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Figure 1: Simulation results for 40,960 RBCs in a complex vessel geometry. For our strong scaling experiments, we use the vessel geometry shown on the left,
with inflow-outflow boundary conditions at various regions of the vessel geometry. To setup the problem, we fill the vessel with nearly-touching RBCs of
different sizes. The figure above shows a setup with overall 40,960 RBCs at a volume fraction of 19%, and 40,960 polynomial patches. The full simulation video

is available at https://vimeo.com/329509229.
ABSTRACT

High-resolution blood flow simulations have potential for develop-
ing better understanding biophysical phenomena at the microscale,
such as vasodilation, vasoconstriction and overall vascular resis-
tance. To this end, we present a scalable platform for the simulation
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of red blood cell (RBC) flows through complex capillaries by model-
ing the physical system as a viscous fluid with immersed deformable
particles. We describe a parallel boundary integral equation solver
for general elliptic partial differential equations, which we apply to
Stokes flow through blood vessels. We also detail a parallel collision
avoiding algorithm to ensure RBCs and the blood vessel remain
contact-free. We have scaled our code on Stampede2 at the Texas
Advanced Computing Center up to 34,816 cores. Our largest sim-
ulation enforces a contact-free state between four billion surface
elements and solves for three billion degrees of freedom on one mil-
lion RBCs and a blood vessel composed from two million patches.
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1 INTRODUCTION

The ability to simulate complex biological flows from first principles
has the potential to provide insight into complicated physiological
processes. Simulation of blood flow, in particular, is of paramount
biological and clinical importance. Blood vessel constriction and
dilation affects blood pressure, forces between RBCs can cause clot-
ting, various cells migrate differently through microfluidic devices.

However, direct simulation of blood flow is an extremely chal-
lenging task. Even simulating the blood flow in smaller vessels
requires modeling millions of cells (one microliter of blood contains
around five million RBCs) along with a complex blood vessel. RBCs
are highly deformable and cannot be well-approximated by rigid
particles. The volume fraction of cells in human blood flow reaches
45%, which means that a very large fraction of cells are in close
contact with other cells or vessel walls at any given time. These
constraints preclude a large number of discretization points per cell
and make an evolving mesh of the fluid domain impractical and
costly at large scale.

Simulations capable of capturing these various types of flows
faithfully must be

e numerically accurate, to solve the model equations without
concern for numerical error;

o robust, to handle high-volume-fraction flows, close contact
between cells and vessel walls, complex geometries, and long
simulation times;

o efficient and scalable, to support a realistic number of cells
in flows through complex blood vessels.

Achieving these objectives for a blood flow simulation requires
that the system meets a number of stringent requirements. While
previous work has made significant progress [25, 28, 37], we focus
on several new infrastructure components essential for handling
confined flows and arbitrarily long-time, high volume fractions RBC
flows; in particular, our work is able to realize each of these goals.

We formulate the viscous flow in blood vessels as an integro-
differential equation and make use of fast scalable summation al-
gorithms for efficient implementation, as in prior RBC simulations
[48]. This is the only approach to date that maintains high accuracy
at the microscopic level while avoiding expensive discretization of
fluid volume: all degrees of freedom reside on the surfaces of RBCs
and blood vessels.

The most important novel aspects of our system include: (a)
handling the RBC-blood vessel interaction with a fully parallel, high-
order boundary integral equation solver; (b) explicit handling of
collisions with a parallel constraint-based resolution and detection
algorithm. The former is essential for modeling confined flows,
while the latter is essential for handling high-volume fraction flows
at long time scales without excessively small time steps or fine
spatial discretizations.

Our contributions.

(1) We present a parallel platform for long-time simulations
of RBCs through complex blood vessels. The extension to
suspensions of various particulates (fibers, rigid bodies etc.)
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is straightforward from the boundary integral formulation.

Flows through several complicated geometries are demon-

strated.

We have parallelized a boundary solver for elliptic PDEs

on smooth complex geometries in 3D. By leveraging the

parallel fast-multipole method of [26] and the parallel forest
of quadtrees of [7], we are able to achieve good parallel
performance and load balancing.

(3) We have extended the parallel collision handling of [25] to
include rigid 3p boundaries composed of patches.

(4) We present weak and strong scalability results of our sim-
ulation on the Skylake cluster and weak scaling results on
the Knights Landing cluster on Stampede2 at the Texas Ad-
vanced Computing Center along with several visualizations
of long-time, large-scale blood cell flows through vessels.
We observe 49% strong scaling efficiency for a 32-fold in-
crease of compute cores. In our largest test on 12288 cores,
we simulate 1,048,576 RBCs in a blood vessel composed of
2,097,152 patches with weak scaling efficiency of 71% com-
pared to 192 cores (Fig. 5). In each time step, this test uses
over three billion degrees of freedom and over four billion
surface elements (triangles) for collision.

(5) We are able to simulate realistic human blood flows with
RBC volume fractions over 47% (Fig. 7).

—
S
~

Limitations. Despite the advantages and contributions of the
computational framework presented here, our work has some lim-
itations. We have made several simplifications in our model for
RBCs. We are restricted to the low Reynolds number regime, i.e.,
small arteries and capillaries. We use a simplified model for RBCs,
assuming the cell membranes to be inextensible and with no in-
plane shear rigidity. It has been shown that flows in arterioles and
capillaries with diameter of <50 ym and RBCs with 5 ym diameter
have a Reynolds number of < 5 x 1073 [51][9, Section 5.4] with
roughly 2% error in approximating confined flows [1]. This is suffi-
cient for our interest in the qualitative behavior of particulate flows,
with the possibility of investigating rheological dynamics in larger
channels.

Regarding algorithms, each RBC is discretized with an equal num-
ber of points, despite the varied behavior of the velocity through
the vessel. Adaptive refinement is required in order to resolve the
velocity accurately. Finally, the blood vessel is constructed to satisfy
certain geometric constraints that allow for the solution of Eq. (2.5)
via singular integration. This can be overcome through uniform
refinement, but a parallel adaptive algorithm is required to maintain
good performance.

Related work: blood flow. Large-scale simulation of RBC flows
typically fall into four categories: (a) Immersed boundary (IB) and
immersed interface methods; (b) particle-based methods such as dissi-
pative particle dynamics (DPD) and smoothed particle hydrodynamics
(SPH) (c) multiscale network-based approaches and (d) boundary
integral equation (BIE) approaches. For a comprehensive review
of general blood flow simulation methods, see [12]. IB methods
can produce high-quality simulations of heterogeneous particulate
flows in complex blood vessels [3, 4, 52]. These methods typically
require a finite element solve for each RBC to compute membrane
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tensions and use IB to couple the stresses with the fluid. This ap-
proach quickly becomes costly, especially for high-order elements,
and although reasonably large simulation have been achieved [41,
42], large-scale parallelization has remained a challenge. A different
approach to simulating blood flow is with multiscale reduced-order
models. By making simplifying assumptions about the fluid be-
havior throughout the domain and transforming the complex fluid
system into a simpler flow problem, the macroscopic behaviors
of enormous capillary systems can be characterized [33, 34] and
scaled up to thousands of cores [32]. This comes at a cost of local
accuracy; by simulating the flows directly, we are able to accurately
resolve local RBC dynamics that are not captured by such schemes.

Particle-based methods have had the greatest degree of success
at large-scale blood flow simulations [13, 16, 39, 40]. These types
of approaches are extremely flexible in modeling the fluid and
immersed particles, but are computationally demanding and usually
suffer from numerical stiffness that requires very small time steps
for a given target accuracy. For a comprehensive review, see [55].
There have also been recent advances in coupling a particle-based
DPD-like scheme with IB in parallel [54, 56], but the number of RBCs
simulated and the complexity of the boundary seems to be limited.

BIE methods have successfully realized large-scale simulations
of millions of RBCs [37] in free space. Recently, new methods for
robust handling of collisions between RBCs in high-volume fraction
simulations have been introduced [25, 28]. This approach is versa-
tile and efficient due to only requiring discretization of RBCs and
blood vessel surfaces, while achieving high-order convergence and
optimal complexity implementation due to fast summation methods
[21, 38, 43, 44, 47, 48, 59]. To solve elliptic partial differential equa-
tions, BIE approaches have been successful in several application
domains [6, 49, 50, 57]. However, to our knowledge, there has been
no work combining a Stokes boundary solver on arbitrary complex
geometries in 3D with a collision detection and resolution scheme
to simulate RBC flows at large scale. This work aims to fill this gap,
illustrating that this can be achieved in a scalable manner.

Related work: collisions. Parallel collision detection meth-
ods are a well-studied area in computer graphics for both shared
memory and GPU parallelism [20, 23, 29]. [10, 19] detect collisions
between rigid bodies in a distributed memory architecture via do-
main decomposition. [31] constructs a spatial hash to cull collision
candidates and explicitly check candidates that hash to the same
value. The parallel geometry and physics-based collision resolution
scheme detailed in [53] is most similar to the scheme used in this
work. However, such discrete collision detection schemes require
small time steps to guarantee detections which can become costly
for high-volume fraction simulations.

2 FORMULATION AND SOLVER OVERVIEW

2.1 Problem summary

We simulate the flow of N cells with deformable boundary surfaces
Yi.i = 1,...,N in a viscous Newtonian fluid in a domain Q C
R3 with a fixed boundary T. The governing partial differential
equations (PDEs) describing the conservation of momentum and
mass are the incompressible Stokes equations for the velocity u
and pressure p, combined with velocity boundary conditions on I'.
Additionally, we model cell membranes as massless, so the velocity
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X of the points on the cell surface coincides with the flow velocity:
—pAu(x) + Vp(x) =F(x) and V-u(x)=0, xeQ, (2.1)
u(x) =g(x), xel, (22

Xt =uX), Xey(), (23)

where p is the viscosity of the ambient fluid; in our simulations, we
use a simplified model with the viscosity of the fluid inside the cells
also being p although our code supports arbitrary viscosity contrast.
The right-hand side force in the momentum equation is due to the
sum of tension and bending forces f = f5 + f}; it is concentrated
on the cell surfaces. We assume that cell surfaces are inextensible,
with bending forces determined by the Canham-Helfrich model [8,
18], based on the surface curvature, and surface tension determined
by the surface incompressibility condition Vy, - u = 0 resulting in

Fx) = ), [ @t -y

(see, e.g., [38] for the expressions for f). Except on inflow and
outflow regions of the vascular network, the boundary condition g
is zero, modeling no-slip boundary condition on blood vessel walls.

2.1.1  Boundary integral formulation. To enforce the boundary con-
ditions on T, we use the standard approach of computing u as the
sum of the solution uff of the free-space equation Eq. (2.1) without
boundary conditions but with non-zero right-hand side F(x), and
the second term 4! obtained by solving the homogeneous equation
with boundary conditions on T given by g — ul",

Following the approach of [25, 30, 35, 36], we reformulate Egs. (2.1)

fr

and (2.2) in the integral form. The free-space solution u'* can be

written directly as the sum of the single-layer Stokes potentials uY7:

ﬂ%hﬁﬂ@=/ﬂnﬁ@@,xﬂl (2.4
Yi

1+r®r

where S(x,y) = ﬁ (7 W) for viscosity pand r = x — y.

To obtain ur, we reformulate the homogeneous volumetric PDE

with nonzero boundary conditions as a boundary integral equation
for an unknown double-layer density ¢ defined on the domain
boundary T':

1 .
(EI+D+N)¢:DF¢:g—ufr, x €T, (2.5)

where the double-layer operator is D¢(x) = fr D(x,y)¢(y)dy with
double-layer Stokes kernel D(x,y) = & (r S (p . n) for outward

8 r°
normal n = n(y). The null-space operatolr |needed to make the
equations full-rank is defined as (N¢)(x) = fr(n(x) - $(y))n(y)dy
(cf. [24]). The favorable eigenspectrum of the integral operator in
Eq. (2.5) is well-known and allows GMRES to rapidly converge to a
solution. One of the key differences between this work and previous
free-space large-scale simulations is the need to solve this equation
in a scalable way. Once the density ¢ is computed, the velocity
T is evaluated directly as ul = Dé.
The equation for the total velocity u(x) at any point x € Q is
then given by

correction u

N
u=u"+ul = Zuyi +ul. (2.6)

i=1
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In particular, this determines the update equation for the boundary
points of cells; see Eq. (2.3).

Contact formulation . In theory, the contacts between sur-
faces are prevented by the increasing fluid forces as surfaces ap-
proach each other closely. However, ensuring accuracy of resolving
forces may require prohibitively fine sampling of surfaces and very
small time steps, making large-scale simulations in space and time
impractical. At the same time, as shown in [24], interpenetration
of surfaces results in a catastrophic loss of accuracy due to singu-
larities in the integrals.

To guarantee that our discretized cells remain interference-free,
we augment Egs. (2.1) and (2.2) with an explicit inequality con-
straint preventing collisions. We define a vector function V(t) with
components becoming strictly negative if any cell surfaces inter-
sect each other, or intersect with the vessel boundaries I'. More
specifically, we use the space-time interference volumes introduced
in [17] and applied to 3D cell flows in [25]. Each component of V
corresponds to a single connected overlap. The interference-free
constraint at time ¢ is then simply V(t) > 0.

For this constraint to be satisfied, the forces f are augmented
by an artificial collision force, i.e., f = f, + f5 + f¢, fc = V.V,
where A is the vector of Lagrange multipliers, which is determined
by the additional complementarity conditions:

Mt)>0, V(t)>0, Alt)-V(t)=0, 2.7)

at time t, where all inequalities are to be understood component-
wise.

To summarize, the system that we solve at every time step can
be formulated as follows, where we separate equations for differ-
ent cells and global and local parts of the right-hand side, as it is
important for our time discretization:

X; = Zijj-i—Dgé + Sif;, for points on y;, (2.8)

J#i
V)/i Xt =0, fj = f(Xj,O’j,).), (2.9)
Br¢ =g — Z Sjfj, forpointsonT, (2.10)
J
AMt) =0, V()=0, At)-V(t)=0. (2.11)

At every time step, (2.11) results in coupling of all close y;’s,
which requires a non-local computation. We follow the approach
detailed in [24, 25] to define and solve the nonlinear complementarity
problem (NCP) arising from cell-cell interactions in parallel, and
extend it to prevent intersection of cells with the domain boundary
T, as detailed in Section 4.

2.2 Algorithm Overview

Next, we summarize the algorithmic steps used to solve the con-
strained integral equations needed to compute cell surface positions
and fluid velocities at each time step. In the subsequent sections,
we detail the parallel algorithms we developed to obtain good weak
and strong scalability, as shown in Section 5.

Overall Discretization. RBC surfaces are discretized using
a spherical harmonic representation, with surfaces sampled uni-
formly in the standard latitude-longitude sphere parametrization.
The blood vessel surfaces I' are discretized using a collection of
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high-order tensor-product polynomial patches, each sampled at
Clenshaw-Curtis quadrature points. The space-time interference
volume function V(¢) is computed using a piecewise-linear approxi-
mation as described in [25]. For time discretization, we use a locally-
implicit first order time-stepping (higher-order time stepping can
be easily incorporated). Interactions between RBCs and the blood
vessel surfaces are computed explicitly, while the self-interaction
of a single RBC is computed implicitly.

The state of the system at every time step is given by a triple
of distributed vectors (X, o, A). The first two (cell surface positions
and tensions) are defined at the discretization points of cells. The
vector A has variable length and corresponds to connected com-
ponents of collision volumes. We use the subscript i to denote the
subvectors corresponding to i-the cell. X and o are solved as a sin-
gle system that includes the incompressibility constraint Eq. (2.9).
To simplify exposition, we omit ¢ in our algorithm summary, which
corresponds to dropping f, in the Stokes equation, and dropping
the surface incompressibility constraint equation.

Algorithm summary. At each step t, we compute the new
positions X} and collision Lagrange multipliers A* at time t* =
t + At. We assume that in the initial configuration there are no
collisions, so the Lagrange multiplier vector A is zero. Discretizing
in time, Eq. (2.8) becomes

X = X; + At Z Sifj(Xj, A) + DX, A) | + AeS;i (X, ).
J#i
At each single time step, we perform the following steps to obtain
(X*,A%) from (X, 1). Below evaluation of integrals implies using
appropriate (smooth, near-singular or singular) quadrature rules
on cell or blood vessel surfaces.

(1) Compute the explicit part b of the position update (first term

in Eq. (2.8)).

(a) Evaluate uf from (X, 1) on T with Eq. (2.4).

(b) Solve Eq. (2.5) for the unknown density ¢ on T using
GMRES.

(c) For each cell, evaluate ul.r = D¢ at all cell points Xj;.

(d) For each cell i, compute the contributions of other cells
to X;': bf = uft —yvi = jzi Sifj.

(e) Setb; = ul.F +bf.

(2) Perform the implicit part of the update: solve the NCP ob-
tained by treating the second (self-interaction) term in Eq. (2.8)
while enforcing the complementarity constraints Eq. (2.7),
i.e., solve

X{r = X; + At(b; +Sl~ﬁ~(Xi+,)L+)), (2.12)
Aty =0, viTy>o0, At -v(tt)=o. (2.13)

Items 1a to 1d all require evaluation of global integrals, evaluated
as sums over quadrature points; we compute these sums in parallel
with PVFMM. In particular, Item 1b uses PVFMM as a part of each
matrix-vector product in the GMRES iteration. These matrix-vector
product, as well as Items 1a, 1c and 1d require near-singular integra-
tion to compute the velocity accurately near RBC and blood vessel
surfaces; this requires paralle] communication to find non-local
evaluation points. Details of these computations are discussed in
Section 3.
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The NCP is solved using a sequence of linear complementarity
problems (LCPs). Algorithmically, this requires parallel searches
of collision candidate pairs and the repeated application of the
distributed LCP matrix to distributed vectors. Details of these com-
putations are provided in Section 4.

Other parallel quadrature methods. Various other parallel
algorithms are leveraged to perform boundary integrals for the
vessel geometry and RBCs. To compute u¥?(X) for X € y;, the
schemes presented in [48] are used to achieve spectral convergence
for single-layer potentials by performing a spherical harmonic ro-
tation and apply the quadrature rule of [14]. We use the improved
algorithm in [28] to precompute the singular integration operator
and substantially improve overall complexity. To compute u¥?(X)
for X close to, but not on y;, we follow the approaches of [28, 43],
which use a variation of the high-order near-singular evaluation
scheme of [58]. Rather than extrapolating the velocity from nearby
check points as in Section 3, we use [48] to compute the velocity
on surface, upsampled quadrature on y; to compute the velocity
at check points and interpolate the velocity between them to the
desired location. We mention these schemes for the sake of com-
pleteness; they are not the primary contribution of this work, but
are critical components of the overall simulation.

3 BOUNDARY SOLVER

The main challenge in incorporating prescribed flow boundary
conditions g on the domain boundary I' is the approximation and
solution of the boundary integral problem Eq. (2.5). Upon spatial dis-
cretization, this is an extremely large, dense linear system that must
be solved at every time step due to the changing free space solution
u'™ on the right hand side. Since we aim at a scalable implementa-
tion, we do not assemble the operator on the left hand side but only
implement the corresponding matrix-vector multiplication, i.e., its
application to vectors. Combined with an iterative solver such as
GMRES, this matrix-vector multiply is sufficient to solve Eq. (2.5).
Application of the double-layer operator D to vectors amounts to
a near-singular quadrature for points close to I'. Controlling the
error in this computation requires a tailored quadrature scheme.
This scheme is detailed below, where we put a particular emphasis
on the challenges due to our parallel implementation.

3.1 Quadrature for integral equation

The domain boundary I’ is given by a collection of non-overlapping
patches T' = |J; Pi(Q), where P; : Q — R3 is defined on Q =
[-1,1]%. We use the Nystrém discretization for Eq. (2.5). Since
D(x,y) is singular, this requires a singular quadrature scheme for
the integral on the right-hand side. We proceed in several steps,
starting with the direct non-singular discretization, followed by a
distinct discretization for the singular and near-singular case.

Non-singular integral quadrature. We discretize the integral
in Eq. (2.5), for x ¢ T, by rewriting it as an integral over a set of
patches and then apply a tensor-product gth order Clenshaw-Curtis
rule to each patch:

qZ
wx)= ) [ Dleppwiyr, ~ 3 Dl vt G
i i 0

i j=
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where y;; = Pi(t;) and t; € [-1, 1]? is the jth quadrature point
and w;; is the corresponding quadrature weight. We refer to the
points y;; as the coarse discretization of T and introduce a single
global index y, = y;j with £ = £(i,j) = (i - D¢ +j,£=1,...,N,
where N is the total number of quadrature nodes. We can then
rewrite the right-hand side of (3.1) compactly as the vector dot
product W(x) - ¢, where ¢, = ¢(ys) and Wyp(x) = D(x,yp)w, are
the quadrature weights in Eq. (3.1).

As x — T for x € Q, the integrand becomes more singular
and the accuracy of this quadrature rapidly decreases due to the
singularity in the kernel D. This requires us to construct a singular
integral discretization for x = yp, £ = 1,..., N, and general points
on I', which is discussed next. Note that the same method is used
for evaluation of the velocity values at points close to the surface,
once the equation is solved (near-singular integration).

Singular and near-singular integral quadrature. We take

Figure 2: Schematic of our unified singular/near-singular quadrature
scheme. A boundary T is shown along with a set of patches (patch edges
shown in black). We evaluate the velocity due to T at the check points
(gray dots off-surface) using the fine discretization (small dots on-surface)
and extrapolate these values to the target point (green). The target point
may be on or near I'. The fine discretization subdivides the patches
in the coarse discretization into 16 patches, each with an 11th-order
tensor-product Clenshaw-Curtis quadrature rule.

an approach similar to [22]. The idea is to evaluate the integral suffi-
ciently far from the surface using the non-singular quadrature rule
(3.1) on an upsampled mesh, and then to extrapolate the accurate
values towards the surface. Concretely, to compute the singular
integral at a point x near or on I', we use the following steps:

(1) Upsample ¢ using gth order interpolation, i.e., $*P = Ud,
where @"P is the vector of Nk samples of the density and U is
the interpolation operator. To be precise, we subdivide each
patch P; into k square subdomains P; and use Clenshaw-
Curtis nodes in each subdomain. We subdivide uniformly,
i.e., P; is split into k = 47 patches for an integer 7. This is the
fine discretization of T. We use W"P to denote the weights
for Eq. (3.1) the fine discretization quadrature points.

(2) Find the closest point y = P(u™, v*) to x on I for some patch
PonT withu*,v* € [-1,1] (y = x if x € T).

(3) Construct check points cqg = cq(x) = y — (R + ir)n(u*,v*),
i=0,...,p, where n(u,v) is the outward normal vector to
T at P(u,v).

(4) Evaluate the velocity at the check points:

u(cq(x)) ~ W'(cq) - ¢, i=0,....p. (3.2)
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(5) Extrapolate the velocity from the check points to x with 1D
polynomial extrapolation:

Ug  (33)

u(x) ~ ) equlcg(x)) = (Z eqW™(cq))
q q
=Wx) - ¢, (3-4)

where e4 are the extrapolation weights.

In this work, the parameters R, p, r and n are chosen empirically to
balance the error in the accuracy of W"(cq) - ¢“P and the extrapo-
lation to x. A schematic of this quadrature procedure is shown in
Fig. 2.

Discretizing the integral equation. With the singular inte-
gration method described above, we take x =y, £ =1...N, and
obtain the following discretization of Eq. (2.5):

1
(51 + A) ¢=9, Arm = Wp(ye) + Nij, (3.5)

where g is the boundary condition evaluated at y,, W,5,(x) is the
mth component of W*(x) and Nj; is the appropriate element of the
rank-completing operator in Eq. (2.5).

The dense operator A is never assembled explicitly. We use GM-
RES to solve Eq. (3.5), which only requires application of A to vectors
¢. This matrix-vector product is computed using the steps summa-
rized above.

Extrapolation and upsampling are local computations that are
parallelized trivially if all degrees of freedom for each patch are
on a single processor. The main challenges in parallelization of the
above singular evaluation are 1) initially distributing the patches
among processors, 2) computing the closest point on I' and 3) eval-
uating the velocity at the check points. The parallelization of these
computations is detailed in the remainder of this section.

Far evaluation. To compute the fluid velocity away from T,
where Eq. (2.5) is non-singular, i.e., at the check points, the integral
can be directly evaluated using Eq. (3.1). Observing that Eq. (3.1)
has the form of an N-body summation, we use the fast-multipole
method [15] to evaluate it for all target points at once. We use the
parallel, kernel-independent implementation Parallel Volume Fast
Multipole Method (PVFMM) [26, 27], which has been demonstrated
to scale to hundreds of thousands of cores. PVFMM handles all of
the parallel communication required to aggregate and distribute
the contribution of non-local patches in O(N) time.

3.2 Distributing geometry and evaluation
parallelization

We load pieces of the blood vessel geometry, which is provided as
a quad mesh, separately on different processors. Each face of the
mesh has a corresponding polynomial P; defining the ith patch.
The k levels of patch subdivision induce a uniform quadtree
structure within each quad. We use the p4est library [7] to manage
this surface mesh hierarchy, keep track of neighbor information,
distribute patch data and to refine and coarsen the discretization in
parallel. The parallel quadtree algorithms provided by p4est are
used to distribute the geometry without replicating the complete
surface and polynomial patches across all processors. p4est also
determines parent-child patch relationships between the coarse
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and fine discretizations and the coordinates of the child patches to
which we interpolate.

Once the geometry is distributed, constructing check points,
all necessary information for upsampling and extrapolation are
either available on each processor or communicated by PVFMM.
This allows these operations to be embarassingly parallel.

3.3 Parallel closest point search

To evaluate the solution at a point x, we must find the closest point
y on the boundary to x. The distance ||x — y||2 determines whether
or not near-singular integration is required to compute the velocity
at x. If it is, y is used to construct check points.

In the context of this work, the point x is on the surface of
an RBC, which may be on a different processor than the patch
containing y. This necessitates a parallel algorithm to search for
y. For that purpose, we extend the spatial sorting algorithm from
[25, Algorithm 1] to support our fixed patch-based boundary and
detect near pairs of target points and patches.

a. Construct a bounding box Bp ¢ for the near-zone of each patch. We
choose a distance de so that for all points z further away than
de from P, the quadrature error of integration over P is bounded
by €. The set of points closer to P than d¢ is the near-zone of P.
We inflate the bounding box Bp of P by de along the diagonal
to obtain Bp ¢ to contain all such points.

b. Sample Bp, . and compute a spatial hash of the samples and x.
Let H be the average diagonal length of all Bp .. We sample the
volume contained in Bp ¢ with equispaced samples of spacing
hp < H. Using a spatial hash function, (such as Morton order-
ing with a spatial grid of spacing H), we assign hash values to
bounding box samples and x to be used as a sorting key. This
results in a set of hash values that define the near-zone of T.

c. Sort all samples by the sorting key. Use the parallel sort of [45]
on the sorting key of bounding box samples and that of x. This
collects all points with identical sorting key (i.e., close positions)
and places them on the same processor. If the hash of x matches
the hash of a bounding box sample, then x could require near-
singular integration, which we check explicitly. Otherwise, we
can assume x is sufficiently far from P and does not require
singular integration.

d. Compute distances ||x — P;||. For each patch P; with a bound-
ing box key of x, we locally solve the minimization problem
ming, )e[-1,172 Ix = Pi(u, v)|| via Newton’s method with a back-
tracking line search. This is a local computation since x and P;
were communicated during the Morton ID sort.

e. Choose the closest patch P;. We perform a global reduce on the
distances ||x — P;|| to determine the closest P; to x and commu-
nicate back all the relevant information required for singular
evaluation back to x’s processor.

4 PARALLEL COLLISION HANDLING

We prevent collisions of RBCs with other RBCs and with the vessel
surface I by solving the NCP given in Egs. (4.1) and (4.2). This is a
nonsmooth and non-local problem, whose assembly and efficient
solution is particularly challenging in parallel.In this section, we
summarize our constraint-based approach and algorithm.
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We have integrated piecewise polynomial patches into the frame-
work of [25] for parallel collision handling, to which we refer the
reader for a more detailed discussion. The key step to algorithmi-
cally unify RBCs and patches is to form a linear triangle mesh approx-
imation of both objects. We now want to enforce that these meshes
are collision-free subject to the physics constraints in Eq. (4.1).

We linearize the NCP and solve a sequence of LCPs whose solu-
tions converge to the NCP solution. At a high-level, the collision
algorithm proceeds as follows:

(1) Find triangle-vertex pairs of distinct meshes that are candi-
dates for collision.

(2) Compute V(t*) = V(t*°). If any triangle-vertex pairs on
distinct meshes collide, the corresponding component of
V(t) will be negative.

(3) While V;(t*%) < 0 for any i:

(a) Suppose m components of V(t) are negative
(b) Solve the following linearized version of Eqs. (4.1) and (4.2)

XK = X; + Ar(b; + Si(Fi(X;F, 200, (4.1)
At >0, LK >0, AR LetF) =0, (42
where L(t) = V(t) + Vo, VT AX; (1) (4.3)

for the kth iteration of the loop and Xi+’ k- X;+AX;(tHF5).
(c) Find new candidate triangle-vertex pairs and compute
v(t+k),

t+’k

Here, is the intermediate time step at which a new candidate

position X l+ "k oceurs. This approach of iteratively solving an NCP
with sequence of LCPs was shown to converge superlinearly in [11].
In [53], the authors demonstrate that one LCP linearization can
approximate the NCP accurately; our algorithm uses around seven
LCP solves to approximately solve the NCP. Upon convergence of
this algorithm, we are guaranteed that our system is collision-free.

Figure 3: A 2D depiction of the parallel candidate collision pair algo-
rithm. Shown is the implicit spatial grid (gray), a piece of the blood vessel
T (open black curve), an RBC y; at the current time step (closed black
curve) and at the next time step (dotted closed back curve). Also shown
is the space-time bounding box and bounding box samples of a single
patch (red square and red dots) and an RBC (blue square and blue dots).

To solve the LCP in Item 3b, we follow the approach detailed in
[24, Section 3.2.2, Section 3.3]. We reformulate the problem first in
standard LCP form with diagonally-dominant system matrix B, then
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solve an equivalent root finding problem by applying a minimum-
map Newton’s method. This can be restructured to use GMRES, so
we only need to repeatedly apply B to vectors to solve the LCP.
Each entry B;j is the change in the jth contact volume induced by
the kth contact force, which is explicitly defined in [25, Algorithm
3]. This means that B is of size m X m, where m is the number of
collisions, but is extremely sparse. We need not store the entire
matrix explicitly; we only compute the non-zero entries and store
them in a distributed hash-map. Computing these matrix elements
requires an accumulation of all coupled collision contributions to
the velocity, which requires just a sparse MPI_A11l_to_Allv to send
each local contribution to the process containing 1AGE)

An important step to ensure good scaling of our collision han-
dling algorithm is to minimize the number of triangle-vertex pairs
that are found in Item 1. One could explicitly compute an all-to-all
collision detection on all meshes in the system, but this requires
O(N?) work and global communication. We perform a high-level
filtering first to find local candidate collision mesh pairs, then only
communicate and compute the required O(m) information. Since
spatially-near mesh pairs may be on different processors, we need
a parallel algorithm to compute these collision candidates.

To address this, we reuse Items a to ¢ from Section 3.3 and adapt
it to this problem. For each mesh in the system, we form the space-
time bounding box of the mesh: the smallest axis-aligned bounding
box containing the mesh at positions X; and X', as shown in Fig. 3.
For patches P;, note that Pl_+ = P;. This means one can reuse the
bounding box of P; constructed in Section 3.3 for this purpose and
simply set d to zero. After forming all space-time bounding boxes
for the meshes of all patches and RBCs, we apply steps Items b
and c directly to these boxes. Item ¢ will communicate meshes with
the same spatial sorting key to the same processor; these meshes
are collision candidate pairs. Once the computation is local and
candidate collision pairs are identified, we can proceed with the
NCP solution algorithm described above.

5 RESULTS

In this section, we present scalability results for our blood flow
simulation framework on various test geometries, simulations with
various volume fractions and demonstrate the convergence behav-
ior of our numerical methods.

5.1 Implementation and example setup

Architecture and software libraries. We use the Stampede2 sys-
tem at the Texas Advanced Computing Center (TACC) to study the
scalability of our algorithms and implementation. Stampede2 has
two types of compute nodes, the Knights Landing (KNL) compute
nodes and the Skylake (SKX) compute nodes. The SKX cluster has
1,736 dual-socket compute nodes, each with two 24-core 2.1GHz
CPUs and 192GB of memory. The KNL cluster has 4,200 compute
nodes, with a 68-core Intel Xeon Phi 7250 1.4Ghz CPUs and 96GB of
memory plus 16GB of high-speed MCDRAM. We run our simula-
tions in a hybrid distributed-shared memory fashion: we run one
MPI process per node, with one OpenMP thread per hardware core.
Our largest simulations use 256 SKX and 512 KNL nodes.

We leverage several high-performance libraries in our implemen-
tation. We use PETSc’s [2] parallel matrix and vector operations, and
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H BIE-solve
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B coL
Oother-FMM

wall-time X CPU cores (bar) —

384 768 1536 3072 6144 12288
CPU cores —
cores 384 768 1536 3072 6144 12288
total time (sec) 11257 5751 3268 1887 1116 718
efficiency 1.00 098 0.86 0.75 0.63 0.49
COL+BIE-solve (sec) 3901 1843 1046 596 317 183
efficiency 1.00 1.05 093 082 0.77 0.66

Figure 4: Strong scalability of a simultion with 40960 RBCs on Stam-
pede’s SKX partition for the vessel network geometry shown in Fig. 1. The
vessel is discretized with 40960 polynomial patches. Shown in the bar
graph is a breakdown of the compute resources (wall-time X CPU cores)
required by the individual components for a simulation with 10 time
steps on 384 to 12288 cores. The compute resources used by the main
algorithms presented in this paper are COL (collision handling), BIE-
solve (computation of u”, not including FMM calls). Shown in different
gray scales are the compute resources required by FMM (BIE-FMM and
Other-FMM) and other operations (Other). Shown in the table are the
compute time and the parallel efficiency for the overall computation
and for the sum of COL and BIE-solve. For the collision avoidance and
the boundary solve we observe a parallel efficiency of 66% for a 32-fold
increase from 384 to 12288 CPU cores.

its paralle] GMRES solver. Management and distribution of patches
describing the blood vessel geometry uses the p4est library [7], and
we use PVFMM [26] for parallel FMM evaluation. We also heavily
leverage Intel MKL for fast dense linear algebra routines at the
core of our algorithms and paraview for our visualizations.

Discretization and example setup. For all test cases we present,
we discretize each RBC with 544 quadrature points and 2,112 points
for collision detection. The blood vessel geometry is represented
with 8th order tensor-product polynomial patches with 121 quad-
rature points per patch and 484 equispaced points for collision
detection. The parameters chosen for singular/near-singular inte-
gration are p = 8 and n = 1, with R = r = .15L for strong scaling
tests and R = r = .1L for weak scaling tests. The value of L is the
square root of the surface area of the patch containing the closest
point to the target, called the patch size; this choice allows for a
consistent extrapolation error over the entirety of T.

Since our scaling tests are performed on complex, realistic blood
vessel geometries, we must algorithmically generate our initial
simulation configuration. We prescribe portions of the blood vessel
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B coL B BIE-solve B BIE-FMM
[0 other-FMM O other
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1
L5
£
3
| i
0.5 1
0 1
48 192 768 3072 12288
CPU cores —
cores 48 192 768 3072 12288
vol fraction 19% 20%  23% 26% 27%
#collision/ #RBCs 15% 13% 17% 15% 16%
total time (sec) 7070 8892 10032 10869 12446
efficiency - 1.00 0.88 0.81 0.71
COL+BIE-solve (sec) 1461 2345 2926 3222 3904
efficiency - 1.00  0.80 0.73 0.60

Figure 5: Weak scalability on Stampede’s SKX partition with node
grain size of 4096 RBCs and 8192 polynomial patches per compute
node (each node has 48 cores) for the vessel geometry shown in Fig. 8.
Increasing the number of RBCs and boundary patches is realized by
decreasing the size of the RBCs as discussed in Section 5.2. Shown in the
bar graph is a breakdown of wall-time spent in individual components
for a simulation with 10 time steps on 136 to 12288 cores (i.e., 4 to
256 nodes). The explanation of the labels used in the legend is detailed
in Fig. 4. Additionally, we show the volume fraction of RBCs for each
simulation, as well as the percentage of vesicles where the RBC-RBC or
RBC-vessel collision prevention is active. We report the parallel scalability
with respect to 192 cores, as the smallest simulation is in a single node
and no MPI communication is necessary. The largest simulation has
1,048,576 RBCs and 2,097,152 polynomial patches and an overall number
of 3,042,967,552 unknowns per time step.

as inflow and outflow regions and appropriately prescribe positive
and negative parabolic flows (inlet and outlet flow) as boundary
conditions, such that the total fluid flux is zero. To populate the
blood vessel with RBCs, we uniformly sample the volume of the
bounding box of the vessel with a spacing h to find point locations
inside the domain at which we place RBCs in a random orientation.
We then slowly increase the size of each RBC until it collides with
the vessel boundary or another RBC; this determines a single RBC’s
size. We continue this process until all RBCs stop expanding; this
means that we are running a simulation of RBCs of various sizes.
We refer to this process as filling the blood vessel with RBCs. This
typically produces RBCs of radius r with ry < r < 2rg with rg chosen
proportional to h. This is a precomputation for our simulation, so
we do not include this step in the timings we report for weak and
strong scaling. We emphasize that these simulations are primarily
for scaling purposes of our algorithms and are not expected to
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CPU cores —
cores 136 544 2176 8704 34816
vol fraction 17% 19% 20% 23% 26%
#collision/ #RBCs 10% 15% 13% 17% 15%
total time (sec) 2739 3203 3768 4782 5806
efficiency 1.00 0.86 0.73 0.57 0.47
COL+BIE-solve (sec) 642 808 982 1532 1480
efficiency 1.00 0.79 0.65 0.42 0.43

Figure 6: Same as Fig. 5 but on Stampede2’s KNL partition with 512
RBCs and 1024 vessel boundary patches per node (each node has 68 cores).
We find an overall parallel scalability of 47% for a 256-fold increase of
the problem size.

represent true blood flows. The platform can of course be applied
to length scales where viscous flow is a valid assumption.

Additionally, RBCs in such a confined flow will collide with the
blood vessel wall if special care is not taken near the outflow part
of the boundary. We define regions near the inlet and outlet flows
where we can safely add and remove RBCs. When an RBC y; is
within the outlet region, we subtract off the velocity due to y; from
the entire system and move y; into an inlet region such that the
arising RBC configuration is collision-free.

Limiting GMRES iterations. We have observed that the GM-
RES solver typically requires 30 iterations or less for convergence
for almost all time steps, but the number of needed iterations may
vary more in the first steps. To simulate the amount of work in a
typical simulation time step, we cap the number of GMRES iterations
at 30 and report weak and strong scaling for these iterations. A
more detailed analysis of this behavior is needed.

5.2 Parallel scalability

Here, we present strong and weak scalability results for our RBC
simulations. We decompose the time required for a complete simu-
lation into the following categories:

e COL: detection and resolution of collisions among RBCs and
between RBCs and the vessel walls;

e BIE-solve: computing u”, not including FMM calls. This in-
cludes all of the steps for singular/near-singular integration
in Section 3 except the evaluation u! at the check points.
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Figure 7: Shown is a high-volume fraction sedimentation due to grav-
itational force. The initial configuration (top figures) has a volume
fraction of 47%. As the cells sediment to the lower part of the domain
(bottom figures), the local volume fraction of the final state in this lower
part of the domain is around 55%. Shown on the right side are slices
through the center of the domain together with the RBC boundaries in
the initial and final configuration. The full simulation video is available
at https://vimeo.com/329509435.

e BIE-FMM: FMM calls required to evaluate u at the check
points and at points on RBCs

o Other-FMM: FMM calls required by other algorithms

e Other: all other operations

In the discussion below, we focus on COL and BIE-solve, as they
are the primary algorithmic contribution of this work, and discuss
how to reduce the computational time required for BIE-FMM.
Strong scalability. To study the strong scalability of our algo-
rithms, we use the blood vessel geometry and RBC configuration
in Fig. 1-left. This simulation contains 40,960 RBCs and the blood
vessel is represented with 40,960 patches. With four degrees of
freedom per RBC quadrature point and three per vessel quadrature
point, this amounts to 89,128,960 and 14,868,480 degrees for the
RBCs and blood vessel, respectively (103,997,440 in total). As can
be seen from Fig. 4, we achieve a 15.7-fold speed-up in total wall-
time scaling from 384 to 12288 cores, corresponding to 49% parallel
efficiency. This level of parallel efficiency is partially due to the
calls to the fmm library PVFMM. The strong scalability of PVFMM
we observe is largely consistent with the results reported in [27].
Neglecting the time for calls to FMM, i.e., only counting the time
for the boundary solver to compute u” and for collision prevention,
we find 66% parallel efficiency when scaling strongly from 384 to
12288 cores. We see that the parallel collision handling and integral
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Figure 8: For our weak scaling experiments, we use the the vessel geometry shown above with inflow boundary conditions on the right side and outflow
boundary condition on the two left sides. To setup the problem, we fill the vessel with nearly-touching RBCs of different sizes to obtain a desired number, and
refine the vessel geometry patches. The figure above shows a setup with overall 262,144 RBCs at a volume fraction of 26%.

equation solver computations, excluding FMM, scale well as the
number of cores is increased.

Weak Scalability. Our weak scalability results are shown in
Figs. 5 and 6. Both tests are performed on the blood vessel displayed
in Fig. 8. We use an initial boundary composed of a fixed number M
of polynomial patches and fill the domain with roughly M/2 RBCs
(which requires spacing h). To scale up our simulation by a factor
of four, we: (1) subdivide the M polynomial patches into 4M new
but equivalent polynomial patches (via subdivision rules for Bezier
curves); (2) refill the domain with RBCs using spacing h/V4. This
places 2M RBCs in the domain volume. We repeat this process each
time we increase the number of cores by a factor of four in order
to keep the number of patches and RBCs per core constant. In the
tables in Figs. 5 and 6, we report parallel efficiency with respect
to the first multi-node run on both SKX and KNL architectures, i.e,
with respect to 192 and 136 cores, respectively.

The largest weak scaling test contains 1,048,576 RBCs and 2,097,152
polynomial patches on the blood vessel; we solve for 3,042,967,552
unknowns at each time step and are able to maintain a collision-
free state between 4,194,304,000 triangular surface elements at each
time step. Comparing the weak scalability results for SKX (Fig. 5)
and KNL (Fig. 6), we observe similar qualitative behavior. Note that
the smallest test on the SKX architecture only uses a single node, i.e.,
no MPI communication was needed. This explains the increased
time for the collision prevention algorithms when going from 1
(48 cores) to 4 nodes (192 cores). Note also that the simulation on
the KNL architecture used a significantly lower number of RBCs
and geometry patches per node. Thus, this simulation has a larger
ratio of communication to local work. This explains the less perfect

scalability compared to the results obtained on the SKX architec-
ture. As with strong scaling, we see good parallel scaling of the
non-FMM-related parts of the computation of u' and the collision
handling algorithm.

Note that there is a slight variation in the number of collisions
for the run on 8704 cores on KNL. This is an artifact of the RBC filling
algorithm. Since we place RBCs in random orientations and distrib-
ute RBCs randomly among processors, we do not have complete
control over the percentage of collisions or the volume fraction
for each simulation in Figs. 5 and 6, as can be seen from the tables
under these figures. This can affect the overall scaling: For the run
on 8704 cores, the percentage of collisions is larger, explaining the
longer time spent in COL. Despite this phenomenon, we achieve
good weak scaling overall.

Discussion. The parts of the algorithm introduced in this paper
scale as well as or better than the FMM implementation we are
using. However, our overall run time is diminished by the multi-
ple expensive FMM evaluations required for solving Eq. (2.5). This
can be addressed by using a local singular quadrature scheme, i.e.,
compute a singular integral using the FMM on Eq. (3.1) directly,
then compute a singular correction locally. This calculation has a
three-fold impact on parallel scalability: (1) the FMM evaluation re-
quired is proportional to the size of the coarse discretization rather
than the fine discretization (O((p + 1)N) vs. O((k + p)N)); (2) after
the FMM evaluation, the local correction is embarrassingly parallel;
(3) the linear operator Eq. (3.3) can be precomputed, making the
entire calculation extremely fast with MKL linear algebra routines.
These improvements together will allow our algorithm to scale well
beyond the computational regime explored in this work.
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5.3 Verification

There are few analytic results known about RBCs in confined Stokes
flows against which we can verify our simulations. However, exact
solutions can be obtained for a part of our setup, invariants (e.g.,
surface area) can be considered and solutions for smaller examples
can be verified against solutions with fine spatial and temporal
discretizations. In particular, in this section, we demonstrate the
accuracy of the parallel boundary solver presented in Section 3 and
numerically study the collision-free time-stepping in Section 4.
Boundary solver. The error of the boundary integral solver is
determined by the error of integration and the GMRES error, the
latter not depending on the number of discretization points due to
good conditioning of the equation. The integration error, in turn,
can be separated into smooth quadrature error and interpolation
error. The former is high-order accurate [46]. Although our extrap-
olation is ill-conditioned, we observe good accuracy for p < 8. The
singular evaluation in Section 3 converges with rate O(L? + L9)
corresponding to pth order extrapolation and gth order quadrature.
To confirm this numerically, we solve an interior Stokes problem
on the surface in Fig. 9-right. We evaluate a prescribed analytic
solution at the discretization points to obtain the boundary condi-
tion. We then solve Eq. (3.5) and compare the numerical solution at
on-surface samples different from discretization points, evaluated
using the algorithms of Section 3. We use p = 2,9 = 16, p = 8,
R =.04VL and r = R/8. In Fig. 9-left, we report the relative error in
the infinity-norm of the velocity. By choosing check point distances
proportional to VL, we observe the expected O(L7) convergence.

I
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Figure 9: Error convergence test solving Eq. (3.5). We evaluate a known
solution on the coarse discretization and solve for ¢. On the left, we plot
the maximum relative error in the infinity norm of u' evaluated on the
surface. On the right, we show the coarse discretization of the domain
boundary and patches.

RBCs with collision resolution and convergence. Our choice
of RBC representation and discretization is spectrally accurate in
space for the approximation, differentiation and integration of func-
tions on RBC surfaces, as shown in [48]. Although we use first-order
time-stepping in this work, spectral deferred correction (SDC) can
be incorporated into the algorithm exactly as in the 2D version
described in [24]. This present work demonstrates second-order
convergence in time; however, SDC can be made arbitrarily high-
order accurate.

For collision-resolution accuracy verification, we study the con-
vergence of our contact-free time-stepping with two RBCs in shear
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flow. As shown in Fig. 10, at T = 0, two RBCs are placed in a
shear flow u = [z, 0, 0] in free-space. We first compute a reference
solution without collision handling but with expensive adaptive
fully implicit time-stepping to ensure accurate resolution of the
lubrication layer between RBCs. This reference simulatation used
spherical harmonics of order 32 and the time step had to be reduced
to 6.5e-4 to prevent collisions. In Fig. 11, we show the convergence
for the error in the centers of mass of each RBC as a function of
the time-step size. We use spherical harmonic orders 16 and 32
for the spatial discretization to demonstrate the dominance of the
time-stepping error. We observe first-order convergence with our
locally-implicit backward Euler scheme which confirms that our
collision resolution algorithm does not have a significant impact
on time-stepping accuracy.

(a)t=0 (¢)t =20

N K

Figure 10: Snapshots of two vesicles in shear flow.
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Figure 11: Shown is the error in the final (T = 25) centroid location
as we decrease the time step size for two spherical harmonic orders 16
and 32. We observe O(At) convergence in time and hence the collission
detection algorithm converges at the same order as the time stepper.

5.4 High volume fraction

The RBC volume fraction, i.e., the ratio of volume occupied by RBCs
compared to the overall blood volume is 36-48% in healthy women
and 40-54% in healthy men [5]. As can be seen in the tables in Figs. 5
and 6, the volume fraction in our weak scaling simulations is below
these values, which is mostly due to the procedure used to fill the
blood vessel with RBCs (see the discussion in Section 5.1). However,
RBC volume fractions in capillaries and small arteries is known to
be be around 10-20% [41, 51], which our scaling simulations achieve.
To demonstrate that we can simulate even higher volume fraction
blood flows, Fig. 7 shows a test of 140 RBCs sedimenting under
a gravitational force in a small capsule. The volume fraction for
this example is 47%, calculated by dividing the amount of volume
occupied by RBCs by the volume of the capsule. By the end of the
simulation, we achieve a volume fraction of 55% in the lower part of
the domain (determined by bounding the RBCs by a tighter cylinder
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than the original domain boundary) since the RBCs have become
more tightly packed. While such high volume fractions typically do
not occur in capillary flow on average, in some scenarios (local fluc-
tuations, sedimentation, microfluidics) these high concentrations
need to be handled.

6 CONCLUSION

We have shown that our parallel platform for the simulation of
red blood cell flows is capable of accurately resolved long-time
simulation of red blood cell flows in complex vessel networks. We
are able to achieve realistic cell volume fractions of over 47%, while
avoiding collisions between cells or with the blood vessel walls.
Incorporating blood vessels into red blood cell simulations requires
solving a boundary integral equation, for which we use GMRES.
Each GMRES iteration computes a matrix-vector product, which
in turn involves singular quadrature and an FMM evaluation; the
latter dominates the computation time. To avoid collisions, we
solve a nonlinear complementarity problem in the implicit part of
each time step. This requires repeated assembly of sparse matrices
that, in principle, couple all cells globally. Nevertheless, solving
this complementarity system yields close-to-optimal strong and
weak scaling in our tests. Overall, the vast majority of compute
time is spent in FMM evaluations, which implies that the scaling
behavior of our simulation is dominated by the scalability of the
FMM implementation. As discussed at the end of Section 5.2, in the
future, we will employ a local singular quadrature scheme that will
allow us to significantly reduce the time spent in FMM evaluations.
This will not only speed up the overall simulation but also improve
the weak and strong scalability of our simulation platform.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran our weak and strong scalability tests on Stampede2 system
at the Texas Advanced Computing Center (TACC) with the Knights
Landing (KNL) compute 788 nodes and the Skylake (SKX) compute
nodes. I use intel 18.0.2 , Intel MPI 18.0.2, PETSc 3.10, p4est 2.0,
FFTW 3 3.3.8, boost 1.68, PVEMM libraries for the simulation tests.

We use the Stampede2 system at the Texas Advanced Comput-
ing Center (TACC) to study the scalability of our algorithms and
implementation. Stampede2 has two types of compute nodes, the
Knights Landing (KNL) compute nodes and the Skylake (SKX) com-
pute nodes. The SKX cluster has 1,736 dual-socket compute nodes,
each with two 24-core 2.1GHz CPUs and 192GB of memory. The
KNL cluster has 4,200 compute nodes, with a 68-core Intel Xeon
Phi 7250 1.4Ghz CPUs and 96GB of memory plus 16GB of high-
speed MCDRAM. We run our simulations in a hybrid distributed-
shared memory fashion: we run one MPI process per node, with
one OpenMP thread per hardware core. Our largest simulations
use 256 SKX and 512 KNL nodes.

We leverage several high-performance libraries in our implemen-
tation. We use PETSc’s parallel matrix and vector operations, and
its parallel GMRES solver. Management and distribution of patches
describing the blood vessel geometry uses the p4est library, and we
use PVFMM for parallel FMM evaluation. We also heavily leverage
Intel MKL for fast dense linear algebra routines at the core of our
algorithms and paraview for our visualizations.

Our largest run on Stampede2 finished at 2019-04-08 01:38:16(US
central time), the date range of access to Stampede2 for all tests is
around 2019-03-20 to 2019-04-09.

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-
tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: Some author-created data artifacts
are NOT maintained in a public repository or are NOT available
under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

pvfmm “https://github.com/dmalhotra/pvfmm”

petsc “https://www.mcs.anl.gov/petsc/”

pdest “http://www.pdest.org/”

intel-parallel-studio “https://software.intel.com/en
— -us/articles/intel-c-compiler-180-for-linux-relea
— se-notes-for-intel-parallel-studio-xe-2018"

fftw3 “http://www.fftw.org/”

boost “https://www.boost.org/users/history/version\_
— 1\_68\_0.html”

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Stampede2 skylake compute nodes
and Knights Landing compute nodes

Operating systems and versions: Linux version 3.10.0-
957.5.1.el7.x86_64

Compilers and versions: intel 18.0.2, impi 18.0.2

Libraries and versions: intel 18.0.2, impi 18.0.2, eigen 3.3.1, CGAL
4.10, fftw3 3.3.8, boost 1.68 , vtk 8.1.1, pvfmm, p4est 2.0, petsc 3.10-
164

Key algorithms: fast multipole method, boundary integral equa-
tion method

Output from scripts that gathers execution environment informa-
tion.

On Stampde2 skx nodes, the execution environment

— information is the following:

c506-033[skx](508)$ ./collect_environment.sh
SLURM_NODELIST=c506-033
SLURM_CHECKPOINT_IMAGE_DIR=/var/slurm/checkpoint
LMOD_FAMILY_COMPILER_VERSION=18.0.2
MKLROOT=/opt/intel/compilers_and_libraries_2018.2.19
— 9/1linux/mkl

I_MPI_STARTUP_MODE=pmi_shm_netmod
P4EST_DIR=/homel1/apps/intel18/impi18_0/pdest/2.0
SLURM_JOB_NAME=idv31559
MANPATH=/opt/apps/libfabric/1.7.0/share/man:/opt/int
— el/compilers_and_libraries_2018.2.199/1linux/mpi/
man:/opt/intel/documentation_2018/en/man/common: |
/opt/intel/documentation_2018/en/debugger/gdb-ig
fx/man:/opt/intel/documentation_2018/en/debugger
/gdb-ia/man:/opt/apps/intel18/impi18_0/fftw3/3.3
— .8/man
TACC_IMPI_DIR=/opt/intel/compilers_and_libraries_201
— 8.2.199/1inux/mpi
TACC_FFTW3_INC=/opt/apps/intel18/impi18_0/fftw3/3.3.
— 8/include
VTK_DIR=/homel/apps/intel18/impi18_0/vtk/8.1.1
XDG_SESSION_ID=283415
TACC_BOOST_INC=/opt/apps/intel18/boost/1.68/include
HOSTNAME=c506-033

SLURMD_NODENAME=c506-033

SLURM_TOPOLOGY_ADDR=c506-033
TACC_INTEL_INC=/opt/intel/compilers_and_libraries_20
— 18.2.199/1inux/compiler/include/intel64

et



_ModuleTable@03_=L jAuMiIsWyJsb2FkT3JkZXIiXTOxLHByb3B
— UPXt9LFsic3RhY2tEZXB0aCJdPTAsWyJzdGFOAXMiXTOiYWN
— 0aXZ1IixbInVzZXJOYW11I109ImludGYsIix9LGxpYmZhYnJ
— pYz17WyJImbiJdPSIvb3BOL2FwcHMvbWIKdWx1ZmlsZXMvbGl |
< 1ZmFicmljLzEuNy4wLmx1YSIsWyJmdWxsTmFtZSJdPSTsaW]
— mYWJyaWMvMS43LjAiLFsibGOhZE9yZGVyI109MixwecmOwVD1
— 7fSxbInJ1Z19jb3VudCIdPTESWyJzdGF ja@R1cHROI1@9MSx |
« bInN@YXR1cyJdPSThY3RpdmUiLFsidXN1ck5hbWUiXT@ibGl
— 1ZmFicmljIix9LHAQZXNOPXtbImZuIl@9Ii9vcHQvYXBwcy9
—  pbnR1bDE4L21tcGkxOF8wL21vZHVSZWZpbGVzL 3A0ZXNOLZI |
— UMC5sdWEiLFsiZnVsbE5ShbWUiXT@icDR1c3QvMi4wIixb
TACC_FAMILY_QT_VERSION=5.11.2

SLURM_PRIO_PROCESS=0

SLURM_NODE_ALIASES=(null)
INTEL_LICENSE_FILE=/home1/anonymous/USER/intel/licen
— ses:/opt/intel/licenses:/opt/intel/compilers_and,
— _libraries_2018.2.199/1inux/licenses
IPPROOT=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/linux/ipp

I_MPI_F77=ifort
MPICH_HOME=/opt/intel/compilers_and_libraries_2018.2
— .199/1inux/mpi
TACC_PETSC_BIN=/home1/apps/intel18/impi18_0/petsc/3.
— 10/skylake-i64/bin

SHELL=/bin/bash

TERM=xterm-256color
__LMOD_REF_COUNT_MODULEPATH=/0opt/apps/qt5.11.2/modul |
— efiles:1;/opt/apps/intel18/impi18_0/modulefiles:
— 1;/opt/apps/intel18/modulefiles:1;/opt/apps/xsed
— e/modulefiles:1;/opt/apps/modulefiles:1;/opt/mod,
— ulefiles:1

NO_HOSTSORT=1
TACC_INTEL_DIR=/opt/intel/compilers_and_libraries_20
— 18.2.199/1linux
TACC_LIBFABRIC_BIN=/opt/apps/libfabric/1.7.0/bin
TACC_FAMILY_QT=qt5
FFTW_ROOT=/opt/apps/intel18/impi18_0/fftw3/3.3.8
HISTSIZE=1000

IDEV_SETUP_BYPASS=1.0

SLURM_JOB_QO0S=normal

I_MPI_FABRICS=shm:ofi
TACC_IMPI_BIN=/opt/intel/compilers_and_libraries_201,
— 8.2.199/linux/mpi/intel64/bin
VES3D_DIR=/home1/anonymous/USER/projects/boundary/ve
— s3d-cxx

SSH_CLIENT=206.76.192.52 60610 22
LMOD_SYSTEM_DEFAULT_MODULES=TACC

TMPDIR=/tmp

SLURM_TOPOLOGY_ADDR_PATTERN=node
TACC_LIBFABRIC_DIR=/opt/apps/libfabric/1.7.0
PETSC_ARCH=skylake-i64
QT_QPA_PLATFORM_PLUGIN_PATH=/opt/apps/qt5/5.11.2/plu,
— gins

XALT_DIR=/opt/apps/xalt/xalt/
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LIBRARY_PATH=/opt/intel/compilers_and_libraries_2018
— .2.199/linux/daal/../tbb/lib/intel64_lin/gcc4.4:
/opt/intel/compilers_and_libraries_2018.2.199/11i
nux/daal/lib/intel64_lin:/opt/intel/compilers_an
d_libraries_2018.2.199/1inux/tbb/lib/intel64/gcc
4.7:/opt/intel/compilers_and_libraries_2018.2.19
9/1inux/mkl/1ib/intel64_lin:/opt/intel/compilers
_and_libraries_2018.2.199/1linux/compiler/lib/int
el64_lin:/opt/intel/compilers_and_libraries_2018
— .2.199/1linux/ipp/lib/intel64
TACC_LIBFABRIC_INC=/opt/apps/libfabric/1.7.0/include
TACC_BOOST_BIN=/opt/apps/intel18/boost/1.68/bin
LMOD_PKG=/opt/apps/1mod/1mod
TACC_FAMILY_COMPILER_VERSION=18.0.2
TACC_FAMILY_VTK_VERSION=8.1.1
QTDIR=/opt/apps/qt5/5.11.2
TACC_P4EST_BIN=/home1/apps/intel18/impi18_0/pdest/2.
— @/bin

QTINC=/usr/1ib64/qt-3.3/include

LMOD_VERSION=7.8.21

SSH_TTY=/dev/pts/0

SLURM_TACC_RUNLIMIT_MINS=30
__LLMOD_REF_COUNT_LOADEDMODULES=intel/18.0.2:1;1ibfab
— ric/1.7.0:1;impi/18.0.2:1;fftw3/3.3.8:1;petsc/3.
— 10-i64:1;boost/1.68:1;qt5/5.11.2:1;vtk/8.1.1:1;p,
— 4est/2.0:1

I_MPI_JOB_FAST_STARTUP=1

VES3D_PLATFORM=stampede
FFTW_DIR=/opt/apps/intel18/impi18_0/fftw3/3.3.8
FACEMAP_DIR=/home1/anonymous/USER/projects/boundary/
— mobo-temp/face_map

QT_GRAPHICSSYSTEM_CHECKED=1
TACC_INTEL_BIN=/opt/intel/compilers_and_libraries_20
— 18.2.199/1inux/bin/intel64
TACC_IMPI_INC=/opt/intel/compilers_and_libraries_201
— 8.2.199/1linux/mpi/intel64/include
TACC_FFTW3_DIR=/opt/apps/intel18/impi18_0/fftw3/3.3.8
USER=USER

SLURM_NNODES=1

IDEV_QDEL=scancel
__LMOD_REF_COUNT_QT_QPA_PLATFORM_PLUGIN_PATH=/opt/ap
— ps/qt5/5.11.2/plugins:1

rrrrrrt
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tz=38;5;9:%.deb=38;5;9:x.rpm=38;5;9:*.jar=38;5;9
1x.war=38;5;9:%.ear=38;5;9:%.sar=38;5;9:%.rar=38
;5;9:%.alz=38;5;9:*.ace=38;5;9:%.200=38;5;9:%.cp
10=38;5;9:%.72=38;5;9:%.rz=38;5;9:%.cab=38;5;9: %
.Jpg=38;5;13:%.jpeg=38;5;13:*.gif=38;5;13:*.bmp=,
38;5;13:%.pbm=38;5;13:%.pgm=38;5;13:%.ppm=38;5;1,
3:%.tga=38;5;13:%.xbm=38;5;13:%x.xpm=38;5;13:%.ti,
f=38;5;13:%.tiff=38;5;13:%.png=38;5;13:%.svg=38; |
5;13:%.svgz=38;5;13:%.mng=38;5;13:%.pcx=38;5;13:
*.mov=38;5;13:%.mpg=38;5;13:%.mpeg=38;5;13:%.m2v
=38;5;13:%x.mkv=38;5;13:%.webm=38;5;13:%.0gm=38;5
—  ;13:%.mp4=38;5;13:%.m4v=38;5;13:%x.mp4v=38;5;13:%
< .vob=38;5;13:%.qt=38;5;13:%.nuv=38;5;13:%.wmv=38
— ;5;13:%.asf=38;5;13:%.rm=38;5;13:*.rmvb=38;5;13:,
— *.flc=38;5;13:*%.avi=38;5;13:*.fli=38;5;13:*.flv=)
— 38;5;13:%.g1=38;5;13:%.d1=38;5;13:%.xcf=38;5;13:,
— *.xwd=38;5;13:*%.yuv=38;5;13:*.cgm=38;5;13:x.emf=
«— 38;5;13:%.axv=38;5;13:*%.anx=38;5;13:%.0gv=38;5;1,
«— 3:%.0gx=38;5;13:%.aac=38;5;45:%.au=38;5;45:*x.fla,
— €=38;5;45:%x.mid=38;5;45:x.midi=38;5;45:x.mka=38; ,

]

]

L )
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— 5;45:%.mp3=38;5;45:%.mpc=38;5;45:*.0gg=38;5;45:*%
— .ra=38;5;45:%.wav=38;5;45:*.axa=38;5;45:%.0ga=38
— ;5;45:%.s5px=38;5;45:%.xspf=38;5;45:

LD_LIBRARY_PATH=/home1/apps/intel18/impi18_0/pdest/2
— .0/lib:/home1/apps/intel18/impi18_0/vtk/8.1.1/11
b:/opt/apps/gcc/6.3.0/1ib64:/opt/apps/gcc/6.3.0/
lib:/opt/apps/qt5/5.11.2/1ib:/opt/apps/intel18/b
00st/1.68/1ib:/homel1/apps/intel18/impi18_0/petsc
/3.10/skylake-164/1ib: /opt/apps/libfabric/1.7.0/
lib:/opt/intel/compilers_and_libraries_2018.2.19,
9/1inux/mpi/intel64/1ib:/opt/intel/debugger_2018
/libipt/intel64/1ib:/opt/intel/debugger_2018/iga,
/1lib:/opt/intel/compilers_and_libraries_2018.2.1,
99/1inux/daal/../tbb/lib/intel64_lin/gcc4.4:/opt
/intel/compilers_and_libraries_2018.2.199/1inux/
daal/lib/intel64_lin:/opt/intel/compilers_and_li
braries_2018.2.199/1inux/tbb/lib/intel64/gcc4.7: |
/opt/intel/compilers_and_libraries_2018.2.199/11i
nux/mkl/1ib/intel64_lin:/opt/intel/compilers_and
libraries_2018.2.199/1inux/compiler/lib/intel64
_lin:/opt/intel/compilers_and_libraries_2018.2.1
99/1inux/ipp/lib/intel64:/opt/intel/compilers_an
d_libraries_2018.2.199/1inux/compiler/lib/intel6
4:/opt/apps/intel18/impi18_0/fftw3/3.3.8/1ib:/ho
me1/anonymous/USER/installs/cgal/1ib64:/homel/an
onymous/USER/installs/gmp/lib:/home1/anonymous/U
SER/installs/mpfr/lib:/home1/anonymous/USER/proj
— ects/boundary/contact3d/1lib
TACC_QT5_DIR=/opt/apps/qt5/5.11.2
PSTLROOT=/opt/intel/compilers_and_libraries_2018.2.1
— 99/1inux/pstl
TACC_PETSC_DIR=/home1/apps/intel18/impi18_0/petsc/3.
- 1o/

__TRACKER__=1

XALT_DATE_TIME=2019_05_20_15_39_13_1805
TACC_NODE_TYPE=skx

SLURM_TACC_NODES=1

SLURM_JOBID=3614475

__PERSONAL _PATH__=1
CPATH=/opt/intel/compilers_and_libraries_2018.2.199/
— linux/pstl/include:/opt/intel/compilers_and_libr
aries_2018.2.199/1linux/daal/include:/opt/intel/c
ompilers_and_libraries_2018.2.199/1inux/tbb/incl
ude:/opt/intel/compilers_and_libraries_2018.2.19,
9/1inux/mkl/include:/opt/intel/compilers_and_lib
— raries_2018.2.199/1inux/ipp/include
IFC_BIN=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/linux/bin/intel64
TACC_MKL_LIB=/opt/intel/compilers_and_libraries_2018
— .2.199/1linux/mkl/1ib/intel64
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_ModuleTable@04_=ImxvYWRPcmR1lciJdPTkscHIvcFQ9e30sWyJ
< zdGFja@R1cHRoI1@9MCxbInNOYXR1cyJdPSIThY3RpdmUilLFs
— 1dXN1ck5hbWUiXT@icDR1c3QiLHOscGVOCc2M9el1siZm4iXTQ
« 1L29wdC9hcHBzL 21udGVsMTgvaWlwaTE4XzAvbWOkdWx1Zm] |
—  SZXMvcGV@c2MvMy4xMC1pNjQubHVhIixbImZ1bGxOYW11I10
— 9InB1dHNjLzMuMTAtaTYQIixbImxvYWRPcmR1ciJdPTUscHT
— vcFQ9e30sWyJzdGF jadR1cHRoI109MCxbINNOYXR1cyJdPST |
— hY3RpdmUiLFsidXN1ck5hbWUiXT@icGV@c2MvMy4xMC1pN3jQ
— 1LHOscXQ1PXtbImZuIl@9Ii9vcHQvYXBwcy9tb2R1bGVmaWx
—  1cy9xdDUVNS4xMS4yLmx1YSIsWyJImdWxsTmFtZSJdPSIxdDU
—  VNS4xMS4yIixbImxvYWRPcmR1ciJdPTcscHIvcFQ9e30s
XALT_RUN_UUID=4b841ccf-cc37-40f7-9c17-e7bb2chofdad
OLDSCRATCH=/0oldscratch/anonymous/USER
SLURM_COMMAND=sbatch
__LMOD_REF_COUNT__LMFILES_=/opt/apps/modulefiles/int
— el/18.0.2.1ua:1;/opt/apps/modulefiles/libfabric/,
— 1.7.0.1lua:1;/opt/apps/intel18/modulefiles/impi/1
— 8.0.2.1ua:1;/opt/apps/intel18/impi18_0/modulefil
— es/fftw3/3.3.8.1ua:1;/opt/apps/intel18/impi18_0/,
— modulefiles/petsc/3.10-164.1ua:1;/opt/apps/intel,
— 18/modulefiles/boost/1.68.1ua:1;/opt/apps/module
— files/qt5/5.11.2.1ua:1;/opt/apps/intel18/impi18_,
— @/modulefiles/vtk/8.1.1.1lua:1;/opt/apps/intel18/,
— impi18_0/modulefiles/p4est/2.0.1lua:1
TACC_BOOST_DIR=/opt/apps/intel18/boost/1.68
PVFMM_INC=/home1/anonymous/USER/installs/pvfmm/inclu
— de/pvfmm

SLURM_NTASKS=1
PETSC_ROOT=/home1/apps/intel18/impi18_0/petsc/3.10/
SLURM_TACC_JOBNAME=idv31559
LMOD_FAMILY_MPI_VERSION=18.0.2
TACC_PETSC_LIB=/home1/apps/intel18/impi18_0/petsc/3.
— 10/skylake-i64/1ib

ARCHIVER=ranch. tacc.utexas.edu
NLSPATH=/opt/intel/debugger_2018/gdb/intel64/share/1
— ocale/%1_%t/%N:/opt/intel/compilers_and_librarie
— 5_2018.2.199/1inux/mkl/1lib/intel64/locale/%1_%t/
< %N:/opt/intel/compilers_and_libraries_2018.2.199,
— /linux/compiler/lib/intel64/locale/%1_%t/%N
__LMOD_REF_COUNT_I_MPI_ROOT=/opt/intel/compilers_and,
— _libraries_2018.2.199/1inux/mpi:1
LMOD_FAMILY_QT_VERSION=5.11.2
TACC_QT5_BIN=/opt/apps/qt5/5.11.2/bin
PATH=/home1/apps/intel18/impi18_0/p4est/2.0/bin:/hom
— el/apps/intel18/impi18_0/vtk/8.1.1/bin:/opt/apps
— /gcc/6.3.0/bin:/opt/apps/qt5/5.11.2/bin:/opt/app
— s/intel18/boost/1.68/bin:/homel/apps/intel18/imp,
— 118_0/petsc/3.10/skylake-i64/bin:/opt/apps/libfa,
— bric/1.7.0/bin:/opt/apps/intel18/impi/18.0.2/bin,
— :/opt/intel/compilers_and_libraries_2018.2.199/1,
— inux/mpi/intel64/bin:/opt/intel/compilers_and_li
— braries_2018.2.199/1linux/bin/intel64:/usr/1ib64/,
— qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:/opt/del,
— 1/srvadmin/bin:/opt/apps/intel18/impi18_0/fftw3/,
— 3.3.8/bin

MAIL=/var/spool/mail/USER

Lu, et al.

TACC_SYSTEM=stampede2
_ModuleTable@d1_=X01vZHVsZVRhYmx1Xz17WyJNVHZ1cnNpb24 |
iXTOzLFsiY19yZWJ1aWxkVG1tZSJdPWZhbHNILFsiY19zaG9
ydFRpbWUiXT1mYWxzZSxkZXB@aFQ9e30sZmFtaWx5PXtbIk1
QSSJAPSJpbXBpIixbImNvbXBpbGVyI109ImludGVsIixbInF
0I109InFONSIsWyJ2dGsiXT@idnRrIix9LG1UPXtib29zdD1
7WyJmbiJdPSIvb3BOL2FwcHMvaW50ZWwx0C9tb2R1bGVmaWx |
1cy9ib29zdC8xL jY4Lmx1YSIsWyImdWxsTmFtZSJdPSTib29 |
zdC8xLjY4IixbImxvYWRPcmR1ciJdPTYscHIvcFQ9e30sWyJ |
zdGF ja@R1cHRoI109MCxbINNOYXR1cyJdPSThY3RpdmUiLFs
1dXN1ck5hbWUiXT@iYm9vc3QiLHOsZmZ@dzM9e1siZm4iXTO |
— 1L29wdC9hcHBzL21udGVsMTgvaWlwaTE4XzAvbWI9kdWx1
SLURM_TASKS_PER_NODE=1
ICC_BIN=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/linux/bin/intel64
__LMOD_REF_COUNT_NLSPATH=/opt/intel/debugger_2018/gd
b/intel64/share/locale/%1_%t/%N:1;/opt/intel/com
pilers_and_libraries_2018.2.199/1inux/mkl/1ib/in
tel64/locale/%1_%t/%N:1;/opt/intel/compilers_and
_libraries_2018.2.199/1inux/compiler/lib/intel64
/locale/%1_%t/%N:1
I_MPI_OFI_LIBRARY=/opt/apps/libfabric/1.7.0/1ib/1ibf
— abric.so

STOCKYARD=/work/anonymous/USER

RUNNING_IDEV=1
SLURM_WORKING_CLUSTER=stampede2:206.76.192.2:6820:84
- 48
GEOGRAM_DIR=/home1/anonymous/USER/projects/boundary/
— mobo-temp/geogram_1.6.3

_=/bin/env

WORK=/work/anonymous/USER/stampede?2
TACCINFO=/usr/local/etc/taccinfo
SLURM_JOB_ID=3614475
TACC_VTK_LIB=/homel1/apps/intel18/impi18_0/vtk/8.1.1/,
— lib

OLDWORK=/work/anonymous/USER
TBBROOT=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/1linux/tbb
TACC_LIBFABRIC_LIB=/opt/apps/libfabric/1.7.0/1ib
PWD=/home1/anonymous/USER

INPUTRC=/etc/inputrc

SLURM_JOB_USER=USER

SLURM_QUEUE=skx-dev

SLURM_TACC_NCORES_SET=1
_LMFILES_=/opt/apps/modulefiles/intel/18.0.2.1lua:/op
t/apps/modulefiles/libfabric/1.7.0.1lua:/opt/apps
/intel18/modulefiles/impi/18.0.2.1lua:/opt/apps/i
ntel18/impi18_0/modulefiles/fftw3/3.3.8.1lua:/opt
/apps/intel18/impi18_0/modulefiles/petsc/3.10-i6
4.lua:/opt/apps/intel18/modulefiles/boost/1.68.1
ua:/opt/apps/modulefiles/qt5/5.11.2.1ua:/opt/app
s/intel18/impi18_0/modulefiles/vtk/8.1.1.1ua:/op)
— t/apps/intel18/impi18_0/modulefiles/p4est/2.0.1lua
TACC_P4EST_DIR=/home1/apps/intel18/impi18_0/p4est/2.0
LANG=en_US.UTF-8
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Scalable Simulation of Realistic Volume Fraction Red Blood Cell Flows through Vascular Networks

__LMOD_REF_COUNT_PYTHONPATH=/home1/apps/intel18/impi
— 18_0/vtk/8.1.1/1ib/site-packages/mpidpy:1;/homel
— /apps/intel18/impi18_0/vtk/8.1.1/1ib/python2.7/s
— 1ite-packages/vtk:1

HEDGEHOG_CC=mpicc

VTK_INC_DIR=/include/vtk-8.1/
MODULEPATH=/opt/apps/qt5.11.2/modulefiles:/opt/apps/
— intel18/impi18_0/modulefiles:/opt/apps/intel18/m,
— odulefiles:/opt/apps/xsede/modulefiles:/opt/apps
— /modulefiles:/opt/modulefiles

_ModuleTable_Sz_=6

SLURM_JOB_UID=856401
LOADEDMODULES=intel/18.0.2:1ibfabric/1.7.0:impi/18.9,
— .2:fftw3/3.3.8:petsc/3.10-164:boost/1.68:qt5/5.1,
— 1.2:vtk/8.1.1:pdest/2.0

SLURM_NODEID=0

idev_has_user_PERL5LIB=no

__BASHRC_SOURCED__=1

SLURM_TACC_ACCOUNT=TG-DPP130002
TACC_VTK_DIR=/home1/apps/intel18/impi18_0/vtk/8.1.1
SLURM_SUBMIT_DIR=/home1/anonymous/USER
TACC_VEC_FLAGS=-xCORE-AVX2 -axCORE-AVX512,MIC-AVX512
I_MPI_F90=ifort
LMOD_CMD=/opt/apps/1mod/1mod/libexec/1mod
SLURM_TASK_PID=258435

SLURM_NPROCS=1

I_MPI_CC=icc

_ModuleTable@05_=WyJzdGF ja@R1cHRoI1@9MCxbINNOYXR1cyJ
— dPSJhY3RpdmUiLFsidXN1ck5hbWUiXT@icXQ1Iix9LHZ0az1
—  7WyJmbiJdPSIvb3BOL2FwcHMvaW50ZWwx0CIpbXBpMThfMC |
— tb2R1bGVmaWx1cy92dGsvOC4xL jEubHVhIixbImZ1bGxOYWT
< 11109InZ0ay84L jEUMSIsWyJsb2FkT3JkZXIiXT@4LHBYb3B
— UPXt9LFsic3RhY2tEZXBOaCJdPTAsWyJzdGF@AXMiXTOiYWN
— 0aXZ1IixbInVzZXJOYW11I109InZ@ayIsfSx9LGTwYXRoQT1
— 7Ii9vcHQvYXBwcy9xdDUUMTEUMi9tb2R1bGYmaWx1cyIsIi9
—  vcHQVYXBwcy9pbnR1bDE4L21tcGkxOF8wL21vZHVSZWZpbGY |
— zIiwil29wdC9hcHBzL21udGVsMTgvbWIkdWx1ZmlsZXMilCI
—  vb3BOL2FwcHMveHN1ZGUvbWIkdWx1ZmlsZXMiLCIvb3B@
MOBO_DIR=/home1/anonymous/USER/projects/boundary/mob
— o-temp

SLURM_CPUS_ON_NODE=96
DAALROOT=/opt/intel/compilers_and_libraries_2018.2.1
— 99/1linux/daal
TACC_P4EST_LIB=/homel1/apps/intel18/impi18_0/p4est/2.
— 0/1ib
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SLURM_PROCID=0

ENVIRONMENT=BATCH
TACC_MKL_INC=/opt/intel/compilers_and_libraries_2018,
— .2.199/1inux/mkl/include
SLURM_JOB_NODELIST=c506-033
HOME=/home1/anonymous/USER

SHLVL=4

FI_PROVIDER=psm2

TACC_DOMAIN=stampede2

SLURM_LOCALID=0

__XALT_INITIAL_STATE__=LD_PRELOAD
__LMOD_REF_COUNT_PATH=/home1/apps/intel18/impi18_0/p
4est/2.0/bin:1;/homel/apps/intel18/impi18_0/vtk/
8.1.1/bin:1;/opt/apps/gcc/6.3.0/bin:2;/opt/apps/
qt5/5.11.2/bin:1;/opt/apps/intel18/boost/1.68/bi
n:1;/homel/apps/intel18/impi18_0/petsc/3.10/skyl
ake-i64/bin:1;/opt/apps/libfabric/1.7.0/bin:1; /0
pt/apps/intel18/impi/18.0.2/bin:1;/opt/intel/com
pilers_and_libraries_2018.2.199/1linux/mpi/intel6
4/bin:1;/opt/intel/compilers_and_libraries_2018.
2.199/1inux/bin/intel64:1;/usr/1ib64/qt-3.3/bin:
1;/usr/local/bin:1;/bin:1;/usr/bin:1;/opt/dell/s
rvadmin/bin:1;/opt/apps/intel18/impi18_0/fftw3/3,
< .3.8/bin:1

TACC_FAMILY_COMPILER=intel
TACC_INTEL_LIB=/opt/intel/compilers_and_libraries_20
— 18.2.199/1linux/compiler/lib/intel64
I_MPI_CXX=icpc
TACC_PETSC_INC=/home1/apps/intel18/impi18_0/petsc/3.
— 10/skylake-i64/include

TACC_FAMILY_VTK=vtk
__LLMOD_REF_COUNT_CPATH=/opt/intel/compilers_and_libr
aries_2018.2.199/1linux/pstl/include:1;/opt/intel
/compilers_and_libraries_2018.2.199/1inux/daal/1i
nclude:1;/opt/intel/compilers_and_libraries_2018
.2.199/1inux/tbb/include:1;/opt/intel/compilers_
and_libraries_2018.2.199/1inux/mkl/include:1;/op
t/intel/compilers_and_libraries_2018.2.199/1linux
— /ipp/include:1
TACC_BOOST_LIB=/opt/apps/intel18/boost/1.68/1ib
TACC_P4EST_INC=/home1/apps/intel18/impi18_0/pdest/2.
< @/include

_ModuleTable@02_=ZmlsZXMvZmZ@dzMvMy4zL jgubHVhIixbImZ |
1bGx0YW11I109ImZmdHczL zMuMy44IixbImxvYWRPcmR1ciJ
dPTQscHJvcFQ9e30sWyJzdGF jaOR1cHRoI1Q9MCXbINNAYXR |
1cyJdPSIhY3RpdmUiLFsidXN1ck5hbWUiXT@iZmZodzMiLHO |
saWlwaT17WyJImbiJdPSIvb3BOL2FwcHMvaW50ZWwxOCItb2R |
1bGVmaWx1cy9pbXBpLzE4L jAUMi5SAWEiLFsiZnVsbEShbWU |
iXTOiaWlwaS8x0C4wLjIiLFsibGOhZE9yZGVyI1@9Myxwem9 |
wVD17fSxbINNOYWNrRGVwdGgiXTOwLFsic3RhdHVZI1Q9ImF
3dG12ZSIsWyJ1c2VyTmFtZSJdPSIpbXBpIix9LGludGVsPXt |
bImZuIl@9Ii9vcHQvYXBwcy9tb2R1bGVmaWx1lcy9pbnR1bC8
< XOC4wLjIubHVhIixbImZ1bGxOYW11I109ImludGVsLzE4
SLURM_CLUSTER_NAME=stampede2
SLURM_JOB_CPUS_PER_NODE=96

SLURM_JOB_GID=814474
IFC_LIB=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/linux/compiler/lib/intel64

SLURM_GTIDS=0
SLURM_SUBMIT_HOST=login2.stampede2.tacc.utexas.edu
__LMOD_REF_COUNT_INCLUDE=/home1/apps/intel18/impil8_
— ©@/vtk/8.1.1/include:1;/opt/apps/gcc/6.3.0/includ
- e:l

BLENDSURF _DIR=/home1/anonymous/USER/projects/boundar
— y/mobo-temp/blendsurf3
BASH_ENV=/etc/tacc/tacc_functions

L
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idev_ip=c506-033

SLURM_JOB_PARTITION=skx-dev

I_MPI_FC=ifort
TACC_VTK_INC=/home1/apps/intel18/impi18_0/vtk/8.1.1/
— include
PVFMM_LIB=/home1/anonymous/USER/installs/pvfmm/1lib/p
— vfmm

LOGNAME=USER
ICC_LIB=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/linux/compiler/lib/intel64

TACC_FAMILY_MPI=impi

LMOD_FAMILY_VTK=vtk
PYTHONPATH=/home1/apps/intel18/impi18_0/vtk/8.1.1/11,
— b/site-packages/mpi4py:/homel/apps/intel18/impil,
— 8_0/vtk/8.1.1/1ib/python2.7/site-packages/vtk
CVS_RSH=ssh

QTLIB=/usr/lib64/qt-3.3/1lib
LMOD_SETTARG_TITLE_BAR=yes
BOOST_ROOT=/opt/apps/intel18/boost/1.68
SSH_CONNECTION=206.76.192.52 60610 206.76.217.53 22
XDG_DATA_DIRS=/home1/anonymous/USER/.local/share/fla
— tpak/exports/share:/var/lib/flatpak/exports/shar
— e:/usr/local/share:/usr/share

LC_CTYPE=UTF-8

SLURM_JOB_ACCOUNT=TG-DPP130002

HEDGEHOG_CXX=mpicxx

MODULESHOME=/opt/apps/1mod/1mod

SLURM_JOB_NUM_NODES=1
__LMOD_REF_COUNT_LIBRARY_PATH=/opt/intel/compilers_a,
— nd_libraries_2018.2.199/1inux/daal/../tbb/1lib/in
— tel64_lin/gcc4.4:1;/opt/intel/compilers_and_libr
— aries_2018.2.199/1linux/daal/lib/intel64_lin:1;/0
— pt/intel/compilers_and_libraries_2018.2.199/linu,
— Xx/tbb/lib/intel64/gcc4.7:1;/opt/intel/compilers_
— and_libraries_2018.2.199/1inux/mkl/1ib/intel64_1
— in:1;/opt/intel/compilers_and_libraries_2018.2.1,
— 99/1inux/compiler/lib/intel64_lin:1;/opt/intel/c,
— ompilers_and_libraries_2018.2.199/1linux/ipp/lib/
— intel64:1
MPI_HOME=/opt/intel/compilers_and_libraries_2018.2.1
— 99/1linux/mpi

LESSOPEN=]| | /usr/bin/lesspipe.sh %s
LMOD_SETTARG_FULL_SUPPORT=full

OMP_NUM_THREADS=48

Lu, et al.

__LMOD_REF_COUNT_LD_LIBRARY_PATH=/home1/apps/intel18
/impi18_0/p4est/2.0/1ib:1;/homel/apps/intel18/im
pi18_0/vtk/8.1.1/1ib:1;/opt/apps/gcc/6.3.0/1ib64
:2;/opt/apps/gcc/6.3.0/1ib:2;/opt/apps/qt5/5.11.
2/1ib:1;/opt/apps/intel18/boost/1.68/1ib:1;/home
1/apps/intel18/impi18_0/petsc/3.10/skylake-i64/1
ib:1;/0opt/apps/libfabric/1.7.0/1ib:1;/opt/intel/
compilers_and_libraries_2018.2.199/1linux/mpi/int
el64/1ib:1;/opt/intel/debugger_2018/1libipt/intel
64/1ib:1;/opt/intel/debugger_2018/iga/lib:1;/opt
/intel/compilers_and_libraries_2018.2.199/1linux/
daal/../tbb/lib/intel64_lin/gcc4.4:1;/opt/intel/
compilers_and_libraries_2018.2.199/1inux/daal/11i
b/intel64_lin:1;/opt/intel/compilers_and_librari
€s_2018.2.199/1inux/tbb/1ib/intel64/gcc4.7:1;/0p
t/intel/compilers_and_libraries_2018.2.199/1linux
/mkl/1ib/intel64_lin:1;/opt/intel/compilers_and_
libraries_2018.2.199/1inux/compiler/lib/intel64_
lin:2;/opt/intel/compilers_and_libraries_2018.2.
199/1inux/ipp/lib/intel64:1;/opt/intel/compilers
_and_libraries_2018.2.199/1linux/compiler/lib/int
— el64:1;/opt/apps/intel18/impi18_0/fftw3/3.3.8/11
- b:1
PKG_CONFIG_PATH=/opt/intel/compilers_and_libraries_2
— 018.2.199/1linux/mkl/bin/pkgconfig:/opt/apps/inte
— 118/impi18_0/fftw3/3.3.8/1lib/pkgconfig
HEDGEHOG_DIR=/home1/anonymous/USER/projects/boundary
— /mobo-temp

PROMPT_COMMAND=${X_SET_TITLE_BAR:-:}

—  "$USER@${SHOST}: ${PWD/#$HOME/~}"
__Init_Default_Modules=1
TACC_FFTW3_LIB=/opt/apps/intel18/impi18_0/fftw3/3.3.
— 8/1ib

LMOD_FAMILY_COMPILER=intel
TACC_IMPI_LIB=/opt/intel/compilers_and_libraries_201
— 8.2.199/1inux/mpi/intel64/1ib
TACC_VTK_BIN=/home1/apps/intel18/impi18_0/vtk/8.1.1/,
< bin
VTK_LOCATION=/homel/apps/intel18/impi18_0/vtk/8.1.1
XDG_RUNTIME_DIR=/run/user/856401
ARCHIVE=/home/anonymous/USER
OLDHOME=/0ldhome1/anonymous/USER
IDEV_PWD=/home1/anonymous/USER
__LLMOD_REF_COUNT_INTEL_LICENSE_FILE=/homel/anonymous
— /USER/intel/licenses:1;/opt/intel/licenses:1;/op,
— t/intel/compilers_and_libraries_2018.2.199/1linux
— /licenses:1

TACC_FAMILY_MPI_VERSION=18.0.2
__LLMOD_REF_COUNT_PKG_CONFIG_PATH=/opt/intel/compiler
— s_and_libraries_2018.2.199/1inux/mkl/bin/pkgconf
— 1ig:1;/opt/apps/intel18/impi18_0/fftw3/3.3.8/1ib/
— pkgconfig:1

TACC_QT5_LIB=/opt/apps/qt5/5.11.2/1ib
LMOD_FAMILY_VTK_VERSION=8.1.1
PVFMM_DIR=/home1/anonymous/USER/installs/pvfmm/share
— /pvfmm

L
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LMOD_DIR=/opt/apps/1lmod/1mod/libexec
__LMOD_REF_COUNT_MANPATH=/opt/apps/libfabric/1.7.0/s,
— hare/man:1;/opt/intel/compilers_and_libraries_20,
— 18.2.199/1inux/mpi/man:1;/opt/intel/documentatio
< Nn_2018/en/man/common:1;/opt/intel/documentation_
— 2018/en/debugger/gdb-igfx/man:1;/opt/intel/docum,
— entation_2018/en/debugger/gdb-ia/man:1;/opt/apps
— /intel18/impi18_0/fftw3/3.3.8/man:1
INCLUDE=/home1/apps/intel18/impi18_0/vtk/8.1.1/inclu,
— de:/opt/apps/gcc/6.3.0/include
_ModuleTable@06_=L2FwcHMvbWIkdWx1ZmlsZXMilL CIvb3BOL21
—  VZHVSZWZpbGVzIix9LFsic31zdGVtQmFzZU1QQVRII1@9Ii9
—  vcHQvYXBwcy94c2VkZS9tb2R1bGVmaWx1czovb3BOL2FwcHM |
—  VvbWIkdWx1ZmlsZXM6L29wdCIthb2R1bGVmaWx1lcyIsfQ==
PETSC_DIR=/home1/apps/intel18/impi18_0/petsc/3.10/
LMOD_FAMILY_QT=qt5

SCRATCH=/scratch/anonymous/USER
SLURM_TACC_NNODES_SET=1

SLURM_TACC_CORES=1
TACC_MKL_DIR=/opt/intel/compilers_and_libraries_2018
— .2.199/1inux/mkl

FI_PSM2_LAZY_CONN=1

LMOD_FAMILY_MPI=impi

TACC_MPI_GETMODE=impi_hydra
I_MPI_ROOT=/opt/intel/compilers_and_libraries_2018.2,
— .199/1inux/mpi
TACC_QT5_INC=/opt/apps/qt5/5.11.2/include
MACHINE_NAME=stampede

BASH_FUNC_sbatch()=() { echo -e "\nNOTIFICATION:

— sbatch not available on compute nodes. Use a login
— node.\n"

}

BASH_FUNC_module()=() { if [ -z

— "${LMOD_SH_DBG_ON+x3}" 1; then

case "$-" in

*VRX*)

__lmod_sh_dbg="vx"

*V%)

__lmod_sh_dbg="v"'

*x*)

__lmod_sh_dbg="x"

esac;

fi;
if [ -n "${__1lmod_sh_dbg:-}" 71; then
set +$__lmod_sh_dbg;
echo "Shell debugging temporarily silenced: export
— LMOD_SH_DBG_ON=1 for Lmod's output";
fi;

eval $($LMOD_CMD bash "$@") && eval
$(${LMOD_SETTARG_CMD:-:} -s sh);

local _lmod_my_status=$7?;

if [ -n "${__1lmod_sh_dbg:-}" 1; then

echo "Shell debugging restarted";

set -$__lmod_sh_dbg;

unset __lmod_sh_dbg;

fi;

return $_lmod_my_status

}

BASH_FUNC_m1()=() { eval $($LMOD_DIR/ml_cmd "$@")

}
+ lsb_release -a

LSB Version: :core-4.1-amd64:core-4.1-noarch:
— cxx-4.1-amd64:cxx-4.1-noarch:desktop-4.1-amd64:d
— esktop-4.1-noarch:languages-4.1-amd64:languages-
— 4.1-noarch:printing-4.1-amd64:printing-4.1-noarch
Distributor ID: Cent0S

Description: Cent0S Linux release 7.6.1810
— (Core)

Release: 7.6.1810

Codename: Core

+ uname -a

Linux c506-033.stampede2.tacc.utexas.edu

— 3.10.0-957.5.1.el17.x86_64 #1 SMP Fri Feb 1

— 14:54:57 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

+ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 96

On-line CPU(s) list: 0-95
Thread(s) per core: 2

Core(s) per socket: 24

Socket(s): 2

NUMA node(s): 2

Vendor ID: Genuinelntel
CPU family: 6

Model: 85

Model name: Intel(R) Xeon(R) Platinum 8160
— CPU @ 2.10GHz

Stepping: 4

CPU MHz: 2100.000
BogoMIPS: 4200.00
Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 1024K

L3 cache: 33792K

NUMA node® CPU(s):

-~ 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,
— ,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66
- ,68,70,72,74,76,78,80,82,84,86,88,90,92,94

NUMA nodel CPU(s):

- 1,3,5,7,9,11,13,15,17,19, 21, 23,25,27,29,31,33,35,
— ,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67
- ,69,71,73,75,77,79,81,83,85,87,89,91,93,95



Lu, et al.

Flags: fpu vme de pse tsc msr pae mce HugePages_Total: [}
— cx8 apic sep mtrr pge mca cmov pat pse36 clflush HugePages_Free: [}
— dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx HugePages_Rsvd: Q
— pdpelgb rdtscp 1m constant_tsc art arch_perfmon HugePages_Surp: [}
— pebs bts rep_good nopl xtopology nonstop_tsc Hugepagesize: 2048 kB
— aperfmperf eagerfpu pni pclmulgdq dtes64 monitor DirectMap4k: 673600 kB
— ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr DirectMap2M: 14667776 kB
— pdcm pcid dca sse4_1 ssed4_2 x2apic movbe popcnt DirectMapi1G: 186646528 kB

+ inxi -F -c@
./collect_environment.sh: line 14: inxi: command not

— tsc_deadline_timer aes xsave avx f16c rdrand
— lahf_1lm abm 3dnowprefetch epb cat_13 cdp_13

— intel_ppin intel_pt ssbd mba ibrs ibpb stibp < found

— tpr_shadow vnmi flexpriority ept vpid fsgsbase + 1sblk -a

< tsc_adjust bmil hle avx2 smep bmi2 erms invpcid NAME MAJ:MIN RM  SIZE RO TYPE MOUNTPOINT
— rtm cgm mpx rdt_a avx512f avx512dq rdseed adx smap sda 8:0 @ 223.6G 0 disk
— clflushopt clwb avx512cd avx512bw avx512vl | -sda1 8:1 0 ™M 0 part
— xsaveopt xsavec xgetbvl cgm_llc cgm_occup_llc | -sda2 8:2 %) 1G @ part /boot
— cgm_mbm_total cgm_mbm_local dtherm ida arat pln ‘-sda3 8:3 0 222.6G 0 part
— pts pku ospke spec_ctrl intel_stibp flush_11d |-rootvgo1-1ve1 253:0 %) 756 0 lvm /
+ cat /proc/meminfo |-rootvgdl-tmp 253:1 0@ 143.6G 0@ lvm /tmp
MemTotal: 196438176 kB *-rootvg@l-var 253:2 0 4G @ lvm /var
MemFree: 190492500 kB sdb 8:16 0 0 disk
MemAvailable: 190025288 kB loopo 7:0 0 1 loop
Buffers: 0 kB loop1 7:1 0 1 loop
Cached: 138176 kB loop2 7:2 0 1 loop
SwapCached: 0 kB loop3 7:3 0 1 loop
Active: 158396 kB loop4 7:4 0 1 loop
Inactive: 111156 kB loop5 7:5 0 1 loop
Active(anon): 132300 kB loop6 7:6 0 1 loop
Inactive(anon): 84508 kB loop7 7:7 %} 1 loop
Active(file): 26096 kB loop8 7:8 0 1 loop
Inactive(file): 26648 kB loop9 7:9 0 1 loop
Unevictable: 0 kB loopi1@ 7:10 0 1 loop
Mlocked: 0 kB loop11 7:11 0 1 loop
SwapTotal: 0 kB loop12 7:12 0 1 loop
SwapFree: 0 kB loop13 7:13 0 1 loop
Dirty: 0 kB loop14 7:14 0 1 loop
Writeback: 0 kB loop15 7:15 0 1 loop
AnonPages: 132028 kB loop16 7:16 0 1 loop
Mapped: 27260 kB loop17 7:17 0 1 loop
Shmem: 84788 kB loop18 7:18 0 1 loop
Slab: 2495120 kB loop19 7:19 0 1 loop
SReclaimable: 580428 kB loop20 7:20 0 1 loop
SUnreclaim: 1914692 kB loop21 7:21 0 1 loop
KernelStack: 25280 kB loop22 7:22 0 1 loop
PageTables: 7492 kB loop23 7:23 0 1 loop
NFS_Unstable: 0 kB loop24 7:24 0 1 loop
Bounce: 0 kB loop25 7:25 0 1 loop
WritebackTmp: 0 kB loop26 7:26 0 1 loop
CommitLimit: 182687500 kB loop27 7:27 0 1 loop
Committed_AS: 671048 kB loop28 7:28 0 1 loop
VmallocTotal: 34359738367 kB loop29 7:29 0 1 loop
VmallocUsed: 1826416 kB loop30 7:30 0 1 loop
VmallocChunk: 34257106468 kB loop31 7:31 0 1 loop
HardwareCorrupted: 0 kB loop32 7:32 0 1 loop
AnonHugePages: 53248 kB loop33 7:33 0 1 loop
CmaTotal: 0 kB loop34 7:34 0 1 loop
CmaFree: 0 kB
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loop35 7:35 0 1 loop
+ lsscsi -s

[2:0:0:0] disk ATA
— /dev/sda 240GB
[14:0:0:0] disk

— /dev/sdb -
module list

-z Y

case "$-" in
__lmod_sh_dbg=x

T -nx ']

set +x

Shell debugging temporarily silenced: export
— LMOD_SH_DBG_ON=1 for Lmod's output

MZ7KM24@HMHQ@D3 GD53

Generic MassStorageClass WS@1

+ o+ + o+ 4+ o+

Currently Loaded Modules:
1) intel/18.0.2 3) impi/18.0.2 5)
— petsc/3.10-i64 7) qt5/5.11.2 9) pdest/2.0
2) libfabric/1.7.0 4) fftw3/3.3.8 6) boost/1.68
. 8) vtk/8.1.1

Shell debugging restarted

+ unset __lmod_sh_dbg

+ return @

+ nvidia-smi

./collect_environment.sh: line 18: nvidia-smi:

— command not found

+ lshw -short -quiet -sanitize

+ cat

./collect_environment.sh: line 19: lshw: command not
— found

+ lspci

./collect_environment.sh: line 19: lspci: command not
— found

On Stampde2 knl nodes, the execution environment

— information is the following:
c455-061[knl](1020)$ ./collect_environment.sh
SLURM_NODELIST=c455-061
SLURM_CHECKPOINT_IMAGE_DIR=/var/slurm/checkpoint
LMOD_FAMILY_COMPILER_VERSION=18.0.2
MKLROOT=/opt/intel/compilers_and_libraries_2018.2.19
— 9/1linux/mkl

I_MPI_STARTUP_MODE=pmi_shm_netmod
P4EST_DIR=/home1/apps/intel18/impi18_0/pdest/2.0
SLURM_JOB_NAME=1dv63880
MANPATH=/opt/apps/libfabric/1.7.0/share/man:/opt/int
— el/compilers_and_libraries_2018.2.199/1linux/mpi/
— man:/opt/intel/documentation_2018/en/man/common: |
— /opt/intel/documentation_2018/en/debugger/gdb-ig
fx/man:/opt/intel/documentation_2018/en/debugger
/gdb-ia/man:/opt/apps/intel18/impi18_0/fftw3/3.3,
— .8/man

—
—

TACC_IMPI_DIR=/opt/intel/compilers_and_libraries_201
< 8.2.199/1inux/mpi
TACC_FFTW3_INC=/opt/apps/intel18/impi18_0/fftw3/3.3.
— 8/include
VTK_DIR=/homel1/apps/intel18/impi18_0/vtk/8.1.1
XDG_SESSION_ID=371971
TACC_BOOST_INC=/opt/apps/intel18/boost/1.68/include
HOSTNAME=c455-061

SLURMD_NODENAME=c455-061

SLURM_TOPOLOGY_ADDR=c455-061
TACC_INTEL_INC=/opt/intel/compilers_and_libraries_20
— 18.2.199/1inux/compiler/include/intel64
_ModuleTable@@3_=LjAuMiIsWyJsb2FkT3JKZXIiXTOxLHByb3B
UPXt9LFsic3RhY2tEZXBOaCJdPTAsWyJzdGFOAXMiXTOiYWN |
0aXZ1IixbInVzZXJOYW11I109ImludGVsIix9LGxpYmZhYnJ
pYz17WyJImbiJdPSIvb3BOL2FwcHMvbWOkdWx1ZmlsZXMvbGl
iZmFicml jLzEuNy4wLmx1YSIsWyJImdWxsTmFtZSJdPSTsaWJ
mYWJyaWMvMS43L jAiLFsibGOhZE9yZGVyI1@9MixwemIwVD1
7fSxbInJ17193jb3VudCIdPTEsWyJzdGF ja@R1cHRoI109MSx |
bInNOYXR1cyJdPSThY3RpdmUiLFsidXN1ck5hbWUiXT@ibGl
iZmFicml j1ix9LHAQZXNOPXtbImZuIl09Ii9vcHQvYXBwcy9
pbnR1bDE4L21tcGkxOF8wL21vZHVSZWZpbGVzL3AQZXNOLZI |
< UMC5sdWEiLFsiZnVsbE5hbWUiXT@icDR1c3QvMidwIixb
TACC_FAMILY_QT_VERSION=5.11.2

SLURM_PRIO_PROCESS=0

SLURM_NODE_ALIASES=(null)
INTEL_LICENSE_FILE=/home1/anonymous/USER/intel/licen
— ses:/opt/intel/licenses:/opt/intel/compilers_and
— _libraries_2018.2.199/1inux/licenses
IPPROOT=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/1linux/ipp

I_MPI_F77=ifort
MPICH_HOME=/opt/intel/compilers_and_libraries_2018.2
— .199/1inux/mpi
TACC_PETSC_BIN=/home1/apps/intel18/impi18_0/petsc/3.
— 10/skylake-i64/bin

SHELL=/bin/bash

TERM=xterm-256color
__LMOD_REF_COUNT_MODULEPATH=/opt/apps/qt5.11.2/modul |
— efiles:1;/opt/apps/intel18/impi18_0/modulefiles:
— 1;/opt/apps/intel18/modulefiles:1;/opt/apps/xsed,
— e/modulefiles:1;/opt/apps/modulefiles:1;/opt/mod
— ulefiles:1

NO_HOSTSORT=1
TACC_INTEL_DIR=/opt/intel/compilers_and_libraries_20
— 18.2.199/1inux
TACC_LIBFABRIC_BIN=/opt/apps/libfabric/1.7.0/bin
TACC_FAMILY_QT=qt5
FFTW_ROOT=/opt/apps/intel18/impi18_0/fftw3/3.3.8
HISTSIZE=1000

IDEV_SETUP_BYPASS=1.0

SLURM_JOB_QOS=normal

I_MPI_FABRICS=shm:ofi
TACC_IMPI_BIN=/opt/intel/compilers_and_libraries_201
— 8.2.199/1linux/mpi/intel64/bin

L



VES3D_DIR=/home1/anonymous/USER/projects/boundary/ve
— s3d-cxx

SSH_CLIENT=206.76.192.54 47394 22
LMOD_SYSTEM_DEFAULT_MODULES=TACC

TMPDIR=/tmp

SLURM_TOPOLOGY_ADDR_PATTERN=node
TACC_LIBFABRIC_DIR=/opt/apps/libfabric/1.7.0
PETSC_ARCH=skylake-i64
QT_QPA_PLATFORM_PLUGIN_PATH=/opt/apps/qt5/5.11.2/plu
— gins

XALT_DIR=/opt/apps/xalt/xalt/
LIBRARY_PATH=/opt/intel/compilers_and_libraries_2018
— .2.199/1linux/daal/../tbb/lib/intel64_lin/gcc4.4:
/opt/intel/compilers_and_libraries_2018.2.199/1i
nux/daal/lib/intel64_lin:/opt/intel/compilers_an
— d_libraries_2018.2.199/1inux/tbb/1lib/intel64/gcc
— 4.7:/opt/intel/compilers_and_libraries_2018.2.19,
« 9/1linux/mkl/1ib/intel64_lin:/opt/intel/compilers
— _and_libraries_2018.2.199/1linux/compiler/lib/int,
— el64_lin:/opt/intel/compilers_and_libraries_2018,
— .2.199/1linux/ipp/lib/intel64
TACC_LIBFABRIC_INC=/opt/apps/libfabric/1.7.0/include
TACC_BOOST_BIN=/opt/apps/intel18/boost/1.68/bin
LMOD_PKG=/opt/apps/1mod/1mod
TACC_FAMILY_COMPILER_VERSION=18.0.2
TACC_FAMILY_VTK_VERSION=8.1.1
QTDIR=/opt/apps/qt5/5.11.2
TACC_P4EST_BIN=/home1/apps/intel18/impi18_0/pdest/2.
— @/bin

QTINC=/usr/1lib64/qt-3.3/include

LMOD_VERSION=7.8.21

SSH_TTY=/dev/pts/0@

SLURM_TACC_RUNLIMIT_MINS=30

LC_ALL=en_US.UTF-8
__LMOD_REF_COUNT_LOADEDMODULES=intel/18.0.2:1;1libfab,
— ric/1.7.0:1;impi/18.0.2:1;fftw3/3.3.8:1;petsc/3.
— 10-164:1;boost/1.68:1;qt5/5.11.2:1;vtk/8.1.1:1;p,
— 4est/2.0:1

I_MPI_JOB_FAST_STARTUP=1

VES3D_PLATFORM=stampede
FFTW_DIR=/opt/apps/intel18/impi18_0/fftw3/3.3.8
FACEMAP_DIR=/home1/anonymous/USER/projects/boundary/
— mobo-temp/face_map

QT_GRAPHICSSYSTEM_CHECKED=1
TACC_INTEL_BIN=/opt/intel/compilers_and_libraries_20
— 18.2.199/1inux/bin/intel64
TACC_IMPI_INC=/opt/intel/compilers_and_libraries_201,
— 8.2.199/1linux/mpi/intel64/include
TACC_FFTW3_DIR=/opt/apps/intel18/impi18_0/fftw3/3.3.8
USER=USER

SLURM_NNODES=1

IDEV_QDEL=scancel
__LMOD_REF_COUNT_QT_QPA_PLATFORM_PLUGIN_PATH=/opt/ap
— ps/qt5/5.11.2/plugins:1

—
—
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LS_COLORS=rs=0:di=38;5;27:1n=38;5;51:mh=44;38;5;15:p
— 1=40;38;5;11:50=38;5;13:d0=38;5;5:bd=48;5;232;38
;5;11:cd=48;5;232;38;5;3:0r=48;5;232;38;5;9:mi=0
5;48;5;232;38;5;15:5u=48;5;196;38;5;15:5g=48;5;1
1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1,
6:0w=48;5;10;38;5;21:5t=48;5;21;38;5;15:ex=38;5; |
34:x.tar=38;5;9:%.tgz=38;5;9:*.arc=38;5;9:%.arj=
38;5;9:%.taz=38;5;9:%.1ha=38;5;9:%.124=38;5;9:*. |
1zh=38;5;9:*%.1zma=38;5;9:%.t1z=38;5;9:*.txz=38;5
;9:%.t20=38;5;9:%.172=38;5;9:*%.21ip=38;5;9:%.2=38
;5;9:%.7=38;5;9:%.dz=38;5;9:*%.gz=38;5;9:%.1rz=38
;5;9:%.12=38;5;9:%.120=38;5;9:%.x2=38;5;9:%.bz2=)
38;5;9:%.bz=38;5;9:%.thz=38;5;9:*.tbz2=38;5;9:*.
tz=38;5;9:%.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9
1k .war=38;5;9:%.ear=38;5;9:%.sar=38;5;9:*%.rar=38
;5;9:%.al1z=38;5;9:*%.ace=38;5;9:%.200=38;5;9:%.cp
10=38;5;9:*%.72=38;5;9:%.rz=38;5;9:*.cab=38;5;9: %,
.Jpg=38;5;13:*.jpeg=38;5;13:x.gif=38;5;13:x.bmp=)
38;5;13:%.pbm=38;5;13:%.pgm=38;5;13:%.ppm=38;5;1
3:%.tga=38;5;13:%.xbm=38;5;13:%.xpm=38;5;13:%.ti
f=38;5;13:%.tiff=38;5;13:%.png=38;5;13:%.svg=38; |
5;13:%.svgz=38;5;13:%.mng=38;5;13:%.pcx=38;5;13:
*.mov=38;5;13:%.mpg=38;5;13:%.mpeg=38;5;13:%.m2v
=38;5;13:%.mkv=38;5;13:%.webm=38;5;13:%.0gm=38;5
;13:%.mp4=38;5;13:%.m4v=38;5;13:%.mpdv=38;5;13:%
.vob=38;5;13:%.qt=38;5;13:%.nuv=38;5;13:%.wmv=38
;5;13:%.asf=38;5;13:%.rm=38;5;13:x.rmvb=38;5;13:
*.flc=38;5;13:%.avi=38;5;13:%.f1i=38;5;13:%.flv=
38;5;13:%.g1=38;5;13:%.d1=38;5;13:%.xcf=38;5;13:
*.xwd=38;5;13:%.yuv=38;5;13:%.cgm=38;5;13:x.emf=
38;5;13:%.axv=38;5;13:%.anx=38;5;13:%.0gv=38;5;1
3:%.0gx=38;5;13:%.aac=38;5;45:%.au=38;5;45:x.fla
c=38;5;45:%.mid=38;5;45:%x.midi=38;5;45:*.mka=38; |
5;45:%.mp3=38;5;45:%.mpc=38;5;45:%.0gg=38;5;45:%
.ra=38;5;45:x.wav=38;5;45:*%.axa=38;5;45:%.0ga=38 |
;5;45:%.spx=38;5;45:x.xspf=38;5;45:

L



Scalable Simulation of Realistic Volume Fraction Red Blood Cell Flows through Vascular Networks

LD_LIBRARY_PATH=/home1/apps/intel18/impi18_0/p4est/2,
< .0/lib:/homel1/apps/intel18/impi18_0/vtk/8.1.1/1i,
— b:/opt/apps/gcc/6.3.0/1ib64:/opt/apps/gcc/6.3.0/
— lib:/opt/apps/qt5/5.11.2/1ib:/opt/apps/intel18/b,
— o00st/1.68/1ib:/homel/apps/intel18/impi18_0/petsc
— /3.10/skylake-i64/1ib:/opt/apps/libfabric/1.7.0/
— lib:/opt/intel/compilers_and_libraries_2018.2.19,
— 9/linux/mpi/intel64/1lib:/opt/intel/debugger_2018
/libipt/intel64/1ib:/opt/intel/debugger_2018/iga,
/1lib:/opt/intel/compilers_and_libraries_2018.2.1
99/1inux/daal/../tbb/lib/intel64_lin/gcc4.4:/opt
/intel/compilers_and_libraries_2018.2.199/1inux/
daal/lib/intel64_lin:/opt/intel/compilers_and_li
braries_2018.2.199/1linux/tbb/1lib/intel64/gcc4.7:
/opt/intel/compilers_and_libraries_2018.2.199/11i,
nux/mkl/1ib/intel64_lin:/opt/intel/compilers_and
libraries_2018.2.199/1inux/compiler/lib/intel64,
_lin:/opt/intel/compilers_and_libraries_2018.2.1,
99/1inux/ipp/lib/intel64:/opt/intel/compilers_an
d_libraries_2018.2.199/1inux/compiler/lib/intel6
4:/opt/apps/intel18/impi18_0/fftw3/3.3.8/1ib:/ho
me1/anonymous/USER/installs/cgal/1ib64:/homel/an
onymous/USER/installs/gmp/lib:/home1/anonymous/U
SER/installs/mpfr/lib:/home1/anonymous/USER/proj
— ects/boundary/contact3d/lib
TACC_QT5_DIR=/opt/apps/qt5/5.11.2
PSTLROOT=/opt/intel/compilers_and_libraries_2018.2.1
— 99/1linux/pstl
TACC_PETSC_DIR=/home1/apps/intel18/impi18_0/petsc/3.
- 10/
__TRACKER__=1
XALT_DATE_TIME=2019_05_20_14_47_32_9791
TACC_NODE_TYPE=knl
SLURM_TACC_NODES=1
SLURM_JOBID=3614206

_PERSONAL_PATH__=1
CPATH /opt/intel/compilers_and_libraries_2018.2.199/
— linux/pstl/include:/opt/intel/compilers_and 11er
— aries_2018.2.199/1inux/daal/include:/opt/intel/c,
— ompilers_and_libraries_2018.2.199/1linux/tbb/incl
— ude:/opt/intel/compilers_and_libraries_2018.2.19,
— 9/1linux/mkl/include:/opt/intel/compilers_and_lib
— raries_2018.2.199/1inux/ipp/include
IFC_BIN=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/linux/bin/intel64
TACC_MKL_LIB=/opt/intel/compilers_and_libraries_2018,
— .2.199/1inux/mkl/1lib/intel64

rerrorrt
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_ModuleTable@04_=ImxvYWRPcmR1ciJdPTkscHIvcFQ9e30sWyJ |
zdGF ja@R1cHRoI1@9MCxbINNOYXR1cyJdPSThY3RpdmUiLFs |
1dXN1ck5hbWUiXT@icDR1c3QiLHOscGVOc2M9e1siZm4iXTO |
iL29wdC9hcHBzL 21udGVsMTgvaWlwaTE4XzAvbWIOkdWx1Zml |
SZXMvcGVOc2MvMy4xMC1pNjQubHVhIixbImZ1bGXOYW11I10
9InBLdHNjLzMuMTAtaTYQIixbImxvYWRPcmRlciJdPTUscHT
vcFQ9e30sWyJzdGF ja@R1cHRoI109MCxbINNOYXR1cyJdPST |
hY3RpdmUiLFsidXN1ck5hbWUiXT@1icGV@c2MvMy4xMC1pNjQ
iLHOscXQ1PXtbImZuIl09Ii9vcHQVYXBwcy9tb2R1bGVmaWx
1cy9xdDUVNS4xMS4yLmx1YSIsWy JmdWxsTmFtZSJdPSIxdDU |
VNS4xMS4yTixbImxvYWRPcmRlciJdPTcscHIvcFQ9e30s
XALT RUN_UUID=f56fe2e9-d1e7-498b-9289-9ce6973d60f2
OLDSCRATCH=/oldscratch/anonymous/USER
SLURM_COMMAND=sbatch
__LMOD_REF_COUNT__LMFILES_=/opt/apps/modulefiles/int
el/18.0.2.1ua:1;/opt/apps/modulefiles/libfabric/
1.7.0.1ua:1;/opt/apps/intel18/modulefiles/impi/1
8.0.2.1ua:1;/opt/apps/intel18/impi18_0/modulefil
es/fftw3/3.3.8.1ua:1;/opt/apps/intel18/impi18_0/
modulefiles/petsc/3.10-164.1lua:1;/opt/apps/intel
18/modulefiles/boost/1.68.1ua:1;/opt/apps/module
files/qt5/5.11.2.1ua:1;/opt/apps/intel18/impi18_
0/modulefiles/vtk/8.1.1.1ua:1;/opt/apps/intel18/
— impi18_0/modulefiles/p4est/2.0.1lua:1
TACC_BOOST_DIR=/opt/apps/intel18/boost/1.68
PVFMM_INC=/home1/anonymous/USER/installs/pvfmm/inclu
— de/pvfmm

SLURM_NTASKS=1
PETSC_ROOT=/home1/apps/intel18/impi18_0/petsc/3.10/
SLURM_TACC_JOBNAME=1dv63880
LMOD_FAMILY_MPI_VERSION=18.0.2
TACC_PETSC_LIB=/home1/apps/intel18/impi18_0/petsc/3.
— 10/skylake-i64/1ib

ARCHIVER=ranch. tacc.utexas.edu
NLSPATH=/opt/intel/debugger_2018/gdb/intel64/share/1
— ocale/%1_%t/%N:/opt/intel/compilers_and_librarie
— 5.2018.2.199/1linux/mkl/1lib/intel64/locale/%1_%t/,
— %N:/opt/intel/compilers_and_libraries_2018.2.199,
— /linux/compiler/lib/intel64/locale/%1_%t/%N
__LMOD_REF_COUNT_I_MPI_ROOT=/opt/intel/compilers_and
— _libraries_2018.2.199/1linux/mpi:1
LMOD_FAMILY_QT_VERSION=5.11.2
TACC_QT5_BIN=/opt/apps/qt5/5.11.2/bin
PATH=/home1/apps/intel18/impi18_0/p4est/2.0/bin:/hom
— el/apps/intel18/impi18_0/vtk/8.1.1/bin:/opt/apps
/gcc/6.3.0/bin:/opt/apps/qt5/5.11.2/bin:/opt/app
s/intel18/boost/1.68/bin:/home1/apps/intel18/imp
118_0/petsc/3.10/skylake-i64/bin:/opt/apps/libfa,
bric/1.7.0/bin:/opt/apps/intel18/impi/18.0.2/bin
:/opt/intel/compilers_and_libraries_2018.2.199/1
inux/mpi/intel64/bin:/opt/intel/compilers_and_l1i
braries_2018.2.199/1linux/bin/intel64:/usr/1ib64/
qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:/opt/del
1/srvadmin/bin:/opt/apps/intel18/impi18_0/fftw3/
— 3.3.8/bin

MAIL=/var/spool/mail/USER

crrrrrrrt
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TACC_SYSTEM=stampede2
_ModuleTable@01_=X01vZHVsZVRhYmx1Xz17WyJNVHZ1cnNpb24
— 1XT@zLFsiY19yZWJ1aWxkVG1tZSJdPWZhbHNILFsiY19zaG9
—  ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9e30sZmF taWx5PXtbIk1
< QSSJdPSJpbXBpIixbImNvbXBpbGVyI1l09ImludGVsIixbInF
— @I109INFONSIsWyJ2dGsiXT@idnRrIix9LGTUPXtib29zdD1
— 7WyJmbiJdPSIvb3BOL2FwcHMvaW50ZWwx0CItb2R1bGVmaWx |
— 1lcy9ib29zdC8xLjY4Lmx1YSIsWyJImdWxsTmFtZSJdPSJib29
— zdC8xLjY4IixbImxvYWRPcmR1ciJdPTYscHIvcFQ9e30sWyJ
— zdGFja@R1cHRoI1@9MCxbINNOYXR1cyJdPSIThY3RpdmUilLFs
—  1dXN1ck5hbWUiXT@iYm9vc3QiLHOsZmZodzM9e1siZm4iXTO
— 1L29wdC9hcHBzL21udGVsMTgvaWlwaTE4XzAvbWIkdWx1
SLURM_TASKS_PER_NODE=1
ICC_BIN=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/linux/bin/intel64
__LMOD_REF_COUNT_NLSPATH=/opt/intel/debugger_2018/gd
— b/intel64/share/locale/%1_%t/%N:1;/opt/intel/com,
— pilers_and_libraries_2018.2.199/1inux/mkl/1ib/in
— tel64/locale/%1_%t/%N:1;/opt/intel/compilers_and,
— _libraries_2018.2.199/1linux/compiler/lib/intel64
— /locale/%1_%t/%N:1
I_MPI_OFI_LIBRARY=/opt/apps/libfabric/1.7.0/1ib/1libf
— abric.so

STOCKYARD=/work/anonymous/USER

RUNNING_IDEV=1
SLURM_WORKING_CLUSTER=stampede2:206.76.192.2:6820:84
— 48
GEOGRAM_DIR=/home1/anonymous/USER/projects/boundary/
— mobo-temp/geogram_1.6.3

_=/bin/env

WORK=/work/anonymous/USER/stampede?2
TACCINFO=/usr/local/etc/taccinfo

SLURM_JOB_ID=3614206
TACC_VTK_LIB=/home1/apps/intel18/impi18_0/vtk/8.1.1/,
— lib

OLDWORK=/work/anonymous/USER
TBBROOT=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/1linux/tbb
TACC_LIBFABRIC_LIB=/opt/apps/libfabric/1.7.0/1ib
PWD=/home1/anonymous/USER

INPUTRC=/etc/inputrc

SLURM_JOB_USER=USER

SLURM_QUEUE=development

SLURM_TACC_NCORES_SET=1
_LMFILES_=/opt/apps/modulefiles/intel/18.0.2.1lua:/op,
— t/apps/modulefiles/libfabric/1.7.0.1lua:/opt/apps
— /intel18/modulefiles/impi/18.0@.2.1ua:/opt/apps/i
— ntel18/impi18_0/modulefiles/fftw3/3.3.8.1lua:/opt,
— /apps/intel18/impi18_0/modulefiles/petsc/3.10-i6
— 4.lua:/opt/apps/intel18/modulefiles/boost/1.68.1
— ua:/opt/apps/modulefiles/qt5/5.11.2.1lua:/opt/app
«— s/intel18/impi18_0/modulefiles/vtk/8.1.1.1lua:/op,
— t/apps/intel18/impi18_0/modulefiles/p4est/2.0.1lua
TACC_P4EST_DIR=/home1/apps/intel18/impi18_0/p4est/2.0
LANG=en_US.UTF-8

Lu, et al.

__LMOD_REF_COUNT_PYTHONPATH=/home1/apps/intel18/impi
— 18_0/vtk/8.1.1/1ib/site-packages/mpi4py:1;/homel
— /apps/intel18/impi18_0/vtk/8.1.1/1ib/python2.7/s
— 1ite-packages/vtk:1

HEDGEHOG_CC=mpicc

VTK_INC_DIR=/include/vtk-8.1/
MODULEPATH=/opt/apps/qt5.11.2/modulefiles:/opt/apps/
— 1intel18/impi18_0/modulefiles:/opt/apps/intel18/m
— odulefiles:/opt/apps/xsede/modulefiles:/opt/apps
— /modulefiles:/opt/modulefiles

_ModuleTable_Sz_=6

SLURM_JOB_UID=846024
LOADEDMODULES=intel/18.0.2:1ibfabric/1.7.0:impi/18.0
— .2:fftw3/3.3.8:petsc/3.10-164:boost/1.68:qt5/5.1
— 1.2:vtk/8.1.1:pdest/2.0

SLURM_NODEID=0

idev_has_user_PERL5LIB=no

__BASHRC_SOURCED__=1
TACC_VTK_DIR=/homel/apps/intel18/impi18_0/vtk/8.1.1
SLURM_SUBMIT_DIR=/home1/anonymous/USER
TACC_VEC_FLAGS=-xCORE-AVX2 -axCORE-AVX512,MIC-AVX512
I_MPI_F90=ifort
LMOD_CMD=/opt/apps/1mod/1mod/1libexec/1mod
SLURM_TASK_PID=239883

SLURM_NPROCS=1

I_MPI_CC=icc

_ModuleTable@@5_=WyJzdGF jadR1cHRoI109MCxbINNOYXR1cyJ |
dPSJhY3RpdmUiLFsidXN1ck5hbWUiXT@icXQ1Iix9LHZ@az1
7WyJmbiJdPSIvb3BOL2FwcHMvaW50ZWwxOCIpbXBpMThfMC9 |
tb2R1bGVmaWx1cy92dGsvOC4xL JEubHVhIixbImZ1bGxOYW1
11109InZ0ay84L JEUMSIsWyJsb2FkT3JkZXIiXT04LHByb3B
UPXt9LFsic3RhY2tEZXBOaCJdPTAsWyJzdGFOAXMiXTOiYWN |
0aXZ1IixbInVzZXJOYW11I109InZ@ayIsfSx9LGIwYXRoQT1
7119vcHQVYXBwcy9xdDUUMTEUMi9tb2R1bGVmaWx1cyIsIi9
vcHQVYXBwcy9pbnR1bDE4L 21 tcGkxOF 8wL21vZHVSZWZpbGV |
zIiwil29wdC9hcHBzL21udGVsMTgvbWOkdWx1ZmlsZXMiLCI
< Vvb3BOL2FwcHMveHN1ZGUvbW9kdWx1ZmlsZXMiLCIvb3B@
MOBO_DIR=/home1/anonymous/USER/projects/boundary/mob
— o-temp

SLURM_CPUS_ON_NODE=272
DAALROOT=/opt/intel/compilers_and_libraries_2018.2.1,
— 99/1inux/daal
TACC_P4EST_LIB=/home1/apps/intel18/impi18_0/pdest/2.
— 0/lib
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SLURM_PROCID=0

ENVIRONMENT=BATCH
TACC_MKL_INC=/opt/intel/compilers_and_libraries_2018
— .2.199/1inux/mkl/include
SLURM_JOB_NODELIST=c455-061
HOME=/home1/anonymous/USER

SHLVL=4

FI_PROVIDER=psm2

TACC_DOMAIN=stampede2

SLURM_LOCALID=0

__XALT_INITIAL_STATE__=LD_PRELOAD

L
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LANGUAGE=en_US.UTF-8
__LMOD_REF_COUNT_PATH=/home1/apps/intel18/impi18_0/p
— 4est/2.0/bin:1;/homel/apps/intel18/impi18_0/vtk/
— 8.1.1/bin:1;/opt/apps/gcc/6.3.0/bin:2;/opt/apps/
— qt5/5.11.2/bin:1;/opt/apps/intel18/boost/1.68/bi
— n:1;/homel/apps/intel18/impi18_0/petsc/3.10/skyl
— ake-i64/bin:1;/opt/apps/libfabric/1.7.0/bin:1;/0,
— pt/apps/intel18/impi/18.0.2/bin:1;/opt/intel/com,
— pilers_and_libraries_2018.2.199/1inux/mpi/intel6
4/bin:1;/opt/intel/compilers_and_libraries_2018.
2.199/1linux/bin/intel64:1;/usr/1ib64/qt-3.3/bin:
— 1;/usr/local/bin:1;/bin:1;/usr/bin:1;/opt/dell/s
— rvadmin/bin:1;/opt/apps/intel18/impi18_0/fftw3/3,
— .3.8/bin:1

TACC_FAMILY_COMPILER=intel
TACC_INTEL_LIB=/opt/intel/compilers_and_libraries_20,
— 18.2.199/1linux/compiler/lib/intel64
I_MPI_CXX=icpc
TACC_PETSC_INC=/home1/apps/intel18/impi18_0/petsc/3.
— 10/skylake-i64/include

TACC_FAMILY_VTK=vtk
__LMOD_REF_COUNT_CPATH=/opt/intel/compilers_and_libr
— aries_2018.2.199/1linux/pstl/include:1;/opt/intel
/compilers_and_libraries_2018.2.199/1inux/daal/i
nclude:1;/opt/intel/compilers_and_libraries_2018
— .2.199/1inux/tbb/include:1;/opt/intel/compilers_,
— and_libraries_2018.2.199/1linux/mkl/include:1;/op,
— t/intel/compilers_and_libraries_2018.2.199/1linux
— /ipp/include:1
TACC_BOOST_LIB=/opt/apps/intel18/boost/1.68/1ib
TACC_P4EST_INC=/home1/apps/intel18/impi18_0/pdest/2.
— @/include

_ModuleTable@02_=ZmlsZXMvZmZ@dzMvMy4zL jgubHVhIixbImZ
— 1bGx0YW11I109ImZmdHczLzMuMy44IixbImxvYWRPcmR1ciJ
— dPTQscHJIvcFQ9e30sWyJzdGF ja@R1cHRoI109IMCxbINNOYXR |
— 1cyJdPSIhY3RpdmUiLFsidXN1ck5hbWUiXT@iZmZ@dzMiLH@
— saWlwaT17WyJmbiJdPSIvb3BOL2FwcHMvaW50ZWwx0C9tb2R
< 1bGVmaWx1cy9pbXBpLzE4L jAUMi5sdWEiLFsiZnVsbEShbWU |
— 1XT@iaW1waS8x0C4wL jIiLFsibGOhZE9yZGVyI1@9Myxwem9
—  WVD17fSxbInNOYWNrRGVwdGgiXTOwLFsic3RhdHVZI1@9ImF
< jdG12ZSIsWyJ1c2VyTmFtZSJdPSIpbXBpIlix9LGludGVsPXt
— bImZuIl@9Ii9vcHQvVYXBwcy9tb2R1bGYmaWxlcy9pbnR1bC8
—  XOC4wLjIubHVhIixbImZ1bGxOYW11I109ImludGVsLzE4
SLURM_CLUSTER_NAME=stampede2
SLURM_JOB_CPUS_PER_NODE=272

SLURM_JOB_GID=814474
IFC_LIB=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/linux/compiler/lib/intel64

SLURM_GTIDS=0

SLURM_SUBMIT_HOST=login4.stampede2. tacc.utexas.edu
__LMOD_REF_COUNT_INCLUDE=/home1/apps/intel18/impil8_,
— @/vtk/8.1.1/include:1;/opt/apps/gcc/6.3.0/includ
- e:l
BLENDSURF_DIR=/home1/anonymous/USER/projects/boundar
— y/mobo-temp/blendsurf3
BASH_ENV=/etc/tacc/tacc_functions

—
—

idev_ip=c455-061

SLURM_JOB_PARTITION=development

I_MPI_FC=ifort
TACC_VTK_INC=/home1/apps/intel18/impi18_0/vtk/8.1.1/
— include
PVFMM_LIB=/home1/anonymous/USER/installs/pvfmm/1lib/p
— vfmm

LOGNAME=USER
ICC_LIB=/opt/intel/compilers_and_libraries_2018.2.19,
— 9/linux/compiler/lib/intel64

TACC_FAMILY_MPI=impi

LMOD_FAMILY_VTK=vtk
PYTHONPATH=/home1/apps/intel18/impi18_0/vtk/8.1.1/11
— b/site-packages/mpi4py:/homel/apps/intel18/impil
— 8_0/vtk/8.1.1/1ib/python2.7/site-packages/vtk
CVS_RSH=ssh

QTLIB=/usr/lib64/qt-3.3/1lib
LMOD_SETTARG_TITLE_BAR=yes
BOOST_ROOT=/opt/apps/intel18/boost/1.68
SSH_CONNECTION=206.76.192.54 47394 206.76.206.1 22
XDG_DATA_DIRS=/home1/anonymous/USER/.local/share/fla
— tpak/exports/share:/var/lib/flatpak/exports/shar
— e:/usr/local/share:/usr/share

LC_CTYPE=UTF-8

SLURM_JOB_ACCOUNT=TG-DPP130002

HEDGEHOG_CXX=mpicxx

MODULESHOME=/opt/apps/1mod/1mod

SLURM_JOB_NUM_NODES=1
__LMOD_REF_COUNT_LIBRARY_PATH=/opt/intel/compilers_a
nd_libraries_2018.2.199/1inux/daal/../tbb/1lib/in
tel64_lin/gcc4.4:1;/opt/intel/compilers_and_libr
aries_2018.2.199/1inux/daal/lib/intel64_lin:1;/0
pt/intel/compilers_and_libraries_2018.2.199/1inu
x/tbb/1lib/intel64/gcc4.7:1;/opt/intel/compilers_
and_libraries_2018.2.199/1inux/mkl/1ib/intel64_1
in:1;/opt/intel/compilers_and_libraries_2018.2.1,
99/1inux/compiler/lib/intel64_1in:1;/opt/intel/c)
ompilers_and_libraries_2018.2.199/1inux/ipp/lib/
— intel64:1
MPI_HOME=/opt/intel/compilers_and_libraries_2018.2.1
— 99/1inux/mpi

LESSOPEN=| | /usr/bin/lesspipe.sh %s
LMOD_SETTARG_FULL_SUPPORT=full

OMP_NUM_THREADS=48
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__LMOD_REF_COUNT_LD_LIBRARY_PATH=/home1/apps/intell8
— /impi18_0/p4est/2.0/1ib:1;/homel/apps/intel18/im
— pil8_0/vtk/8.1.1/1ib:1;/0opt/apps/gcc/6.3.0/1ib64
— :2;/opt/apps/gcc/6.3.0/1ib:2;/0opt/apps/qt5/5.11.
« 2/1ib:1;/opt/apps/intel18/boost/1.68/1ib:1;/home
— 1/apps/intel18/impi18_0/petsc/3.10/skylake-164/1
— 1ib:1;/opt/apps/libfabric/1.7.0/1ib:1;/opt/intel/,
«— compilers_and_libraries_2018.2.199/1linux/mpi/int,
el64/1ib:1;/opt/intel/debugger_2018/1libipt/intel
64/1ib:1;/opt/intel/debugger_2018/iga/lib:1;/opt
/intel/compilers_and_libraries_2018.2.199/1inux/
daal/../tbb/lib/intel64_lin/gcc4.4:1;/opt/intel/
compilers_and_libraries_2018.2.199/1inux/daal/1i
b/intel64_lin:1;/opt/intel/compilers_and_librari
es_2018.2.199/1inux/tbb/1ib/intel64/gcc4.7:1;/0p
t/intel/compilers_and_libraries_2018.2.199/1inux
/mkl/1ib/intel64_lin:1;/opt/intel/compilers_and_,
libraries_2018.2.199/1inux/compiler/lib/intel64_,
lin:2;/opt/intel/compilers_and_libraries_2018.2.
199/1inux/ipp/lib/intel64:1;/opt/intel/compilers
_and_libraries_2018.2.199/1linux/compiler/lib/int
— el64:1;/opt/apps/intel18/impi18_0/fftw3/3.3.8/11i,
- b:1
PKG_CONFIG_PATH=/opt/intel/compilers_and_libraries_2
— 018.2.199/1inux/mkl/bin/pkgconfig:/opt/apps/inte
— 118/impi18_0/fftw3/3.3.8/1lib/pkgconfig
HEDGEHOG_DIR=/home1/anonymous/USER/projects/boundary |
— /mobo-temp
TACC_OVERRIDE_PROJECT=TG-DPP130002
PROMPT_COMMAND=${X_SET_TITLE_BAR:-:}
"$USER@${SHOST }: ${PWD/#$HOME /~}"
__Init_Default_Modules=1
TACC_FFTW3_LIB=/opt/apps/intel18/impi18_0/fftw3/3.3.
— 8/1ib
LMOD_FAMILY_COMPILER=intel
TACC_IMPI_LIB=/opt/intel/compilers_and_libraries_201,
— 8.2.199/1linux/mpi/intel64/1ib
TACC_VTK_BIN=/home1/apps/intel18/impi18_0/vtk/8.1.1/,
— bin
VTK_LOCATION=/home1/apps/intel18/impi18_0/vtk/8.1.1
XDG_RUNTIME_DIR=/run/user/846024
ARCHIVE=/home/anonymous/USER
OLDHOME=/01dhome1/anonymous/USER
IDEV_PWD=/home1/anonymous/USER
__LMOD_REF_COUNT_INTEL_LICENSE_FILE=/homel/anonymous
— /USER/intel/licenses:1;/opt/intel/licenses:1;/o0p,
— t/intel/compilers_and_libraries_2018.2.199/1linux
— /licenses:1
TACC_FAMILY_MPI_VERSION=18.0.2
__LMOD_REF_COUNT_PKG_CONFIG_PATH=/opt/intel/compiler
— s_and_libraries_2018.2.199/1inux/mk1l/bin/pkgconf
— ig:1;/opt/apps/intel18/impi18_0/fftw3/3.3.8/1ib/,
— pkgconfig:1
TACC_QT5_LIB=/opt/apps/qt5/5.11.2/1ib
LMOD_FAMILY_VTK_VERSION=8.1.1

A

)
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PVFMM_DIR=/home1/anonymous/USER/installs/pvfmm/share
— /pvfmm
LMOD_DIR=/opt/apps/1mod/1mod/libexec
__LMOD_REF_COUNT_MANPATH=/opt/apps/libfabric/1.7.0/s
hare/man:1;/opt/intel/compilers_and_libraries_20
18.2.199/1inux/mpi/man:1;/opt/intel/documentatio
n_2018/en/man/common:1;/opt/intel/documentation_
2018/en/debugger/gdb-igfx/man:1;/opt/intel/docum
entation_2018/en/debugger/gdb-ia/man:1;/opt/apps
— /intel18/impi18_0/fftw3/3.3.8/man:1
INCLUDE=/home1/apps/intel18/impi18_0/vtk/8.1.1/inclu,
— de:/opt/apps/gcc/6.3.0/include
_ModuleTable006_=L2FwcHMvbWOkdWx1ZmlsZXMilLCIvb3BOL21
—  VZHVSZWZpbGVzIix9LFsic31zdGVtQmFzZUTQQVRII1Q9Ii9
< vcHQVYXBwcy94c2VkZS9tb2R1bGVmaWx1czovb3BOL2FwcHM |
—  VbWIkdWx1ZmlsZXM6L29wdCItb2R1bGVmaWx1lcyIsfQ==
PETSC_DIR=/homel1/apps/intel18/impi18_0/petsc/3.10/
LMOD_FAMILY_QT=qt5

SCRATCH=/scratch/anonymous/USER
SLURM_TACC_NNODES_SET=1

SLURM_TACC_CORES=1
TACC_MKL_DIR=/opt/intel/compilers_and_libraries_2018
<  .2.199/1inux/mkl

FI_PSM2_LAZY_CONN=1

LMOD_FAMILY_MPI=impi
TACC_MPI_GETMODE=impi_hydra
I_MPI_ROOT=/opt/intel/compilers_and_libraries_2018.2,
— .199/1inux/mpi
TACC_QT5_INC=/opt/apps/qt5/5.11.2/include
MACHINE_NAME=stampede

BASH_FUNC_sbatch()=() { echo -e "\nNOTIFICATION:

— sbatch not available on compute nodes. Use a login
— node.\n"

3

BASH_FUNC_module()=() { if [ -z

"${LMOD_SH_DBG_ON+x3}" 1; then

case "$-" in

*V*X*)

__lmod_sh_dbg="vx"'

rrertre

*V*)

__lmod_sh_dbg="v"

*X*)

__lmod_sh_dbg="x"

esac;

fi;

if [ -n "${__lmod_sh_dbg:-3}" 1; then
set +$__lmod_sh_dbg;

echo "Shell debugging temporarily silenced: export
— LMOD_SH_DBG_ON=1 for Lmod's output";
fi;

eval $($LMOD_CMD bash "$@") && eval

—  $(${LMOD_SETTARG_CMD:-:3} -s sh);
local _lmod_my_status=$?;
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if [ -n "${__lmod_sh_dbg:-3}" 1; then
echo "Shell debugging restarted";
set -$__lmod_sh_dbg;

unset __lmod_sh_dbg;

fi;

return $_lmod_my_status

}
BASH_FUNC_m1()=() {
}
+ lsb_release -a
LSB Version: :core-4.1-amd64:core-4.1-noarch:cxx-
— 4.1-amd64:cxx-4.1-noarch:desktop-4.1-amd64:deskt
— op-4.1-noarch:languages-4.1-amd64:languages-4.1-,
— noarch:printing-4.1-amd64:printing-4.1-noarch
Distributor ID: CentOS

eval $($LMOD_DIR/ml_cmd "$@")

Description: CentOS Linux release 7.6.1810 (Core)
Release: 7.6.1810
Codename: Core

+ uname -a

Linux c455-061.stampede2.tacc.utexas.edu

— 3.10.0-957.5.1.el17.x86_64 #1 SMP Fri Feb 1

— 14:54:57 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

Flags:

—

rreoreorrt

!

—

fpu vme de pse tsc msr pae mce
cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpelgb rdtscp lm constant_tsc arch_perfmon pebs
bts rep_good nopl xtopology nonstop_tsc aperfmperf
eagerfpu pni pclmulqdq dtes64 monitor ds_cpl est
tm2 ssse3 fma cx16 xtpr pdcm sse4_1 sse4_2 x2apic
movbe popcnt tsc_deadline_timer aes xsave avx fl16c
rdrand lahf_lm abm 3dnowprefetch ring3mwait epb
ibrs ibpb fsgsbase tsc_adjust bmil avx2 smep bmi2
erms avx512f rdseed adx avx512pf avx512er avx512cd
xsaveopt dtherm ida arat pln pts spec_ctrl

+ cat /proc/meminfo

+ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 272

On-line CPU(s) list: 0-271
Thread(s) per core: 4

Core(s) per socket: 68

Socket(s): 1

NUMA node(s): 1

Vendor 1ID: Genuinelntel
CPU family: 6

Model: 87

Model name: Intel(R) Xeon Phi(TM) CPU 7250
— @ 1.40GHz

Stepping: 1

CPU MHz: 1494.165

CPU max MHz: 1600.0000

CPU min MHz: 1000.0000
BogoMIPS: 2793.29

L1d cache: 32K

L1i cache: 32K

L2 cache: 1024K

NUMA node@ CPU(s): 0-271

MemTotal: 98698220 kB
MemFree: 88660500 kB
MemAvailable: 88227780 kB
Buffers: 0 kB
Cached: 1177244 kB
SwapCached: 0 kB
Active: 151664 kB
Inactive: 1147140 kB
Active(anon): 122740 kB
Inactive(anon): 1107700 kB
Active(file): 28924 kB
Inactive(file): 39440 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 121724 kB
Mapped: 74876 kB
Shmem: 1108868 kB
Slab: 4957208 kB
SReclaimable: 633376 kB
SUnreclaim: 4323832 kB
KernelStack: 43088 kB
PageTables: 8012 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 90802360 kB
Committed_AS: 1521944 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 1585460 kB
VmallocChunk: 34357935928 kB
HardwareCorrupted: 0 kB
AnonHugePages: 38912 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: Q
HugePages_Rsvd: [}
HugePages_Surp: Q
Hugepagesize: 2048 kB
DirectMap4k: 1181920 kB



DirectMap2M: 53245952 kB
DirectMapiG: 48234496 kB
+ inxi -F -c@

TYPE MOUNTPOINT

./collect_environment.sh: line 14: inxi:
— found
+ 1lsblk -a
NAME MAJ:MIN RM SIZE RO
sda 8:0 0 111.8G 0 disk
sdal 8:1 Q ™ 0 part
sda2 8:2 ] 1G 0 part
sda3 8:3 9 110.8G 0@ part
rootvgd1-1vo1 253:0 0 756G @ lvm
rootvgdl-tmp 253:1 @ 31.8G @ lvm
rootvgdl-var 253:2 0 4G 0 lvm
loopo 7:0 [} 1 loop
loop1 7:1 [} 1 loop
loop2 7:2 [ 1 loop
loop3 7:3 [} 1 loop
loop4 7:4 [} 1 loop
loop5 7:5 [ 1 loop
loop6 7:6 0 1 loop
loop7 7:7 0 1 loop
loop8 7:8 [} 1 loop
loop9 7:9 [} 1 loop
loop10 7:10 0 1 loop
loop11 7:11 [} 1 loop
loop12 7:12 0 1 loop
loop13 7:13 0 1 loop
loop14 7:14 0 1 loop
loop15 7:15 0 1 loop
loop16 7:16 0 1 loop
loop17 7:17 0 1 loop
loop18 7:18 0 1 loop
loop19 7:19 0 1 loop
loop20 7:20 0 1 loop
loop21 7:21 0 1 loop
loop22 7:22 0 1 loop
loop23 7:23 0 1 loop
loop24 7:24 0 1 loop
loop25 7:25 0 1 loop
loop26 7:26 0 1 loop
loop27 7:27 0 1 loop
loop28 7:28 0 1 loop
loop29 7:29 0 1 loop
loop30 7:30 0 1 loop
loop31 7:31 0 1 loop

+ 1lsscsi -s

[4:0:0:0] disk ATA
— /dev/sda 120GB
module list

-z T

case "$-" in
__lmod_sh_dbg=x

'[' -n x ']"'

set +x

+ 4+ + + + o+

INTEL SSDSC2BB12 0140

command not

/boot

/tmp

/var
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Shell debugging temporarily silenced: export
— LMOD_SH_DBG_ON=1 for Lmod's output

Currently Loaded Modules:
1) intel/18.9.2 3) impi/18.0.2  5)
— petsc/3.10-i64 7) qt5/5.11.2 9) pdest/2.0
2) libfabric/1.7.0 4) fftw3/3.3.8 6) boost/1.68
< 8) vtk/8.1.1

Shell debugging restarted

+ unset __lmod_sh_dbg

+ return @

+ nvidia-smi

./collect_environment.sh: line 18: nvidia-smi:

— command not found

+ lshw -short -quiet -sanitize

+ cat

./collect_environment.sh: line 19: lshw: command not
— found

+ lspci

./collect_environment.sh: line 19: lspci: command not
— found
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