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ABSTRACT

In many universities, Teaching Assistants (Tas) are an important
part of students’ educational experience. This is especially true in
early courses, where students may suffer from inexperience and
anxiety, and find fellow students more accessible than professors.

Despite its importance, this learning channel has not been stud-
ied very much. Part of the difficulty lies in how to meaningfully
evaluate it. Any intervention needs to be both unintrusive and
lightweight, and yet yield useful data. As a result, to many faculty
and researchers, TA office hours remain fairly opaque.

This paper presents one approach to studying the technical com-
ponent (but not the social dynamics) of Ta office hours. We use
a program-design methodology as a device to help track what
students are asking about in hours, using a simple survey-based
method to gather data. Data from Tas effectively summarize stu-
dents’ questions. In addition, contrasting data from both TAs and
students provides insight into students’ progress on program design
help-seeking over the course of the semester.
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1 INTRODUCTION

Teaching Assistants (Tas) who hold office hours (where they answer
student questions in person) are a valuable part of the learning ex-
perience. They enable a course to provide many more contact hours
than an instructor alone can provide. Because TAs are more of a peer
group than instructors, students may find them less intimidating
to approach. They save students the embarrassment of having to
admit their weaknesses to the people who will be assigning grades.
They are also likely to know more about the experience of doing
the same tasks than the instructors, and hence be more empathetic.
Finally, they offer a scalable source of help for students.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER 19, August 12—-14, 2019, Toronto, Ontario, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6185-9/19/08....$15.00
https://doi.org/10.1145/3291279.3339418

Shriram Krishnamurthi
Computer Science Department
Brown University
Providence, Rhode Island, USA
sk@cs.brown.edu

Kathi Fisler
Computer Science Department
Brown University
Providence, Rhode Island, USA
kfisler@cs.brown.edu

In this paper we focus on TA office hours (henceforth just “Ta
hours”) in programming-rich introductory undergraduate colle-
giate courses (details are in § 5.1). What happens in such courses?
Some conversations are of a personal nature (e.g., help navigating
the university, dorm life, etc.), which we do not focus on in this
paper. The bulk, however, are technical questions that range from
understanding a problem statement to checking proposed solutions.
Thus, TA hours are a vital educational component, where students
not only get help with their proximate problem but hopefully also
develop better problem-solving skills. But what do students need
help with, and how much progress do they make?

Developing a meaningful instrument is not straightforward. One
natural approach would be to record all student-TA interactions,
and analyze the speech and video later. We reject this because we
believe knowing they are being recorded would make students
far less less likely to ask (what they consider) “dumb” questions,
or questions of a more personal nature (e.g., how to navigate the
system as an underrepresented student), or questions about the
instructors—it would be like taping a confessional. Surveillance
would destroy the friendly, peer nature of hours.

As an alternative, we considered having TAs write a summary
at the end of their interaction with the student. This way, students
wouldn’t feel the pressure of being judged. However, this also has
two problems. First, it doesn’t help us understand the use of hours
from the student’s perspective. Second, writing such a summary
takes time, and with students already suffering from long TA lines,
this would either cause an unconscionable delay (materially hurting
the educational experience, and reducing ecological validity) or
simply nudge TAs to write sloppy or skimpy documents.

In short, any method to study Ta hours should have two char-
acteristics. First, it should be as unintrusive as possible. Second,
it should be lightweight, not requiring too much effort for either
TAs or students. Ideally, it should merge seamlessly with processes
already being used for Ta hour management. It would be nice if the
process also meshed with the course’s pedagogic methods.

In this paper we present a method that meets these character-
istics. Our method, which we introduce in § 4, centers around a
specific program design methodology called the Design Recipe (DR).
We present the methodology and the theoretical framing that in-
spires it (§ 2), and also situate this work amongst other efforts to
analyze TA hours (§ 3). We report (§ 6) on a study of using this
method in an introductory class (§ 5). Concretely, we focus on the
following research questions:

RQ 1. Is the DR useful for tracking what students are asking about
in TA hours?

RQ 2. Do students ask for help with the right steps in the DR, and
how does that evolve over time?
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(1) Data Definitions Understand the information pro-
vided by the problem and form data definitions to
represent it as data.

(2) Signature, Purpose Statement, Header State a
name, purpose, and type—in terms of what it con-
sumes and produces—for the function (or program)
being defined.

(3) Functional Examples Work through examples
that illustrate the function’s purpose.

(4) Function Template Translate the data definitions
into an outline of the function.

(5) Function Definition Fill in the gaps in the func-
tion template, exploiting the purpose statement and
the examples.

(6) Testing Make sure the function passes the tests,
and construct additional tests as needed based on
the implementation details.

Figure 1: The Design Recipe (DRr) [7], paraphrased

The contributions of this work are (1) our process for using a
design methodology to track what happens in TA hours, (2) our
assessment of the DR as the specific methodology in such a process,
and (3) evidence of how students’ help-seeking evolves over the
course of a semester.

2 THEORETICAL FRAMEWORK

Our work is based on the Design Recipe (DRr) introduced in How
to Design Programs (HTDP) [7]. The DR suggests to students that
they break down their problem-solving into six steps, which are
summarized in fig. 1. Though HTDP uses Racket, the DR is not
language-specific and has been used for a variety of languages
(including a book expositing its use for Java [8]).

The DR is grounded in multiple theoretical foundations. At a
high level, its steps provide a form of scaffolding [3] designed to
lead a student from a prose-based problem statement to a working
program. The scaffolding steps ask students to produce interme-
diate artifacts (signature/purpose, examples, code template) that
capture the problem at multiple levels of detail and abstraction. The
progression from data definitions to examples to code move the
student through different representations of the problem, providing
a form of concreteness fading [11] as students progress towards a
symbolic-form solution to a problem.

Completed sequences of DR steps form worked examples [21]
that students can leverage when considering new problems. A
student might refer to a DR example when writing a new program
on an already-studied datatype definition: this would focus on the
examples, templates, and code features of the example. When asked
to work with a new datatype, the DR suggests higher-level steps
that a student can follow to make progress on the problem.

Templates are a form of program schema [16, 20] that students
can recall and reuse in constructing solutions to new problems.
The LISP Tutor [1] builds on a theory that students can recognize
and adapt solutions to recursive problems, though without an ex-
plicit step of articulating the template independently from the code.

The template, in contrast, provides an explicit scaffold that han-
dles traversing an entire data structure as part of implementing a
solution to a specific problem.

Several papers have begun to explore the impact of the pr on
students in different contexts. Fisler and colleagues on multiple
projects [9, 10] showed that HTDP-trained students made more
progress and fewer programming errors than students trained in
more conventional curricula. Schanzer et al. [17, 18] have found
improvements in middle- and high-school students’ abilities to
solve algebra word problems after working with a version of the
DR.

The DR offers a valuable framework for our research. Its steps
provide a vocabulary for students to express the help they seek and
for Tas to indicate the help they offered. Because of its diagnostic
properties, this vocabulary potentially has a high likelihood of being
useful for students during Ta hours.

3 RELATED WORK

Previous studies on TAs in CS courses have analyzed TA contribu-
tions to student success in introductory courses [24], training and
supporting undergraduate Tas [14, 22], and improving accessibility
and effectiveness of TA hours [4]. However, only a few (discussed
below) have examined help-seeking activities and student-TaA in-
teractions. The broader education literature also studies Ta devel-
opment and Ta-initiated interactions, but these are not relevant to
our study.

Patitsas & Belleville [15] asked students to evaluate each TA on
five criteria (paraphrased): preparation, helpfulness, consideration,
understandability, and effectiveness. As they acknowledge, this
provides only a very coarse view of the TA hours. Since the survey
was handed out at the end of the semester, the student may not
remember every encounter with a certain TA. A TA’s performance
may also vary throughout the semester. Finally, it evaluates the Tas
but provides little insight into the use of hours.

Vellukunnel et al. [23] analyzed students’ posts on Piazza, an
online forum where students post questions and TAs answer. They
labeled questions using literature on question-asking and learn-
ing theories. Their classification scheme has four types: Active,
Constructive, Logistical, and Content-Clarification. Constructive
questions “reflect students’ reasoning or attempts to construct a
solution to the problem”, and comprise the largest portion of the
total questions asked. The authors found that Constructive problem-
solving activities are positively correlated with students’ course
grades. However, their classification does not give detailed insight
into this category, which is precisely what the DR elaborates on.

Smith et. al. developed and analyzed data from My Digital Hand,
a one-to-one peer teaching tracking tool [19]. The authors focused
on service analytics. When signing up, students were prompted to
describe their problem, but the authors offer only a brief comment
on the kind of questions students asked.

While these studies provide different ways to evaluate TA hours,
none of them has asked students to use an existing problem solving
strategy like the DR to structure their questions before interacting
with the Tas. We believe that there are several potential benefits
to involving students’ self-evaluation. Instead of hearing about the
DR in lecture passively, students get to actively apply their existing



(1) pr step 1, from problem analysis to data definitions
(2) DR step 2, signature, purpose statement, header
(3) DR step 3, examples

(4) DR step 4, template

(5) DR step 5, function body

(6) DR step 6, test cases

(7) Grading of a past homework

(8) Understanding a past homework

(9) Programming language

(10) Complexity analysis for this homework
(11) General question on complexity analysis
(12) Tools

(13) Non-course issues

(14) Other

Figure 2: Major part of Ta form (additional parts described
in § 4.1)

knowledge of the DR every time they encounter a programming
problem, which is a more effective kind of learning activity [5]. Let-
ting students categorize their problem involves metacognition [6],
which is an important aspect of programming problem solving [12].
Because the DR is a linear process that eventually leads to solu-
tions, with checks built-in, it corresponds to three steps (Planning,
Process Monitoring, and Comprehension Monitoring) in Loska &
Ko’s description of five types of self-regulation activities in the con-
text of programming [13]. Their study found that self-regulation is
critical to students’ success in introductory programming classes.

4 THE EVALUATION TOOL

Driven by our operating constraints (§ 1) and guiding theory
(§ 2), we constructed a tool to assess the use of TA hours.

Our goal is to learn what happened at hours. That requires two
things: looking back at the interaction while it’s still fresh in mem-
ory (happened), and expertise to determine how the time was used
(what). We take as axiomatic that TAs are in a position to judge how
the hours were used, which we discuss further in § 5.1.

4.1 A Form for TAs

Our central premise is that the DR provides a strong framework for
assessing what happens at hours. While it cannot indicate exactly
which questions were asked, it can potentially describe what the
questions were about: namely, the steps of the DR provide a “coding
manual” to bin the questions. The question remains whether these
are useful bins (§ 6).

To this end, we created an “exit survey” that a TA fills in after
every student meeting. Tas didn’t design the form, but they had
used the DR previously as students and as graders, and provided
feedback on the form interface and distribution process (§ 4.4). Of
course, the DR steps are not sufficient on their own. Students may
have many other questions, ranging from programming language
difficulties to big-O complexity to issues with past homeworks to
seeking peer advice, and more. Therefore, our full rubric is much
richer, and shown in fig. 2. (This represents the final state of the form.
Not all options were present from the beginning: for instance, the

options about past homeworks were added after the first homework,
while complexity questions were added after the topic (big-O time
analysis) was introduced in class and in homeworks. Nevertheless,
all the DR questions, and the other items, were present throughout.)

The form allows Tas to select multiple entries. “Other” lets Tas
record discussions that did not fall within this rubric; we regularly
reviewed these to see whether we should add items to the form
(which is how some other entries came about).

It is also important to collect the right information about these
categories. Sometimes a student may come in completely lost and
with no idea on how to proceed; in other cases a student may think
they have solved a step correctly, and may merely want the Ta
to check their work. To lump these two extremes in the same bin
would lose too much information and confound effective analysis.
Instead, corresponding to each box, the TAs were given a three-
point (multiple-choice) classification scale to capture the kind of
help the student needed for that entry:

e instruction (“how doIdo..”)
e clarification (“what is expected for ..”)
e verification (“could you check my work on ..”)

(There was also “Other”, which was virtually never used and hence
is ignored here.) The last question in the TA exit survey asks how
the student is performing on this assignment, and the Ta selects a
score on the scale of 1 to 7, representing totally lost to perfect. Later
analysis showed a low [2] coefficient of variation (barely touching
30%). Therefore, we do not discuss this further in the paper.

TAs reported that once they had gotten used to the form (which
took a couple of weeks), it took them less than 20 seconds per
student, which confirms that this is a lightweight intervention.

We consider this form to be a key contribution of this paper. It
provides a preliminary attempt at an instrument for the instructors
to learn what happens in TA hours, and the findings of this paper
show that it has utility and provides insight. Of course, the form
does suffer from threats of validity and especially generalizability,
which we discuss in § 7.

4.2 The Student Form

In principle, the TA form provides all the information needed for
RQ 1; it also lets us get some sense of how students are progressing.
However, it does not help us understand how the student’s own
self-assessment progressed (RQ 2), nor does it force reflection.

We gave students a variant of the TA form. Specifically, we used
the same questions as in fig. 2. However, students were not given
the three-point classification scale; instead, they simply checked
off all items they wanted to discuss.

We considered asking students to fill in these same classifiers,
but decided not to for two reasons. First, we wanted to minimize
the time spent filling out the form, and could not be sure how much
reflection it would take for students to fill it out (especially if they
feared doing so inaccurately). Second, we were greatly concerned
about the effect on student morale—and hence, ultimately, their
self-efficacy—if they had to fill out the weaker classifications. Since
we could not guarantee it would not have an impact, we chose to
not ask for this information to avoid harm.



How did we get students to fill out this form? Fortunately, the
classes at this institution already have an electronic queueing sys-
tem (which automatically records their identity) for students to
get time with Tas. We leveraged this, replacing the existing sign-
up system with this form, which also automatically gathers their
identity. Since students were not required to check any boxes, in
principle signing up would take no more effort. Because the form
was implemented as a Google Form (inside a university system
with student data protection), we could not determine how long
students spent filling the form, though we also did not receive any
complaints about it.

Of course, the time spent includes not only the act of filling the
form, but also thinking about what to fill in. If students were already
using the DR this time should have been minimal, while if they were
not, it may have taken some effort. Under our theory of instruction,
however, this was time we would consider productively spent and
one that might enhance the quality of their TA meeting.

4.3 Terminology

Each form response is called an entry. A student entry can be com-
plemented by a TA entry or stand alone. Each item corresponding
to a check box is called an option.

4.4 The Process

Students fill out their form when they sign up for a slot. The act of
submitting it creates a new entry in a dashboard for the Tas, who
then call on the next student in the queue. When that student is
done, the TA clicks on the student’s entry in the dashboard. This
brings up the Ta form, pre-populated with the student’s entries; the
TA must still enter at least their classification alongside.

The reason for pre-populating it was to reduce time: if the TA
agreed with the student, it would take less time to finish the form.
Of course, a lazy Ta could simply choose the same options that the
student did. However, this would still require conscious action to
pick the classification. Laziness would also manifest as no difference
between the student and TA; the data (§ 6.2) show this was not the
case.

The form is filled by the TA after the student has left, and the
result is not shared with the student, so that the student does not
feel the weight of judgment. In principle, a TA could click on the
student’s entry at any time, including before the student’s session
began, thereby seeing the student’s choices. However, we requested
TAs to not do this, and they did not argue that this restriction was
onerous. Furthermore, they confirmed that they usually followed
this directive.

4.5 Variance Amongst TAs

We use TA entries to reflect “the actual question that student should
have asked”. (We trust the Tas’ judgement for reasons discussed in
§ 5.1 and § 7.) However, this doesn’t address the issue of individual
TA bias: maybe some TA always thinks that the students are doing
worse than they actually are, or vice versa.

Each of the 12 Tas held a two-hour help session every week.
Students were free to go to as many hours and ask as many ques-
tions as they wanted. This approach makes comparisons across
students and the general trends observed on the class level more

valid, since student are not tied to any particular TA. But this also
makes variation within each student harder to interpret, since we
cannot discern between TA judgment and true student progress.

The course staff put effort into reducing variation among Tas.
When grading homework, 10% of the submissions were graded by
two Tas. Disagreements resulted in discussion until reaching an
agreement. In effect, the goal was to increase inter-coder reliability
amongst the TA staff. This conformity would, hopefully, also carry
over to assessing hours.

To check whether we have any consistently biased TAs, we as-
signed a distance score for each student-Ta answer pair (see § 6.2.2
for details). We first calculated the average of distance score of each
TA, and then compared these average scores against each other.
No outlier was found, based on 1.5 Interquartile Range Rule for
Outliers.

5 DATA FROM TA HOURS

We first provide raw data about the TA hours that we studied. The
analysis follows in § 6.

5.1 Course Context

The study was conducted a highly selective private university in
the USA. The course is an accelerated introductory course that
compresses much of the first year’s content (programming through
lists, trees, and graphs; graph algorithms up to Dijkstra’s and min-
imum spanning trees; big-O analysis; and a brief introduction to
other programming techniques such as laziness) into a semester.
We discuss individual assignments as relevant later in the paper. 67
students, almost all first year, finished. 48 earned an A (highest), 12
a B, 6 a C (lowest passing grade), and one failed.

Students placed into the class through multiple summer tasks.
The tasks were self-contained and began with basic programming
(following HTDP), and were therefore open to students who had
never programmed before. The grading of the placement tasks
emphasized adherence to the steps of the DR, and students asked
several clarifying questions about it on Piazza. A small number of
students with no prior programming experience did place into the
course, but most had some or extensive prior experience. However,
while their background was primarily in Java, Python, Scratch, and
ApplInventor, the course used Pyret; the first two-thirds was purely
functional, while the last third introduced and used side-effects.

All 12 TAs were undergraduates who had taken the course a
year or (rarely) two earlier. They were chosen from a competitive
process (fewer than a third of applicants were hired) that took into
account knowledge, ability to run mock help sessions, perceived
empathy, etc. We further discuss the use of undergraduates in § 7.

The course had 12 assignments on which students were permit-
ted to seek TA help (three others were in “exam” mode). Two were
done in pairs and triples; we cannot interpret student entries for
these (did students come alone or in pairs, and did their partner
agree?), so we exclude these in § 6. The remaining assignments,
which we label P1 through P10, were out one at a time, so the
timestamp effectively identifies the assignment.
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5.2 The Scale of the Data

60 (90%) of students who completed the course visited Ta hours at
some point over the semester (a few more visited TAs but dropped
the course very early). The 7 students who completed but never
visited all earned an A. The median/mean number of visits for
students who earned As and who used hours was 5/11.75; for B,
3.5/4.58; and for C, 25/25.33. Thus, even many A-earning students
made good use of hours.

We obtained 772 student entries (we la-
bel this dataset A). Limiting to the ten solo,
assisted assignments, we have 727 student
entries, 643 of which had a corresponding Ta
entry (8B). 524 of these student entries picked
a DR step (8S), while 535 of TA entries did so
(some TAs recorded a DR step even though the
student did not) (C). 508 paired entries (D)
both picked a Dr step. The figure captions indicate which dataset
was used for that figure.

Why are there missing TA entries? At times of peak student
rush, TAs were eager to get to the next student. Some Tas also had
form difficulties early in the semester. Most, however, are because
students did not show up: they sometimes signed up for multiple
slots (due to long lines) and did not use all of them.

Figure 3 is a sorted histogram of student visit count, with the
dashed line binning by grade (A, B, C, fail). Figure 4 shows the
number of visits on each day; dashed lines are the day an assignment
was due (just before midnight). There are two gaps: Oct 17 to Oct
20 corresponds to a break when no assignment was out; Nov 21
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Figure 6: Ratio of options selected by Tas and students (B).
Indices are from fig. 2; O represents "Other" questions

onward represents Thanksgiving break, an assignment in “exam
mode”, and the course’s end.

6 DATA ANALYSIS

We answer the research questions by analyzing data from the two
forms: first from Tas, and later combined with student inputs.

6.1 What We Learn From TA Forms

6.1.1 Do enough entries get covered by the DR to make it useful? It
is possible that students’ questions don’t fit into any DR step, and
students struggle with some completely different problem areas
not covered by the DR.

Figure 5 shows the breakdown of DR, non-DR, and “Other” ques-
tions for each assignment. We see that DR questions are the majority
(average 75.31%), except for P7, where non-DR questions account
for 51.85%. P7 was an outlier where students were asked to do a
new kind of complexity analysis (for lazy programming), so it is
unsurprising that option 10 (complexity analysis) was the most
popular option. Overall, this lets us conclude that the pr provides
at least reasonable coverage of student help issues.

6.1.2  What’s the per-assignment distribution of entries? In each
cell of fig. 6 is a bar chart of the rate of each option selected by Tas
(and by students). The dark bar in each cell represents the most
popular option picked for that assignment.



From the TA columns, we see that DR steps 5 and 6 are most
popular in most assignments. This is not surprising because the
function body and test cases are the main “working” deliverables.

DR step 3, examples, seems to get little attention. We conjecture
this is because we gave students an automated tool, Examplar [25],
that checked their examples/tests for both correctness and coverage,
eliminating most TA help. On assignments (P3, P4, and P9) where
this tool was not provided, we see (sometimes big) spikes in DR
step 6, testing (which may be conflated with examples). For P8, a
complex assignment (campus tours built atop Dijkstra’s algorithm
using Manhattan distance), students unsurprisingly needed testing
help despite the tool.

DR step 1, from problem analysis to data definitions, was also a
popular DR step picked by Tas. It was not picked much at the begin-
ning of the semester, probably because the assignments prompts
were relatively easy to understand, and students didn’t need to
design or use complex data definitions. For assignment P6, students
were required to define their own sophisticated data structure, and
the most popular option was step 1 (31.94%). As the assignments
became more complicated, step 1 became more popular. Step 1’s
popularity shows that TAs helped students with understanding the
problem, not only focusing on the end products.

There are two assignments where the most popular option is not
a DR step. In P1, where a new language was just introduced, the
most popular option was unsurprisingly about the programming
language (20.99%). In P7, the most popular option was complexity
analysis (41.98%), as already discussed in § 6.1.1. This option is also
popular in other problems whose submission required sophisticated
complexity reasoning (P6, P8, and P10).
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6.1.3  What’s the distribution of entries across DR steps? Each bar in
fig. 7 represents the overall entry count for the corresponding pr
step. We have discussed the low use of step 3 above. DR step 2 also
gets little attention, because this is usually given in the problem
statement. Likewise, DR step 4 is useful for true beginners, but the
scaffolding is far less useful at this level of task and as students
progress through the course.

Figure 7 also shows a breakdown of the help classification corre-
sponding to each DR step. We conjectured that students need more
higher-level help (clarification and verification) for earlier steps
(step 1, 2, 3) that involves understanding the problem and planning
out the solution, and lower-level help (instruction) for later steps
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Figure 8: Average Hamming Distance between student and
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(step 4, 5, 6) that involves the implementation details of the code
and test suites. With a null hypothesis that the step (early versus
late) and type of help (low- versus high-level) are independent, we
ran a y? test (contingency table shown below).
We obtained a p-value of 0.75,
‘ which is greater than the default alpha
value of 0.05, indicating that we failed
to reject the null hypothesis. This sug-
gests that the type of help is indepen-
dent of the step.

] High Low

Early 183 160
Late 373 310

6.1.4 Is the DR useful for tracking what students are asking about in
TA hours? We answer RQ 1 in the affirmative: yes, the DR is a useful
metric for categorizing questions during TA hours, since a majority
of the questions are about some DR step (§ 6.1.1). DR steps are at a
useful if not ideal level of granularity, because the most asked about
DR step reflects different features in different assignments (§ 6.1.2),
and the frequency of questions about each step makes sense in
the course’s context (§ 6.1.3). Keeping in mind the time and effort
constraints discussed previously, the DR could be refined to ask
sub-questions in the popular entries (perhaps including problem-
specific ones) to learn more about the help students seek.

6.2 What We Learn From Both Forms

The student form encourages students to reflect and use the DR steps,
and lets us assess whether students ascribed steps more accurately
as the semester progresses (RQ 2).

6.2.1 Are the data meaningful? A first question is whether students
even took the form seriously: perhaps they checked boxes at random
to quickly enter the TA queue. In fig. 6, the pattern in each cell in
the student column is similar to that in the TA column. Thus, we
can conclude that students are not picking at random, but making
sensible choices that reflect different features in the assignments,
based on our analysis in § 6.1.2.

6.2.2 Are students choosing correct DR steps? (RQ 2). The TA and
student DR entries form an equal-length bit-vector, so it is natural
to compute each pair’s Hamming distance. (For most other options,
it makes far less sense to ask if students chose “correctly”.) Figure 8
shows the average distance for each assignment. The distance grad-
ually decreases over the course of the semester (with the exception
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of Fil, which was not very hard and only two days long), indicating
growing student agreement with the expert Tas.

However, this distance is not truly symmetric: we care about
students conforming to TAs, not the other way around. We therefore
calculate a directed distance between TAs and students, shown in
fig. 9. If the two have Hamming distance 0, we call this a match. Oth-
erwise, we define the directed distance as the latest step on which
the student and TA disagreed, where as positive number means the
TA helped the student with a later stage (i.e., the student may be
making good progress), while negative means the TA stopped with
an earlier stage (i.e., the student is going too far ahead). The ratio
of matches improves significantly: an average of 46.29% for the first
three versus 74.70% for the last three. (We also checked whether
the help classification correlates with the distance, but a y? test
gave a p-value of 0.515, suggesting no significant association.)

6.2.3 Do students under- or over-estimate? The directed distance
lets us ask whether certain students consistently over- or under-
estimate their progress: overestimators have a negative score and
underestimators a positive one. We examined all students who had
five or more positive or negative scores.

There were five of these underestimators, four of them five times
and one 22 times. Of those four, one had 12 negative scores, suggest-
ing poor accuracy in estimating the step. The one with 22 positive
scores had 4 negative scores. We also found four such overesti-
mators, two of them having done so 12 times. They had far fewer
positive scores (0, 1, 2, and 5), suggesting a general tendency to
overestimate. One student is, of course, in both groups.

We believe this analysis is a potentially useful diagnostic for
instructors. They may wish to identify consistent under- and over-
estimators and give them suitable feedback (boosting their confi-
dence or suggesting more caution). A large number of students
who are both would suggest class-level difficulty with using the DR,
but we did not observe that in our population.

6.2.4 How often do students pick just a single DR step? Later DR
steps depend heavily on material from earlier ones, so students
should complete earlier steps before moving on to later ones. Indeed,
in theory, they should be working on one step at a time. In practice
students may not behave this way; they may also choose multiple
steps for expediency (to avoid waiting to see TAs again).
Nevertheless, we hypothesized that earlier in the course, students
would tend to pick multiple steps at a time, and later pick a single
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Figure 10: Rate of single step picked by students and tas (D)

step more often as their facility with (and, hopefully, perceived
value of) the DR increases. We also conjectured that Tas would use
a single step more often than students.

Figure 10 shows the data. We see that student selection of a
single step (perhaps surprisingly) starts high. It stays high, and
may have an implicit ceiling effect due to expediency. Nevertheless,
their choice shows a significant positive slope: linear regression
gives a slope of 0.015 (and a p-value of 0.022, which is less than
the default alpha of 0.05) for students. TAs’ choice also shows a
significant positive slope of 0.038 (p-value is 0.011).

The TA line was, to us, even more surprising. Of the 100 times
where the student picked a single step and the TA picked multiple
steps, the student had requested one of the steps chosen by the Ta;
more than half the time, the TAs chose one of these three pairings:
steps 1 & 5,5 & 6, or 1 & 6. This suggests that the TAs are forcing
students to make connections they were perhaps not seeing across
different steps of the Dr.

7 LIMITATIONS

There are several natural threats to generalizability. For instance,
this specific form would not work for courses that do not use or
emphasize the DR, or would need to be enriched if they have even
more non-programming content. We also depend on TAs being
both willing and conscientious. We also depend on a protocol for
students to get on the TA waitlist, which may not exist at institutions
with enough Tas.

By considering only Ta hours, we do not account for other stu-
dent help-seeking behavior, such as faculty office hours (which
were used vastly less) or an on-line forum (or, even more subtly,
programming tools). During this course, there were 1029 total posts
to Piazza, which is substantial but not that much more than in-
person use. Since Piazza did not enable us to use a similar rubric,
it is non-trivial to combine the two sets of data. (An interesting
question is how the lack of a rubric affects questions.) These other
sources thus represent a threat to the validity of our findings. Also,
not all students seek help, sometimes for logistical reasons. (This
course’s hours were spread through the day and week, and adapted
to changing student demand. Also, the course does not have a
notable commuter population.)

As noted, the course under study uses solely undergraduate TAs
(uTas). On one hand, utas have not had as much experience or
computer science education as graduate Tas and faculty, so this
represents a threat to validity. On the other hand, all our uTas



had done the same course, so they arguably have a much better
understanding of the specifics of the material than graduate Tas
(which is one reason the course does not employ graduate Tas).
Variance-reduction measures (§ 4.5) may also help substantially.
Thus, we have reason to place significant faith in their assessment.
Finally, many universities have or are instituting undergraduate Ta
programs, especially since the number of undergraduate Tas grows
roughly proportionally to the size of the undergraduate population
itself—a vital need as enrollments grow rapidly in some countries.
Thus, understanding this population well is important.

There is a time gap (median 21 minutes) between when a student
signs up and when the TA submits their assessment, which happens
when the meeting is over. (In 2.4% of the cases there was a gap of
over four hours, longer than the longest contiguous TA sessions,
which most probably reflects students “squatting” on a 1A slot at the
next available hours.) During this time they may reflect and change
their question, which is not captured by our student form. This may
explain some of the differences in entries between students and
TAs, but the student forms still represent a meaningful construct:
the student’s opinion at the time they signed up for help.

There is some chance that TAs get less conscientious as the se-
mester progresses and simply choose the same boxes as the students
marked, which would explain the assessment convergence. This
impacts data validity. We are not aware of a way to check for this.

8 DISCUSSION

We set out to develop insight into what kinds of help students
seek at TA hours and how it evolves. We wanted to do this with a
minimally-intrusive and lightweight process, and conjectured that
the pr of HTDP could help.

Our main contribution is that the bR actually provides a useful
initial view into student use of TA hours. For different assignments
the steps used varies, in a way consistent with the assignment’s
content and difficult spots. Because they can “show their work”
over multiple steps, students are able to ask more focused questions
than just the stereotypical “My code doesn’t work”. Students also
appear to make progress in how they use the DR over time.

By using the DR, we are effectively also assessing the book that
defines it, HTDP. The DR cannot really be measured through as-
signment submissions, because the DR is a dynamic process while
the submissions are static artifacts. Therefore, though some prior
work [9, 10, 17, 18] has provided some insight into the end-result
of asking students to use the DR, we know little until now about
how students actually use this theory of programming education.
Our secondary contribution is showing that students can identify
and meaningfully use the different DR steps, and actually do so.

We believe our instrument offers a useful starting point even
for courses that do not use HTDP or the DR. So long as the course’s
learning process can be broken down into concrete steps or ar-
eas, we believe there is real value to lightweight forms that force
self-reflection before asking for help, and that let Tas assess what
students actually needed help with. In our case the findings were
generally positive and not disconcerting, but the same process
would also have helped us identify worrisome negative trends—
and in almost real time, enabling interventions as needed. Espe-
cially for courses that use some kind of systematic program design

methodology, we believe an instrument analogous to ours can offer
instructors significant insight into how it is actually being used.

The data from our instrument, such as the use of TA hours and
especially on under- and over-estimation, may also offer insight
into how individual students would themselves fare as future Tas.

Finally, other authors [10] have written with some concern about
the impact of TAs on student learning: for instance, TAs may be
providing information or setting goals that (perhaps inadvertently)
contradict the instructor’s intent. As course sizes grow and reliance
on TAs grows with it, more and more student instruction will ac-
tually come from Tas. Therefore, we hope this work will inspire
many more efforts to obtain a more detailed understanding of what
takes place in TA hours.

9 FUTURE WORK

There are numerous interesting directions for future work to build
on these results. We list just a few:

The DR does not account for all the steps in programming. Even
with our classification scale, for instance, our forms mask whether
students got help with syntax, run-time, or logic errors. It would be
interesting to refine the DR questions to get more fine-grained infor-
mation about help-seeking. We feel there are natural extensions—
like additional check-boxes or small free-form text boxes—that will
provide much more insight while preserving the constraints laid
out in this paper. We believe there is also great value to exploring
assignment-specific questions.

It would be very useful to combine information from TA hours,
student help fora, programming tools, and other sources to provide
a comprehensive overview of student help-seeking behavior. This
would require a detailed content-coding effort to analyze actions
across such a diverse set of resources with distinct structures.

In § 3 we discuss findings on the relationship between reflective
processes and student success. In general it can be hard to observe
students in the act of reflection, but TA hours (and other help-
seeking fora) provide some visibility into this. The very use of the
student form may force some reflection that does not otherwise
happen, which may result in small but measurable differences in
outcome. (A potential study would be to measure the impact of
taking away the student form.) A broader study could analyze how
students’ problem-solving strategies interact with the theories of
learning we have discussed in § 2. This may be possible using
extensions or adaptations of the current instrument.

We have not examined any of the social and cultural issues raised
in hours. In general these are few (option 13 in fig. 6), but a more
fine-grained analysis may reveal these issues hidden in other steps.
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