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1. Introduction

The pricing and hedging of options usually presupposes a known probability distribution P for the price S of the
underlying security. When P is not known, one approach is to find a prediction set for, say, the volatility of S, and then to
hedge in such a way that the option liability is covered whenever the prediction set is realized (Avellaneda et al., 1995;
Lyons, 1995; Mykland, 2000, 2003a, Buff, 2002, Section 4.2, pp. 35–40). This procedure, however, fails to take account of
the values of market traded options on the same security. This paper will show in the context of convex European options
that such values can be incorporated in a uniform manner with the help of what we term a worst case distribution. The
development is related to earlier work by Bergman et al. (1996), Frey and Sin (1999), Frey (2000) and Mykland (2003b).

The worst case distribution, therefore, has two inputs: (1) A prediction set for realized volatility, based, for example,
on a time series analysis. One can, for example, fit an ARCH or GARCH model, or a time series based on estimated daily
volatilities (from high frequency data). (2) Market traded European put and call options with the same expiry date for
which one seeks to obtain the worst case distribution.

ARCH and GARCH type models go back to the seminal papers of Engle (1982) and Bollerslev (1986). There is a huge
literature in this area, see, for example the surveys by Bollerslev et al. (1992, 1994), and Engle (1995). Time series
based on estimated volatilities are explored in Andersen et al. (2003, 2005), Aït-Sahalia and Mancini (2008), Kang et al.
(2010), Shephard and Sheppard (2010), and Ghysels and Sinko (2011). A simple example of how to incorporate a data
analysis is given in Section 4.

The construction in this paper is exact and is valid for any number of market traded options. When the number of such
options is large, however, we shall see in Section 8 that the worst case distribution converges to the state price distribution
obtained by interpolating options. Meanwhile, if the statistical prediction interval is wide, we obtain in Section 5 that the
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contribution from the statistical interval translates into a sinusoidal shape for the worst case distribution between strike
prices for market traded options.

It is conjectured that a worst case distribution will exist also with multiple and even large numbers of underlying
securities, with the exception that the particularly simple form described in Section 2 will not hold.

The structure of the paper is as follows. The concept of a worst case distribution is introduced below in this section.
Section 2 describes the structure of this distribution (and the accompanying trading strategy) for the case of one
underlying security and multiple market traded options, culminating in the main result (Theorem 1, existence of the
distribution and of an accompanying trading strategy). Section 3 discusses the relationship to implied volatilities. Section 4
gives a simple example of implementation in data. Section 6 discusses how to find the worst case distribution, in the form
of three algorithms and a theoretical mathematical validation (Theorem 2). The trading strategy is further explained in
Section 7. Most proofs are in the Appendix.

The relationship between historical data and options prices has previously also been discussed in terms of the
relationship between realized and implied volatilities (Bollerslev et al., 2009; Zhang, 2012). For options with short horizon,
the relationship is explored by Andersen et al. (2017). It also related to the so-called transport problem (see, e.g., Hobson
(2010), Beiglböck et al. (2013), and Kallblad et al. (2017)).

To describe our results in this paper, we begin with the cast:
(i) The securities that are traded in the market:
• S = (St )0≤t≤T , the price process of a stock that pays no dividend.
• Λ = (Λt )0≤t≤T , the price of a zero coupon bond maturing at T, with value one dollar (or euro, or yuan, or krone).
• European call and put options maturing at T (see Section 2.1).
We can think of the value S∗

t = St/Λt as the price of a forward contract on the stock S with maturity T . We shall assume
that S∗ is governed by an unknown probability P which belongs to a class Q of distributions. The main requirement on P
is that S∗ be an Ito process

dS∗

t = µtS∗

t dt + σtS∗

t dW
∗

t , (1.1)

where (µt ) and (σt ) are random processes and (W ∗
t ) is a Wiener process.

(ii) A prediction bound on the volatility σ 2
t , in the form of a prediction interval IΞ

+

IΞ
+

= {(σt ) :

∫ T

0
σ 2
u du ≤ Ξ+

}. (1.2)

(iii) A European payoff g(ST ) to be made at time T , where g will mostly be taken to be convex.
The problem we wish to solve is the following. We look for a process (Vt ) with two properties. Vt must be the value

of a self financing dynamic portfolio in the market traded securities (see Section 2.2 for the definition of this concept).
Also, VT must cover the option liability if the prediction set is realized, i.e.,

VT ≥ g(ST ) P − a.s. on IΞ
+

, for all P ∈ Q. (1.2a)

In particular, we wish to find the amount V0(g) which is the smallest starting value for such a self financing portfolio:

Definition. The quantity V0(g), provided it exists, will be called the conservative starting value for prediction set IΞ
+

and
payoff g(ST ) at T .

A similar setup involving more general prediction sets and market traded securities is given in Mykland (2003a), which
discusses the relevant concepts in some detail.

What is special about the development in the current paper is that we show the existence of a mapping from the
prediction bound Ξ+ to a cumulative distribution FΞ+

on ST :

Ξ+
→ FΞ+

(1.3)

so that for all (non strictly) convex g which do not grow too fast, the conservative starting value for prediction set IΞ
+

and payoff g(ST ) at T is

V0(g) = Λ0

∫
g(s)dFΞ+

(s). (1.4)

In other words: there is one FΞ+

which can be taken as the worst case state price distribution for all convex payoffs
g(ST ). Convex options include calls and puts.

FΞ+

is what we call the worst case distribution for the market structure and prediction set described above. In
consequence, since FΞ+

is independent of the payoff function g , one does not need to compute the value V0(g) for each
g , but instead can find the distribution FΞ+

. Also, a distribution function is a more conceptual object. FΞ+

is a state price
distribution in the sense used in finance, see, for example, Duffie (1996). (Note, however, that for non-convex g , the price
is no longer conservative in the sense of (1.2a). In particular, for concave g , the inequality in (1.2a) is reversed. See also
the discussion at the end of Section 9.)
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Fig. 1. Death of a stock price. Example of how the stopping time τ in Eq. (2.3) is formed. The quantities K1 to K4 are strike prices of market traded
options, and Ξ+ is the upper end of the prediction interval (1.2). S̃ is a standardized stock price process following (2.1), and S∗

0 is the inflated value
of the actual stock price at time 0. The adjusted implied volatilities (the ti ’s) are determined from market prices of options through Eq. (2.4).

2. Description and main theorem

2.1. The worst case distribution

For reasons of mathematical convenience, assume that all market traded options are European puts. This is no
restriction on results, as puts and calls can be converted to each other via put–call parity, see Chapter 7.4 (pp. 174–175)
of Hull (2003). In practice, one would want to take the most liquid of the put and the call to minimize the transaction
cost. A put option with strike price K has value (K − ST )+ at maturity T . Its market price at time t will be denoted by PK

t ,
and for the inflated (by the zero coupon bond) quantity, we use PK∗

t = PK
t /Λt . A discussion of a formulation in terms of

calls is given in Section 9.
We suppose that the market traded puts have strike prices K1, . . . , Kq.
To describe FΞ+

, introduce the standardized process

d̃St = S̃tdW̃t , S̃0 = S∗

0 (= S0/Λ0), (2.1)

where W̃ is a standard Brownian motion. The corresponding probability distribution will be called P̃ . Then

FΞ+

(s) = P̃ (̃Sτ∧Ξ+ ≤ s), (2.2)

where

τ = inf{t : t ≥ ti and S̃t = Ki for some i, 1 ≤ i ≤ q}, (2.3)

and where the t1, . . . , tq are nonrandom, independent of Ξ+, and the solution of

Ẽ(Ki − S̃τ )+ = PKi
0 /Λ0 1 ≤ i ≤ q, (2.4)

where the left hand side of (2.4) is taken as a function of the tis through (2.3). A display illustrating how τ is formed is
given in Fig. 1. Note that one can think of solving (2.4) in the ti’s, or in τ , subject to the specification (2.3).

Definition. The ti’s given by (2.1) and (2.3)–(2.4) will be called adjusted (cumulative) implied volatilities. (Compare to
Section 3.1). The worst case (state price) distribution FΞ+

is then as given by (2.2).

Proposition 1. If (2.3)–(2.4) have a solution, it is unique.

This follows directly from Theorem 2 in Section 6. The case of no solution will be considered in Section 3.2. We shall
suppose that the solution of (2.4) satisfies

max
i=1,...,q

ti ≤ Ξ+, (2.5)

without which there is ‘‘arbitrage’’ in a sense to be discussed also in Section 3.2.
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2.2. Trading strategies: Theoretical considerations

We define the class Q given the initial inflated values S∗

0 and PKi∗
0 , 1 ≤ i ≤ q, as follows:

Definition. Q is a collection of distributions on the set of functions Ω = C[0, T ] × D[0, T ]
q, and (S∗

t , P
K1∗

t , . . . , PKq∗
t ) is

the coordinate process. Every P ∈ Q must satisfy (1.1), and the coordinate process must have the correct initial value
(S∗

0 , P
K1∗

0 , . . . , PKq∗
0 ) with probability one. Also, for given P , the process (σt ) must be bounded P-a.s. (but one does not

need to know the bound). Finally, each P must be mutually absolutely continuous with a P∗ under which the coordinate
process is a martingale. The collection of such P∗s will be called Q∗. ■

The requirement of equivalence to a ‘‘risk neutral measure’’ P∗ is the most convenient way to avoid arbitrage
opportunities in the market. Not only is S∗ a martingale under P∗, but processes PKi can be found, with correct initial
value PKi

0 , such that PKi∗ is a martingale.
The filtration describing the market will be called (Ft ) and can be any that is right continuous, and which makes the

coordinate process adapted and martingales under all P∗
∈ Q∗. This (Ft ) can be either the smallest filtration with these

properties, or anything bigger satisfying the same criteria, such as the ‘‘analytic completion" discussed in Mykland (2003a).
The latter is particularly useful from a statistical perspective. A precise discussion of the conceptual issues involved can
be found in Sections 2, 3.2 and 4 of this earlier paper. All processes are taken to be càdlàg and adapted to (Ft ).

A self financing dynamic portfolio (Vt ), with inflated value V ∗
t = Vt/Λt , is defined as a process which, for any P ∈ Q,

can be represented by V ∗
= H∗

− D∗, where D∗ is non decreasing (D∗ provides for the case where profit can be removed
from the portfolio), and H∗ is a stochastic integral with respect to S∗ and the PKi∗. Stochastic integrals are as defined in
Chapter I.4d (pp. 46–51) of Jacod and Shiryaev (2003). The random variables {H∗−

λ } must be uniformly integrable for all
P∗

∈ Q∗, where the λ describes the set of stopping times taking values in [0, T ].
We can confine ourselves to considering inflated quantities by virtue of numeraire invariance, see Chapter 6 of Duffie

(1996). In the current situation where we inflate by the zero coupon bond Λ, FΞ+

and the option liabilities g(ST ) and
(K − ST )+ also only depend on inflated quantities, since ST = S∗

T . All conditions, therefore, may be, and are, directly
imposed on the inflated processes. The author learned this device from the paper of El Karoui et al. (1998).

The uniform integrability condition is intended to avoid doubling strategies, cf. Chapter 6.B of Duffie (1996), and
p. 670 of Mykland (2000). For other discussions of self financing trading strategies, see Harrison and Kreps (1979), Harrison
and Pliskà (1981), Chapter 6 of Duffie (1996), and, in the context of super-hedging, Cvitanić and Karatzas (1992,
1993), El Karoui and Quenez (1995), Eberlein and Jacod (1997), Karatzas (1996), Karatzas and Kou (1996), Kramkov (1996),
and and Föllmer and Leukert (1999, 2000).

2.3. Form of the self financing portfolio

The trading strategy that starts with V0(g) only requires a static position in the market traded options. We explain this
in the following.

At the outset of trading, suppose one takes a position of λi units in the put option with strike price Ki. We let this
position be static, in the sense that we hold it without change until expiry at time T . The problem then changes to that
of covering a liability of the form hλ(ST ), where

hλ(s) = g(s) −

q∑
i=1

λi[(Ki − s)+ − PKi∗
0 ]. (2.6)

This is since a loan of PK
0 dollars at time 0 requires a repayment of PK∗

0 dollars at maturity.
The two problems are equivalent, and V0(hλ) = V0(g). It turns out, however, that there is one value of λ = (λ1, . . . , λq)

so that the dynamic hedge for liability hλ(ST ) only involves trading in the forward contract S∗ (in other words, H∗ is a
stochastic integral over S∗ only).

Practically, this is important because transaction costs are normally higher in the market traded options than in the
forward contract S∗ (which, if need be, can be created by securities S and Λ). We otherwise ignore the issue of trading
cost in this paper.

2.4. The main result

Theorem 1. Assume that (2.3)–(2.4) have a solution. Also suppose (2.5). Then there exists a mapping (1.3) so that for all (non
strictly) convex g for which |g(s)| increases no more than polynomially in s as s → ∞, the conservative starting value V0(g)
for prediction set IΞ

+

and payoff g(ST ) at T exists and is given by (1.4). FΞ+

is given by (2.2). There is a trading strategy that
starts with value V0(g), and which only requires a static position in the market traded options, as described in Section 2.3.

The theorem is proved in the Appendix. The general issue of how to compute the worst case distribution and its
corresponding hedging strategy is discussed below in Sections 6 and 7. First, however, an interpretation of the tis.
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3. Implied volatilities, and arbitrage

Note first that the construction in Section 2.1 is a conversion of time to volatility scale. The ti’s can be seen as a form
of implied volatilities. First, consider the case where this is exactly true.

3.1. Connection to implied volatility

The Black and Scholes (1973) and Merton (1973) form of the price at time 0 of a European put option with strike K is
BSMP(S0, − logΛ0, σ

2T ), where

BSMP(S, R, Ξ ) = K exp(−R)Φ(−d2) − SΦ(−d1)

with

d1,2 = (log(S/K ) + R ± Ξ/2) /
√

Ξ ,

and where the instantaneous volatility σ 2
t is taken to be constant and equal to σ 2. Also, Φ is the standard normal

cumulative distribution function.
Of course, the model underlying this formula may not be valid, and prices do not generally behave as if it were, see

for example Hull (2003), but it is customary to invert the function to find so-called implied volatilities. We shall here do
this on the cumulative scale.

Definition. The (cumulative) implied volatility at time zero for strike price K , ΞK , is defined by

BSMP(S0, − logΛ0, ΞK ) = PK
0

It is also natural to call the ti from Theorem 1 the conditional (cumulative) implied volatility at time zero for strike price
Ki. For both objects, we omit ‘‘cumulative’’ unless this is not clear from the context. ■

The first connection to FΞ+

is now as follows.

Example 1. If all traded options have the same implied volatility:

ΞK1 = · · · = ΞKq ,

then

t1 = · · · = tq = ΞK1

This is easily seen from Theorem 1. In the more general case of unequal implied volatilities, argmini(ti) = argmini(ΞKi )
(there can be several such i’s, or course) and ti and ΞKi must coincide for these indices i. Also, one can see more generally
from the convexity of the put payoff that ti ≥ ΞKi .

3.2. The tis and arbitrage

Arbitrage is the construction of a self financing strategy which makes a profit for some P ∈ Q, and which does not
lose money almost surely, for all P ∈ Q. For issues related to the avoidance of doubling strategies, see Chapter 6 of Duffie
(1996).

There are two ways that arbitrage can occur in our setting. One is if (2.5) is violated. The other is if the system (2.3)–(2.4)
has no solution. The latter case is the most clear cut (with proof in the Appendix):

Proposition 2. If (2.3)–(2.4) have no solution, then there is arbitrage.

The former case is one of ‘‘statistical arbitrage’’, in the sense that the prediction interval IΞ
+

has to be realized,
otherwise a loss can occur.

Proposition 3. Assume that (2.3)–(2.4) have a solution, but that maxi=1,...,q ti > Ξ+. Then there is a trading strategy which,
provided IΞ

+

is realized, yields a positive return of at least c∗ at time T , almost surely for any P ∈ Q. Here c∗ is a positive
constant independent of P.

Proof of Proposition 3. Let S be the indices for which the tis are smaller than Ξ+, and let I be the index i corresponding
to the smallest ti strictly greater than Ξ+. We shall be interested in earning money on the put payoff g(s) = (KI − s)+.
The following argument remains valid if S is empty.

Note that the ti, i ∈ S , solve (2.3)–(2.4) for this index set. Let V0(g) be the price given by Theorem 1 based on hedging
in S, Λ and the puts with strike Ki, i ∈ S . Our claim is now that

V0(g) < PKI
0 . (3.1)
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Fig. 2. Worst case distribution based on the 90% posterior quantile from Table 1, and incorporating traded options with strike prices 60, 80, 100,
120, and 140. The traded options were taken to have Black–Scholes implied volatility (see Section 3) equal to the 80% posterior quantile.

Thus, one can sell the option with payoff g(ST ), start a self financing trading strategy with initial value V0(g), and be sure
that the liability is covered so long as IΞ

+

is realized. The profit is at least c = PKI
0 −V0(g), if taken at time 0, or c∗

= c/Λ0
if taken at time T (any random additional profit has, of course, to be taken at time T ).

To see (3.1), let τ be given on the form (2.3) based on ti, i ∈ S ∪ {I}. Also let K− = sup{Ki < KI , i ∈ S} and
K+ = inf{Ki > KI , i ∈ S}. Let C = {τ ≥ Ξ+ and S̃Ξ+ ∈ (K−, K+)}. It then follows that

PKI
0 − V0(g) = Ẽ[g (̃Sτ ) − g (̃Sτ∧Ξ+ )] = Ẽ[X],

where X is zero outside C , and otherwise positive. ■

4. An implementation with data

We give an example of how the worst case distribution can look. Table 1 provides (Bayesian) posterior quantiles for
the square root of Ξ =

∫ T
0 σ 2

t dt for the S&P 500. The posterior distribution is based on work by Jacquier et al. (1994),
which analyzes (among other series) the S&P 500 data recorded daily, and has also been used by Mykland (2003a), which
provides further discussion. We emphasize that the prediction intervals can be combined with either frequentist, Bayesian,
or fiducial inference.

Table 1
S&P 500: Posterior distribution of Ξ =

∫ T
0 σ 2

t dt for T = one year.

Posterior coverage 50% 80% 90% 95% 99%

Upper end
√

Ξ+ .168 .187 .202 .217 .257
of posterior interval

The posterior is conditional on log(σ 2
0 ) taking the value of the long run mean of log(σ 2).

We now assume that market traded options are available for a certain number of strike prices. For a given set of
securities prices, a worst case distribution is given in Fig. 2, corresponding to the 90% posterior quantile. A comparison of
the worst case distribution for different quantiles is given in Fig. 3.

We see in Figs. 2–3 that the worst case distribution FΞ+

has point mass at the strike prices (inflated by Λ0) of
the market traded options. These point masses are the contribution to FΞ+

of the information in the market traded
options. Meanwhile, the (close to) sinusoidal shape of FΞ+

between the strike prices represents the contribution of the
information in the statistical prediction interval IΞ

+

= {(σt ) :
∫ T
0 σ 2

u du ≤ Ξ+
}. The probability distribution FΞ+

thus has
a decomposition into a continuous part (the econometric information) and a discrete part (due to the market information
in the options).

Fig. 3 illustrates that for a short prediction interval (Ξ+
= .168, in this case with posterior coverage 50%), the statistical

information dominates, and FΞ+

is smooth. As the upper limit Ξ+ of the prediction interval increases, the statistical
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Fig. 3. Worst case distributions for the 80% (yellow curve), 90% (red), 95% (blue), 99% (green) and 100% (black) posterior quantiles from Tabled 1.
Traded options and their values are as in Fig. 2. Note that at each of the strike prices K , more point mass is placed on K the higher the posterior
coverage of the statistical interval. See further comments in the text.

information (the smooth part of FΞ+

) becomes less important, and more weight is placed on the discrete part (the
information from the market traded options).

The shape of the continuous part of FΞ+

is asymptotically sinusoidal (as Ξ+
→ ∞), cf. Section 5. On the other hand,

if the strike prices K of the market traded options become dense in (0, ∞), FΞ+

will be asymptotically fully dominated
by the options information, and will tend to a regular state price distribution (Section 8). When this happens, the point
mass part of FΞ+

will converge to a distribution that is often (but not necessarily) continuous, while the continuous part
of FΞ+

will disappear.

5. Asymptotic form of the worst case distribution

As can be seen in Figs. 2–3, the shape of the continuous part of the distribution has a characteristic form. We here give
the asymptotic form of this shape.

Proposition 4. Suppose that (2.3)–(2.4) have a solution, and let (2.5) be satisfied. Then, for 1 ≤ i ≤ q−1, and Ki < s < Ki+1,
and as Ξ+

→ ∞,

d
ds

P̃ (̃Sτ∧Ξ+ ≤ s | Ki < S̃τ∧Ξ+ < Ki+1) = cis−3/2 sin
(

π
log(s/Ki)

log(Ki+1/Ki)

)
+ o(1), (5.1)

for each s, where the ci are constants. Similarly, at the edges, both d̃P (̃Sτ∧Ξ+ ≤ s | S̃t1 and S̃τ∧Ξ+ < K1)/ds and d̃P (̃Sτ∧Ξ+ ≤

s | S̃t1 and S̃τ∧Ξ+ > Kq)/ds have the form, for I = 1 or q,

c ′s−3/2(t − tI )−1/2
⏐⏐⏐⏐φ (

log(s/̃StI )
(t − tI )1/2

)
− φ

(
log(s/KI ) + log(̃StI /KI )

(t − tI )1/2

)⏐⏐⏐⏐
on the respective sets {0 < s < K1, S̃t1 < K1, t > t1} and {s > Kq, S̃tq > Kq, t > tq}, and are otherwise zero. Here, the
proportionality constant depends on S̃t1 .

6. Finding t1, . . . , tq: the general case

We here present algorithms for finding the conditional implied volatilities. Set PK∗
t = PK

t /Λt . In other words, this is
the inflated put price at t . We start by characterizing the output, and the algorithms are stated just after the theorem.

Theorem 2.

(a) Algorithms 1 and 2 yield the same result.
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(b) (2.3)–(2.4) have a solution if and only if either algorithm does not return a ‘‘no solution’’ message.
(c) In the absence of a ‘‘no solution’’ message, the output of either algorithm is unique, and satisfies (2.3)–(2.4).
(d) If (2.3)–(2.4) have a solution, then it is unique, and is provided by either algorithm.

Obviously, one of statements (b) and (d) is redundant given (c), but it seemed to improve readability to have them
both there. The result is proved in the Appendix. Recall that the case of no solution to (2.3)–(2.4) has been discussed in
Proposition 2.

Before going to the two main algorithms, we give the core component of both as Algorithm 0. At the end of the section,
we show some more details on how to compute Step 1 in the following.

Algorithm 0. We use an index set S ⊆ {1, . . . , q}, where index i corresponds to Ki, P
Ki∗
0 , and ti. tj’s where j is not in S

have either already been found, or are irrelevant. Also, a provisional version of τ is given.

(0) If, for any i ∈ S , Ẽ(Ki − S̃τ )+ ≤ PKi∗
0 , then the algorithm terminates with a ‘‘no solution’’ message. Otherwise:

(1) For i ∈ S , find ti by:

Ẽ(Ki − S̃τ∧ti )
+

= PKi∗
0 .

(2) Remove all i corresponding to the smallest ti from S (there can be ties between the is).
(3) Set

τ = inf{t : t ≥ ti and S̃τ = Ki for i not in S}

The algorithms described in Theorem 2 are then given by

Algorithm 1. Finds t1, . . . , tq in accordance with Theorem 2. This is the loop version.
If any option value is non-positive, the algorithm terminates with a ‘‘no solution’’ message. Otherwise, set initial values:

S = {1, . . . , q} and τ = +∞. Then
Loop:

Go through Steps 0–3 in Algorithm 0
Repeat loop until S is empty (unless Step 0 has triggered early termination)

For aficionados of recursion, an alternative scheme would be the following.

Algorithm 2. Find t1, . . . , tq in accordance with Theorem 2. This is the recursive version.
For index sets S ⊆ {1, . . . , q}, and for stopping times τ , a functional F = F (S, τ ) is defined below. It returns either a

solution, or detects its absence.
If any option value is non-positive, the algorithm terminates with a ‘‘no solution’’ message. Otherwise, the overall

solution to the algorithm is F ({1, . . . , q}, τ = +∞).
Definition of F :
If S is the empty set, then F (S, τ ) returns no information. Otherwise
Carry out items 0–3 from Algorithm 0. Let i1 < · · · < ir be the indices picked out by Step 2. Then

(4) Define S1 = S ∩ {1, . . . , i1 − 1}, Sr+1 = S ∩ {ir + 1, . . . , q}, and, for v = 2, . . . , r , Sv = S ∩ {iv−1 + 1, . . . , iv − 1}
(5) F (Sv, τ ) returns the {tj, j ∈ Sv} for all v. Hence F (S, τ ) returns {tj, j ∈ S}. If either of the r + 1 recursions returns

a ‘‘no solution’’ message, then F (S, τ ) returns a ‘‘no solution’’ message.

A useful fact is the following.

Proposition 5. In Algorithm 1, if index i is picked out from S in an earlier pass through the loop than j, then ti < tj. Similarly,
in Algorithm 2, if index i is picked out from S at an earlier point in the recursion than j, then ti < tj.

Remark 1. The calculation of ti in Step 1 in Algorithm 0 can be implemented as follows. Let t− be the largest previous
value of tj’s selected by Step 3 earlier in the loop or the recursion, or set t− = 0 if none has been selected. In view of
Step 3 and of Proposition 5, and also of the requirement that traded options values be positive (so Ξki > 0), ti > t−. Let
a = max{j not in S, j < i} or a = 0 if this set is empty. Similarly, let b = min{j not in S, j > i} or b = q + 1 if this set is
empty. Take K0 = 0 and Kq+1 = +∞. Note that, on the set A = {Ka ≤ S̃t− ≤ Kb} ∩ {τ ≥ t−}, the preexisting τ is given by

τ = inf{t ≥ t− : S̃t = Ka or Kb}.

It follows that ti is given by by Step 1 via

Ẽ(DO(St− , t−, ti)IA) = PKi∗
0 − Ẽ(Ki − S̃τ )+IAc (6.1)

where, for Ka ≤ s ≤ Kb,

DO(s, t−, t) = Ẽ[(Ki − S̃τ∧t )+|St− = s]
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is the value at t− of the double barrier put option with starting value s and cumulative volatility t − t− (from t− onward).
Since this function is known to be continuous and strictly increasing in the volatility, it follows that (6.1) has a unique
solution on (t−, +∞) unless the algorithm has been terminated in Step 0.

7. Finding the static hedge coefficients λi

A remaining issue is to define the λi’s from (2.6). For given payoff function g , let µ be the second derivative measure
associated with g . In other words, µ is a measure which satisfies µ([x, y)) = g ′(y) − g ′(x) for all x, y outside a countable
set on the real line. µ exists since g is convex, see Karatzas and Shreve (1991), pp. 212–214, for details.

For any τ on the form (2.3),

Ẽg (̃Sτ∧Ξ+ ) =

∫
Ẽ(K − S̃τ∧Ξ+ )+µ(dK ). (7.1)

Ẽ(K − S̃τ∧Ξ+ )+ is continuously differentiable in each ti. Therefore so is Ẽg (̃Sτ∧Ξ+ ). (The smoothness follows by the same
argument as in Remark 1, and also using derivations akin to those of Section 2.8.C (pp. 97–100) of Karatzas and Shreve
(1991), in this case modified with the help of Girsanov’s Theorem.) As a consequence of the proof of Lemma 2 in the
Appendix, one thus obtains the λis through

∂ Ẽg (̃Sτ∧Ξ+ )
∂ti

=

q∑
j=1

λj
∂ Ẽ(Kj − S̃τ )+

∂ti
, i = 1, . . . , q, (7.2)

when this expression is evaluated at the values ti which solves Eqs. (2.3)–(2.4). Note, from Remark 1, that ∂ Ẽ(Kj − S̃τ )+/∂ti
is nonzero only when tj > ti. Hence, if one orders the indices so that t1 ≤ · · · ≤ tq, the system of equations (7.2) involves
a triangular matrix, and hence has a unique solution.

8. Behavior of the worst case distribution as the strike prices of traded options become dense

There is a substantial literature which considers the case where PK ,∗
0 exists for all K ∈ (0, ∞). In this case, a state price

distribution can be derived for the relevant maturity, see, e.g., Breeden and Litzenberger (1978) and Aït-Sahalia and Lo
(1998). If we call this distribution F c (c for complete), one obtains that

F c(K ) =
d
dK

PK ,∗
0 .

We here show that the worst case distribution FΞ+

converges to F c as the K becomes dense in the interval (0,∞). This
means that the importance of the prediction interval (1.2) diminishes as the number of traded options increases.

Theorem 3. Let Kq = {K1,q, . . . , Kq,q} be (non-nested) strike prices in (0, ∞). For each q, assume that put options with strike
prices Kq are traded, and that the worst case distribution FΞ+

q is formed on the basis of these and the prediction interval (1.2).
Assume that the conditions of Theorem 1 are satisfied for each q.

Assume that there is a state price distribution F c (which is latent for finite q) in the sense that P
Kl,q,∗
0 = EF c (Kl,q − S)+, for

l = 1, . . . , q, and for each q, where S has distribution F c . Assume that F c is consistent with the interval (1.2), in the sense that
for any bounded convex g, EF c g(S) ≤ Ẽg (̃SΞ+ ).

Finally, assume that, as q → ∞, K1,q → 0, Kq,q → ∞, and max2≤l≤q Kl,q − Kl−1,q → 0. Then

FΞ+

q
L
→ F c as q → ∞,

in the sense of convergence in law (weak convergence) of distribution functions FΞ+

q to limiting distribution function F c .

For properties of convergence in law, including metrizability, see Jacod and Shiryaev (2003), Chapter VI.3a
(pp. 347–348), as well as Billingley (1968), Pollard (1984), and van der Vaart and Wellner (1996).

9. Other issues

Formulation in terms of call options. The results can equally well be put in terms of call options, but one then needs an
additional caveat. We use in the proof of Theorem 1 that (Ki − S̃τ∧t )+ is a uniformly integrable martingale from max ti
onward. For (̃Sτ∧t − Ki)+ the same statement is true for i < q, but for i = q it is not: (̃Sτ∧t − Kq)+ is a martingale, but its
limit at t → +∞ is zero. This can be remedied by requiring τ in (2.3) to be bounded by a constant c , which one can take
to be Ξ+, or max ti, or any other number greater than either. Algorithm 1 then uses the starting value τ = c rather than
τ = +∞. The reason we preferred to avoid this formulation is that it does not make it clear that τ is, in fact, independent
of Ξ+. This problem does not arise when evaluating the expectation of g (̃Sτ∧Ξ+ ), since Ξ+ is an upper bound on the
stopping time.
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An alternative formulation in terms of calls would be to replace (2.4) by

Ẽ (̃Sτ − Ki)+ = CKi
0 /Λ0,

with the side condition that τ ≤ tq on the set {Stq ≥ Kq}. This is again somewhat more inelegant than the formulation
with puts, which is why we have stuck with Theorem 1 as it is.

Lower bounds for prices of convex options. There is no corresponding state price distribution. For a call or put option
payoff g(s) with strike price K , the stopping time τ which would minimize Ẽg (̃Sτ ) would concentrate on the set {τ =

Ξ∗+ or Sτ = K or Sτ = Ki}. Thus the distribution would depend on the strike price. Also, if one also introduces a lower
bound on

∫ T
0 σ 2

t dt , this lower bound can also be effective.

Appendix. Proofs of results

A.1. Proofs of results outside Sections 5 and 8

Logical sequence of proofs. For ease of reference, the proofs are given in the order of appearance of the results in the
main text. The results, however, depend on each other in a different logical sequence, and should be taken to be proved in
the following order. Proposition 5 is proved from scratch. Then Theorem 2 is proved using Proposition 5, Proposition 1 is a
direct corollary to Theorem 2, and Theorem 1 uses Proposition 1. Proposition 3 (proved in the main text) uses Theorem 1.
Proposition 2 uses both Theorem 1 and the development in Theorem 2. Finally, Lemmas 1 and 2 are embedded in the
proof of Theorem 1.

The proofs of Proposition 4 and Theorem 3 depend on the rest of the development, and are given in Appendix A.2.

Proof of Theorem 1. Exit Λ, followed by bear. As discussed in Section 2.2, we make use of the inflating by Λt to restate
the problem in terms of finding a self financing strategy in S∗ and the PKi∗. First of all, the option liability η = g(ST ) can
be re-expressed as η = g(S∗

T ), since ΛT = 1. Second, by numeraire invariance (see Duffie (1996), Chapter 6), Vt is a self
financing portfolio in the securities S, Λ and the PKi if and only if V ∗

t = Vt/Λt is a self financing strategy in the forward
contracts given by S∗ and the PKi∗. Since VT = V ∗

T , the liability η will by covered by V if and only if it is covered by V ∗. It
is enough, therefore, to prove Theorem 1 as if the Λ process were identically equal to 1. In other words, as if uninvested
cash were stored in the mattress.

The function g can be taken to be bounded below. Without loss of generality, we can assume that the g function is
bounded below. This is because, by convexity, there is a constant c1 so that g1(s) = g(s)+ c1s is bounded below. One can
then hedge the liability g(ST ) by instead hedging g1(ST ), and in addition take a static position of −c1 units of security S.

Reformulation of the problem. Recall in the following that the reason for using risk-neutral measures when optimizing
in this proof, is that the lowest starting value for a conservative trading strategy covering the liability hλ(ST ) is given by
the supremum of E∗hλ(ST ), where P∗ describes all risk neutral probabilities for which P∗(IΞ

+

) = 1. This is a consequence
of Theorem 2.1 (pp. 1418–19) in Mykland (2003a).

We shall consider related problems on the set Ω ′
= C[0, T ], with coordinate process (S∗

t ), and pre-specified initial
value S∗

0 . We work with various collections of probabilities.
R∗

Ξ+ is the set of probabilities so that S∗ is a martingale satisfying (1.1), in particular,

dS∗

t = σtS∗

t dW
∗

t , (A.1)

and so that for given P∗
∈ R∗

Ξ+ the process (σt ) must be bounded with probability one. We also require P∗(IΞ
+

) = 1 for
all P∗

∈ R∗

Ξ+ . Also,

P∗

Ξ+ = { P∗
∈ R∗

Ξ+ : E∗(Ki − S∗
T )+ = PKi∗

0 }.

Note that P∗
∞

extends to Q∗ on Ω . Define

V 0(g) = sup
P∗∈P∗

Ξ+

E∗g(S∗

T ). (A.2)

and

V̄0(g; λ) = sup
P∗∈R∗

Ξ+

E∗hλ(S∗

T ). (A.3)

By the Dambis (1965)/Dubins and Schwartz (1965) time change,

V̄0(g; λ) = sup
0≤τ≤Ξ+

Ẽhλ (̃Sτ ), (A.4)

where τ describes all stopping times in the interval [0, Ξ+
]. Finally set

V̄0(g) = inf
λ

V0(g; λ) (A.5)
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First, by a Lagrange argument, we get

Solution of (A.4)–(A.5), and equality to (A.2). Problem (A.4) can be solved using standard procedure for American options

(see Karatzas (1988), Myneni (1992), and the references therein), which yield that the supremum is attained at a stopping

time τ ∗

λ . The American option argument makes use of the Snell envelope for hλ, which reenters the discussion below:

SE(s, Ξ ; λ) = sup
Ξ≤τ≤Ξ+

Ẽ(hλ (̃Sτ ) | SΞ = s).

By an argument similar to that of Theorem 3 of Mykland (2003b), τ ∗

λ = τλ ∧ Ξ+, where

τλ = inf{t : t ≥ tλi and S̃τ = Ki for some i, 1 ≤ i ≤ q}.

Lemma 1. Suppose that g(s) is bounded below and increases no more than polynomially as s → ∞. Also assume that

(2.3)–(2.4) have a solution τ satisfying (2.5), Then there is such a τ so that V̄0 = Ẽg (̃Sτ∧Ξ+ ).

Proof of Lemma 1. Consider a sequence of λs so that V̄0(g; λ) converges to V̄0(g). Since the tλi s live in the compact set
[0, Ξ+

]
q, there is a subsequence which is convergent in the tλi s. Call the relevant limit ti, and define τ ∗ as the limit of the

τ ∗

λ as one passes through the subsequence. By uniform integrability, and since S̃ is a continuous process, Ẽg (̃Sτ∗
λ
) → Ẽg (̃Sτ∗ )

and, for i = 1, . . . , q, Ẽ(Ki − S̃τ∗
λ
)+ → Ẽ(Ki − S̃τ∗ )+. Also, τ ∗ can be taken to be on the form τ ∧ Ξ+, where τ is on the

form (2.3), again since S̃ is a continuous process.

τ ∗ must satisfy (2.4), otherwise the infimum in (A.5) would not be finite. By the argument just underneath the

statement of Lemma 1, τ ∗ can be replaced by τ for the purpose of satisfying (2.4). ■

If (2.3)–(2.5) have a solution, V 0(g) > −∞. This is because, since (Ki − S̃τ∧t )+ is a uniformly integrable martingale

from max ti onward, the constraint (2.4) will also be satisfied if τ is replaced by τ ∧ Ξ+, provided max ti ≤ Ξ+. Hence

also V 0(g) ≤ V̄0(g). Lemma 1 then shows that V 0(g) = V̄0(g).

Connection to the worst case distribution, and the trading strategy. Now combine Lemma 1 with Proposition 1 to see that

V 0(g) = V̄0(g) =

∫
g(s)dFΞ+

(s).

Also, observe that V 0(g) must be a lower bound for the starting value V ∗

0 of any self financing strategy (V ∗
t ) for which

V ∗

T ≥ g(S∗

T ) on IΞ
+

. This is because any strategy would have to be self financing and solvent under each P∗
∈ P∗

Ξ+ , cf.

the development in Mykland (2000, 2003a), and the literature on superhedging cited in the introduction to the former of

these two papers, cf. also Section 2.2 in this paper.

Existence of a self financing strategy with initial value V 0(g) = V̄0(g). Theorem 1 will have been shown if V ∗

0 can be taken
to be V̄0(g). To do this, observe that

Lemma 2. Under the assumptions of Lemma 1, there is a (finite) value of λ so that V̄0(g) = V̄0(g; λ). This value is the unique

solution of the system of equations (7.2).

For this λ, the process V ∗
t = SE(S∗

t , Ξ+
−

∫ t
0 σ 2

u du, λ) satisfies our requirements for a self financing strategy in S∗ that
is solvent on IΞ

+

, for all P∗
∈ R∗

∞
, and hence for all P ∈ Q. This is, again, by the Dambis/Dubins–Schwartz time change,

and by the solution for the American payoff hλ(Sτ ) under the model (2.1).

Proof of Lemma 2. For a given values of λi, the values of ti that minimize V̄0(g; λ) must satisfy equations (7.2). Also,

by the triangular matrix argument mentioned in Section 7, this system of equations defines the λi’s from the minimizing
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ti’s. When one takes the limit in Lemma 1, Eq. (7.2) therefore remains valid, by continuity of ∂ Ẽg (̃Sτ∧Ξ+ )/∂ti and the
∂ Ẽ(Kj − S̃τ )+/∂ti. ■

This ends the proof of Theorem 1. ■

Proof of Proposition 2. If (2.3)–(2.4) have no solution, this means that there will be a pass though the loop in Algorithm 1
where step 0 returns a no solution message. Let S be the index set at this stage, and let I ∈ S be an index that causes the
termination condition to be triggered. The arbitrage strategy is then constructed as in the proof of Proposition 3, in view
of (A.10). ■

Proof of Proposition 5. We only show the loop case. The recursion case is similar.
Let t− be as in Remark 1. In the first pass through the loop, Step 1 sets ti = ΞKi . This value will exceed t− = 0.
We now proceed by induction, assuming that we have gone through n passes of the loop, n ≥ 1. We need to show

that all ti found in Step 1 strictly exceed t−.
If ti = t−, then, the index i would have been selected in the previous pass. If ti < t−, this means that there is a set

{j1, . . . , jr} so that the tjk have already been picked out in earlier passes through the loop, and so that

ti ≤ tj1 ≤ · · · ≤ tjr = t−, (A.6)

where at least one of the inequalities is strict. Let l be the pass of the loop where tj1 is picked out, and let τ ′ be the τ

given by Step (3) in pass number l − 1. (If l = 1, then τ ′
= +∞).

Since (Ki − S̃t )+ is a martingale for t ≥ ti, it follows that

Ẽ(Ki − S̃τ∧ti )
+
|Fti ) = (Ki − S̃τ∧ti )

+
= (Ki − S̃τ ′∧ti )

+. (A.7)

Hence, by taking unconditional expectations, and using (A.6),

Ẽ(Ki − S̃τ ′∧ti )
+

= PKi∗
0 .

It follows that index i would give rise to value ti in Step 1 of the l’s iteration of the loop.
Let Sn be the set of unselected indices at the start of iteration n + 1, and set Sc

n = {1, . . . , q} − S . There are two
possibilities in (A.6): either, for some k < r ,

ti ≤ tj1 = · · · = tjk < tjk+1 ≤ t−, (A.8)

or there is no such k, in which case

ti < tj1 = · · · = tjr = t−. (A.9)

In the event of (A.8), Step 1 of pass l of the loop gives the values tj1 = · · · = tjk for indices {j1, . . . , jk}. Also, the indices
in {jk+1, . . . , jr} ∪ (Sc

n − {i}) are rejected in Step 2. Hence, at most, {i, j1, . . . , jk} are selected in Step 2, and possibly only
{i}. In the event of (A.9), the same reasoning applies. In any case, index i is picked out in iteration l < n + 1, the current
iteration number of the loop. Hence, again, if ti were strictly smaller than t−, it would already have been picked out by
the loop in a previous step. ■

Proof of Theorem 2. (a) is trivial. We do the proof of the rest in steps (i)–(iii) below. (c) follows from (i) and (ii), (d)
follows from (i) and (iii), (b) follows from (c) and (d) in the statement of the theorem.

(i) Algorithm 1, provided there is no termination in Step 0 at any point in the loop, provides a unique result t1, . . . , tq.
This follows from Proposition 5 and Remark 1.
(ii) Assume that Algorithm 1 has a solution t1, . . . , tq. Then this solution satisfies (2.3)–(2.4).
To see this, let τ ′ be the τ from Step 3 in the loop where ti was picked out from S . We now use τ to denote the final

product of Algorithm 1. (A.7) will remain valid, and integrating gives

Ẽ(Ki − S̃τ )+ = PKi∗
0 .

which is what we needed to show.
(iii) Assume that (2.3)–(2.4) have a solution t1, . . . , tq. Then this solution coincides with the output of Algorithm 1.
To see this, consider the order statistic t(1) ≤ · · · ≤ t(q). Obviously, if t(1) = ti for some i, then this index i must be

picked out in the first passage through the loop of Algorithm 1, and ti must have the same value as the ti picked out by the
Algorithm. (If there are several ti’s with the same smallest value, the same applies.) Similarly, by induction, one assumes
that t(1) ≤ .. ≤ t(j) coincide with the results of Algorithm 1, and it is then easy to see that t(j+1) also coincides with the
results of the Algorithm, in view of Proposition 5. Note that the termination condition in Step 0 cannot be triggered, since
with the τ from the previous step,

Ẽ(Ki − S̃τ∧ti )
+ < Ẽ(Ki − S̃τ )+. ■ (A.10)
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A.2. Proofs for Sections 5 and 8

Proof of Proposition 4. Consider first the case 1 ≤ i ≤ q−1. We show the result for the density f of Yt = log S̃t = Wt−t/2
given log Ki < Yt < log Ki+1. The density of the proposition follows by a change of variable, and is f (log(s))/s.

Following the discussion in Section 13 (pp. 330–332) of Karlin and Taylor (1981), and in particular equation (13.11),
f (y) = cm(y)φ1(y)+ o(1), where c is a normalizing constant, and the other quantities are as defined by Karlin and Taylor.
In particular, m(y) = e−y, while the φn(y)’s are solutions to the eigenvalue problem Lφn = −λnφn, with φn(log Ki) =

φn(log Ki+1) = 0. Here, L is the infinitesimal generator, in this case Lφ =
1
2φ

′′
−

1
2φ

′. Obviously, for log(Ki) < y < log(Ki+1),

φn(y) = cne
1
2 y sin

(
nπ

y − log(K1)
log(K2) − log(K1)

)
and λn =

1
2

(
(nπ )2 +

1
8

)
,

where the cn’s are constants.
Meanwhile, for the lower edge, let t > t1 and x < log K1). By Girsanov’s Theorem,

P̃(Yt ≤ y | Yt1 = x and max
t1<s<t

Ys < log K1) =
E exp(−Wu)I(Wu ≤ y − x and Mu ≤ log K1 − x)

E exp(−Wu)I(Mu ≤ log K1 − x)
where u = t−t1, W is a standard Brownian motion, and M is the running maximum of W . Thus, in this case, for y < log K1,
and using, say, formula (8.2) (p. 95) in Karatzas and Shreve (1991),

f (y) ∝ u−1/2 exp(−
1
2
(y − x))

[
φ

(
y − x
u1/2

)
− φ

(
y + x − 2 log K1

u1/2

)]
.

This gives the result of the proposition. The derivation for the upper edge is similar. ■

Proof of Theorem 3. Following Theorem III.12 (p. 49) of Pollard (1984), it is enough to show that

Ẽg (̃Sτq∧Ξ+ ) → EF c g(S) as q → ∞, (A.11)

for all functions g that are twice continuously differentiable, with bounded |g|, |g ′
|, and |g ′′

|. It is further enough to show
(A.11) for functions g(x) that vanish for x > L, where L is an arbitrary positive constant. To wit, set g̃ ′′(x) = g ′′(x)I{x ≤ L},
and note that g(S) − g̃(S) = {g(S) − g(L) − (S − L)g ′(L)}I{S > L} so that, for E denoting expectation under FΞ+

q or
Fc , E|g(S) − g̃(S)|≤ maxx|g(x)|ES/L + maxx|g(x)′|ES3/2/L1/2 ≤ maxx|g(x)|̃E (̃SΞ+ )/L + maxx|g(x)′ |̃E (̃SΞ+ )3/2/L1/2 → 0 as
L → ∞. By decomposing g̃ ′′ into positive and negative parts, it is further enough to show (A.11) for twice continuously
differentiable and convex g , with bounded |g|, |g ′

|, and |g ′′
|, that vanish for x > L, where L is an arbitrary constant.

Take such a g , and let Q be such that Kq,q > L for q > Q . We now invoke (7.1), which yields

Ẽg (̃Sτ∧Ξ+ ) =

∫
Ẽ(K − S̃τ∧Ξ+ )+µ(dK ) ≤

∫
Ẽ(K ∗

q − S̃τ∧Ξ+ )+µ(dK ),

where K ∗
q = min{Kl,q ≥ K }. Since the P

K∗
q

0 are traded, Ẽ(K ∗
q − S̃τ∧Ξ+ )+ = P

K∗
q

0 , whence

Ẽg (̃Sτ∧Ξ+ ) ≤

∫
P
K∗
q

0 µ(dK ) → EF c (K − S)µ(dK )

since µ has zero mass above L. The opposite inequality follows by replacing K ∗
q by Kq,∗ = max{Kl,q ≤ K } (or = 0 for

K < K1,q). This shows Theorem 3.
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