
Journal of Econometrics 208 (2019) 101–119

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

The algebra of two scales estimation, and the S-TSRV: High
frequency estimation that is robust to sampling times✩

Per A. Mykland a,∗, Lan Zhang b, Dachuan Chen b

a The University of Chicago, United States
b University of Illinois at Chicago, United States

a r t i c l e i n f o

Article history:
Available online 22 October 2018

JEL classification:
C02
C13
C14
C15
C22

Keywords:
Asynchronous times
Consistency
Discrete observation
Efficiency
Endogenous times
Equivalent martingale measure
Irregular times
Itô process
Leads and lags
Leverage effect
Microstructure
Pre-averaging
Realized volatility
Robust estimation
Stable convergence
Two scales estimation

a b s t r a c t

In this paper, we derive a new algebraic property of two scales estimation in high frequency
data, under which the effect of sampling times is canceled to high order. This is a particular
robustness property of the two scales construction. In general, irregular, asynchronous, or
endogenous times can cause problems in estimators based on equidistant observation of
(trade or quote) times.

The new algebraic property can be combined with pre-averaging, giving rise to the
smoothed two-scales realized volatility (S-TSRV). We derive a finite sample solution to
controlling edge effects and for handling irregular and endogenous observation times and
asynchronously observed multivariate data. In connection with this development, we use
the algebraic approach to define a version of the S-TSRV which has particularly small
edge effect in microstructure noise. The main result of the paper is a representation of
the statistical error of the estimator in terms of simple components. As an application of
this representation, the paper develops a central limit theory for multivariate volatility
estimators. The approach can also handle leads and lags in the signal process.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

High frequency financial data is an increasingly important source of knowledge about financialmarkets, originally focused
on the concept of realized volatility (RV) (Andersen and Bollerslev, 1998a,b; Barndorff-Nielsen and Shephard, 2002), and later
branching out to covariance, regression, leverage effect, etc.

Microstructure noise, however, is a main barrier to inference in such data. The purpose of this paper is to develop a family
of volatility estimators that have a finite sample algebraic representation in terms of classical (de-noised, but unobserved)
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realized volatility. This will provide small sample guidance on the properties of the estimator, and also an easy link to
asymptotic results developed for the no-noise case. It will, for example, permit the handling of endogenous times in the
case where there is microstructure noise. The approach extends to estimators of realized covariance.

The early development of this area was based on the assumption that log prices follow a semimartingale process Xt of
the form

dXt = µtdt + σtdWt + dJt , (1)

where Jt is a pure jump process and Wt is Brownian motion; µt and σt are random processes that can be dependent
with W . This semimartingale model for prices is required by the no-arbitrage principle in finance theory (Delbaen and
Schachermayer, 1994, 1995, 1998). The data, however, had an unexpected feedback to the theory: log prices are not
semimartingales after all. This was clarified by the so-called signature plot (introduced by Andersen et al. (2000). See also
the discussion in Mykland and Zhang (2005)).

Among several researchers, Zhang et al. (2005) investigated amodel where the efficient price Xt is latent, and one actually
observes

Ytj = Xtj + ϵtj . (2)

The distortion ϵi is called either ‘‘microstructure noise" or ‘‘measurement error", depending on one’s academic field (O’Hara,
1995; Hasbrouck, 1996). The tj can be transaction times, or quote times.

Zhang et al. (2005) proposed a Two Scales Realized Volatility (TSRV), which we shall revisit in this paper. The approach
consists of combining two RVs that are formed from different sampling scales. A more general approach consists in
averaging several scales (Zhang, 2006). There are by now a number of different angles on the estimation of volatility under
microstructure, and another method which will be central to our development is called Pre-Averaging: take weighted local
averages of the data (log prices) before taking squares (Jacod et al., 2009a; Podolskij and Vetter, 2009a,b; Jacod et al., 2009b).
There is a symmetry to these two approaches: two- andmulti-scale estimation could also be described as ‘‘post-averaging".1
The point of departure in the present paper is the following. The cited papers show results when the latent process Xt is
continuous and the noise is iid The observation times are variously taken to be non-endogenous (two- and multiscale) or
simply equidistant (in the case of pre-averaging). It has subsequently been quite difficult to figure out how sensitive these
estimators are to such assumptions, and also to find asymptotic laws under more general conditions. Despite the years that
have passed since 2005, there is still no comprehensive solution to these questions.

For example, Kalnina and Linton (2008) find that a strong diurnal pattern in the noise may severely affect estimators. On
the other hand, Aït-Sahalia et al. (2011) find that two- and multiscale estimators are robust to noise that is stationary and
sufficiently fast mixing. Second, in thematter of observation times, Li et al. (2014) find that endogenous times will introduce
asymptotic bias in the case where there is no noise. However, this result is hard to adapt to the case with microstructure
and still preserve a convergence rate that is close to efficient (Li et al., 2013). Third, the case with jumps is less well explored
when there ismicrostructure; compare, for example, Theorem 5.4.2 (p. 162) and Theorem 16.6.1 (p. 554) in Jacod and Protter
(2012).

The problem comes up with a vengeance when the process (1)–(2) is multidimensional. Here data can be observed at
times which are asynchronous. There are available solutions to this issue in the two- and multi-scale (Zhang, 2011; Bibinger
andMykland, 2016), and Fourier (Park, 2011; Park et al., 2016;Mancino et al., 2017) approaches. For pre-averaging, however,
the approachmakes assumptions about the irregularity of times being benign, in the sense that observation times are a fixed
transformation of an equidistant grid (Christensen et al. (2013), cf. their Assumption T1 p. 4–5, this is ‘‘mildly irregular" in
the typology of Mykland and Zhang (2016, Section 2.6, pp. 248–249)). See the further discussion in Section 2 in the current
paper. The cited papers also assume continuity of Xt .

In summary, volatility estimators have mostly been defined and studied to cope with one specific deviation from the
continuous version of model (1), and it has turned out to be hard to studymicrostructure together with either jumps, and/or
with various forms of irregular, asynchronous and/or endogenous observation times.

We here present a way out. This is to use a combination of the two-scales and pre-averaging constructions. We call it
smoothed two-scales realized volatility (S-TSRV). We shall show in Section 3 that the S-TSRV to high order approximates an
(unobserved) RV that is only based on X .

The quality of the S-TSRV is not an accidental phenomenon. In fact, it is due to an algebraic cancellation of terms in finite
samples. We shall see this in Theorems 1–2 in Section 3. Conceptually, this is the main finding of the paper.

Meanwhile, there does not seem to be a trade-off with efficiency. We shall investigate a procedure which combines
pre-averaging and two-scales estimation, as follows. First pre-average the data in small time intervals, say, 15 s, then use a
two-scales estimator. The algebraic cancellation property is still valid, and thus, in particular, an efficient rate of convergence
can be achieved.

1 Three other main approaches to this estimation problem are the Realized Kernel approach, which uses weighted autocovariances (Barndorff-Nielsen
et al., 2008), Quasi-likelihood (Xiu, 2010), and the spectral approach of Bibinger and Reiß (2014) and Altmeyer and Bibinger (2015). These will not be central
to our current narrative. These approaches do, however, have similar problems to the ones discussed here concerning the use of observation times when
these times are irregular and/or asynchronous. A further main approach is the Fourier method (Park, 2011; Park et al., 2016; Mancino et al., 2017), which
is more well posed in its handling of times.
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For multi-dimensional data, the proposed procedure also serves as a synchronization device. One can pre-average each
series over the same 15 s, and they then become synchronous. The two scales algebraic cancellation then takes care of
residual asynchronicity. Further development of the S-TSRV in the high-dimensional case, along with related literature, can
be found in Chen et al. (2018).

For the purposes of asymptotics, our algebraic results serve as a strong representation of the S-TSRV in terms of the RV of
X . Asymptotic results can therefore be obtained more easily through this path. We do not pursue this in the most general
case, but show among other results that endogenous times can be tackled under microstructure noise with the efficient n1/4

rate of convergence. This is also discussed in Item 2 in Section 4.3.
The strong representation property raises the question of whether the entire estimation error also can be given a strong

representation, along the lines ofWu (2007). This would require an extension ofWu’s theory to the stable convergence case.
We emphasize that our results cover the original TSRV estimator. As micro-structure declines in increasingly efficient

markets, loss of efficiency of TSRV is often a non-problem, and the transparency of the estimator recommends it in many
situations.

In the following, we shall see in Section 2 that observation times impact pre-averaging. Section 3 presents the main
algebraic results, and also studies a modification of the two scales construction that completely eliminates edge effects due
to ‘‘squared-noise". We finally show that a J- and K -scales estimator has a representation as a single K–J scale estimator in
the signal process X . Section 4.1 gives asymptotic bounds for the edge effect (the error in the finite sample representation).
Section 4.2 gives an asymptotic representation for the estimator in terms of average realized volatilities and noise U-
statistics. This is for the case where the sparse scale K → ∞, and it yields an uncluttered form with which to analyze the
S-TSRV. Section 5 provides asymptotic theory for smoothed two scales realized covariances. Section 6 establishes robustness
for finite K and for estimates of spot volatility. In Section 7, we show how the setup extends to other schemes for dealing
with irregularity and asynchronicity. We also discuss how to implement a rolling windows approach.

2. Pre-averaging does not work on its own

Wehere recall the concept of pre-averaging (Section 2.1), and then analyze the variance of the return on the pre-averaged
signal (Section 2.2) when observation times are irregular. We finally show (in Section 2.3) that pre-averaging by itself does
not assure consistency of estimators when times are irregular.

2.1. Pre-averaging

Our general theory starts with approximating the efficient price in small neighborhoods. Specifically, we assume that
observations on the form (1)–(2) are made at times 0 = t0 < · · · < ti < · · · < tn = T . The index n represents the
total number of observations, and our arguments will be based on asymptotics as n → ∞ while T is fixed. Meanwhile,
neighborhoods or blocks are defined by a much less dense grid of τi, also spanning [0, T ], so that block # i = {τi−1 < tj ≤ τi}
(the first block, however, includes 0). We define the block size by Mn,i = Mi = #{j : τi−1 < tj ≤ τi}, We then seek an
estimate of the value of the efficient price in the time period (τi−1, τi] by pre-averaging, which is defined as follows. Define
block averages for block i, (τi−1, τi]:

Ȳi =
1
Mi

∑
τi−1<tj≤τi

Ytj ,

and let X̄i be defined similarly based on X . The averaging yields a reduction of the size of microstructure noise (see, for
example, Mykland and Zhang (2016, Example 1, p. 244)). This is obtained if Mn,i → ∞ with n, but sufficiently slowly that
the actual time interval (τi−1, τi] stays small.2 The number of blocks will be called Nn.

2.2. The return on the pre-averaged signal

We here give a first order analysis of pre-averaging when observation times are not assumed to be equidistant or
otherwise regular. At this time, assume that the times are exogenous (times are allowed to be endogenous in subsequent
sections).

To find a compact characterization of the effect of such times, define (as in Section 2.6 of Mykland and Zhang (2016)) the
random variable Ii = In,i inside each block i as follows. Let tj0 be the first tj ∈ (τi−1, τi], and set

Ii =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Mi − j
Mi

with probability
∆tj0+j

∆τi

1 with probability
tj0 − τi−1

∆τi

0 with probability
τi − tj0+Mi−1

∆τi

(3)

2 When reference to the total number n of observations is needed, we write tn,j instead of tj , τn,i instead of τi ,Mn,i instead ofMn,i , and so on.
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where j = 1, 2, . . . ,Mi−1 and ∆tj0+j = tj0+j − tj0+j−1. In particular, definition (3) means that for each block i,

E(Ii) =

∑
tj∈(τi−1,τi]

Mi − j
Mi

∆tj0+j

∆τi
+

tj0 − τi−1

∆τi
and E(I2i ) =

∑
tj∈(τi−1,τi]

(
Mi − j
Mi

)2
∆tj0+j

∆τi
+

tj0 − τi−1

∆τi
.

Denote Vi = X̄i − Xτi−1 , and V ′

i = Xτi − X̄i. Decompose

Vi = Ṽi + E(Ii)∆Xτi and V ′

i = ∆Xτi − Vi = −Ṽi + (1 − E(Ii))∆Xτi , (4)

where the first equation in (4) serves as definition of Ṽi. Obviously, Ṽi is uncorrelated with ∆Xτi . We have

∆Xτi = Vi + V ′

i (5)

while

∆X̄i+1 = Vi+1 + V ′

i . (6)

Assume for the rest of Section 2 that Xt is continuous. Because of (6), if we approximate σ 2
t by σ 2

τi−1
over the interval

(τi−1, τi+1], the squared-return of a pre-averaged observation becomes

E[(∆X̄i+1)2 | Fτi−1 ] = E[(V ′

i )
2

| Fτi−1 ] + E[(Vi+1)2 | Fτi−1 ]

= (1 − E(Ii))2E[(∆Xτi )
2

| Fτi−1 ] + E[(Ṽi)2 | Fτi−1 ]

+ (E(Ii+1))2E[(∆Xτi+1 )
2

| Fτi−1 ] + E[(Ṽi+1)2 | Fτi−1 ]

≈ σ 2
τi−1

[∆τi((1 − E(Ii))2 + Var(Ii)) + ∆τi+1(E(Ii+1)2 + Var(Ii+1))]

= σ 2
τi−1

[∆τi(E(1 − Ii)2) + ∆τi+1E((Ii+1)2)], (7)

where Fτi−1 is the sigma-field representing the information at time τi−1, cf. Condition 1. This is a standard approximation in
this setting. One way of seeing the validity is to use the contiguity results in Mykland and Zhang (2016).

2.3. The pre-averaged RV

We shall here see that pre-averaging by itself does not estimate volatility. To clarify the implications of (7) above, define
that a sequence of times tn,j is regular provided, for any sequence in, n → ∞, Iin = In,in converges in law to a uniform (0, 1)
random variable. For regular times,

E(In,in ) ≈
1
2

, E(I2n,in ) ≈
1
3

, and E(2I2n,in − 2In,in + 1) ≈
2
3

(8)

in the sense of limit in probability as n → ∞. Regular times include equidistant observations, and times distributed by a
Poisson process, for which (8) holds exactly. (More generally, see Mykland and Zhang (2016, Section 2.6, pp. 248–249).)

The RV of the pre-averaged signal then behaves as follows as n → ∞ (ibid, Theorem 5, p. 249):∑
i

(∆X̄i+1)2 ≈

∑
i

σ 2
τi−1

∆τiE(2I2i − 2Ii + 1) (9)

(good news for regular times:)
p

→
2
3

∫ T

0
σ 2
t dt (10)

(bad news for general times:)
p

→ limit depends on spacings, or may not even exist (11)

The pre-averaged RV (the sum of squared pre-averaged returns)
∑

i(∆Ȳi+1)2 therefore depends on E(Ii) and E(I2i ), and
cannot obviously be parlayed into an estimator of the volatility of X . For example, if the ϵj are iid and with mean zero, and
if the Mn,i ≡ Mn, one obtains

∑
i(∆Ȳi+1)2 =

∑
i(∆X̄i+1)2 + Var(ϵ)/Mn, which will only converge appropriately if the times

are regular. In the case of equidistant times, the factor 2/3 goes back to Jacod et al. (2009a). For a discussion of the intuition,
see Mykland and Zhang (2017, Corollary 1 (p. 204) and Remark 3 (p. 204–205)).

Trading times are, however, typically irregular. We illustrate this with Table 1 and Fig. 1. One therefore needs more than
pre-averaging to estimate volatility.

3. Two-scales estimation to the rescue: finite sample representations

In the following, we shall see that the problem from Eq. (11) can be avoided by using a two scales construction. This
relies on algebraic strong representation, and is robust to virtually all scenarios of things that can go wrong. We consider
two cases: an original smoothed TSRV (S-TSRV) (Section 3.1, and in particular Fact 2), and a tapered version of the S-TSRV
(Section 3.2, and in particular Theorem 1). The rest of the paper is mainly concernedwith the latter (modified) estimator, but
most of the results carry over to the original estimator from Section 3.1. The two estimators differ only in their edge effects,
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Table 1
Irregularity of trading times. The fluctuation of E(Ii), E(I2i ), and E(2I2i − 2Ii + 1) for the S&P E-mini future as traded on the Chicago Mercantile Exchange,
over 1620 bins of 15 s each during the day of May 1, 2007. Note in particular that for E(2I2i −2Ii +1), the value 2/3 (from (8)) is only about the first quantile.

Min. 1st Qu. Median Mean 3rd Qu. Max.

E(Ii) 0.0000 0.3621 0.4511 0.4476 0.5364 0.8685
E(I2i ) 0.0000 0.2159 0.2984 0.3066 0.3865 0.7958
E(2I2i − 2Ii + 1) 0.5293 0.6715 0.7114 0.7184 0.7583 1.0000

Fig. 1. Irregularity of trading times. The fluctuation of E(Ii) and E(I2i ) for the S&P E-mini future as traded on the Chicago Mercantile Exchange, over 1620
bins of 15 s each during the day of May 1, 2007. The red dashed vertical lines represent the values for regular times.

and these effects are quantified for both estimators in Proposition 1 in Section 4.1. Note that by choosing block sizeMn,i ≡ 1,
our finding also covers the original TSRV as a special case.

We assume the following.

Condition 1. There are n observations, of the form Ytn,j = Xtn,j + ϵn,tn.j , where Xt is a square integrable martingale (which
is right continuous and with left limits), adapted to a history of events (filtration) (Ft ). The observation times tn,j and the block
separation times τn,i are (Ft )-stopping times. For each (n, j), the noise ϵn,tn,j is observed at time tn,j (i.e., is Ftn,j-measurable), and
supn,j Eϵ2

n,tn,j < ∞, and Eϵn,tn,j = 0. In the preceding, the signal Xt may not depend on n.

The martingale condition on the signal is purely a notational convenience. In almost all circumstances, one can start
with a semi-martingale Xt under an original data generating probability distribution Q , and pass to an equivalent (mutually
absolutely continuous) probability P under which Xt is a martingale. The only further condition needed is then that Q and
P may not depend on n.3 The equivalent measure device is standard (not only in finance but also in econometrics), and it
facilitates many inference arguments. This is because measure change commutes with stable convergence, cf. Mykland and
Zhang (2009, Section 2.2). Stable convergence is defined in Footnote 4 of the current paper. In the simple setup where the
noise ϵn,tj is independent of the efficient signal Xt , the distributions Q and P are the same for the noise, and the measure
change only happens for the Xt process. At the cost of further notation, our assumptions can be generalized to processes that
can be localized to have the behavior in Condition 1, cf. Jacod and Protter (2012, Ch. 4.4.1, pp. 114–121) and Mykland and
Zhang (2012, Ch. 2.4.4–2.4.5, pp. 156–161).

We shall also use the following concept.

Definition 1. Amartingale U-statistic is a sum of the form
∑N

i=m1+m2+1(L
(1)
i − L(1)i−m1

)(L(2)i−m1
− L(2)i−(m1+m2)

), where L(1)i and L(2)i
are zero mean local square integrable martingales under P , and for positive integersm1 andm2.

The significance of this concept is that a martingale U-statistic is a term of mean zero which is typically of small order
compared to the constituent local martingales. A term of this form usually does not affect consistency, but will often enter
the asymptoticallymixed normal limit term. This phenomenonwill find concrete embodiment in the results in Sections 4–5.

3 The history of events may also depend on n and take the form (Fn,t ). In this case, however, Xt needs to be adapted to ‘‘core" history of events (Ft ) given
by Ft = ∩nFn,t , and the (if required) likelihood ratio dQ/dP must be FT measurable.
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3.1. Algebraic cancellation and strong representation

We first study the standard two scales construction based on averages. Define as usual

[Ȳ , Ȳ ]
(K )

=
1
K

N−K∑
i=1

(Ȳi+K − Ȳi)2. (12)

Set

ηi = Vi + ϵ̄i and η′

i = V ′

i − ϵ̄i, where ϵ̄i =
1
Mi

∑
τi−1<tj≤τi

ϵtj (13)

and where Vi and V ′

i are defined in (4). Observe that

Ȳi+K − Ȳi = ηi+K + (Xτi+K−1 − Xτi ) + η′

i (14)

Hence,

K [Ȳ , Ȳ ]
(K )

=

N−K∑
i=1

[
(Xτi+K−1 − Xτi )

2
+ η2

i+K + (η′

i)
2]

+ CK (15)

where CK are the sum of the cross terms from dissolving the square of (14), given by (A.1) in Appendix A.1. We now get two
important facts.

Fact 1. Assume that ϵ̄n,i is a martingale difference. Then the cross terms in CK are martingale U-statistics. □

Fact 1 follows since E[ηi+K |Fτi+K−1 ] = 0, and since η′

i is Fτi-measurable. For consistency, it is the non-martingale terms
in (15) that cause trouble. The first order effect of the two scales construction is to remove these terms, up to edge effect.
We are also able to relax the conditions on the noise:

Fact 2. Assume that E(ϵ̄n,i | Fτi−J ) = 0. For K > J ,

K [Ȳ , Ȳ ]
(K )

− J[Ȳ , Ȳ ]
(J)

=

N−K∑
i=1

(Xτi+K−1 − Xτi )
2
−

N−J∑
i=1

(Xτi+J−1 − Xτi )
2
+ CK ,J + eK ,J , (16)

where CK ,J are cross terms that are martingale U-statistics, given by (A.2), and where eK ,J is an edge effect, given by (A.3), which
is normally (but not always) negligible; see Section 4.1 for a precise discussion. □

In other words, the two scales construction has removed the effect of the observation times from the main effect in (16),
and this effect has been relegated to the asymptotic variance and the edge effect. The construction also allows noise averages
ϵ̄i to be anm-dependent sequence, withm ≤ J − 1. If instead ϵ̄i is α-mixing, related results can be established with suitable
modification (an op term), as in Aït-Sahalia et al. (2011) and Zhang (2011).

As discussed in Appendix A.2, the edge effect can be partially offset (in expectation only, and under strong assumptions)
by normalizing as follows

⟨̂X, X⟩ =
1(

1 −
K+J− 1

3
N

)
(K − J)

{
K [Ȳ , Ȳ ]

(K )
− J[Ȳ , Ȳ ]

(J)
}

. (17)

In particular, when J = 1 and K = 2, up to martingale U-statistics and edge effect,

⟨̂X, X⟩ ≈ the realized volatility of the signal :
N−2∑
i=1

(Xτi+1 − Xτi )
2. (18)

We shall in the following work with a modified estimator, but most of the results carry over to the estimator above. The
two estimators differ in their edge effects, but not in the respective asymptotic behavior of their martingale U-statistics. We
shall refer to both estimators as smoothed two-scales realized volatility (S-TSRV).

3.2. Getting rid of the edge effect from noise: an estimator for the very cautious

The estimator (17) retains a small amount of edge effect, as described in Appendix A. There are two components to this
effect, one relating to σ 2

t , and one to ϵ̄2
i . There does not seem to be a way of eliminating both these components, but one can

be eliminated at the expense of the other.
We here take the view that the edge effect of noise ϵ̄2

i is the most concerning. While both types of edge effect are
asymptotically negligible in most models for the data generating process, it is possible to construct scenarios where the
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noise effect matters asymptotically, see Kalnina and Linton (2008), and also the discussion in Section 4.1. On the other hand,
while the spot volatility σ 2

t can evolve fast, it has higher persistence, and one can thus live with some edge effect so long as
it is understood and controlled.

In other words, we propose to eliminate the edge effect in ϵ̄2
i , and pay the price that there may be a slightly higher such

effect in the volatility. In Appendix B, we show that the following estimator is completely free of terms of type ϵ̄2
i . For a pair

(J, K ), set

K [̃Ȳ , Ȳ ]

(K )
=

1
2

J∑
i=1

(Ȳi+K − Ȳi)2 +

N−b∑
i=J+1

(Ȳi+K − Ȳi)2 +
1
2

N−K∑
i=N−b+1

(Ȳi+K − Ȳi)2. (19)

where

b = K + J. (20)

We define J [̃Ȳ , Ȳ ]

(J)
similarly by switching J and K . (This is the same as Eq. (B.13) in case this is unclear. An alternative

representation is given by (B.17).)

We obtain in Appendix B that K [̃Ȳ , Ȳ ]

(K )
− J [̃Ȳ , Ȳ ]

(J)
has no edge effect in ϵ̄2 terms. Also, the times do not affect the

estimator to first order. Following (B.20), the exact result is:

Theorem 1 (Algebraic Representation of Two Scales Combination). Assume K > J ≥ 1, and that E(ϵ̄n,i | Fτi−J ) = 0. Then

K [̃Ȳ , Ȳ ]

(K )
− J [̃Ȳ , Ȳ ]

(J)

=

⎧⎨⎩1
2

J∑
i=1

(Xτi+K−1 − Xτi )
2
+

N−b∑
i=J+1

(Xτi+K−1 − Xτi )
2
+

1
2

N−K∑
i=N−b+1

(Xτi+K−1 − Xτi )
2

⎫⎬⎭
−

{
1
2

K∑
i=1

(Xτi+J−1 − Xτi )
2
+

N−b∑
i=K+1

(Xτi+J−1 − Xτi )
2
+

1
2

N−J∑
i=N−b+1

(Xτi+J−1 − Xτi )
2

}
+ cross terms + edge term, (21)

where the cross terms are martingale U-statistics and are given as C̃K ,J in (B.18)–(B.19), and the edge term is given by

ẽK ,J =

⎛⎝−

K∑
i=J+1

+

N−J∑
i=N−K+1

⎞⎠(1
2
(ηi − η′

i)∆Xτi + ηi(Xτi−1 − Xτi−J )
)

. (22)

Following further derivation in Appendix B, we propose a normalization so that the final estimator is

⟨̂X, X⟩ =
1

(1 − b/N)(K − J)

{
K [̃Ȳ , Ȳ ]

(K )
− J [̃Ȳ , Ȳ ]

(J)}
. (23)

From (22), we shall see in Section 4.1 that the edge effect is negligible except under highly unusual combinations of K and
smoothing parametersMn,i. This substantially limits the effect of mis-recording of the observation times on the estimator.

A version of this estimator (with J = 1 and no pre-averaging) was proposed in Kalnina and Linton (2008) as a remedy for
non-stationary noise. They carried out an asymptotic analysis. The current results show that the estimator is robust to very
general forms of noise, and also that the desirable properties hold in a small sample setting.

3.3. The estimator is close to a K − J single scale estimator in X

One can go one step further, as shown in Appendix C:

Theorem 2. The squared terms (the first two terms on the r.h.s.) in (21) are equal to
N−K−1∑
i=J+1

(Xτi+K−J − Xτi )
2
+

1
2
(XτK − XτJ )

2
+

1
2
(XτN−J − XτN−K )

2
+ cross terms, (24)

where the cross terms are martingale U-statistics. The cross terms are explicitly given in Eqs. (C.23) and (C.26).

One can alternatively write the squared terms in (24) as
N−K∑
i=J

(Xτi+K−J − Xτi )
2
−

1
2
(XτK − XτJ )

2
−

1
2
(XτN−J − XτN−K )

2. (25)
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The whole estimator (23) now gets the form

⟨̂X, X⟩ =
1

(1 − b/N)(K − J)

⎧⎨⎩
N−K−1∑
i=J+1

(Xτi+K−J − Xτi )
2
+

1
2
(XτK − XτJ )

2
+

1
2
(XτN−J − XτN−K )

2

+ the edge term from (22) + the cross terms from (B.19), (C.23), and (C.26). } (26)

4. Asymptotic representation of the two scales estimator

The preceding has been concerned with exact properties. We here show how the various edge terms and martingale
U-statistics vanish asymptotically.

Condition 2 (Structure of the Efficient Price). Assume that Xt = X (1)
t + X (2)

t , where X (2)
t is a pure jump martingale with finitely

many jumps, all at predictable times, and where X (1)
t is a square integrable martingale whose predictable quadratic variation

⟨X (1), X (1)
⟩t is continuously differentiable.

This condition covers most cases that are studied, and for X (1)
t see Jacod and Protter (2012, Definition 2.1.1. and Eqs.

(2.1.15) and (2.1.31), pp. 35–39). For a continuous process, d⟨X (1), X (1)
⟩t/dt = σ 2

t .
To put asymptotic orders in context, we note that a slight extension of Theorems 2 and 3 (p. 1401) of Zhang et al. (2005)

yields that

1
K − J

N−K∑
i=J+1

(Xτi+K−J − Xτi )
2
− [X, X]T = Op((∆τ+

n (K − J))1/2), (27)

where [X, X]T is the quadratic variation of Xt . If X is continuous, then [X, X]T =
∫ T
0 σ 2

t dt . Quantities of smaller order are thus
negligible.

We now look at the block and noise structure. We note that the blocks are fixed by the econometrician.

Condition 3 (Structure of Blocks). We assume that for each n, there are nonrandom∆τ+
n andM−

n ≥ 1, so that∆τ+
n ≥ maxi ∆τn,i

and M−
n ≤ mini Mn,i. Also assume that Kn∆τ+

n → 0 as n → ∞, and that K > J ≥ 1.

The nonrandomness condition is for notational convenience. If the ∆τn,i’s and Mn,i’s are nonrandom, we can set ∆τ+
=

maxi ∆τn,i andM−
n = mini Mn,i. Note that under this condition,

T
∆τ+

n
≤ Nn ≤

n
M−

n
. (28)

Also, it will normally be the case that ∆τ+
n ∝ M−

n /n, in which case the number of blocks N = Nn is of exact order O(n/M−
n ).

4.1. Negligibility of edge effects

Proposition 1. Assume Condition 1–3, and also that Var(ϵ̄n,i) = O(M−1
n,i ), uniformly in (n, i). Then

eK ,J

K − J
= Op

(
J1/2(∆τ+

n + (M−

n )−1)
)
and

ẽK ,J

K − J
= Op

(
J1/2(∆τ+

n + (M−

n )−1)1/2(∆τ+

n )1/2
)

(29)

The result is shown at the end of Appendix A.1. When comparing (29) to the order in (27), we note that ẽK ,J is
asymptotically negligible unless M−

n and K are both chosen to be asymptotically finite, which does not yield a consistent
estimator of volatility. (Both the block sizes and K are under the control of the econometrician).

Meanwhile, eK ,J is asymptotically negligible if (∆τ+
n )−1(M−

n )−2
= o((K − J)/J). This condition can fail to be satisfied,

which is consistent with the results of Kalnina and Linton (2008). Observe, however, that eK ,J will be negligible with only
moderate pre-averaging. When ∆τ+

n ∝ M−
n /n, eK ,J is asymptotically negligible ifM−

n = O(n1/3) when K → ∞ with n, and if
n−1/3M−

n → ∞ with nwhen K is asymptotically finite. Also, this is a worst case scenario, and the edge effect will disappear
if the noise is homoscedastic and independent of the latent process Xt .

The condition Var(ϵ̄n,i) = O(M−1
n,i ) is a CLT style requirement which is assured under martingale, Markov, or mixing

assumptions (Hall and Heyde, 1980; Nummelin, 1984).
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4.2. Asymptotic representation

We here work with the assumption that K − J → ∞, to be able to give a sense of what are main terms. This clarifies that
to first order, there is no effect of the observation times, either on the quantity being estimated, or on the asymptotic variance.

The development also clarifies what are the main terms to handle to characterize the estimation error of the S-TSRV
estimator: the two terms on the first line in (30). We resume this discussion in Section 4.3.

The implications of requiring K − J → ∞ are discussed at the end of Section 5.2. Robustness to finite K is considered in
Section 6. Also, J may or may not go to infinity with N .

To state the asymptotic representation, we also need more assumptions on the noise:

Condition 4 (Structure of the Noise). Assume that Eϵn,tn,j = 0 and supn,jEϵ2
n,tn,j < ∞ (as in Condition 1). Also assume that

E(ϵ̄n,i | Fτi−J ) = 0 (as in Fact 2 and Theorem 1), and that E supi E(ϵ̄2
n,i | Fτi−J ) = op(∆τ+

n (K − J)1/2).

An important feature of Condition 4 is that the noise and the process may be dependent on each other. As an extreme
example, one can have the noise reflect short term leads and lags. For instance, the condition permits ϵtn,j = Xtn,j − Xtn,j−p+

m-dependent independent noise, where p and m may vary from dimension to dimension (for the case where X is multi-
dimensional).

In order to capture the dependent noise possibility without too much notation, we have not sought to optimize
Condition 4 in other respects. If one assumes that the ϵn,tj are independent of X and the times tj and τi, then Condition 4
may be replaced by the assumption that the ϵn,tj are exponentially α-mixing, with uniformly bounded fourth moment. See,
e.g., McLeish (1975) and Hall and Heyde (1980), cf. also Aït-Sahalia et al. (2011) and Zhang (2011) in connection with noise
in high frequency observations. Extra conditions on the X process may also be required, cf. Jacod and Protter (2012, Chapter
2.1.5, pp. 39–44).

Theorem 3 (Asymptotic Representation of the Two Scales Estimator). Assume Condition 1–4. Also suppose that K − J , M−
n , and

Nn all tend to infinity with n, and that Nn∆τ+
n = O(1). Then

⟨̂X, X⟩ =
1

(1 − b/N)(K − J)

⎧⎨⎩
N−K∑
i=J+1

(Xτi+K−J − Xτi )
2
+ noise U-statistics

⎫⎬⎭
+ op((∆τ+(K − J))1/2) + Op

(
(∆τ+)1/2/(K 1/2

+ J1/2) × noise U-statistics
)

(30)

where

noise U-statistics = 2

(
1
2

b−K∑
i=1

+

N−b∑
i=b−K+1

+
1
2

N−K∑
i=N−b+1

)
ϵ̄i+K ϵ̄i

− 2

⎛⎝1
2

b−J∑
i=1

+

N−b∑
i=b−J+1

+
1
2

N−J∑
i=N−b+1

⎞⎠ ϵ̄i+J ϵ̄i. (31)

We have here seen that the estimator mainly depends on the two terms on the first line in (30): the average subsampled
(at the τi’s) realized variance (RV) (K − J)−1∑N−K

i=J+1(Xτi+K−J −Xτi )
2, and the noise U-statistic. The latter is easily handled with

the help of Condition 4.

4.3. The final piece: discretization error

From Theorem 3, it remains to analyze the average subsampled RV, i.e., the discretization error

1
(1 − b/N)(K − J)

N−K∑
i=J+1

(Xτi+K−J − Xτi )
2
− ⟨X, X⟩. (32)

It is not the purpose of this paper to provide a most general Central Limit Theorem (CLT) for this piece, since at the time of
writing it is difficult to foresee all contingencies. In a certain sense, the representation in Theorem 3 is the general result,
from which CLTs for ⟨̂X, X⟩ can be harvested for a range of situations. Theorem 3 clarifies that controlling (32) is the only
remaining piece in the CLT problem, and that this does not involve the microstructure noise.

The analysis of (32) can be done with a variety of existing approaches.

1. Under continuity of X and exogenous τi, asymptotics follow from Theorems 2 and 3 (p. 1401) of Zhang et al. (2005).
As proof of concept, we have generalized this theory to covariance matrices in Sections 5.2 and 6, including the spot
case in Section 6.2.
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2. If the τi are endogenous, one can use the approach from Li et al. (2014). For the purposes of this paper, it is the τis that
would then be endogenous. This would not occur if ∆τi is constant in clock time, but may be the case is the block size
Mn,i is constant.

3. When there are jumps, one can go to Chapter 16.6 of Jacod and Protter (2012). If there are jumps and endogeneity of
times, one may be able to combine the two latter directions of study.

The clear separation of noise and signal also points to situations where the central limit theory for the signal does not yet
exist (as far as we know). For example, if jump times are infinitely many, and endogenous, the X process may not follow the
Itô semimartingale formwhich underliesmany of the CLTs that currently exist (see, e.g., Jacod and Protter (2012, Assumption
(H), p. 126).) This is because stopping times due to jumps in Itô semimartingales are totally inaccessible (Jacod and Shiryaev,
2003, Definition 2.20, p. 29), which may collide with endogeneity.

In view of the spot volatility discussion in Section 6.2, the results in this section also have bearing on, for example, the
estimation of functionals of volatility (Jacod and Rosenbaum, 2013, 2015).

5. Application: estimation of realized covariances, and a central limit theorem

5.1. Definitions and asymptotic representation

As an application of the above, we consider the multivariate case. We here assume that the τis are synchronous, which is
plausible in many cases, since they are under the control of the econometrician.

By much the same analysis as above, we obtain the estimator

ˆ⟨X (r), X (s)⟩ =
1

(1 − b/N)(K − J)

{
K ˜
[Ȳ (r), Ȳ (s)]

(K )
− J ˜

[Ȳ (r), Ȳ (s)]
(J)}

. (33)

Here, X (r) is component # r in vector X . The rest of the nomenclature extends similarly. The Ii variable defined in Section
2 also becomes a vector, and the probability distribution is then defined in obvious fashion on a hyper-cube of the same
dimension as X .

The finite representation results from the scalar case continue to hold, but the discussion would be tedious. For clarity,
however, we provide a multivariate extension of Theorem 3. The proof is similar.

Theorem 4 (Asymptotic Representation of the Two Scales Estimator). Under the same conditions as Theorem 3, but extended to
the multivariate case (Xt is a vector, etc.), the following is valid.

ˆ⟨X (r), X (s)⟩ =
1

(1 − b/N)(K − J)

⎧⎨⎩
N−K∑
i=J+1

(X (r)
τi+K−J

− X (r)
τi

)(X (s)
τi+K−J

− X (s)
τi
) + noise U-statistics

⎫⎬⎭
+ op((∆τ+(K − J))1/2) + Op

(
(∆τ+)1/2/(K 1/2

+ J1/2) × noise U-statistics
)

(34)

where

noise U-statistics =

(
1
2

b−K∑
i=1

+

N−b∑
i=b−K+1

+
1
2

N−K∑
i=N−b+1

)
ϵ̄
(r)
i+K ϵ̄

(s)
i [2]

−

⎛⎝1
2

b−J∑
i=1

+

N−b∑
i=b−J+1

+
1
2

N−J∑
i=N−b+1

⎞⎠ ϵ̄
(r)
i+J ϵ̄

(s)
i [2]. (35)

The notation ϵ̄
(r)
i+K ϵ̄

(s)
i [2] means ϵ̄

(r)
i+K ϵ̄

(s)
i + ϵ̄

(s)
i+K ϵ̄

(r)
i , see, for example McCullagh (1987).

5.2. Central limit theory

To provide a simple application,we here state and showa CLT in themultivariate case under (by now) classical conditions.
In particular, the ϵ are independent of X and the times tj and τi, and the latter are exogenous.

The twomain terms in (34) are then asymptotically independent. For the signal term, the univariate central limit theorem
reduces to Theorem 3 (p. 1401) of Zhang et al. (2005). In the multivariate case, we obtain as follows. First the signal term,
which works the same way as in the earlier paper.

Theorem5 (CLT for Signal Term). Assume the conditions of Theorem 4. Also assume that Xt is a continuousmartingale, with locally
bounded spot volatility σt . Assume that the τ ’s are exogenous. Define the matrix

D(r,s)
=

1
(1 − b/N)(K − J)

N−K∑
i=J+1

(X (r)
τi+K−J

− X (r)
τi

)(X (s)
τi+K−J

− X (s)
τi
) − ⟨X (r), X (s)

⟩T (36)
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If the τ ’s are equidistant, define G(t) = 4t/3, and otherwise define it using Eq. (44) (p. 1401) and (A.33)-(A.34) (p. 1411) of Zhang
et al. (2005). Then (N/(K − J))1/2D(r,s) converges stably in law4 to a normal distribution with mean zero and covariance tensor

ACOV (D(r1,s1),D(r2,s2)) =
1
4
T
∫ T

0
⟨X (r1), X (r2)⟩′t⟨X

(s1), X (s2)⟩′tdG(t)[2][2], (37)

where the ‘‘[2][2]’’ means summation over four terms where r1 and r2 can change place with s1 and s2. In other words,
a(r1,r2)a(s1,s2)[2][2] = a(r1,r2)a(s1,s2) + a(s1,r2)a(r1,s2) + a(r1,s2)a(s1,r2) + a(s1,s2)a(r1,r2).

The noise term in (34) is more complex since we have allowed for the possibility of pre-averaging. There is an averaging
across M (r)

n,i observations of interval #i. This alters variance calculations and convergence rates. Normality as such is
straightforward given the short run dependence of the ϵ’s.

Denote

C (r,s)
K =

1
(1 − b/N)(K − J)

(
1
2

b−K∑
i=1

+

N−b∑
i=b−K+1

+
1
2

N−K∑
i=N−b+1

)
ϵ̄
(r)
i+K ϵ̄

(s)
i [2]

C (r,s)
J =

1
(1 − b/N)(K − J)

⎛⎝1
2

b−J∑
i=1

+

N−b∑
i=b−J+1

+
1
2

N−J∑
i=N−b+1

⎞⎠ ϵ̄
(r)
i+J ϵ̄

(s)
i [2] (38)

and assume that JnM−
n is large enough tomake ϵ̄

(s)
i and ϵ̄

(r)
i+J independent under Condition 4. In this case (which is simplified),

Cov(C (r1,s1)
K , C (r2,s2)

J ) = 0, and

Cov(C (r1,s1)
K , C (r2,s2)

K )

=

(
1

(1 − b/N)(K − J)

)2
(
1
4

b−K∑
i=1

+

N−b∑
i=b−K+1

+
1
4

N−K∑
i=N−b+1

)
Cov(ϵ̄(r1)

i+K ϵ̄
(s1)
i , ϵ̄

(r2)
i+K ϵ̄

(s2)
i )[2][2]

=

(
1

(1 − b/N)(K − J)

)2
(
1
4

b−K∑
i=1

+

N−b∑
i=b−K+1

+
1
4

N−K∑
i=N−b+1

)
Cov(ϵ̄(r1)

i+K , ϵ̄
(r2)
i+K )Cov(ϵ̄

(s1)
i , ϵ̄

(s2)
i )[2][2], (39)

where ‘‘[2][2]’’ has the same meaning as in Theorem 5.
To get a handle on rates, let us suppose thatM (r)

n,i only depends on n, = Mn. Then Cov(ϵ̄(s1)
i , ϵ̄

(s2)
i ) = O(M−1

n ). If we suppose
further that there is stationarity enough to assure Cov(ϵ̄(s1)

i , ϵ̄
(s2)
i ) = M−1

n c(s1,s2), then

Cov(C (r1,s1)
K , C (r2,s2)

K ) =

(
1

(1 − b/N)(K − J)

)2 (
N − K −

3
2
J
)
M−2

n c(r1,r2)c(s1,s2)[2][2]

∼
N

(K − J)2M2
n
c(r1,r2)c(s1,s2)[2][2]. (40)

Similar expressions hold for Cov(C (r1,s1)
J , C (r2,s2)

J ).

In otherwords, the noise termhas orderOp

(
N1/2

(K−J)Mn

)
.Meanwhile, the signal termhas orderOp

(
(N/(K − J))−1/2

)
. Equality

between these two orders is achieved by setting

K − J = Op
(
(N/Mn)2/3

)
. (41)

The order of convergence of the estimator thus becomes Op

(
N−1/6M−1/3

n

)
= Op

(
n−1/6M−1/6

n

)
, since N = n/Mn in this case.

We can thus get arbitrarily close to the optimal Op(n−1/4) rate. We can also achieve this rate, by setting Mn = O(n1/2), but
asymptotic expressions becomemore complicated as, in this case, K − J stays finite. Our finite sample calculations, however,
remain valid also for this case. We shall see this in the next section.

6. Asymptotic representation and normality: robustness to finite K and shrinking T

6.1. Estimation of integrated volatility

As we have seen at the end of the previous section, it can be optimal to choose K to be finite. Also, over recent years,
as trading becomes more frequent and markets become more liquid, the size of the microstructure noise appears to be

4 Let Zn be a sequence of FT -measurable random variables. We say that Zn converges stably in law to Z as n → ∞ if Z is measurable with respect to an
extension of FT so that for all A ∈ FT and for all bounded continuous g , EIAg(Zn) → EIAg(Z) as n → ∞. IA denotes the indicator function of A, and = 1 if
A and = 0 otherwise. The same definition applies to triangular arrays. In the context of inference, Zn = n1/2(θ̂n − θ ), for example, and Z = N(b, a2). For
further discussion of stable convergence, and for the relationship tomeasure change, see Section 2.2 ofMykland and Zhang (2009), which draws on Rootzén
(1980).
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declining. This also points to choosing K to be finite in the two scales estimator. In addition, when estimating instantaneous
volatility, or if time periods are small, one may wish to consider the possibility that T → 0 with increasing data.

The expressions for variance terms in the finite K case are quite complicated. Standard errors are conjectured to be most
easily set using observed asymptotic variances (Mykland and Zhang, 2017).

First, however, a result to provide the representation and limit properties in this case. Note that (27) remains valid, but
with the modification

1
K − J

N−K∑
i=J+1

(Xτi+K−J − Xτi )
2
−

∫ T

0
σ 2
t dt = Op

(
T
(
K − J
N

)1/2
)

(42)

It is straightforward, by the samemethods as above, to see that the other signal terms in ˆ⟨X (r), X (s)⟩ are of at most this order.
Meanwhile, the main noise U-statistic (normalized by K − J) is of order Op(N1/2/M̄n(K − J)), where M̄n is the average value
of Mn,i. Observe that by definition, M̄nN = n (the total number of observations in [0, T ]). Equating these two orders,5 we
obtain K − J = Op

(
(N/TM̄n)2/3

)
in generalization of (41), or

K − J = O
(
(n/TM2

n )
2/3)

= O
(
(∆tM2

n )
−2/3) , (43)

where the average sampling frequency ∆t = T/n is used to represent the number of observations. This provides more
transparency since nwill normally depend on T , which we here do not assume to be fixed.

Theorem 6 (Asymptotic Representation of the Two Scales Estimator). Assume the conditions of Theorem 5, except that now K
may be finite. Also, T = O(1) or smaller. Assume that maxi Mn,i = Op(M̄n), as well as (43). Finally, assume that the ϵ̄

(r)
i process is

stationary. Then

ˆ⟨X (r), X (s)⟩ =
1

(1 − b/N)(K − J)

⎧⎨⎩
N−K∑
i=J+1

(X (r)
τi+K−J

− X (r)
τi

)(X (s)
τi+K−J

− X (s)
τi
) + cross terms

⎫⎬⎭
+ op(((K − J)∆τ+)1/2) (44)

where the cross terms are martingale U-statistics of order Op(cn), where cn = T 1/2∆t
1/6

M−1/6
n . Also the cross terms are

asymptotically stably normal when normalized by c−1
n . In particular,

c−1
n

(
ˆ⟨X (r), X (s)⟩ − ⟨X (r), X (s)

⟩

)
(45)

converges stably to a normal distribution, with variance that is random but consistently estimable (FT -measurable).

In analogy with the T fixed case, one can chooseMn to be of order up to O((∆t)−1/2) (but if T is shrinking, no longer order
O(n1/2)). The best convergence rate cn is obtained by choosingMn to be of exact order O((∆t)−1/2), which corresponds to the
case of J and K finite, yielding

cn = T 1/2∆t
1/4

. (46)

The proof of Theorem 6 is much the same as for the earlier asymptotic theorems, except that the Op(∆τ+) terms must be
scrutinized individually for asymptotic normality, andwe have invoked stationarity to complete the conditions for normality
of the noise term. The condition on maxi Mn,i assures asymptotic negligibility. One can, obviously, go with weaker but more
elaborate conditions.

6.2. Estimation of spot volatility

The spot volatility matrix is defined by (σ r,s
t )2 = d⟨X (r), X (s)

⟩t/dt . The standard estimate of spot volatility is now to use
the normalized integrated volatility divided by T , in our current case (̂σ r,s

T )2 = ˆ⟨X (r), X (s)⟩/T . We have there adopted the
convention that ˆ⟨X (r), X (s)⟩ is computed over observations in [T − T , T ]. Similarly, we define ⟨X (r), X (s)

⟩ =
∫ T
T −T (σ

r,s
t )2dt .

The error in this estimator is

(̂σ r,s
T )2 − (σ r,s

T )2 =
1
T

(
ˆ⟨X (r), X (s)⟩ − ⟨X (r), X (s)

⟩

)
  

error in estimator of integrated volatility

+
1
T

(∫ T

T −T
(σ r,s

t )2dt − T (σ r,s
T )2

)
  

smoothing error

= Op(cnT−1) + Op(T 1/2). (47)

5 We emphasize that this is not so much a requirement on the tuning parameters K − J as a condition to assure that both the signal and noise terms
in the error are represented in the asymptotic distribution. Any other order will lead to an asymptotics that underrepresents the actual variability in the
estimator.
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The first Op term in (47) comes from (45) above, while the second Op term is explained at the end of this section. Once again
the error is asymptotically stably normal when suitably normalized.

With cn from (46), and equating the two error terms in (47), one obtains

cn = ∆t
1/8

,

which is the conjectured best rate in this estimation problem. See Mykland and Zhang (2008) end of Section 6, p. 263.
We finally return to the second Op term in (47). This term comes from∫ T

T −T
σ 2
t dt − Tσ 2

T =

∫ T

T −T
(T − t)dσ 2

t = Op(T 3/2). (48)

The first transition in (48) is due to integration by parts (in Itô’s formula): d(σ 2
t − σ 2

T )(T − t) = −(σ 2
t − σ 2

T )dt + (T − t)dσ 2
t ,

and the second transition comes from assuming that σ 2
t is an Itô-semimartingale.6 Observe in particular that the second

term in (47) is a variance term, not a bias.

7. Extensions

7.1. A formulation which extends to other problems

The formulation in this paper is in terms of pre-averaging. However, the same treatment extends to cases where
observations are of the form (with Ŷ replacing Ȳ )

Ŷi+K − Ŷi = Vi+K + (Xτi+K−1 − Xτi ) + V ′

i + ϵ̂i+K − ϵ̂i, (49)

where the ϵ̂i (the microstructure noise) are at most J − 1-dependent, while Vi and V ′

i are functions of the X process that
essentially take place in interval # i, from τi−1 to τi. Specifically, for the above arguments to work, we need that Vi and V ′

i be
Fτi-measurable, and also that E(Vi | Fτi−1 ) = E(V ′

i | Fτi−1 ) = 0. For example, if one has asynchronous observation, and if
the τi are a grid as in Zhang (2011), then the main condition for this to work is that there needs to be an observation of each
process in each interval. The τi’s can be picked as refresh times. If Ŷi is the first observation of a process in interval # i, then
the condition E(Vi | Fτi−1 ) = E(V ′

i | Fτi−1 ) = 0 is satisfied.

7.2. Rolling windows

Another extension of the above would be to consider rolling windows (τi−1, τi]. Unless observation times are equidistant,
there is not a unique natural way of defining such windows. One option is to require the number of observations M in each
window to be constant, another is to let the time length ∆τ be constant. Other, more complex schemes, may be needed in
the case of multivariate observations.

To the extent that rollingwindows represent an averaging (over starting points of each interval) of several estimators that
have non-overlapping windows, our results (except in Sections 5.2 and 6.2) remain valid. The negligibility of edge effects
are unaffected, and the representations in Theorem 3–4 are equally unaffected. Here, our algebraic results again clarify the
crux of the problem: to find a natural way to roll the window so as to average the representation terms in (30).

8. Conclusion

We have discussed the finite sample and then asymptotic representation of the smoothed two-scales realized volatility
(S-TSRV). We have shown that the estimator has small edge effect, and we have also derived a representation theorem for
the estimatorwhich can be used as a tool to characterize its behavior in awide range of situations that can combine irregular,
asynchronous, and endogenous times, and jumps.

Appendix A. Edge effect and calibration of the original TSRV: derivations for Sections 3.1 and 4.1

A.1. Edge effect

The explicit form of the cross terms in (15) is given by

CK = 2
N−K∑
i=1

ηi+K (Xτi+K−1 − Xτi ) + C∗

K where C∗

K = 2
N−K∑
i=1

(
(Xτi+K−1 − Xτi )η

′

i + ηi+Kη′

i

)
. (A.1)

6 Op. cit., Section 4. This reference also essentially provides the argument why the two terms in (47) are asymptotically (conditionally) independent and
why the second term is Gaussian. If σ 2

t is not an Itô-semimartingale, then the integration by parts still typically goes through, but the order or the termmay
change.
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This is a sum of three martingale U-statistics under the conditions of Fact 1. Furthermore,

CK − CJ = 2

⎛⎝ N∑
i=K+1

ηi(Xτi−1 − Xτi−K ) −

N∑
i=J+1

ηi(Xτi−1 − Xτi−J )

⎞⎠+ C∗

K − C∗

J = CK ,J + RK ,J

where CK ,J = 2
N∑

i=K+1

ηi(Xτi−J − Xτi−K ) and RK ,J = −2
K∑

i=J+1

ηi(Xτi−1 − Xτi−J ). (A.2)

CK ,J is a sum of martingale U-statistics under the conditions of Fact 2.
In view of (13), the edge effect eK ,J is given by

eK ,J =

N−K∑
i=1

[
(ηi+K )2 + (η′

i)
2]

−

N−J∑
i=1

[
(ηi+J )2 + (η′

i)
2]

+ RK ,J

= {

N∑
i=K+1

η2
i −

N∑
i=J+1

η2
i } + {

N−K∑
i=1

(η′

i)
2
−

N−J∑
i=1

(η′

i)
2
} + RK ,J

= −

K∑
i=J+1

η2
i −

N−J∑
i=N−K+1

(η′

i)
2
+ RK ,J . (A.3)

Proof of Proposition 1. Define the 2-norm by ∥R∥2 = (E(R2))1/2.
eK ,J case. Under Condition 2, if X (1)

t replaces Xt in the definition of Vi and V ′

i , Eη2
i and E(η′

i)
2 are both bounded by

2(E(∆X (1)
τn,i

)2 + Var(ϵ̄i)) = 2(E∆⟨X (1), X (1)
⟩τn,i + Var(ϵ̄i)). Since Var(ϵ̄n,i) = O(M−1

n,i ), the bound becomes O(maxi ∆τn,i +

maxi M−1
n,i ). With the same redefinition of Xt , ∥RK ,J∥2 ≤ 2

∑K
J+1 ∥ηi∥2∥Xτi−1 − Xτi−J ∥2 = O((K − J)(maxi ∆τn,i +

maxi M−1
n,i ))

1/2((J − 1)maxi ∆τn,i)1/2. Hence, again with the same redefinition of Xt ,

eK ,J = Op

(
(K − J)J1/2(max

i
∆τn,i + max

i
M−1

n,i )
)

(A.4)

We have here also assumed that d⟨X (1), X (1)
⟩t/dt ≤ c , where c is nonrandom. The nonrandom constant c is subsequently

removed via localization, cf. the references on localization just before Definition 1. Since the event that X (2)
t has no jump on

(τn,J , τn,K ] and (τn,N−K , τn,N−J ] has probability tending to one, the bound (A.4) also applies to the original eK ,J from (A.3).
For compactness, we also show the ẽK ,J case here. Refer to (22) for the form of ẽK ,J . As in the eK ,J case, we can replace Xt

by X (1)
t . Since ∥ηi∥2 and ∥η′

i∥2 are both uniformly bounded by O(∆τ+
n + (M−

n )−1)1/2, we obtain the second formula in (29).

A.2. Calibration of this estimator

To obtain a calibration constant, assume for simplicity that Xt is continuous and that σ is constant and that the ∆τ are
completely regular, i.e., ∆τ = T/N . The first term on the right hand side of (16) has expectation (N − K )(K − 1)∆τσ 2. The
combined first two terms thus has expectation [(N − K )(K − 1) − (N − J)(J − 1)]∆τσ 2

= (K − J)(N − K − J + 1)∆τσ 2. We
then have to handle the edge effect. If we assume that the times have the same (possibly irregular) distribution inside each
interval, and if we take (ϵ̄i)2 to be iid (and independent of the X process), we obtain

EeK ,J = −(K − J)[E(V 2
1 + (V ′

1)
2) + 2Var(ϵ̄1)]

= −(K − J)[∆τσ 2(1 − 2E(I1(1 − I1))) + 2Var(ϵ̄1)] (A.5)

If we further assume that the tj are equidistant, and that the ϵj are iid, we get from (8)

EeK ,J ≈ −(K − J)[
2
3
∆τσ 2

+ 2M−1Var(ϵ)]. (A.6)

We thus obtain

E[K [Ȳ , Ȳ ]
(K )

− J[Ȳ , Ȳ ]
(J)

] = (K − J)

(
1 −

K + J −
1
3

N

)
σ 2T − 2(K − J)M−1Var(ϵ) (A.7)

If we assume that M is large, and/or that the signal-to-noise ratio σ 2/Var(ϵ) is also large, one approach is to ignore the
term due to the ϵj. Since in the σ 2 constant case, the integrated volatility has value Tσ 2, we thus get the proposed estimator
in (17).
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Appendix B. Estimation without ϵ̄2i : derivations for Section 3.2

B.1. Derivation of linear combination

Write from (15) that

K [Ȳ , Ȳ ]
(K )

=

N−K∑
i=1

(Xτi+K−1 − Xτi )
2
+

N∑
i=K+1

[(Vi + ϵ̄i)2] +

N−K∑
i=1

[(V ′

i + ϵ̄i)2] + CK . (B.8)

We then wish for a modified J (< K ) scale measure. Consider first the measure on part of the time line, from a to b

J[Ȳ , Ȳ ]
(J,a,b)

=

b−J∑
i=a

(Ȳi+J − Ȳi)2

=

b−J∑
i=a

(Xτi+J−1 − Xτi )
2
+

b∑
i=J+a

[(Vi + ϵ̄i)2] +

b−J∑
i=a

[(V ′

i + ϵ̄i)2] + CJ,a,b. (B.9)

The contribution of the ϵ̄2 terms is

E(J, a, b) =

a+J−1∑
i=a

(ϵ̄i)2 +

b∑
i=b−J+1

(ϵ̄i)2 + 2
b−J∑

i=a+J

(ϵ̄i)2 if b − a ≥ 2J

=

b−J∑
i=a

(ϵ̄i)2 +

b∑
i=J+a

(ϵ̄i)2 otherwise. (B.10)

Now assume that b − a = K + J − 1, and note that 2K > b − a ≥ 2J since K > J . We obtain

E(K , a, b) − E(J, a, b) = −2
b−J∑

i=a+J

(ϵ̄i)2 (B.11)

Hence components due to ϵ̄2 in the edge effect in (A.3) can be written
1
2
{E(K , a, b) − E(J, a, b)|b=K+J

a=1 } +
1
2
{E(K , a, b) − E(J, a, b)|b=N

a=N−(K+J)+1} (B.12)

We can thus create a new two scales estimator with no ϵ̄2 in the edge effect or anywhere else, by modifying the
measurements of volatility as follows. With b = K + J , set

K [̃Ȳ , Ȳ ]

(K )
= K [Ȳ , Ȳ ]

(K )
−

1
2
K [Ȳ , Ȳ ]

(K ,1,b)
−

1
2
K [Ȳ , Ȳ ]

(K ,N−b+1,N)

=
1
2

b−K∑
i=1

(Ȳi+K − Ȳi)2 +

N−b∑
i=b−K+1

(Ȳi+K − Ȳi)2 +
1
2

N−K∑
i=N−b+1

(Ȳi+K − Ȳi)2. (B.13)

This leads to the same definition as (19). One obtains that K [̃Ȳ , Ȳ ]

(K )
− J [̃Ȳ , Ȳ ]

(J)
has no edge effect. For the ϵ̄2 terms, this is

how the combination was derived, but clearly the V and V ′ terms vanish similarly.

B.2. Total edge effect for pure η and η′ terms

The components due to η2
i and (η′

i)
2 in K [̃Ȳ , Ȳ ]

(K )
are given by

=

(
1
2

b−K∑
i=1

+

N−b∑
i=b−K+1

+
1
2

N−K∑
i=N−b+1

)
(η2

i+K + (η′

i)
2)

=

⎛⎝1
2

b∑
i=K+1

+

N−J∑
i=b+1

+
1
2

N∑
i=N−J+1

⎞⎠ η2
i +

⎛⎝1
2

J∑
i=1

+

N−b∑
i=J+1

+
1
2

N−K∑
i=N−b+1

⎞⎠ (η′

i)
2 (B.14)

The similar expression for J [̃Ȳ , Ȳ ]

(J)
is⎛⎝1

2

b∑
i=J+1

+

N−K∑
i=b+1

+
1
2

N∑
i=N−K+1

⎞⎠ η2
i +

(
1
2

K∑
i=1

+

N−b∑
i=K+1

+
1
2

N−J∑
i=N−b+1

)
(η′

i)
2. (B.15)



116 P.A. Mykland et al. / Journal of Econometrics 208 (2019) 101–119

Subtracting component by component (in the same order) gives

Components due to η2
i and (η′

i)
2 in K [̃Ȳ , Ȳ ]

(K )
− J [̃Ȳ , Ȳ ]

(J)

=

⎧⎨⎩1
2

⎛⎝ b∑
i=K+1

−

b∑
i=J+1

⎞⎠+

( N−J∑
i=b+1

−

N−K∑
i=b+1

)
+

1
2

⎛⎝ N∑
i=N−J+1

−

N∑
i=N−K+1

⎞⎠⎫⎬⎭ η2
i

+

⎧⎨⎩1
2

( J∑
i=1

−

K∑
i=1

)
+

⎛⎝ N−b∑
i=J+1

−

N−b∑
i=K+1

⎞⎠+
1
2

(
N−K∑

i=N−b+1

−

N−J∑
i=N−b+1

)⎫⎬⎭ (η′

i)
2

=

⎛⎝−
1
2

K∑
i=J+1

+
1
2

N−J∑
i=N−K+1

⎞⎠ η2
i +

⎛⎝1
2

K∑
i=J+1

−
1
2

N−J∑
i=N−K+1

⎞⎠ (η′

i)
2

=
1
2

⎛⎝−

K∑
i=J+1

+

N−J∑
i=N−K+1

⎞⎠ (η2
i − (η′

i)
2) =

1
2

⎛⎝−

K∑
i=J+1

+

N−J∑
i=N−K+1

⎞⎠ (ηi − η′

i)∆Xτi , (B.16)

since ηi + η′

i = Vi + V ′

i = ∆Xτi .

B.3. The martingale U-statistics and the complete edge effect

An alternative representation of (19) is given by

K [̃Ȳ , Ȳ ]

(K )
=

1
2

⎛⎝N−b∑
i=1

+

N−K∑
i=J+1

⎞⎠ (Ȳi+K − Ȳi)2 (B.17)

In analogy with (A.1), cross terms are given by

C̃K =

⎛⎝N−b∑
i=1

+

N−K∑
i=J+1

⎞⎠ ηi+K (Xτi+K−1 − Xτi ) + C̃∗

K =

( N−J∑
i=K+1

+

N∑
i=b+1

)
ηi(Xτi−1 − Xτi−K ) + C̃∗

K

where C̃∗

K =

⎛⎝N−b∑
i=1

+

N−K∑
i=J+1

⎞⎠((Xτi+K−1 − Xτi )η
′

i + ηi+Kη′

i

)
. (B.18)

In parallel with (A.2), we obtain

C̃K − C̃J =

( N−J∑
i=K+1

+

N∑
i=b+1

)
ηi(Xτi−1 − Xτi−K ) −

⎛⎝ N−K∑
i=J+1

+

N∑
i=b+1

⎞⎠ ηi(Xτi−1 − Xτi−J ) + C̃∗

K − C̃∗

J

= C̃K ,J + R̃K ,J where

C̃K ,J =

( N−J∑
i=K+1

+

N∑
i=b+1

)
ηi(Xτi−J − Xτi−K ) + C̃∗

K − C̃∗

J and

R̃K ,J =

⎛⎝−

K∑
i=J+1

+

N−J∑
i=N−K+1

⎞⎠ ηi(Xτi−1 − Xτi−J ). (B.19)

By (B.16), the complete edge effect ẽK ,J is given by

ẽK ,J =
1
2

⎛⎝−

K∑
i=J+1

+

N−J∑
i=N−K+1

⎞⎠ (ηi − η′

i)∆Xτi + R̃K ,J . (B.20)

B.4. Calibration of the modified estimator

To get an calibration constant, assume for simplicity that σ is constant that the ∆τ are regular, i.e., ∆τ = T/N . Also, for
an all-purpose constant, assume that E(Ii) =

1
2 for the edge values i ∈ [J + 1, K ] ∪ [N − K + 1,N − J]. The first term on
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the right hand side of (21) has expectation [(b − K ) + (N − b − (b − K ))](K − 1)∆τσ 2
= (N − b)(K − 1)∆τσ 2. The whole

expression thus has expectation (N − b)(K − J)∆τσ 2
= (1 − b/N)(K − J)Tσ 2. Since in the σ 2 constant case, the integrated

volatility has value Tσ 2, we thus get the proposed estimator in (23).

Appendix C. Proof of Theorem 2 in Section 3.3

Set

K1 =
1
2

N−b∑
i=1

(Xτi+K−1 − Xτi )
2,K2 =

1
2

N−K∑
i=J+1

(Xτi+K−1 − Xτi )
2, and

J1 =
1
2

N−b∑
i=1

(Xτi+J−1 − Xτi )
2,J2 =

1
2

N−J∑
i=K+1

(Xτi+J−1 − Xτi )
2. (C.21)

We shall use that the squared terms in (21) equal K1 + K2 − J1 − J2. Observe that

(Xτi+K−1 − Xτi )
2
− (Xτi+J−1 − Xτi )

2

= (Xτi+K−1 − Xτi+J−1 )
2
+ 2(Xτi+K−1 − Xτi+J−1 )(Xτi+J−1 − Xτi ). (C.22)

(The second term is obviously a cross term.) Hence,

K1 − J1 =
1
2

N−b∑
i=1

{
(Xτi+K−1 − Xτi+J−1 )

2
+ 2(Xτi+K−1 − Xτi+J−1 )(Xτi+J−1 − Xτi )

}
=

1
2

N−K−1∑
i=J

(Xτi+K−J − Xτi )
2

+

N−J−1∑
i=K

(Xτi − Xτi−(K−J) )(Xτi−(K−J) − Xτi−K+1 ) (C.23)

Now re-index the sums in K2 and J2 to get

K2 =
1
2

N−1∑
i=b

(Xτi − Xτi−K+1 )
2, and J2 =

1
2

N−1∑
i=b

(Xτi − Xτi−J+1 )
2. (C.24)

By symmetry, one can proceed as in (C.22), on the opposite edge:

(Xτi − Xτi−K+1 )
2
− (Xτi − Xτi−J+1 )

2
= (Xτi−K+1 − Xτi−J+1 )

2
+ 2(Xτi − Xτi−J+1 )(Xτi−J+1 − Xτi−K+1 ). (C.25)

This yields

K2 − J2 =
1
2

N−1∑
i=b

{
(Xτi−K+1 − Xτi−J+1 )

2
+ 2(Xτi − Xτi−J+1 )(Xτi−J+1 − Xτi−K+1 )

}
=

1
2

N−K∑
i=J+1

(Xτi+K−J − Xτi )
2

+

N−1∑
i=b

(Xτi − Xτi−J+1 )(Xτi−J+1 − Xτi−K+1 ). (C.26)

Combining (C.23) and (C.26), we thus obtain Theorem 2.

Appendix D. Proof of Theorem 3 in Section 4

In the following, observe that by localization (see references on localization just before Definition 1), one can take
d⟨X (1), X (1)

⟩t/dt ≤ ν+ where ν+ is a nonrandom constant and ⟨X (1), X (1)
⟩t is the predictable quadratic variation from

Condition 2.
We give the maximum order of neglected terms.

1. The (1 − b/N) factor can be replaced by 1, for the same reasons as at the beginning of Appendix E.
2. The edge term in ⟨̂X, X⟩ is covered by Proposition 1, except that we replace M−

n by op(∆τ+(K − J)1/2). This is valid
sinceM−

n only entered the proof of Proposition 1 as a symbol.
3. The two ‘‘1/2" terms in Eq. (24) are of order Op(∆τ+/(K − J)), and hence negligible.
4. The cross terms explicitly given in Eqs. (C.23) and (C.26) are handled as follows. For terms containing only X (1), the

quadratic variations are of order Op(J(K − J)2∆τ+) and Op(J2(K − J)∆τ+) before normalization, and are thus negligible
after normalization. Terms containing X (1) and X (2) are directly of same or smaller order than those containing only
X (1), since there are only finitely many such terms. Asymptotically, no term contains only X (2).
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In Item 4 above, and in the remaining items below, we handle (sums of) martingale U-statistics. Inference is made from
the predictable quadratic variation to the originalmartingalewith the help of Lenglart domination (Jacod and Shiryaev, 2003,
Lemma 3.30, p. 35).

We are now left to deal with the terms from (B.19). Set V (2)
i as the contribution to ηi from X (2). Also set ηi,1 = V (1)

i + ϵ̄i

and η′

i,1 = V (1)′
i − ϵ̄i, where V (1)

i is the contribution to ηi from X (1), and similarly for V (1)′
i . Observe that E(η2

i | Fi−J ) ≤

2ν+∆τ+
+ 2E(ϵ̄2

i | Fi−J ), whence by Condition 4,

E sup
i

E(η2
i,1 | Fi−J ) = o(∆τ+

n (K − J)1/2) (D.27)

We now continue with the individual terms

5. The cross term of the form
∑

i ηi(Xτi−J − Xτi−K ). Eventually (for any given outcome ω),
∑

i V
(2)
i (Xτi−J − Xτi−K ) =∑

i V
(2)
i (X (1)

τi−J
− X (1)

τi−K
) = Op(∆τ+(K − J)). The predictable quadratic variation of the modified

∑
i ηi,1(Xτi−J − Xτi−K )

is bounded by
∑

i E(η
2
i | Fi−J )(Xτi−J − Xτi−K )

2
≤ op(∆τ+(K − J)3/2) by (D.27), and hence this term is also negligible.

6. The cross terms C∗

K and C∗

J of the form
∑

i(Xτi+K−1−Xτi )η
′

i . As in the previous Item5,we can replaceηi withηi,1 without
loss of generality. Again decompose into two terms. On the one hand

∑
i(X

(2)
τi+K−1

− X (2)
τi

)η′

i,1 = op(∆τ+(K − J)1/2) by
(D.27) since there are only finitely many terms in the sum. On the other hand, the main term in C∗

K − C∗

J is of the
form

∑
i(X

(1)
τi+K−1

− X (1)
τi+J−1

)η′

i,1, and has an observed (optional) quadratic variation which is Lenglart-dominated by
ν+(∆τ+)2(K − J)3/2, and hence this term is also negligible. The remaining edge related terms disappear similarly.

7. The cross term of the form
∑

i ηi+Kη′

i and
∑

i ηi+Jη
′

i . As in the previous Item 5, we can replace ηi with ηi,1 without
loss of generality. By (D.27), these terms have predictable quadratic variation bounded by op(N(∆τ+)2(K − J)) =

op(∆τ+(K − J)), which is also negligible.

This completes the proof.

Appendix E. Proof of Theorem 5 in Section 5.2

The factor (1 − b/N)−1 can be replaced by 1, since (N/(K − J))1/2
(
(1 − b/N)−1

− 1
)

= O((N(K − J))−1/2) = o(1). We are
thus interested in the limit of (N/(K − J))1/2D̃(r,s), where

D̃(r,s)
=

N−K∑
i=J+1

(X (r)
τi+K−J

− X (r)
τi

)(X (s)
τi+K−J

− X (s)
τi
) − ⟨X (r), X (s)

⟩T = M (r,s)
N,T [2]

whereM (r,s)
N,t is themartingale (cf. Condition 1) with end point (value at T ) given by

∑N−K
i=J+1

∫ τi+K−J
τi

(X (r)
t −X (r)

τi
)dX (s)

τi
andwhere

ar,s[2] = ar,s + as,r .
Compare to the proof of Theorem 2–3 (p. 1410–1411) in Zhang et al. (2005). Replace ti by τi. Since we are in a

multidimensional situation, replace DT by D̃(r,s)
T = D̃(r,s). Themartingale representation ofM (r,s)

N,T [2] is similar to (ibid., (A.25)).
Following the same development,

⟨D̃(r1,s1), D̃(r2,s2)
N ⟩T = ⟨M (r1,s1)

N [2],M (r2,s2)
N [2]⟩T = ⟨M (r1,s1)

N ,M (r2,s2)
N ⟩T [2][2]

which, as in the earlier paper, is asymptotically the same as

(K − J)∆τn
1
4

∫ T

0
⟨X (r1), X (r2)⟩′t⟨X

(s1), X (s2)⟩′tdG(t)[2][2]

The result follows similarly to the theorems in Zhang et al. (2005).
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