. and Remote Sens.*, 56, 2980–2990,

514 doi:10.1109/TGRS.2017.2788425, 2018a.

515 Urco, J. M., J. L. Chau, T. Weber, and R. Lateck, Enhancing the spatio-temporal fea-

516 tures of polar mesosphere summer echoes using coherent MIMO and radar imaging at

517 MAARSY, *Atmos. Meas. Tech.*, pp. <https://doi.org/10.5194/amt-2018-258>, 2018b.

518 Wilczek, R., and S. Drapatz, A high accuracy algorithm for maximum entropy image

519 restoration in the case of small data sets, *Astron. Astrophys.*, 142, 9, 1985.

520 Yaghoobi, M., D. Wu, and M. E. Davies, Fast non-negative orthogonal matching pursuit,

521 *IEEE Signal Proc. Lett.*, 22, 1229–1233, 10.1109/LSP.2015.2393637, 2015.

522 Yang, A. Y., Z. Zhou, A. G. Balasubramanian, S. S. Sastry, and Y. Ma, Fast l_1 -

523 minimization algorithms for robust face recognition, *IEE Trans. Img. Proc.*, 22, 3234–

524 3246, doi:10.1109/TIP.2013.2262292, 2013.

525 Yu, T. Y., R. D. Palmer, and D. L. Hysell, A simulation study of coherent radar imaging,

526 *Radio Sci.*, 35, 1129, 2000.

Figure 1. Configuration of the antenna array of the Jicamarca Radio Observatory in imaging mode. The corners of the main array are nearly aligned with the cardinal directions, and the north-south line is closely aligned with the direction of the geomagnetic field at present. Module coordinates with respect to the array center are indicated. The distance between adjoining modules is 36 m, and the longest baseline is 569 m. Seven modules of the main array plus an eighth outrigger array are used for imaging.

Figure 2. Image recovered from synthetic data using the LCMV algorithm. The imaging domain spans ± 0.1 rad in the plane of the magnetic equator (horizontal direction) and ± 0.02 rad in the plane of the magnetic meridian (vertical). The resolution of the image is 128×32 . Grayscales denote brightness relative to the maximum in dB. Red dashed contours represent the -10 dB, -20 dB, and -30 dB contours of the truth model, a Gaussian ellipsoid.

Figure 3. Image recovered from synthetic data using the FISTA algorithm.

Figure 4. Image recovered from synthetic data using the OMP model.

Figure 5. Image recovered from synthetic data using the MaxENT algorithm.

Method	Time (ms)	RMS error (dB)	1D cut (dB)
LCMV	20	12.73	9.99
FISTA	1920	5.16	3.82
OMP	10	9.83	8.11
MaxENT	1090	4.66	1.86

Table 1. Comparison of aperture synthesis imaging methods. The execution time is measured in ms, and the RMS error is measured in dB. The two RMS error figures refer to the entire 2D image and to a 1D cut through the horizontal bisector through the image, respectively (see text).

Figure 6. RMS errors for 1D cuts versus the relative standard deviation of visibility measurements for four aperture synthesis imaging methods.