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Key Points.
1. Compressed sensing inverse methods applied to aperture synthesis radar
imaging of ionospheric plasma density irregularities. 2. Performance of basis
pursuit denoising (BPDN) and orthogonal matching pursuit (OMP) generally
inferior to that of maximum-entropy method (MaxENT). 3. Computational
speed of OMP is attractive and prompts research into more suitable function
library.

Inverse methods involving compressive sensing are tested in the application
of two-dimensional aperture-synthesis imaging of radar backscatter from field-
aligned plasma density irregularities in the ionosphere. We consider basis pur-
suit denoising (BPDN), implemented with the FISTA algorithm, and orthogo-
nal matching pursuit (OMP) with a wavelet basis in the evaluation. These meth-
ods are compared with two more conventional optimization methods rooted in
entropy maximization (MaxENT) and adaptive beamforming (Linear Constrained
Minimum Variance or LCMV or often “Capon’s Method.”) Synthetic data cor-
responding to an extended ionospheric radar target are considered. We find that
MaxENT outperforms the other methods in terms of its ability to recover im-
agery of an extended target with broad dynamic range. FISTA performs reason-
ably well but does not reproduce the full dynamic range of the target. It is also
the most computationally expensive of the methods tested. OMP is very fast com-
putationally but prone to a high degree of clutter in this application. We also point
out that the formulation of MaxENT used here is very similar to OMP in some

respects, the difference being that the former reconstructs the logarithm of the
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1o 1mage rather than the image itself from basis vectors extracted from the obser-
2 vation matrix. MaxENT could in that regard be considered a form of compres-

2 sive sensing.
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4 : IMAGING WITH COMPRESSIVE SENSING

1. Introduction

Aperture-synthesis methods have been used in radio astronomy since the 1950s to form
images of distant radio sources from spaced-receiver interferometry data. The signals from
the receivers are stochastic and exhibit jointly-normal multivariate statistics. All of the
information is therefore contained in the second-order statistics or the spatial covariances
or “visibilities.” The transformation between the measured visibility data and the desired
brightness function, which specifies the radiation intensity versus bearing, is linear and
closely related to a Fourier transform [Thompson, 1986]. Aperture-synthesis methods are
inverse methods for computing the transformation on the basis of sparse and noisy data.
The problem is generally underdetermined and poorly conditioned.

Only fairly recently have aperture synthesis methods been applied to radar observations
of the upper atmosphere and ionosphere (see e.g. Kudeki and Stirticii [1991]; Hysell [1996];
Hysell et al. [2002, 2004]; Saito et al. [2006]; Hysell et al. [2008]; Saito et al. [2008];
Sommer and Chau [2016]; Urco et al. [2018a, b]). The problem is similar to the one in
radio astronomy with a few important differences. For one, the number of receivers used
in upper-atmospheric radar applications has so far been relatively small, spaced-receiver
imaging being mainly an afterthought in radar design. For another, the required cadence of
measurements in upper-atmospheric radar applications can be very high. Images typically
need to be formed in tens of Doppler frequency bins and in hundreds or thousands of range
gates at an experimental cadence of about once per second. This makes computational

efficiency critical.
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: IMAGING WITH COMPRESSIVE SENSING 5

Most crucially, whereas astronomical images are typically characterized by point
sources, radar targets in the upper atmosphere and ionosphere tend to be spatially ex-
tended and “blobby.” The targets are much weaker at the periphery than at the center, and
preserving the boundaries requires methods with high dynamic range. The faithful recon-
struction of edges is also important for inferring velocities from time series. Metrics
for evaluating competing methods should be designed around this requirement.

The most widely-used imaging methods in upper-atmospheric research include adap-
tive beamforming methods like the one described by Capon [1969], iterative deconvolu-
tion methods like CLEAN [Hogbom, 1974], and Bayesian optimization methods rooted in
maximum entropy (e.g. [Skilling and Bryan, 1984]). In this paper, we consider methods
arising from recent advances in the field of compressive sensing. Compressive sensing for
one-dimensional imaging was evaluated recently by Harding and Milla [2013] who exam-
ined coherent backscatter from ionospheric plasma density irregularities at the magnetic
equator. We pursue the same problem, this time considering imaging in two dimensions.
The results should apply equally well to ionospheric scatter at low, middle, and high lati-
tudes as well as to scatter from index-of-refraction variations in the neutral lower, middle,

and upper atmosphere.

2. Compressive sensing and radar imaging
Compressive sensing has occupied a central role in image processing research for more
than a decade and has significantly increased the acuity of any number of experimental

modalities (see Mackenzie [2009] and references therein for review). The idea involves re-
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6 : IMAGING WITH COMPRESSIVE SENSING

producing undersampled signals accurately by exploiting inherent sparseness of the sam-
ples in an appropriately-chosen basis. Two-dimensional photographic images can often
be represented very accurately by a small number of nonzero coefficients when expressed
in a wavelet basis, for example. This implies not only the efficacy of image compres-
sion but also an opportunity for novel sampling strategies that incorporate sparseness into
their design. The practical advantages of restoring a signal from sparse samples, as op-
posed to sampling the signal fully in the Nyquist sense, compressing the results, and then
decompressing them later, are obvious. Moreover, the prospect of recovering complex sig-
nals from a small number of samples or from a small number of non-adaptive sensors has
tremendous appeal in scientific realms where dense sensor arrays may be impractical to
deploy to begin with. Aperture-synthesis radar imaging, which seeks the best estimate of
the image brightness on the basis of a few measurements of the visibility, belongs in this
realm.

The obvious objective function for evaluating sparseness is the [, pseudonorm, ||z||, the
number of nonzero entries in the vector x. If x € R™ is a state vector which is s-sparse
(has at most s nonzero entries) and is constrained by a data vector y € R” through an
observation model Ax = y, where A € R"*™ is a non-invertible observation matrix, then
a reasonable model for x could be a vector with the smallest number of non-zero values

which satisfies the observation model, viz.:
x = argmin ||z||,: Az —y =0 (1)

which is a constrained optimization problem. This model yields not just accurate but exact

recovery of undersampled state vectors under the condition that A is one-to-one in all
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: IMAGING WITH COMPRESSIVE SENSING 7

2s-sparse vectors. However, this is prohibitively complex (hard) optimization problem in
computational enumeration.
In practice, the problem in (1) may be replaced by a closely related problem known as

basis pursuit [Donoho, 2006]. Here, the [, pseudonorm is relaxed to the /; norm, i.e.
x = argmin ||z||; : Ax —y =0 2)

where the /; norm enforces sparsity in a manner similar to the /, norm. The simple
modification transforms the task from an enumeration problem to a problem in convex
optimization which can be solved practically using linear programming methods.
Numerous sufficient conditions for unique recovery of an s-sparse vector x from ba-
sis pursuit and related approaches are discussed in the literature including the restricted
isometry property (RIP) [Candés et al., 2006; Candés and Tao, 2006], the exact recov-
ery condition (ERC) [Tropp, 2004, 2006], and the mutual incoherence condition (MIC)
[Donoho and Huo, 2001; Tropp, 2006]. The last of these options is the most intuitive and
most practical to evaluate. The mutual coherence for a matrix A with columns with unity

{5 norms is defined in terms of
fa = max |AT Ay, 3)
i#£]

i.e., the maximum pairwise column correlation. The sufficient condition for sparse signal
recovery is that j14 < (2s — 1)~1. This is also the worst-case necessary condition [Tropp,

2004].
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8 : IMAGING WITH COMPRESSIVE SENSING

3. Basis Pursuit Denoising (BPDN)

Signal sparsity is approximate rather than exact in practice, and the samples them-
selves are contaminated by noise. In this case, the basis pursuit problem is further
relaxed to the nearby basis pursuit denoising (BPDN) problem which includes the
provision for a finite residual which is weighted together with the sparsity penalty in

the objective function:
x = argmin (||Az — y|5 + A||z|}1) “4)

Eq. 4 has the form of a regularized least-squares regression problem with \ being the
regularization parameter. While eq. 4 is sometimes referred to as having Lagrangian
form, ) is not an undetermined Lagrange multiplier here since the /; norm term does
not function as a constraint. The )\ parameter merely represents the tradeoff between
the fidelity of the experiments and the noise sensitivity.

Note that two other problems are closely related to BPDN:

r = argmin ||z||; : [|Az — y||3 < € ®)

T = argflin\\Aw—y\\Sr\\xlll <e ()
where ¢ is a tunable parameter like \. All three problems have the same solutions for
the appropriate choices of A\ and ¢ which will depend on the data. The variant of the
problem in S will be discussed further below. The variant in 6 incorporates the least
absolute shrinkage and selection operator (Lasso) [Tibshirani, 1996]. An “‘elastic net”
variant of the problem adds a regularization term based on the /;-norm of x to the

objective function.
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: IMAGING WITH COMPRESSIVE SENSING 9

While the observation matrix and the data in radar imaging experiments are complex,
we consider the real and imaginary parts of the observing model separately, making n
twice the number of interferometry baselines. This greatly simplifies the handling of the
[; norm but necessitates an explicit treatment of the real and imaginary parts of the data in
the error analysis [Hysell and Chau, 2006]. The positive definite symmetric inverse error
covariance matrix C;' given there can be factored as C;;' = C T/ gon "2 In order to
incorporate error propagation, A and y are pre-whitened through scaling by the square root
information matrix Cd_l/Q, ie. (Ar —y) — C'd_l/z(Ax — ).

Likewise, a change of basis can be accommodated through the transformation Ax —
(AW =1)(Wz) where W is a linear transformation from state space to a basis where spar-
sity is optimized. For example, as discussed below, it is commonplace in compressive
sensing to transform to a wavelet basis in which imagery can sometimes be repre-
sented very sparsely. The MIC condition then applies to the new observation matrix
AW, In this case, the last step of the algorithm is the transformation of the solution
vector x back to image space.

Note, finally, that the [, regularization problem can be cast in the form of a constrained
quadratic optimization problem by defining z = u — v, where u and v are the parts of
x that are positive and negative, respectively, and restricting the solution domain to the
region v > 0,v > 0 so that ||z||; — u + v. This reformulation invites the application of
any number of popular optimization methods rooted in linear programming. The penalty

is the doubling in length of the solution vector.
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10 : IMAGING WITH COMPRESSIVE SENSING

A range of approaches can be applied to BPDN and related problems (see Yang et al.
[2013]; Rani et al. [2018] for reviews). Here, we pursue the fast iterative shrinkage
thresholding algorithm (FISTA), a fast gradient algorithm which is simple to implement
for aperture-synthesis imaging [Beck and Teboulle, 2009]. The algorithm depends on the
concept of the proximal gradient which is summarized briefly below.

Gradient algorithms must cope with the fact that /; norm of a function is nondiffer-
entiable. An option for convex nondifferentiable functions is to substitute the gradient
operator with the subgradient operator which bounds the gradient. The subgradient of the
l1 norm of x is simply sign(z). The subgradient method applied to BPDN can be solved
iteratively using a conventional gradient descent method, but convergence will be slow.

In a proximal gradient method, which can be viewed as a generalized gradient descent
method, the objective function is divided into two parts, i.e. x = argmin, (g(z) + h(z)),
where g(x) is convex and differentiable and h(x) is convex and possibly nondifferentiable.
Eq. 4 is obviously in this form. The idea then is to iteratively minimize the sum of h and a
quadratic local model of g. Toward this end, define the proximal operator of the function

h about z as:

1
prox,,(z) = argmin (h(x) + £||x - z||§) @)
Each iteration proceeds from the results of the last, shifted opposite the direction of the
local gradient of g, viz.

2k = proxakh(xk_l — oszg(xk_l)) )
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: IMAGING WITH COMPRESSIVE SENSING 11

where the step size oy, can either be a fixed constant or determined by a line search. For
the [;-regularized quadratic regression problem, stability is guaranteed by setting oy, to a
constant equal to the reciprocal of the smallest Lipschitz constant of V¢ which is twice the
largest eigenvalue of AT A. This in turn can be calculated using the power method with
negligible computational burden.

In the case of the regularized least squares problem, g(x) is quadratic, and its gradient has
an elementary linear form, i.e., A7 (Ax —y). Furthermore, for h(z) = \||z||1, the proximal

operator or shrinkage function is given by the iterative soft thresholding function:

— sign(y)A > )\
prox, (y) = 4758 WAyl = A ©)
0 otherwise

In the event that only positive values of = are admissible, as is the case for some formula-
tions of the radar-imaging problem, that condition can be readily incorporated in eq. 9 as
well.

The iterative shrinkage thresholding algorithm (ISTA) implied by eq. 8 can be shown
to converge at a rate that is linear in k like a standard gradient descent method under the
condition that Vg is continuous in the L-Lipschitz sense, for both fixed and variable step
sizes. The FISTA algorithm, meanwhile, is able to achieve a quadratic rate of convergence
by incorporating Nesterov’s acceleration method [Nesterov, 1983]. The modified algorithm

for FISTA, including acceleration, is [Beck and Teboulle, 2009]

2 = prox, (2" — V(2" ")) (10)
1 2
ty = 5(1+\/1+4tk_1> (11)
th1— 1
=t %(zk — 1) (12)
k
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12 : IMAGING WITH COMPRESSIVE SENSING

with eq. 9 giving the proximal gradient. The algorithm is iterated to convergence with
convergence criteria typically being based on the norm of z* — 2.

Note that a parallelized version of FISTA (pFISTA) has been developed by Peng et al.
[3-6 Nov., 2013]. For the aperture-synthesis imaging application, parallelization can be

exploited without reformulating the basis algorithm simply by computing images for dif-

ferent Doppler spectral bins and range gates in separate processes.

4. Orthogonal Matching Pursuit (OMP)

A computationally expedient and highly intuitive alternative for sparse least-squares es-
timation is orthogonal matching pursuit (see e.g. Tropp and Gilbert [2007]; Cai et al.
[2010]; Cai and Wang [2011]). This is a greedy algorithm that formulates estimates of the
state vector by applying the least-squares pseudoinverse to a submatrix of the original mea-
surement matrix A. The submatrix starts from a null matrix and grows with each iteration
with the addition of a column selected and copied from A. The column selected is the one
with the highest correlation with the current residual. Iteration continues until a stopping
criterion is met.

At this point, the state estimate is consistent with the data while being maximally
sparse. In terms of the discussion above, OMP solves the compressive sensing prob-
lem stated in 5 which, like BPDN, makes allowance for observation noise. OMP be-
gins from an essentially minimalist representation of the state vector and expands it in

the /;-norm sense until the residual falls below a specified threshold. As with BPDN,
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: IMAGING WITH COMPRESSIVE SENSING 13

it is often expedient to transorm the problem using a basis in which the solution is
especially sparse.

Define A;, € R™** to be a submatrix of A with its k& columns having been copied from
A. At each iteration, k is increased as the column of A most highly correlated with the

current residual r is appended to Ax. The residual at the kth iteration is defined as:

= (I - Ady)y (14)
A = (ATA)~1AT (15)

Here, A is the standard least-squares pseudoinverse, and the estimator 2% = fiky e R™is
defined so as to have k£ < m nonzero elements with indices that correspond to the indices
of the columns copied from A in the order in which they were copied. The index of the
selected column is the index of the term in A7 with the largest modulus.

Allowances for statistical errors can be introduced through incorporation of the square-
root data covariance matrix C'; '/2 described earlier. Note also that additional regularization
can be introduced here through the appropriate augmentation of the least-squares pseudoin-
verse. Stopping criteria may be based either on the size of the residual or the anticipated
sparsity of the solution. Absent the explicit introduction of regularization, OMP has no
tuning parameters comparable to the A parameter in BPDN. The choice of stopping con-
ditions in the standard algorithm is subjective, however, particularly if neither the sparsity
nor the data error covariances are known a priori [Kallummil and Kalyani, 2017]. Note that

the number of iterations can be no larger than the number of data n. When the number of
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14 : IMAGING WITH COMPRESSIVE SENSING

basis functions is larger than the number of data, the problem becomes underdetermined,
and the least-squares pseudoinverse ceases to exist. After n iterations, the problem is even

determined, and the residual is identically zero.

5. Comparison using synthetic data

It is illustrative to benchmark the most common algorithms applied to the aperture syn-
thesis imaging problem. Among them is the adaptive beamforming method often attributed
to Capon [1969] and referred to as the linearly-constrained minimum variance (LCMV) or
the minimum variance distortionless response (MVDR) method (or simply as “Capon’s
method.””) We also consider the maximum entropy method (MaxENT) as formulated by
Wilczek and Drapatz [1985]. The relative performance of the two methods applied to the
aperture-synthesis imaging problem has been evaluated by Yu et al. [2000]. Another popu-
lar algorithm for aperture synthesis imaging is CLEAN [Hogbom, 1974]. In hindsight, this
can be viewed as a special case of OMP and so will not be considered explicitly here.

We consider synthetic data comparable to what would be acquired by the Jicamarca
Radio Observatory measuring coherent scatter from field-aligned plasma density irregular-
ities in the equatorial ionosphere. The typical receiving antenna configuration is shown in
Fig. 1. Reception is performed using eight antenna sub-modules. Eight antennas imply 28
non-redundant interferometry baselines or 29 including the zero baseline. (The number of
data, n, is therefore 58). The radar operates at 50 MHz, and so the longest interferometry

baseline, 569 m, is approximately 95 wavelengths long.
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: IMAGING WITH COMPRESSIVE SENSING 15

Since the scattering irregularities are aligned with the geomagnetic field, the spatial cor-
relation length of the backscatter in the north-south direction is very long and just barely
measurable at Jicamarca [Farley et al., 1981]. The most important information is to be
found in the correlation length of the backscatter in the east-west direction, but there is util-
ity in measuring the centroid of the backscatter in the north-south direction which varies
somewhat with range.

We consider an imaging domain spanning 0.1 rad. in the plane of the magnetic equator
and + 0.02 rad. in the plane of the magnetic meridian. The former figure is roughly the
effective field of view illuminated by the Jicamarca radar in imaging mode. The synthetic
target is an elongated Gaussian ellipsoid with a half-width in the plane of the magnetic
equator 10 times wider than in the plane of the magnetic meridian. The image will be
constructed in a domain 128 pixels in the plane of the magnetic equator by 32 pixels in the
plane of the magnetic meridian. The observing matrix for the problem is given by Hysell
and Chau [2006].

Normally distributed independent noise is added to the synthetic visibility data for
nonzero lags at the 2% level. This is a simplified treatment for observation noise and rep-
resents an upper bound for the experimental uncertainty associated with a signal-to-noise
ratio larger than unity and averages of 2500 statistically-independent samples. In actual ex-
periments, noise bias in the zero-baseline data is estimated and removed, and so no noise
bias will be added here. For an exhaustive treatment of error analysis and propagation in

aperture-synthesis imaging, see Hysell and Chau [2006].
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16 : IMAGING WITH COMPRESSIVE SENSING

Fig. 2 shows the results of image recovery using the LCMV method which serves here as
a baseline. Grayscales indicate relative backscatter intensity in dB relative to the intensity
at the center of the target. We plot 30 dB of dynamic range in the figure. In practical radar
experiments, radar clutter from pulse coding is generally present at the level of about -22
to -25 dB. We desire about 30 dB of usable dynamic range from imaging methods so that
pulse coding rather than radar imaging will be the limiting factor for radar clutter. The
elliptical contours represent the truth model and indicate backscatter at the -10 dB, -20 dB,
and -30 dB levels, respectively.

LCMYV has no tuning parameters and also no means of incorporating estimates of mea-
surement confidence levels in the analysis. The method has accurately recovered the
strongest intensity region within the 10-dB contour. However, the method has done a
poor job of rejecting clutter outside the 30-dB contour. (We define clutter as extraneous in-
tensity outside the 30-dB boundary of the truth model.) Strong artifacts are present across
the image. The clutter level rises sharply as the level of random fluctuations added to the
synthetic data is increased.

Fig. 3 shows the results of image recovery using the FISTA algorithm. For this test,
we do not incorporate wavelet transforms and simply minimize the /; norm of the im-
age brightness itself. Since the intensity is non-negative, we can and do incorporate that
information in the computation of the proximal gradient to speed computation.

There is one tunable parameter in FISTA — the regularization parameter A. The larger
the value of ), the greater the tendency toward sparse solutions. Here and in the methods

to follow, A has been adjusted so as to make the chi-squared parameter equal to the number
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: IMAGING WITH COMPRESSIVE SENSING 17

of data n. This has the effect of limiting clutter while adequately filling the truth-model
contours.

FISTA recovers an elliptical target with approximately the same width in the zonal di-
rection as the truth model but with more than twice the width in the meridional direction.
This is a consequence of the fact that the interferometry baselines in the meridional di-
rection are relatively short while the target itself is relatively narrow. (Note that highly
field-aligned targets have long spatial correlation lengths and elongated visibilities in
the direction of the magnetic meridian and, consequently, narrow angular meridional
widths in brightness imagery.) This is not an important shortcoming in practice where
1D images are normally extracted from the 2D images either by taking a horizontal cut or
by averaging over a narrow range of meridional coordinates. The imaging resolution in
the meridional direction need only be sufficient to allow us to estimate the centroid of the
backscatter.

Clutter is mainly limited to bleedthrough in the direction of the magnetic meridian. Clut-
ter is largely excluded from the horizontal bisector of the image corresponding to the mag-
netic equator. Clutter associated with interferometry sidelobes is completely suppressed.
However, the dynamic range of the FISTA image is also limited; pixels appear to be either
fully set or fully unset throughout most of the image. Gradation in image intensity appears
to be largely lost using this and any method rooted in compressive sensing.

Fig. 4 shows the results of image recovery using the OMP algorithm. For this test,
we have used a transformation W consistent with a two-dimensional wavelet transform.

Wavelet transforms are widely used for image analysis generally and for analysis of
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18 : IMAGING WITH COMPRESSIVE SENSING

astronomical data in particular (e.g. Starck and Bobin [2009] and references therein).
The reason is that wavelets are efficient in reproducing the kind of hierarchical,
fractal-like features that typify astronomical datasets. The experience base in iono-
spheric imaging is much narrower, but the similarity with astronomy in terms of the
targets at issue and the methods in use prompts trials with wavelets for the same
reason.

Here, we implement the pyramidal scheme of Press et al. [1988]. Daubechies d20
wavelets were used, but qualitatively similar results were obtained using d12 and d4
wavelets. This can be attributed to the fact that most of the information in the synthetic
image is contained in the low-frequency components and so using larger filters makes little
difference.

The tunable parameter for OMP is the number of iterations. The example shown here
used 13 iterations, yielding a chi-squared value close to the number of data n. Using fewer
iterations leads to images composed of simple two-dimensional shapes with a blocky ap-
pearance. More iterations leads to a somewhat more elliptically-shaped center image and
to clutter forms with different and more complicated shapes. In the noiseless case, the ad-
ditional iterations beyond the expected number of nonzero values increases the probability
of signal recovery [Sahoo and Makur, 2015]. However, in cases with noise, additional
stopping criteria are required to avoid the selection of the zero components. Cai and Wang
[2011] (eq. 5) propose a stopping condition to ensure signal recovery in the case of Gaus-

sian noise. In this work, a chi-squared value equal to the number of data is used as the
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: IMAGING WITH COMPRESSIVE SENSING 19

stopping condition. This is readily enforced for all the methods considered here and is
consistent with Morozov’s discrepancy principle for regularization [Morozov, 1966].

The algorithm has done a reasonable job recovering the elliptical target although the
stretching in the meridional direction is more severe than with the other methods. How-
ever, considerable clutter is evident across the image. Like LCMV and unlike FISTA
(and MaxENT as we will see), the results of OMP with Daubechies wavelets are not im-
proved significantly by taking 1D cuts or averages since the clutter is widespread. Unlike
all the other methods, OMP with Daubechies wavelets produces clutter which is not odd
symmetric. When the number of iterations is increased, the clutter becomes completely
asymmetric. This is particularly problematic since clutter lacking odd symmetry would be
more likely to be mistaken for an interesting feature in actual imagery.

Note that qualitatively similar results were obtained using Daubechies wavelets with the
FISTA algorithm albeit with much greater computational cost. Using the OMP algorithm
without wavelet transforms, meanwhile, produces very unsatisfactory results. The algo-
rithm simply selects and activated a number of pixels equal to the number of iterations in
that case. Most but not all of the pixels fall within the 30-dB contours in the figure. Given
a number of iterations equal to the number of data, the residual is identically zero, but the
recovery of the truth image is poor. OMP with the Dirac (or identity) basis evidently
does not perform well with distributed targets. It is known that BPDN requires fewer mea-
surements than OMP to recover a signal with the same probability. Whereas OMP needs
of the order of kln(m) measurements, BPDN needs kln(m/k) measurements [Tropp and

Gilbert,2007]. This can explain why FISTA works without transforming the domain while
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OMP does not. The synthetic image is not sparse enough for the original basis to apply to
OMP, i.e., the MIC is not met.

It is noteworthy also that the non-negativity of the image solution is not enforced when
wavelet bases are incorporated in the manner described here. For references on preserving
the non-negativity condition, see Yaghoobi et al. [2015] and Nguyen et al. [Sep., 2017].

Finally, Fig. 5 shows the results of image reconstruction using the MaxENT algorithm,
following the prescription of Hysell and Chau [2006]. The MaxENT algorithm has a
tuning parameter which is the design value for the chi-squared parameter. Here and in
actual imaging experiments, we again force chi-squared to equal the number of data n.

Like FISTA, the MaxENT algorithm recovers an elliptical target with approximately
the same width in the zonal direction as the truth model but with more than twice the
width in the meridional direction. Overall, the algorithm recovers the dynamic range of
the truth model with a minimum of clutter. A small amount of clutter associated with the
interferometry sidelobes is visible in the upper-left and lower-right corners of the image.

A quantitative comparison of the four imaging methods is made in Tab. 1. For each of
the methods, the relative computational cost is shown. This number is the computation
time in ms on a single 17 960 CPU core with a 1733 MHz CPU speed. The four methods
were implemented in C and compiled with gcc with full optimization. The implementa-
tions make use of LAPACK for linear algebra operations. Computation times vary with
different algorithm parameters and truth models, and the figures shown are meant to be

only representative.
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Tab. 1 also shows the RMS discrepancy between the recovered image and the truth
model in dB. Assessing penalties in terms of dB quantities prevents the overemphasis of
just the strongest portions of the targets, a common practice that undervalues the impor-
tance of dynamic range in image construction.

The RMS figure of merit was computed by first thresholding the recovered image and
the truth model and then summing the squares of the differences between the model and
the image in dB across pixels. Thresholding means setting a -30 dB floor for both the
model and the image prior to computing the metric. The rationale for thresholding is to
de-emphasize discrepancies in regions of the image that are too weak to be meaningful.
The two RMS error terms for each method refer to the result for the entire image and to
a 1D cut through the horizontal bisector through the image, respectively. The latter is the
better metric for applications involving radar backscatter from field-aligned irregularities.

Most of the RMS error in the tests is due to spurious clutter, although FISTA and OMP
also suffer from underpredicting brightness at the periphery of the radar target. Tab. 1
suggests that the imaging methods fall into two categories: slow methods that resist clutter
and fast methods that are prone to clutter. In the case of the slow methods, most of the
clutter in the tests is removed by considering horizontal cuts or averages through the 2D
images. This is not true for the fast methods where the clutter is more widespread in the 2D
images. Overall, neither FISTA nor OMP appear to offer improved performance over the
more conventional methods, LCMV and MaxENT, at least as they have been formulated

here.
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We point out, however, that our formulation of MaxENT is actually similar to OMP
in some respects and so may also be considered a form of compressive sensing in that
regard. OMP attempts to form an image from a superposition of basis vectors (atoms)
drawn from the observation matrix such as to restrain the norm of the residual in a least-
squares sense. No more than n vectors may be involved. MaxENT, meanwhile, attempts
to reconstructs the logarithm of the image from exactly n basis vectors also drawn from
the observation matrix. The logarithm relationship derives from the form of Shannon’s
entropy. To reproduce a Gaussian ellipsoid, MaxENT need therefore only construct a
paraboloid from the available basis vectors. This helps to explain its comparative success
in the tests posed in this study.

We conclude this section with an analysis of the performance of the various radar
imaging methods under different levels of statistical uncertainty. Radar backscatter
from soft targets is stochastic, and uncertainty is associated with visibility estimates
based on finite time averages. The uncertainty is a function of the number of statisti-
cally independent samples, the signal-to-noise ratio, and the data themselves [Hysell
and Chau, 2006]. The associated fluctuations in the experimental visibility estimates
contribute to imaging errors.

Regularization in imaging methods is used to limit the growth of fluctuations as
they propagate from visibility estimates to brightness estimates. The penalty for reg-
ularization is bias, and the balance between fluctuations and bias is exemplified in
Fig. 6 which shows the 1D RMS error parameter as a function of the relative stan-

dard deviation of the visibility estimates (standard deviation relative to mean value).
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The results for the four imaging methods considered in this paper are shown. In each
case, bias dominates fluctuations at small values of o/; where the error parameter
tends to reach a floor asymptotically. The situation reverses at large values where the
error parameter is an increasing function of /.

The transition from bias to fluctuation is different for the four methods considered.
The LCMYV method shows performance comparable to FISTA and MaxENT for small
values of o/, but performance degrades immediately as o/ increases. LCMYV in-
cludes no explicit regularization and so is nowhere bias-limited. It functions best
when fluctuations in the data are small, in the large signal-to-noise ratio limit for ex-
ample, but is prone to instability when fluctuations are large and the data covariance
matrix becomes poorly conditioned. The results become erratic for large o /.

OMP with a wavelet basis, meanwhile, appears to be bias-limited up through large
values of o /. This prevents the method from capitalizing on high-quality data that
might be available, for example, in the high signal-to-noise ratio limit. The preference
for sparse solutions appears to represent a strong bias that conceals image features
even when they have support in the data. MaxENT and FISTA are superior in this
regard in that their performance benefits from values of o/ as small as about 1%.
Even smaller values would be difficult to achieve in practical experimental applica-

tions.
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Summary

This paper set out to compare and contrast four methods for inverting spaced-receiver
radar observations of field-aligned plasma density irregularities in the ionosphere. Mea-
sured visibility data are related to desired radar images through a linear transfor-
mation similar to a Fourier transform, but the sparse and incomplete sampling of the
former necessitates the use of inverse methods in forming the latter. Two new methods,
basis pursuit denoising (using FISTA) and orthogonal matching pursuit, were considered
along with two conventional methods based in entropy maximization (MaxENT) and adap-
tive beamforming (LCMV). Realistic synthetic data as might be acquired by the imaging
array used at the Jicamarca Radio Observatory were used for the study.

Choosing the right metric evaluation is important. The goal of aperture-synthesis imag-
ing, an underdetermined problem, is not the minimization of the norm of the residual.
For the MaxENT, FISTA, and OMP runs conducted here, the chi-squared parameter was
made to be equal to the number of data elements 7 in each case. The goal instead is the
accurate recovery of the m > n elements of the truth model. However, the RMS discrep-
ancy between the truth model and the recovered image would not be a very appropriate
metric given the importance of dynamic range in radar imaging. All of the methods con-
sidered here would have scored well by this metric since they were all able to reproduce
the strongest parts of the truth model. We instead considered the RMS discrepancy in the
logarithms of the truth model and the recovered image. A threshold was set at -30 dB in the
calculation to avoid overemphasizing discrepancies in parts of the images that were neg-

ligibly small, however. By this metric, MaxENT outperformed the other methods. Basis
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pursuit denoising performed adequately but did not reproduce the desired gradation at the
boundary of the truth-model target. Neither LCMV nor OMP provided adequate clutter
suppression outside the boundary of the target.

We note again that none of the methods tested here were able to resolve the synthetic
radar target in the direction of the magnetic meridian. Radar backscatter from field-aligned
irregularities occurs within a very narrow range of meridional angles, and we do not expect
or even attempt to measure magnetic aspect width using imaging in practice. The important
metric is the ability to recover the shape of the backscatter in the appropriate 1D cut through
the 2D imagery. There are advantages in formulating the imaging problem in 2D, however,
including the ability to measure the direction of the centroid of the backscatter.

Moreover, overestimating the width of targets in the meridional direction could pose a
problem to the extent that it makes the method prone to underestimating the width in the
zonal direction, a feature exhibited to some extent by all of the test cases considered here.
Target widths in the two directions are coupled since the moments are approximately
conserved. This observation may warrant a redesign of the imaging array used routinely
at Jicamarca which presently does not include long meridional baselines.

Methods rooted in BPDN and OMP may yet be able to perform well in the aperture-
synthesis imaging problem. The impressive speed of OMP warrants an examination of
different basis functions which may be more suitable for extended 2D radar targets. One
intriguing possibility is the use of curvelet transforms which have proven expedient in

applications similar to this one [Ma and Plonka, 2010].
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Figure 1. Configuration of the antenna array of the Jicamarca Radio Observatory in imag-
ing mode. The corners of the main array are nearly aligned with the cardinal directions,
and the north-south line is closely aligned with the direction of the geomagnetic field at
present. Module coordinates with respect to the array center are indicated. The distance
between adjoining modules is 36 m, and the longest baseline is 569 m. Seven modules of

the main array plus an eighth outrigger array are used for imaging.
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LCMV imagery
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Figure 2. Image recovered from synthetic data using the LCMV algorithm. The imaging
domain spans 0.1 rad in the plane of the magnetic equator (horizontal direction) and
40.02 rad in the plane of them magnetic meridian (vertical). The resolution of the image
is 128x32. Grayscales denote brightness relative to the maximum in dB. Red dashed
contours represent the -10 dB, -20 dB, and -30 dB contours of the truth model, a Gaussian

ellipsoid.
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FISTA imagery
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Figure 3. Image recovered from synthetic data using the FISTA algorithm.
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OMP imagery
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Figure 4. Image recovered from synthetic data using the OMP model.
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MaxENT imagery
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Figure 5. Image recovered from synthetic data using the MaxENT algorithm.
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Method Time (ms) RMS error (dB) 1D cut (dB)

LCMV 20 12.73 9.99
FISTA 1920 5.16 3.82
OMP 10 9.83 8.11
MaxENT 1090 4.66 1.86

Table 1. Comparison of aperture synthesis imaging methods. The execution time is

measured in ms, and the RMS error is measured in dB. The two RMS error figures refer

to the entire 2D image and to a 1D cut through the horizontal bisector through the image,

respectively (see text).
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Figure 6. RMS errors for 1D cuts versus the relative standard deviation of visibility

measurements for four aperture synthesis imaging methods.
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