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Key Points.

1. Compressed sensing inverse methods applied to aperture synthesis radar

imaging of ionospheric plasma density irregularities. 2. Performance of basis

pursuit denoising (BPDN) and orthogonal matching pursuit (OMP) generally

inferior to that of maximum-entropy method (MaxENT). 3. Computational

speed of OMP is attractive and prompts research into more suitable function

library.

Inverse methods involving compressive sensing are tested in the application3

of two-dimensional aperture-synthesis imaging of radar backscatter from field-4

aligned plasma density irregularities in the ionosphere. We consider basis pur-5

suit denoising (BPDN), implemented with the FISTA algorithm, and orthogo-6

nal matching pursuit (OMP) with a wavelet basis in the evaluation. These meth-7

ods are compared with two more conventional optimization methods rooted in8

entropy maximization (MaxENT) and adaptive beamforming (Linear Constrained9

Minimum Variance or LCMV or often “Capon’s Method.”) Synthetic data cor-10

responding to an extended ionospheric radar target are considered. We find that11

MaxENT outperforms the other methods in terms of its ability to recover im-12

agery of an extended target with broad dynamic range. FISTA performs reason-13

ably well but does not reproduce the full dynamic range of the target. It is also14

the most computationally expensive of the methods tested. OMP is very fast com-15

putationally but prone to a high degree of clutter in this application. We also point16

out that the formulation of MaxENT used here is very similar to OMP in some17

respects, the difference being that the former reconstructs the logarithm of the18
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image rather than the image itself from basis vectors extracted from the obser-19

vation matrix. MaxENT could in that regard be considered a form of compres-20

sive sensing.21
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1. Introduction

Aperture-synthesis methods have been used in radio astronomy since the 1950s to form22

images of distant radio sources from spaced-receiver interferometry data. The signals from23

the receivers are stochastic and exhibit jointly-normal multivariate statistics. All of the24

information is therefore contained in the second-order statistics or the spatial covariances25

or “visibilities.” The transformation between the measured visibility data and the desired26

brightness function, which specifies the radiation intensity versus bearing, is linear and27

closely related to a Fourier transform [Thompson, 1986]. Aperture-synthesis methods are28

inverse methods for computing the transformation on the basis of sparse and noisy data.29

The problem is generally underdetermined and poorly conditioned.30

Only fairly recently have aperture synthesis methods been applied to radar observations31

of the upper atmosphere and ionosphere (see e.g. Kudeki and Sürücü [1991]; Hysell [1996];32

Hysell et al. [2002, 2004]; Saito et al. [2006]; Hysell et al. [2008]; Saito et al. [2008];33

Sommer and Chau [2016]; Urco et al. [2018a, b]). The problem is similar to the one in34

radio astronomy with a few important differences. For one, the number of receivers used35

in upper-atmospheric radar applications has so far been relatively small, spaced-receiver36

imaging being mainly an afterthought in radar design. For another, the required cadence of37

measurements in upper-atmospheric radar applications can be very high. Images typically38

need to be formed in tens of Doppler frequency bins and in hundreds or thousands of range39

gates at an experimental cadence of about once per second. This makes computational40

efficiency critical.41
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Most crucially, whereas astronomical images are typically characterized by point42

sources, radar targets in the upper atmosphere and ionosphere tend to be spatially ex-43

tended and “blobby.” The targets are much weaker at the periphery than at the center, and44

preserving the boundaries requires methods with high dynamic range. The faithful recon-45

struction of edges is also important for inferring velocities from time series. Metrics46

for evaluating competing methods should be designed around this requirement.47

The most widely-used imaging methods in upper-atmospheric research include adap-48

tive beamforming methods like the one described by Capon [1969], iterative deconvolu-49

tion methods like CLEAN [Högbom, 1974], and Bayesian optimization methods rooted in50

maximum entropy (e.g. [Skilling and Bryan, 1984]). In this paper, we consider methods51

arising from recent advances in the field of compressive sensing. Compressive sensing for52

one-dimensional imaging was evaluated recently by Harding and Milla [2013] who exam-53

ined coherent backscatter from ionospheric plasma density irregularities at the magnetic54

equator. We pursue the same problem, this time considering imaging in two dimensions.55

The results should apply equally well to ionospheric scatter at low, middle, and high lati-56

tudes as well as to scatter from index-of-refraction variations in the neutral lower, middle,57

and upper atmosphere.58

2. Compressive sensing and radar imaging

Compressive sensing has occupied a central role in image processing research for more59

than a decade and has significantly increased the acuity of any number of experimental60

modalities (see Mackenzie [2009] and references therein for review). The idea involves re-61
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producing undersampled signals accurately by exploiting inherent sparseness of the sam-62

ples in an appropriately-chosen basis. Two-dimensional photographic images can often63

be represented very accurately by a small number of nonzero coefficients when expressed64

in a wavelet basis, for example. This implies not only the efficacy of image compres-65

sion but also an opportunity for novel sampling strategies that incorporate sparseness into66

their design. The practical advantages of restoring a signal from sparse samples, as op-67

posed to sampling the signal fully in the Nyquist sense, compressing the results, and then68

decompressing them later, are obvious. Moreover, the prospect of recovering complex sig-69

nals from a small number of samples or from a small number of non-adaptive sensors has70

tremendous appeal in scientific realms where dense sensor arrays may be impractical to71

deploy to begin with. Aperture-synthesis radar imaging, which seeks the best estimate of72

the image brightness on the basis of a few measurements of the visibility, belongs in this73

realm.74

The obvious objective function for evaluating sparseness is the l◦ pseudonorm, ||x||◦, the

number of nonzero entries in the vector x. If x ∈ R
m is a state vector which is s-sparse

(has at most s nonzero entries) and is constrained by a data vector y ∈ R
n through an

observation model Ax = y, where A ∈ R
n×m is a non-invertible observation matrix, then

a reasonable model for x could be a vector with the smallest number of non-zero values

which satisfies the observation model, viz.:

x = argmin
x

||x||◦ : Ax− y = 0 (1)

which is a constrained optimization problem. This model yields not just accurate but exact75

recovery of undersampled state vectors under the condition that A is one-to-one in all76
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2s-sparse vectors. However, this is prohibitively complex (hard) optimization problem in77

computational enumeration.78

In practice, the problem in (1) may be replaced by a closely related problem known as

basis pursuit [Donoho, 2006]. Here, the l◦ pseudonorm is relaxed to the l1 norm, i.e.

x = argmin
x

||x||1 : Ax− y = 0 (2)

where the l1 norm enforces sparsity in a manner similar to the l◦ norm. The simple79

modification transforms the task from an enumeration problem to a problem in convex80

optimization which can be solved practically using linear programming methods.81

Numerous sufficient conditions for unique recovery of an s-sparse vector x from ba-

sis pursuit and related approaches are discussed in the literature including the restricted

isometry property (RIP) [Candés et al., 2006; Candés and Tao, 2006], the exact recov-

ery condition (ERC) [Tropp, 2004, 2006], and the mutual incoherence condition (MIC)

[Donoho and Huo, 2001; Tropp, 2006]. The last of these options is the most intuitive and

most practical to evaluate. The mutual coherence for a matrix A with columns with unity

l2 norms is defined in terms of

µA = max
i 6=j

|AT
i Aj|, (3)

i.e., the maximum pairwise column correlation. The sufficient condition for sparse signal82

recovery is that µA < (2s− 1)−1. This is also the worst-case necessary condition [Tropp,83

2004].84
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3. Basis Pursuit Denoising (BPDN)

Signal sparsity is approximate rather than exact in practice, and the samples them-

selves are contaminated by noise. In this case, the basis pursuit problem is further

relaxed to the nearby basis pursuit denoising (BPDN) problem which includes the

provision for a finite residual which is weighted together with the sparsity penalty in

the objective function:

x = argmin
x

(

||Ax− y||2
2
+ λ||x||1

)

(4)

Eq. 4 has the form of a regularized least-squares regression problem with λ being the85

regularization parameter. While eq. 4 is sometimes referred to as having Lagrangian86

form, λ is not an undetermined Lagrange multiplier here since the l1 norm term does87

not function as a constraint. The λ parameter merely represents the tradeoff between88

the fidelity of the experiments and the noise sensitivity.89

Note that two other problems are closely related to BPDN:

x = argmin
x

||x||1 : ||Ax− y||2
2
≤ ǫ (5)

x = argmin
x

||Ax− y||2
2
: ||x||1 ≤ ǫ (6)

where ǫ is a tunable parameter like λ. All three problems have the same solutions for90

the appropriate choices of λ and ǫ which will depend on the data. The variant of the91

problem in 5 will be discussed further below. The variant in 6 incorporates the least92

absolute shrinkage and selection operator (Lasso) [Tibshirani, 1996]. An “elastic net”93

variant of the problem adds a regularization term based on the l2-norm of x to the94

objective function.95
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While the observation matrix and the data in radar imaging experiments are complex,96

we consider the real and imaginary parts of the observing model separately, making n97

twice the number of interferometry baselines. This greatly simplifies the handling of the98

l1 norm but necessitates an explicit treatment of the real and imaginary parts of the data in99

the error analysis [Hysell and Chau, 2006]. The positive definite symmetric inverse error100

covariance matrix C−1

d given there can be factored as C−1

d = C
−T/2
d C

−1/2
d . In order to101

incorporate error propagation, A and y are pre-whitened through scaling by the square root102

information matrix C
−1/2
d , i.e. (Ax− y) → C

−1/2
d (Ax− y).103

Likewise, a change of basis can be accommodated through the transformation Ax →104

(AW−1)(Wx) where W is a linear transformation from state space to a basis where spar-105

sity is optimized. For example, as discussed below, it is commonplace in compressive106

sensing to transform to a wavelet basis in which imagery can sometimes be repre-107

sented very sparsely. The MIC condition then applies to the new observation matrix108

AW−1. In this case, the last step of the algorithm is the transformation of the solution109

vector x back to image space.110

Note, finally, that the l1 regularization problem can be cast in the form of a constrained111

quadratic optimization problem by defining x = u − v, where u and v are the parts of112

x that are positive and negative, respectively, and restricting the solution domain to the113

region u ≥ 0, v ≥ 0 so that ||x||1 → u + v. This reformulation invites the application of114

any number of popular optimization methods rooted in linear programming. The penalty115

is the doubling in length of the solution vector.116
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A range of approaches can be applied to BPDN and related problems (see Yang et al.117

[2013]; Rani et al. [2018] for reviews). Here, we pursue the fast iterative shrinkage118

thresholding algorithm (FISTA), a fast gradient algorithm which is simple to implement119

for aperture-synthesis imaging [Beck and Teboulle, 2009]. The algorithm depends on the120

concept of the proximal gradient which is summarized briefly below.121

Gradient algorithms must cope with the fact that l1 norm of a function is nondiffer-122

entiable. An option for convex nondifferentiable functions is to substitute the gradient123

operator with the subgradient operator which bounds the gradient. The subgradient of the124

l1 norm of x is simply sign(x). The subgradient method applied to BPDN can be solved125

iteratively using a conventional gradient descent method, but convergence will be slow.126

In a proximal gradient method, which can be viewed as a generalized gradient descent

method, the objective function is divided into two parts, i.e. x = argminx (g(x) + h(x)),

where g(x) is convex and differentiable and h(x) is convex and possibly nondifferentiable.

Eq. 4 is obviously in this form. The idea then is to iteratively minimize the sum of h and a

quadratic local model of g. Toward this end, define the proximal operator of the function

h about z as:

proxαh(z) = argmin
x

(

h(x) +
1

2α
||x− z||2

2

)

(7)

Each iteration proceeds from the results of the last, shifted opposite the direction of the

local gradient of g, viz.

xk = proxαkh
(xk−1 − αk∇g(xk−1)) (8)
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where the step size αk can either be a fixed constant or determined by a line search. For127

the l1-regularized quadratic regression problem, stability is guaranteed by setting αk to a128

constant equal to the reciprocal of the smallest Lipschitz constant of ∇g which is twice the129

largest eigenvalue of ATA. This in turn can be calculated using the power method with130

negligible computational burden.131

In the case of the regularized least squares problem, g(x) is quadratic, and its gradient has

an elementary linear form, i.e., AT (Ax−y). Furthermore, for h(x) = λ||x||1, the proximal

operator or shrinkage function is given by the iterative soft thresholding function:

proxλh(y) =

{

y − sign(y)λ |y| ≥ λ

0 otherwise
(9)

In the event that only positive values of x are admissible, as is the case for some formula-132

tions of the radar-imaging problem, that condition can be readily incorporated in eq. 9 as133

well.134

The iterative shrinkage thresholding algorithm (ISTA) implied by eq. 8 can be shown

to converge at a rate that is linear in k like a standard gradient descent method under the

condition that ∇g is continuous in the L-Lipschitz sense, for both fixed and variable step

sizes. The FISTA algorithm, meanwhile, is able to achieve a quadratic rate of convergence

by incorporating Nesterov’s acceleration method [Nesterov, 1983]. The modified algorithm

for FISTA, including acceleration, is [Beck and Teboulle, 2009]

zk = proxαkλh
(xk−1 − αk∇g(xk−1)) (10)

tk =
1

2

(

1 +
√

1 + 4t2k−1

)

(11)

xk = zk +
tk−1 − 1

tk
(zk − zk−1) (12)
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with eq. 9 giving the proximal gradient. The algorithm is iterated to convergence with135

convergence criteria typically being based on the norm of xk − zk.136

Note that a parallelized version of FISTA (pFISTA) has been developed by Peng et al.137

[3–6 Nov., 2013]. For the aperture-synthesis imaging application, parallelization can be138

exploited without reformulating the basis algorithm simply by computing images for dif-139

ferent Doppler spectral bins and range gates in separate processes.140

4. Orthogonal Matching Pursuit (OMP)

A computationally expedient and highly intuitive alternative for sparse least-squares es-141

timation is orthogonal matching pursuit (see e.g. Tropp and Gilbert [2007]; Cai et al.142

[2010]; Cai and Wang [2011]). This is a greedy algorithm that formulates estimates of the143

state vector by applying the least-squares pseudoinverse to a submatrix of the original mea-144

surement matrix A. The submatrix starts from a null matrix and grows with each iteration145

with the addition of a column selected and copied from A. The column selected is the one146

with the highest correlation with the current residual. Iteration continues until a stopping147

criterion is met.148

At this point, the state estimate is consistent with the data while being maximally149

sparse. In terms of the discussion above, OMP solves the compressive sensing prob-150

lem stated in 5 which, like BPDN, makes allowance for observation noise. OMP be-151

gins from an essentially minimalist representation of the state vector and expands it in152

the l1-norm sense until the residual falls below a specified threshold. As with BPDN,153
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it is often expedient to transorm the problem using a basis in which the solution is154

especially sparse.155

Define Ak ∈ R
n×k to be a submatrix of A with its k columns having been copied from

A. At each iteration, k is increased as the column of A most highly correlated with the

current residual r is appended to Ak. The residual at the kth iteration is defined as:

rk = y −Ax̂k (13)

= (I − AÃk)y (14)

Ã ≡ (ATA)−1AT (15)

Here, Ã is the standard least-squares pseudoinverse, and the estimator x̂k = Ãky ∈ R
m is156

defined so as to have k < m nonzero elements with indices that correspond to the indices157

of the columns copied from A in the order in which they were copied. The index of the158

selected column is the index of the term in AT r with the largest modulus.159

Allowances for statistical errors can be introduced through incorporation of the square-160

root data covariance matrixC
−1/2
d described earlier. Note also that additional regularization161

can be introduced here through the appropriate augmentation of the least-squares pseudoin-162

verse. Stopping criteria may be based either on the size of the residual or the anticipated163

sparsity of the solution. Absent the explicit introduction of regularization, OMP has no164

tuning parameters comparable to the λ parameter in BPDN. The choice of stopping con-165

ditions in the standard algorithm is subjective, however, particularly if neither the sparsity166

nor the data error covariances are known a priori [Kallummil and Kalyani, 2017]. Note that167

the number of iterations can be no larger than the number of data n. When the number of168
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basis functions is larger than the number of data, the problem becomes underdetermined,169

and the least-squares pseudoinverse ceases to exist. After n iterations, the problem is even170

determined, and the residual is identically zero.171

5. Comparison using synthetic data

It is illustrative to benchmark the most common algorithms applied to the aperture syn-172

thesis imaging problem. Among them is the adaptive beamforming method often attributed173

to Capon [1969] and referred to as the linearly-constrained minimum variance (LCMV) or174

the minimum variance distortionless response (MVDR) method (or simply as “Capon’s175

method.”) We also consider the maximum entropy method (MaxENT) as formulated by176

Wilczek and Drapatz [1985]. The relative performance of the two methods applied to the177

aperture-synthesis imaging problem has been evaluated by Yu et al. [2000]. Another popu-178

lar algorithm for aperture synthesis imaging is CLEAN [Högbom, 1974]. In hindsight, this179

can be viewed as a special case of OMP and so will not be considered explicitly here.180

We consider synthetic data comparable to what would be acquired by the Jicamarca181

Radio Observatory measuring coherent scatter from field-aligned plasma density irregular-182

ities in the equatorial ionosphere. The typical receiving antenna configuration is shown in183

Fig. 1. Reception is performed using eight antenna sub-modules. Eight antennas imply 28184

non-redundant interferometry baselines or 29 including the zero baseline. (The number of185

data, n, is therefore 58). The radar operates at 50 MHz, and so the longest interferometry186

baseline, 569 m, is approximately 95 wavelengths long.187
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Since the scattering irregularities are aligned with the geomagnetic field, the spatial cor-188

relation length of the backscatter in the north-south direction is very long and just barely189

measurable at Jicamarca [Farley et al., 1981]. The most important information is to be190

found in the correlation length of the backscatter in the east-west direction, but there is util-191

ity in measuring the centroid of the backscatter in the north-south direction which varies192

somewhat with range.193

We consider an imaging domain spanning ±0.1 rad. in the plane of the magnetic equator194

and ± 0.02 rad. in the plane of the magnetic meridian. The former figure is roughly the195

effective field of view illuminated by the Jicamarca radar in imaging mode. The synthetic196

target is an elongated Gaussian ellipsoid with a half-width in the plane of the magnetic197

equator 10 times wider than in the plane of the magnetic meridian. The image will be198

constructed in a domain 128 pixels in the plane of the magnetic equator by 32 pixels in the199

plane of the magnetic meridian. The observing matrix for the problem is given by Hysell200

and Chau [2006].201

Normally distributed independent noise is added to the synthetic visibility data for202

nonzero lags at the 2% level. This is a simplified treatment for observation noise and rep-203

resents an upper bound for the experimental uncertainty associated with a signal-to-noise204

ratio larger than unity and averages of 2500 statistically-independent samples. In actual ex-205

periments, noise bias in the zero-baseline data is estimated and removed, and so no noise206

bias will be added here. For an exhaustive treatment of error analysis and propagation in207

aperture-synthesis imaging, see Hysell and Chau [2006].208
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Fig. 2 shows the results of image recovery using the LCMV method which serves here as209

a baseline. Grayscales indicate relative backscatter intensity in dB relative to the intensity210

at the center of the target. We plot 30 dB of dynamic range in the figure. In practical radar211

experiments, radar clutter from pulse coding is generally present at the level of about -22212

to -25 dB. We desire about 30 dB of usable dynamic range from imaging methods so that213

pulse coding rather than radar imaging will be the limiting factor for radar clutter. The214

elliptical contours represent the truth model and indicate backscatter at the -10 dB, -20 dB,215

and -30 dB levels, respectively.216

LCMV has no tuning parameters and also no means of incorporating estimates of mea-217

surement confidence levels in the analysis. The method has accurately recovered the218

strongest intensity region within the 10-dB contour. However, the method has done a219

poor job of rejecting clutter outside the 30-dB contour. (We define clutter as extraneous in-220

tensity outside the 30-dB boundary of the truth model.) Strong artifacts are present across221

the image. The clutter level rises sharply as the level of random fluctuations added to the222

synthetic data is increased.223

Fig. 3 shows the results of image recovery using the FISTA algorithm. For this test,224

we do not incorporate wavelet transforms and simply minimize the l1 norm of the im-225

age brightness itself. Since the intensity is non-negative, we can and do incorporate that226

information in the computation of the proximal gradient to speed computation.227

There is one tunable parameter in FISTA – the regularization parameter λ. The larger228

the value of λ, the greater the tendency toward sparse solutions. Here and in the methods229

to follow, λ has been adjusted so as to make the chi-squared parameter equal to the number230
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of data n. This has the effect of limiting clutter while adequately filling the truth-model231

contours.232

FISTA recovers an elliptical target with approximately the same width in the zonal di-233

rection as the truth model but with more than twice the width in the meridional direction.234

This is a consequence of the fact that the interferometry baselines in the meridional di-235

rection are relatively short while the target itself is relatively narrow. (Note that highly236

field-aligned targets have long spatial correlation lengths and elongated visibilities in237

the direction of the magnetic meridian and, consequently, narrow angular meridional238

widths in brightness imagery.) This is not an important shortcoming in practice where239

1D images are normally extracted from the 2D images either by taking a horizontal cut or240

by averaging over a narrow range of meridional coordinates. The imaging resolution in241

the meridional direction need only be sufficient to allow us to estimate the centroid of the242

backscatter.243

Clutter is mainly limited to bleedthrough in the direction of the magnetic meridian. Clut-244

ter is largely excluded from the horizontal bisector of the image corresponding to the mag-245

netic equator. Clutter associated with interferometry sidelobes is completely suppressed.246

However, the dynamic range of the FISTA image is also limited; pixels appear to be either247

fully set or fully unset throughout most of the image. Gradation in image intensity appears248

to be largely lost using this and any method rooted in compressive sensing.249

Fig. 4 shows the results of image recovery using the OMP algorithm. For this test,250

we have used a transformation W consistent with a two-dimensional wavelet transform.251

Wavelet transforms are widely used for image analysis generally and for analysis of252
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astronomical data in particular (e.g. Starck and Bobin [2009] and references therein).253

The reason is that wavelets are efficient in reproducing the kind of hierarchical,254

fractal-like features that typify astronomical datasets. The experience base in iono-255

spheric imaging is much narrower, but the similarity with astronomy in terms of the256

targets at issue and the methods in use prompts trials with wavelets for the same257

reason.258

Here, we implement the pyramidal scheme of Press et al. [1988]. Daubechies d20259

wavelets were used, but qualitatively similar results were obtained using d12 and d4260

wavelets. This can be attributed to the fact that most of the information in the synthetic261

image is contained in the low-frequency components and so using larger filters makes little262

difference.263

The tunable parameter for OMP is the number of iterations. The example shown here264

used 13 iterations, yielding a chi-squared value close to the number of data n. Using fewer265

iterations leads to images composed of simple two-dimensional shapes with a blocky ap-266

pearance. More iterations leads to a somewhat more elliptically-shaped center image and267

to clutter forms with different and more complicated shapes. In the noiseless case, the ad-268

ditional iterations beyond the expected number of nonzero values increases the probability269

of signal recovery [Sahoo and Makur, 2015]. However, in cases with noise, additional270

stopping criteria are required to avoid the selection of the zero components. Cai and Wang271

[2011] (eq. 5) propose a stopping condition to ensure signal recovery in the case of Gaus-272

sian noise. In this work, a chi-squared value equal to the number of data is used as the273
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stopping condition. This is readily enforced for all the methods considered here and is274

consistent with Morozov’s discrepancy principle for regularization [Morozov, 1966].275

The algorithm has done a reasonable job recovering the elliptical target although the276

stretching in the meridional direction is more severe than with the other methods. How-277

ever, considerable clutter is evident across the image. Like LCMV and unlike FISTA278

(and MaxENT as we will see), the results of OMP with Daubechies wavelets are not im-279

proved significantly by taking 1D cuts or averages since the clutter is widespread. Unlike280

all the other methods, OMP with Daubechies wavelets produces clutter which is not odd281

symmetric. When the number of iterations is increased, the clutter becomes completely282

asymmetric. This is particularly problematic since clutter lacking odd symmetry would be283

more likely to be mistaken for an interesting feature in actual imagery.284

Note that qualitatively similar results were obtained using Daubechies wavelets with the285

FISTA algorithm albeit with much greater computational cost. Using the OMP algorithm286

without wavelet transforms, meanwhile, produces very unsatisfactory results. The algo-287

rithm simply selects and activated a number of pixels equal to the number of iterations in288

that case. Most but not all of the pixels fall within the 30-dB contours in the figure. Given289

a number of iterations equal to the number of data, the residual is identically zero, but the290

recovery of the truth image is poor. OMP with the Dirac (or identity) basis evidently291

does not perform well with distributed targets. It is known that BPDN requires fewer mea-292

surements than OMP to recover a signal with the same probability. Whereas OMP needs293

of the order of kln(m) measurements, BPDN needs kln(m/k) measurements [Tropp and294

Gilbert, 2007]. This can explain why FISTA works without transforming the domain while295
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OMP does not. The synthetic image is not sparse enough for the original basis to apply to296

OMP, i.e., the MIC is not met.297

It is noteworthy also that the non-negativity of the image solution is not enforced when298

wavelet bases are incorporated in the manner described here. For references on preserving299

the non-negativity condition, see Yaghoobi et al. [2015] and Nguyen et al. [Sep., 2017].300

Finally, Fig. 5 shows the results of image reconstruction using the MaxENT algorithm,301

following the prescription of Hysell and Chau [2006]. The MaxENT algorithm has a302

tuning parameter which is the design value for the chi-squared parameter. Here and in303

actual imaging experiments, we again force chi-squared to equal the number of data n.304

Like FISTA, the MaxENT algorithm recovers an elliptical target with approximately305

the same width in the zonal direction as the truth model but with more than twice the306

width in the meridional direction. Overall, the algorithm recovers the dynamic range of307

the truth model with a minimum of clutter. A small amount of clutter associated with the308

interferometry sidelobes is visible in the upper-left and lower-right corners of the image.309

A quantitative comparison of the four imaging methods is made in Tab. 1. For each of310

the methods, the relative computational cost is shown. This number is the computation311

time in ms on a single i7 960 CPU core with a 1733 MHz CPU speed. The four methods312

were implemented in C and compiled with gcc with full optimization. The implementa-313

tions make use of LAPACK for linear algebra operations. Computation times vary with314

different algorithm parameters and truth models, and the figures shown are meant to be315

only representative.316
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Tab. 1 also shows the RMS discrepancy between the recovered image and the truth317

model in dB. Assessing penalties in terms of dB quantities prevents the overemphasis of318

just the strongest portions of the targets, a common practice that undervalues the impor-319

tance of dynamic range in image construction.320

The RMS figure of merit was computed by first thresholding the recovered image and321

the truth model and then summing the squares of the differences between the model and322

the image in dB across pixels. Thresholding means setting a -30 dB floor for both the323

model and the image prior to computing the metric. The rationale for thresholding is to324

de-emphasize discrepancies in regions of the image that are too weak to be meaningful.325

The two RMS error terms for each method refer to the result for the entire image and to326

a 1D cut through the horizontal bisector through the image, respectively. The latter is the327

better metric for applications involving radar backscatter from field-aligned irregularities.328

Most of the RMS error in the tests is due to spurious clutter, although FISTA and OMP329

also suffer from underpredicting brightness at the periphery of the radar target. Tab. 1330

suggests that the imaging methods fall into two categories: slow methods that resist clutter331

and fast methods that are prone to clutter. In the case of the slow methods, most of the332

clutter in the tests is removed by considering horizontal cuts or averages through the 2D333

images. This is not true for the fast methods where the clutter is more widespread in the 2D334

images. Overall, neither FISTA nor OMP appear to offer improved performance over the335

more conventional methods, LCMV and MaxENT, at least as they have been formulated336

here.337
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We point out, however, that our formulation of MaxENT is actually similar to OMP338

in some respects and so may also be considered a form of compressive sensing in that339

regard. OMP attempts to form an image from a superposition of basis vectors (atoms)340

drawn from the observation matrix such as to restrain the norm of the residual in a least-341

squares sense. No more than n vectors may be involved. MaxENT, meanwhile, attempts342

to reconstructs the logarithm of the image from exactly n basis vectors also drawn from343

the observation matrix. The logarithm relationship derives from the form of Shannon’s344

entropy. To reproduce a Gaussian ellipsoid, MaxENT need therefore only construct a345

paraboloid from the available basis vectors. This helps to explain its comparative success346

in the tests posed in this study.347

We conclude this section with an analysis of the performance of the various radar348

imaging methods under different levels of statistical uncertainty. Radar backscatter349

from soft targets is stochastic, and uncertainty is associated with visibility estimates350

based on finite time averages. The uncertainty is a function of the number of statisti-351

cally independent samples, the signal-to-noise ratio, and the data themselves [Hysell352

and Chau, 2006]. The associated fluctuations in the experimental visibility estimates353

contribute to imaging errors.354

Regularization in imaging methods is used to limit the growth of fluctuations as355

they propagate from visibility estimates to brightness estimates. The penalty for reg-356

ularization is bias, and the balance between fluctuations and bias is exemplified in357

Fig. 6 which shows the 1D RMS error parameter as a function of the relative stan-358

dard deviation of the visibility estimates (standard deviation relative to mean value).359
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The results for the four imaging methods considered in this paper are shown. In each360

case, bias dominates fluctuations at small values of σ/µ where the error parameter361

tends to reach a floor asymptotically. The situation reverses at large values where the362

error parameter is an increasing function of σ/µ.363

The transition from bias to fluctuation is different for the four methods considered.364

The LCMV method shows performance comparable to FISTA and MaxENT for small365

values of σ/µ, but performance degrades immediately as σ/µ increases. LCMV in-366

cludes no explicit regularization and so is nowhere bias-limited. It functions best367

when fluctuations in the data are small, in the large signal-to-noise ratio limit for ex-368

ample, but is prone to instability when fluctuations are large and the data covariance369

matrix becomes poorly conditioned. The results become erratic for large σ/µ.370

OMP with a wavelet basis, meanwhile, appears to be bias-limited up through large371

values of σ/µ. This prevents the method from capitalizing on high-quality data that372

might be available, for example, in the high signal-to-noise ratio limit. The preference373

for sparse solutions appears to represent a strong bias that conceals image features374

even when they have support in the data. MaxENT and FISTA are superior in this375

regard in that their performance benefits from values of σ/µ as small as about 1%.376

Even smaller values would be difficult to achieve in practical experimental applica-377

tions.378
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Summary

This paper set out to compare and contrast four methods for inverting spaced-receiver379

radar observations of field-aligned plasma density irregularities in the ionosphere. Mea-380

sured visibility data are related to desired radar images through a linear transfor-381

mation similar to a Fourier transform, but the sparse and incomplete sampling of the382

former necessitates the use of inverse methods in forming the latter. Two new methods,383

basis pursuit denoising (using FISTA) and orthogonal matching pursuit, were considered384

along with two conventional methods based in entropy maximization (MaxENT) and adap-385

tive beamforming (LCMV). Realistic synthetic data as might be acquired by the imaging386

array used at the Jicamarca Radio Observatory were used for the study.387

Choosing the right metric evaluation is important. The goal of aperture-synthesis imag-388

ing, an underdetermined problem, is not the minimization of the norm of the residual.389

For the MaxENT, FISTA, and OMP runs conducted here, the chi-squared parameter was390

made to be equal to the number of data elements n in each case. The goal instead is the391

accurate recovery of the m ≫ n elements of the truth model. However, the RMS discrep-392

ancy between the truth model and the recovered image would not be a very appropriate393

metric given the importance of dynamic range in radar imaging. All of the methods con-394

sidered here would have scored well by this metric since they were all able to reproduce395

the strongest parts of the truth model. We instead considered the RMS discrepancy in the396

logarithms of the truth model and the recovered image. A threshold was set at -30 dB in the397

calculation to avoid overemphasizing discrepancies in parts of the images that were neg-398

ligibly small, however. By this metric, MaxENT outperformed the other methods. Basis399
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pursuit denoising performed adequately but did not reproduce the desired gradation at the400

boundary of the truth-model target. Neither LCMV nor OMP provided adequate clutter401

suppression outside the boundary of the target.402

We note again that none of the methods tested here were able to resolve the synthetic403

radar target in the direction of the magnetic meridian. Radar backscatter from field-aligned404

irregularities occurs within a very narrow range of meridional angles, and we do not expect405

or even attempt to measure magnetic aspect width using imaging in practice. The important406

metric is the ability to recover the shape of the backscatter in the appropriate 1D cut through407

the 2D imagery. There are advantages in formulating the imaging problem in 2D, however,408

including the ability to measure the direction of the centroid of the backscatter.409

Moreover, overestimating the width of targets in the meridional direction could pose a410

problem to the extent that it makes the method prone to underestimating the width in the411

zonal direction, a feature exhibited to some extent by all of the test cases considered here.412

Target widths in the two directions are coupled since the moments are approximately413

conserved. This observation may warrant a redesign of the imaging array used routinely414

at Jicamarca which presently does not include long meridional baselines.415

Methods rooted in BPDN and OMP may yet be able to perform well in the aperture-416

synthesis imaging problem. The impressive speed of OMP warrants an examination of417

different basis functions which may be more suitable for extended 2D radar targets. One418

intriguing possibility is the use of curvelet transforms which have proven expedient in419

applications similar to this one [Ma and Plonka, 2010].420
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Figure 1. Configuration of the antenna array of the Jicamarca Radio Observatory in imag-

ing mode. The corners of the main array are nearly aligned with the cardinal directions,

and the north-south line is closely aligned with the direction of the geomagnetic field at

present. Module coordinates with respect to the array center are indicated. The distance

between adjoining modules is 36 m, and the longest baseline is 569 m. Seven modules of

the main array plus an eighth outrigger array are used for imaging.
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Figure 2. Image recovered from synthetic data using the LCMV algorithm. The imaging

domain spans ±0.1 rad in the plane of the magnetic equator (horizontal direction) and

±0.02 rad in the plane of them magnetic meridian (vertical). The resolution of the image

is 128×32. Grayscales denote brightness relative to the maximum in dB. Red dashed

contours represent the -10 dB, -20 dB, and -30 dB contours of the truth model, a Gaussian

ellipsoid.
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Figure 3. Image recovered from synthetic data using the FISTA algorithm.
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Figure 4. Image recovered from synthetic data using the OMP model.
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Figure 5. Image recovered from synthetic data using the MaxENT algorithm.
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Method Time (ms) RMS error (dB) 1D cut (dB)

LCMV 20 12.73 9.99

FISTA 1920 5.16 3.82

OMP 10 9.83 8.11

MaxENT 1090 4.66 1.86

Table 1. Comparison of aperture synthesis imaging methods. The execution time is

measured in ms, and the RMS error is measured in dB. The two RMS error figures refer

to the entire 2D image and to a 1D cut through the horizontal bisector through the image,

respectively (see text).

Figure 6. RMS errors for 1D cuts versus the relative standard deviation of visibility

measurements for four aperture synthesis imaging methods.
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