Enabling User Driven Big Data Application on Remote Computing Resources

Weijia Xu
Texas Advanced Computing Center
The University of Texas at Austin
Austin, Texas, USA
Xxwj@tacc.utexas.edu

Abstract— Driven by the computing resource requirement,
there are increasing demands of migrating data driven analysis
from local computing resource to powerful remote resources
such as cloud and high performance computing cluster. In
addition to various commercial cloud services, there are also
rich selections of high performance computing centers in
academia providing cyberinfrastructure (CI) offerings.
However, access barriers exist in bring those resources to data
driven research community at large. To help lower those access
barriers and increase the adoption of utilization of remote
resources for data driven analysis, we propose a new service
model for utilizing remote computing resources, which
empower users to deploy and run their big data application as a
web application on remote computing resources. There are
several key design goals of this model including enabling
interactivity, reusability and reproducibility. Compare to the
traditional batch-processing model commonly supported by CI
resource providers, supporting a web application interface
enables interactive analysis capabilities. Users design the
application through a configuration file utilizing a set of pre-
defined task templates that are also extensible by users. The
application generated from the configuration file is self-
contained and can be deployed without alleviated system
privilege. Therefore, ad-hoc analysis routines can be described
and preserved in a format that can be shared and re-used.
Remote resources can also be described and implemented
through configuration files to automatically bridge the
application with remote resources and facilitate migration with
different resources in the future. Consequently, analysis tasks
can be preserved through the configuration file for
reproducibility. Here we detail our proposed application
framework and its preliminary implementations. We
demonstrated usage of this framework with a practical use case
of aggregating and analyzing live tweets.

Keywords-component: high performance computing;
cyberinfrastructure; reconfigurable web service; service

computing; big data

I. INTRODUCTION

One of profound transformations brought by big data in
recent years is the increasing adoption of data driven analytic
methods across different domain fields. Fueled by massive
amounts of complex data produced by businesses, scientific
applications, government agencies and social applications,
data-driven analytics have the potential to help users gain new
insights for decision making, scientific discovery, business
insight, marketing potentials and more [1]. However, a facet
in realizing this promise has been the new techniques and tools

Ruizhu Huang

Texas Advanced Computing Center
The University of Texas at Austin
Austin, Texas, USA

rhuang@tacc.utexas.edu

Yige Wang
Department of Computer Science
The University of Texas at Austin

Austin, Texas, USA
yige.wang@utexas.edu

for conquering extremely large datasets with the latest
advances of computing infrastructures [2] [3] [4]. Despite
rapid advances in hardware and software technologies have
significantly speed up the analysis and lowered the analytic
barriers, big data analysis in practice commonly requires
significant computing resources throughout its lifecycle, from
data aggregation, management to analysis.

With the emerging of data driven analysis and data
science, the usage of high-performance computing resource
and cyberinfrastructure (CI) has spread across almost all fields
in academia. There is an increasing trend to move
computational expensive analytics from standalone
workstations to remote advanced computing resources such as
a commercial cloud or cyberinfrastructure funded by various
agencies and maintained in various high performance
computing centers nationwide [5] [6] [7]. Those centralized
remote resources provide cost effective solutions for
researchers and facilitate new discovery.

While CI providers have continued success with
infrastructure-as-a-service (IaaS) model, there are increasing
demands to offer more service models for diverse use cases.
Along with the demands, new service models, such as data
science as service (DSAS) and machine learning as service
(MLAS), are proposed. Yet, unique characteristics of big data
analysis, such as data centric computing, explorative nature
and interactivity, present challenges with existing remote
resource access, request and allocation models commonly
used in practice. The complexity of infrastructure and current
access models present challenges to big data analysis needs
especially for those who are not used to remote computing
environments [8]. Hence, a new service model of remote
computing resource is needed to serve data driven analysis
with more flexibility and better usability.

Here, we explore a new model for utilizing remote
resources to improve the CI accessibility for wide variety of
use cases and domain fields. The proposed model has the
promise to dynamically meet various analysis needs by
enabling users to set up their own interactive web application
interface, which interoperates with existing resource and
services. The proposed framework follows model-view-
controller design pattern. Common operations are abstracted
as tasks. In addition to data model, each task also has a view
template for web application interface. Multiple tasks can be
composed to an application through a simple configuration
file in JSON format to describe operations required to
accomplish a use case. The framework can then generate a
web user interface based on configuration file to allow user

running the analysis interactively on remote resources. The
framework also includes pre-built support of provisioning
resources, dynamic credential and access control and self-
contained web server that can run without requiring alleviated
system privileges. We demonstrate the proposed framework
through a use case demonstration of aggregating and
analyzing live tweets using multiple programming
environment and tools.

The approach presented here is different from existing
support tools and models of using cloud and high-
performance computing resources with following
contribution highlights:

e Enabling users to compose and personalized web

application on demand.

e Giving users full control on the web application

execution and support interactive usages.

e On-demand user credential creation and management

o Interfacing with existing analysis tools

e Scalable to additional use cases and resources.

The rest of the paper is organized as following. In Section
II, we review existing usage models of existing
cyberinfrastructure and how our proposed approach differs
from those existing approaches in details. Section I1I describes
the design and implementation of proposed framework design
and its key components. A use case of supporting Twitter
analysis using the proposed framework is detailed in Section
IV. We conclude and briefly discuss ongoing works in Section
V.

II. BACKGOUND AND RELATED WORK

A. Cyberinfrastructure Resources Access Models

In academia, CI has been increasingly used in open science

research and enabled break-through discovery in many
domains. CI providers now face challenges to meet growing
demands. We identify three utilization models that are most
common within CI communities for open science.
Job Submission with Secure Shell Connection This mode
requires users connecting to the CI, typically through a
dedicated login node on remote source, using a client
application via Secure Shell Connection (SSH) protocol.
After a user logs onto the CI, the user can start a job through
an editable script, which describes resources requested and
computations to be finished. There are several software tools
for managing job and resource allocation such as SLURM,
OGS etc. [9]. After the job submissions, users can use the
commands to check the job status as determined by the
resource/job manager, such as in queue, running, finished etc.
All interaction between user, CI and their application is
through the command line interface (CLI).

The access model follows infrastructure-as-a-service (IaaS)
mode. The physical and/or virtual resources are allocated to
users upon request. However this access model has limited
interactive analysis support and does not provide graphical
user interface. The CLI limits usability of the CI resources and
distances itself from users in non-computational fields.
Furthermore, analysis can often be facilitated with
comprehensive user environment and visualization support,
which can be supported in other models.

Remote Software Session In this scenario, a user can connect
to software service running at remote CI resources using client
software installed locally. The user may have to manually start
the software service at remote resource before making the
connection. A common example of this model is through
Virtual Network Computing (VNC) session [10]. In this
session, the user run VNC client locally in order to connect to
the VNC server session running on the remote resource. The
VNC session allows applications with graphical user interface
or visualization to be used remotely. Other examples include
using SQL client to connect to remote database for data
operations, using web browser to access Rstudio session for
interactive analysis [11].

This approach is effectively a software-as-a-service model
(SaaS). Although analysis environment and remote
visualization can be supported, both availability and
accessibility are still limited. Generic support software tools,
such as VNC, also suffer performance issue due to limited
network bandwidth. The interoperability with additional
resources and software tools and share among users are either
not possible or very hard to implement by users.
Community Portal and Gateway A community portal (also
known as, gateway, user portal) is a website that dedicated to
users from a particular domain or sharing common needs on
specific resources. The website has credential management
that allow users to log on. A web portal often contains a set of
features and tools that can simplify the process of using CI for
a set of common use cases for its users. One of the advantages
of the portal access is the greatly improved usability as it can
outfit an otherwise command line interface into a web based
user interface. A successful example of community portal is
the CyVerse project [5].

In this model, a web portal provides a platform through
which remote resources are available to users. Therefore, it is
a form of platform-as-a-service. Through this platform,
applications can be adopted to start within the portal and
increase the accessibility and usability of CI resources for end
users. But community portal incurs large up front costs for
initial software infrastructure development and deployment.
Once in production, significant efforts and resources are
required to maintain its operations, expand its features and
support evolving use cases. Community portals also form a
potential point of failure due to maintenance downtime which
can temporarily block users from using the resources. To
adopt an existing implementation for a new use case
deployment remains a challenging process and requires in-
depth technical expertise.

The proposed application framework is compatible with
three service models described above while offers
complementary features. With TaaS model, users can start a
customized web application easily using allocated resources
with improved usability and interactivity. For CI providers,
the framework provides a viable solution with low
development overhead. For example, CI providers can deploy
an implementation of proposed framework for applications for
specific groups of users. The framework can also be deployed
and made available as part of platform to support dynamically
created web applications.

B. Scientific Workflow Management

The framework related to widely available existing
workflow management system from open source community
and industry [12] [13] [14] [15]. The framework presented
here shares similarity with existing scientific workflow tools
in customizable and reconfigurable by users. However, a key
difference is that the proposed framework is designed to run
as a standalone web application. Therefore, it doesn’t rely on
server-side software deployment at remote resources. Hence
the proposed framework can be easily run on different remote
resources and even with the potential to run in a heterogonous
resources environment. Additionally, a key component of the
proposed framework is the credential management that
enables fine-grained access control and the ability to generate
new credential dynamically. This component enables not only
the defined workflow which can be shared as a file but also the
analytic instance can be accessed by multiple users.

III. ARCHITECHURE DESIGN AND DATA MODEL

A. Architecture Overview

Cl Resource

@)
- Resource
/ Application ‘*Request> Scheduler / Grant Resource
[owner | Job Scheduler
\—,—“ : Allocated Resource
‘Web Server Application
Files
;-userjson - -*=---workflow. son -,
(’) Task Library
S Credential Workflow

Basic Tasks:

A, !

{ Application | N

[\

‘ User ‘ e.g. Data movement,
File

Resources Provisions:

e.g. Resources Status
Process information

Application Support:

e.g. Connect to Spark Ul
Zeppelin Ul
R Studio Session

User Customized

Bublccoptent Content Interface

Figure 1. Overview of framework architecture and access workflow

An overview of the system architecture of proposed
framework and startup workflow is shown in Figure 1. In
Figure 1, application owner refers to person to start the web
application service. Application user refers to individual who
will access and utilize the web application service. To start
the web application, application owner will first request
resources from remote cyberinfrastructure. Once the
application and its configuration files are accessible from the
allocated resource, a web application server is started on the
allocated resource for application users to interact through
web interface.

The web application can be started by resource provider
and available as a service directly to application users (SaaS).
The proposed framework also enables application user to
start the web application. In this case, application user is also
the owner of the application. And the resources providers just
provide their infrastructure as a service for the user.

There are four key components of the proposed web
application framework: credential management, application

management, task libraries and application configuration
files. The application configuration files are central in the
proposed web framework. There are several types of
configuration files for application parameters, user
configuration and workflow configuration. Each of the
configuration files is in JSON format with a list of predefined
fields and values. Many features and content of the web
application can be dynamically and customized through
configuration files. For example, the credential management
component can use configuration file to initialize application
user credentials. The workflow management component can
generate customized workflow composed by tasks, which are

pre-defined in task libraries and specified through
configuration file.
B. Credential Management.
original_user.json .
AdminRele/UserRole| | SlarliGporcaiion
r/_\.
|)
/r_‘/i\—ﬁequesla [| ovect—anheptcationigno “«Import—

«—Response—, Repository

{Exisiing USEI‘LNEW USerT

Sign In Sign Up new_users.je.o?‘

[user |

Generate New
Users

-AdminRole———»

AdminRole/UserRole

Tasks

Figure 2. Overview of credential management component

The credential management provides access control
support to other services available through the web
application. There are two key modules, the user service
module and the authentication module. The user service
module supports common user management functions such
as sign in, sign up and create new user accounts. The
authentication module includes authentication service
interface and secure credential repository management.
Figure-2 shows an access workflow of credential
management component.

Each user object includes several basic fields including
name, email, password and role. Additional authentication
provider specific fields are also available and extensible for
future use cases. Users can be defined using configuration
files in JSON format and available upon start of the web
application. Figure-3 shows an example of a basic user object
and corresponding JSON data.

There are two types roles currently implemented:
AdminRole and UserRole. AdminRole users can have access
to the set of tasks that are not available to regular users. One
of such role-controlled tasks is to generate additional
temporary regular user accounts on-demand. This feature is
especially designed for a situation where application owner
wants to share application with other users on the fly. As

described in the next section, availability of tasks can also be
configured and limited based on user roles.

"users" :

{
"firstName":"Admin",
"lastName":"User",

"password":"1111", User
"email":"admin@utexas.edu",

} "role":"AdminRole" + First Name
’

{ "firstName":"General" + Last Name
"lastName":"User", .
"password":"1111", + Email
"email":"general@utexas.edu",

"role":"UserRole" + Password

}

1 + Role
}

Figure 3. User definition and exemplar user configuration files.

In addition to manage credential locally on the server
side, the authentication module can be configured to use
remote authentication service provider using OAuth2
protocol. Each user object can be linked with additional
service provider accounts or social credentials. Similar to
other OAuth 2.0 supported providers; an access token is
provided to the framework for each credential service.
With the access token, user information such as name and
email are retrieved. The framework saves all dynamic
generated users to a file with limited access permission.
To guarantee no user account is duplicated, the
framework uses user emails as a unique identifier and
checks both service module and file for user emails.

It is important to note that the main purpose of user
credential management is to enable flexible access of the
application while it is running in order to share its
process for online collaboration. Therefore, external
credential is only used during the application and not
saved for future access.

C. Task Libraries

The task libraries include a number of pre-built action
modules that can be customized and re-used to compose
different workflows. Each task module includes a data model,
which holds information and actions of this task module, and
an HTML section template, which serves as basis for
dynamically rendering web content. Application
management component and tasks together are the key
elements of conventional Model-View-Controller design
pattern [16].

Figure-4 shows a hierarchical view of selected task
modules in the proposed framework. Based on their
functions, tasks are grouped into three categories: basic tasks,
resources provision tasks, and application support tasks. The
basic task group includes tasks to support common file
manipulations and display static content from server side to
the client. The resources provision tasks refer to those tasks
help users to interact with the remote computing resources
such as connecting, checking cluster status and previously
submitted job status. The analysis tasks are the set of tasks

that will running an external application, such as a bash
script, MPI job, and launch Zeppelin notebook.

FileUploadTask

===p
! --- Show_Text
) i
L. Show Resulls | |
Task ' ___| Show_Image
+ name: String | CheckJobTask
+ type: String ----i---t: __| CheckHadoop
() s ! | ClusterTask
+run(_}: String ' |
+ configure(_): Int lL"DCheckmusmrTmm; CheckNodesTask
i Run_Script
Lo - Run.MPI |

__1 Run_Zeppelin

Figure 4. Selected task modules in the proposed application framework

Each task contains several common fields and methods
extended from a base class. The configure function parses an
input JSON object to set appearance and values of each task.
The run function will start a set of actions on the server side
when an execution request of this task is received. Each
implemented task is mapped to a specific action and may
require additional parameters or methods. Therefore, the web
interface template for each task can vary from each other. A
task module and its field values can be specified through a
configuration file. Multiple task modules specified in the
configuration file will be used to compose a customized web
application interface.

D. Application Management Component

The workflow management component is responsible to
create a dynamic web application interface based on a given
workflow configuration file in JSON format.

An exemplar application configuration file consisting of
three tasks is shown in Figure-4 (left). The result of this
configuration file is a web interface with three steps each of
which corresponds to one task (Figure-4 right). This
exemplar workflow is designed to help users to run data
parallel tasks. The application requires users to provide two
script files, split.csh and combine.csh. The split.csh will
automatically split the data into multiple parts and start
multiple processes to run in parallel. The combine.csh will
synthesize final results from distributed executions. The
example shown here is a simplified extraction of a workflow
which has been used in several practical applications [17]
[18]. Interested readers are referred to [17] for more details.
The first task creates a widget for users to interactively
upload script files to be executed from local clients to the
remote resource. The second task is to enable user running
distributed copies of script using MPI [19]. The third step will
help users to inspect the combined results.

The configuration file utilizes only three basic
configuration options for each, task name, task types and
description. Each of task type has a corresponding html view

with default appearance, control elements associated with
specific server-side actions.

Simple Workflow Example

Step 1: Preparation

Step 2: Run Analysis

"head": "Simple Workflow Example”,
"description”:"This is a workflow example.”,
"tasks”:
[
"task_name": "Preparation”,
"task_type": "fileUpload”,
"description”:"Upload file for execution”

"task_name":"Run Analysis”,
"task_type": "runMPITask",
"description”:"Run analysis using MPI" Step 3: Postprocessing

"task_name" : "Postprocessing”,
"task_type" : "showResultTask",
"description”:"Display result of analysis."

Figure 5. Example of workflow configuration and result web interface

In addition to three processing steps specified by
configuration file, the application management component
also generates control elements for users to interact with the
application execution flow itself (Figure-5).

Workflow Management

Task 1 [None ¥
Task 2 [None
Task 3 [None 4
Run All Tasks
Cheose File | No file chosen Upload New Workflow

Download Current Warkflow

Figure 6. Workflow management interface.

There are three application interactions -currently
implemented: 1) download the current application as a JSON
file; 2) upload a new application configuration file to change
the application dynamically; 3) specify dependency among
tasks. Using download and upload workflow features, a user
can easily update a pre-defined workflow on demand. The
capability of specifying dependency enables users to hold off
execution of some tasks until some other tasks have finished.
The entire application can run automatically in a given order
without needs of user interaction. Tasks which do not depend
on others or whose dependency has been met could be
executed in parallel if there are enough resources.

E. Preliminary Implementation and Enviroments

We have implemented the proposed framework using
Play Web Framework (version 2.6) [20]. Play framework is
a Scala based modern web development framework. It has
several features that especially suit for on-demand web
application. It supports reactive web programming so that the
content of web front can be dynamically updated along with
the backend analysis progress. It includes a built-in
lightweight web server, Jetty. This can greatly simplify the
web Ul deployment since it does not require any other
additional system software and libraries other than Java. Play
uses a template engine, Twirl, to generate web content. With
template engine system, each web page is a result of a
function call. Therefore, the content of web page is
configurable through configuration files and the web page
template files. Since the web page is in fact a Scala function,
it can directly manipulate in memory data object with
complex structure.

The authentication and authorization services are
implemented using Silhouette authentication library (version
5.0). Silhouette supports several authentication methods,
including OAuthl, OAuth2, OpenID, CAS, Credentials,
Basic Authentication or custom authentication schemes [21].

For development and testing purpose, we used Wrangler
cluster at Texas Advanced Computing Center as remote
computing resource test-bed. Wrangler cluster has been
designed to support the data storage and sharing capacities of
the system to enable data research [22]. It supports
dynamically Hadoop cluster provisioning, common data
analysis, and machine learning software tools and libraries.

IV. USE CASE EXAMPLE

In this section, we demonstrate how the proposed web
framework can be used to support and facilitate solutions for
user driven tweets analysis.

With its fast communication and ease of publication,
Twitter has become a massive and important social
networking medium for people from all walks of life. Twitter
has played a prominent role in influencing almost every aspect
of everyday events, e.g. social-political events, such as the
Occupy Wall Street movement and 2016 US presidential
election; natural disasters, such as the Hurricane Sandy [23]
[24]. Since Twitter’s popularity as an information source has
led to the development of applications and research in various
domains, understanding the basics of collecting, and
analyzing tweets has become an integral component of data
science research and education [25].

Two major challenges in making use of Twitter data are
the knowledge/skills to access real-time tweets and the
resource to store and carry out large-scale computation. First,
among a large number of tools for interacting with Twitter
API to filter real-time tweets (i.e. filtering tweets by keywords
as tweets are passing through the Twitter platform upon
posting) and analyzing collected tweets, several provide easy
access to the Twitter API, such as Tweepy for Python and
rtweet for R. They are quite varied in their capabilities and
require different levels of technical skills and infrastructure.

Second challenge lies in the large volume of twitter data. “big
data” problems are not yet trained to take advantage of the
data-intensive computing environments and relevant
applications.

In practice, the following workflow has been used to
gather live tweets, perform statistical analysis and sentimental
analysis with collected tweets.

1. Login to the remote resources via ssh connection through a
command line interface

2. Move libraries/tools required to the remote resource.

3. Submit a request to start collecting tweets using a Python script.

4. While the Tweets are being accumulated, an R script is used to
perform statistical analysis on metadata of tweets, such as its
origination locations.

5. After a number of tweets have been accumulated, sentimental
analysis are conducted through a zeppelin notebook service.

6. Download the analysis results for inspection

Figure 7. A workflow requirements of collecting and analyzing tweets.

In this workflow, not only each step requires user
intervention, tasks of steps 3 to 5 use different tools,
programming environments and are started at different stages.
On the other hand, the research group includes several
students who are interested to carry out similar analysis but
with different topics of interests. Running parameters of each
step can change overtime depending on the specific research
interest and users. These characteristics make it hard to
generalize the workflow in a simple script and very difficult
to be shared and reused among its potential users.

{
"head":"Tweets Aggregationa and Analysis Workflow",
"deseription”:"test",
"tasks":
[
{
"task_name™:"Upload files"
"task type":"fileUpload"
"description”:"upload prepare_files_and_directory.sh,streaming.py
,credentials.py,run_streaming_keywords.sh
,run_streaming_and_map_seript.sh, process_tweets_log.R files"

"task_name™:"Run preparing script”,

"task_type":“"runScript”,

"description”:"In prepare_files_and_directory.sh, edit
SOURCE_CODE_DIR to your upload directory, edit NEW_DIR to create a
new directory to store required scripts and log folder”

"task_name":"Run streaming script and map script”,

"task_type":"runScript”,

"description”:"In run_streaming_and_map_script.sh, edit NEW_DIR to
point to the new directory created "

"task_name":"Show Result"
"task_type": “"showResult"
"description”:"Input tweets_map.png path and show tweets map"

"task_name™: "Hapdoop Reservation Information™
"task_type":"checkHadoop"
"description”:"check Hapdoop reservation Information”

"task_name":"Launch Zeppelin”,
"task_type":"startZeppelin”,
"description”:"start Zeppelin server and load analysis notebook™

Figure 8. Workflow of tweets collection and analysis as a Json file

The proposed web application framework overcomes
those challenges by enable user defining the above workflow
with a web application interface. After defining the tasks in
the workflow (Figure 8), users can upload the workflow JSON
file to formulate user-defined sequential steps for a real world
problem on the web interface. Users can run all tasks with one
click after specifying the dependency among the tasks (Figure
9).

The web application interface can also be shared among
multiple users directly. The design of proposed framework
allows users to add or remove individual pre-defined task via
editing the workflow configuration file, so different users can
also easily start different workflow interface.

The workflow shown in Figure 7 is now defined as five
tasks in Figure 8. Figure 8§ also includes an extra task to show
cluster status.

The first task is a “fileupload” task through which a user
can upload required files (in this case, five files may be
required: a python script to authenticate with twitter API, a
python script to streaming live tweets, a R scripts for statistical
analysis, a bash scripts to prepare running environment, and a
Zeppelin notebook for natural language processing). The
interface for the step reduces the users’ effort to understand
the file transfer command ‘scp’ and provides a visual tree
structure of remote file system (Figure 10).

‘Workflow Management

Task 1 [_Nore ®
Task 2 [None *
Task 3 [None *
Task 4 [_None ®
Task 5 [None *
Task 6 [Mene =

Run All Tasks

Choose File | Mo file chosen Upload Mew Workflow

Download Current Workflow

Figure 9. Interface of uploading workflow and defining dependency

Both second and third task are “run_script” types of tasks.
One is for preparing the computing environment and the other
is to start streaming live tweets. Although it is possible to
merge two tasks into one, it is presented as two separate tasks
for clarity and flexibility. The “run_script” task allow user to
specify location of a bash script to be run on the remote
resources. The task view also includes displaying content of
the script to user directly. User can edit and change the script
at the last minute on the fly. The changes can be saved in the
remote resource to be reused in the future.

Step 1: Upload files

Choose Upload files File

Cheose File | str

ing.py

Define root directory

Fwork/0307 Githuang T

Choose the directory to upload your file
Choose a directary | [fwarkj03076/rhuang/wr

- Jwork/03076/thuangiwrangler
¢ etc

PBSTool
xalt
play-scala-test-1.0-SNAPSHOT
metastore_db
twitter
premium
Tweets_stream
idols-1.0-SNAPSHOT
spark-warchouse
SimpleMPIStampede
data
logs

Go 10 parent falder || Expand this folder

Upload individual File

Upload

Success: File Uploaded

Figure 10. Interface of file upload from a user computer to data intensive
computing resource

For step 3 using the same run script type of task as step 2,
the streaming script has two arguments: keywords and stream
time,. The keywords separated by comma are used to filter
real-time tweets, e.g. with keywords “@WhiteHouse”,
“@@realdonaldtrump” the application will collect tweets with
“@WhiteHouse or (@realdonaldtrump. The stream time
define how long the real-time tweets collection lasts. The
processing tweet log script will generate a tweets map with
available locations from tweets.

Step 2: Run preparing script

File path

furork|03076 rhuang/wranglerprepare.files_and.directory.sh

Show contents

Show

#1/oinjsh

'SOURCE (CODE_DIR=/work/03076/rhuang/wrangler
NEW_DIR=/work(G3076/rhyang/wrangler/Tweets_stream
LOG DIR=SNEW_DIR/log/

remove old tweats log if exist
m - $L06.0R

make a twitter direatory and a log direstory under it
midir -p SLOG_DIR

#copy python and R script ta the twitter directory
cp $S0URCE_CODE DI

1. streamning. eels. . twests. J0g,R. U0 SIrRAMING. A0 MAR_SCrILSN) SNEW.DIR

Save edits to file and/or Run script in the text area above
save file Run soript

Run successfully

Figure 11. Interface of editing text file and run the script

The backend program to collect real-time tweets is
adopted from an open source python code
(https:/github.com/zbeaverd/twitter_aws). The R script
imports the JSON format of tweets and calculates the center
of the bounding box of the place associated with the tweet.
One of the results of R analysis a geospatial map of volume of
tweets. Step 4 enables user to see the results directly without
the needs to download the map explicitly from the remote
Server.

Step 4: Show Result

File path

fwork /03076 rhuang/wrangler Tweets_stream|tweets_map.png

Show

Figure 12. Interface to show the tweets map of live tweets.

To support further analysis over large volume of data,
users can uses Spark and HDFS for efficient natural language
processing. In this example, the analysis solution is in the form
of a zeppelin notebook. Apache Zeppelin
(https://zeppelin.apache.org/), a web-based notebook that
enables data-driven, interactive data analytics and
collaborative documents with SQL, Scala and more, can be
launched on top of a Hadoop cluster. The step 6 will launch
zeppelin service in the remote resources and load the
corresponding analysis notebook. After successfully launch,
a URL can be copied to web browser for access to Zeppelin
web Ul (Figure 13). Step 5 is an optional task which allows
users to check the status of underline Hadoop cluster for
zeppelin. The analysis notebook utilizing Spark program can
be developed interactively in Zeppelin web UI for various
types of analysis such as Linear Discriminant Analysis (LDA)
and sentiment analysis (Figure 14).

Step 5: Lauch Zeppelin

Reservation name

hadoop+Idols+2476

Start Zeppelin

Submit

hitp://wranglertace utexas.cdu:59336

Figure 13. Interface of launching Apache Zeppelin on Hadoop cluster

Notebook ~ Job

29 Zeppelin
TwitterAnalysis_0512

D E s @& B @ Head ~ |

Sentiment Analsysis

import org.apache.spark.sql.functions._

import com.databricks.spark.corenlp.functions._

import org.apache.spark.sql.types._

//using Standford Core NLP for sentimental analysis

//tweets. show()

val sentiments = tweets.filter("description is not null")

/7 .select('id, explode(ssplit('description)).as(’'sen)).select('id, 'sen,
sentiment('sen).as(’ sentiment))
.coalesce(148).select('id, sentiment(’description).as(’sentiment))

val sentiment_output_path = z.angular("sentiment_output_path").taString
sentiments.write.parquet(sentiment_output_path)

sentiments.createOrReplaceTempView(sentiments”)

val ssdf = spark.sql("SELECT sentiment, count(1) as total FROM sentiments group by
sentiment™)

z.show(ssdf)
//z.show(sentiments.describe(”sentiment™”));

import org.apache.spark.sql.functions._

import com.databricks.spark.corenlp.functions._

import org.apache.spark.sql.types._

sentiments: org.apache.spark.sql.Dataframe = [id: string, sentiment: int]
sentiment_output_path: String - /home/@3@76/rhuang/senti

ssdf: org.apache.spark.sql.DataFrame = [sentiment: int, total: bigint]

B e a2 & |~ | settings~

@Grouped OStacked @izl

812
600
400
200
. N e—
1 2 3 4

0

Figure 14. An example of sentiment analysis on Tweets using Zeppelin

V. SUMMARY AND ONGOING WORK

In this paper, we have presented a web application
framework proposal. A key motivation of this project is to use
the framework to enhance the accessibility of large
cyberinfrastructure to users from diverse domain fields. The
framework enables cyberinfrastructure users to setup their
own web services easily. The framework includes a set of pre-
built task modules to help bridging users with remote
hardware and software resources. By specifying JSON
formatted configuration files, users can transform an ad-hoc
analytic workflow into a dynamically composed multi-user
interactive web application running on remote resources. The
generated web application is self-contained with minimum
system dependency on remote system. The composed
workflow can also be exported, preserved and shared by other
users. Using preliminary implementation, we demonstrate
how the framework can simplify a workflow of aggregating
and analysis tweets.

Our ongoing work includes extending the usability and
extensibility of the framework by implementing additional re-
usable task modules and supports of more remote resources
and analysis tools. A specific aim is to use the framework as a
foundation for training and education activities of cloud
computing. Educators and instructors can easily compose,
stage and publish interactive web session on remote resources.
The framework can be used as a way to set up cloud based
virtual laboratory for training and education on advanced
computing technology.

ACKNOWLEDGMENT

This work has been supported by funding from National
Science Foundation (Award# 1726816). Software testing and

demonstrations have been supported with Wrangler, an NSF
funded cyberinfrastructure resource (Award # 1341711).

REFERENCES

[1] Gordon Bell, "Foreword," in The Fourth Paradigm: Data-
Intensive Scientific Discovery, Tony Hey, Stewart Tansley,
and Kristin Michele Tolle, Eds. Redmond, MA: Microsoft
Research, 2009, pp. Xi-XV.

[2] Tom White, Hadoop: The definitive guide.: O'Reilly Media,
2012.

[3] Weijia Xu, Ruizhu Huang, Hui Zhang, David Walling, and
Yaakoub El-Khamra, "Empowering R with High
Performance Computing Resources for Big Data Analytics
information," in Conquering Big Data with High
Performance Computing, R. Arora, Ed.: Springer., 2016, pp.
191-218.

[4] Matei Zaharia et al., "Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing," in
Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation, 2012, p. 2.

[5] Merchant, Nirav, et al, "The iPlant Collaborative:
Cyberinfrastructure for Enabling Data to Discovery for the
Life Sciences," PLOS Biology, 2016.

[6] Stephen A. Goff et al., "The iPlant collaborative:
cyberinfrastructure for plant biology," Frontiers in plant
science, no. 2, p. 34, 2011.

[7] E.M. Rathje et al., "DesignSafe: new cyberinfrastructure for
natural hazards engineering.," Natural Hazards Review, vol.
18, no. 3, 2017.

[8] Avita Katal and Mohammad Wazid and R. H. Goudar, "Big
data: issues, challenges, tools and good practices,”" in In
Contemporary Computing (IC3), 2013 Sixth International
Conference on., 2013, pp. 404-4009.

[9] A. Yoo, M. Jette, and M. Grondona, "Slurm: Simple Linux
Utility for Resource Management ," Job Scheduling
Strategies for Parallel Processing, Lecture Notes in
Computer Science, vol. 2862, pp. 44-60, 2003.

[10] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R.
Wood, and Andy Hopper, "Virtual network computing,"
IEEE Internet Computing, vol. 2, no. 1, pp. 33-38, 1998.

[11] Rstuido Team. R Studio. [Online]. https://www.rstudio.com/

[12] Diimitrios Georgakopoulos and Mark Hornick and Amit
Sheth, ""An overview of workflow management: From
process modeling to workflow automation infrastructure,"
Distributed and parallel Databases, vol. 3, no. 2, pp. 119-153,
1995.

[13] Suresh Marru et al., "Apache airavata: a framework for
distributed applications and computational workflows," in /n
Proceedings of the 2011 ACM workshop on Gateway
computing environments, 2011, pp. 21-28.

[14] Ilkay Altintas, Chad Berkley, Efrat Jacger, Matthew Jones,
and Bertram Ludascher and Steve Mock, "Kepler: an
extensible system for design and execution of scientific
workflows," in 16th Scientific and Statistical Database
Management 2004 , 2004, pp. 423-424.

[15] Malcolm Atkinson, Sandra Gesing, Johan Montagnat, and Ian
Taylor, "Scientific workflows: Past, present and future,"

Future Generation Computer Systems, no. 75, pp. 216-227,
2017.

[16] Avraham and James T. Rayfield Leff, "Web-application
development using the model/view/controller design pattern,"
in Fifth IEEE International Enterprise Distributed Object
Computing Conference (EDOC'01), 2001, pp. 118-127.

[17] Yu Qian et al., "FlowGate: towards extensible and scalable
web-based flow cytometry data analysis.," in /n Proceedings
of the 2015 XSEDE Conference: Scientific Advancements
Enabled by Enhanced Cyberinfrastructure (XSEDE '15), St.
Louis, MO, USA, 2015, p. 8.

[18] Jesse R. Lasky et al., "Natural variation in abiotic stress
responsive gene expression and local adaptation to climate in
Arabidopsis thaliana.," Molecular biology and evolution, vol.
31, no. 9, pp. 2283-2296, 2014.

[19] William Gropp, Ewing Lusk, Nathan Doss, and Anthony
Skjellum, "A high-performance, portable implementation of
the MPI message passing interface standard," Parallel
computing, vol. 22, no. 6, pp. 789-828, 1996.

[20] Play Development Team. Play Web Framework. [Online].
https://www.playframework.com/

[21] Silhouette. Silhouette authentication library. [Online].
https://www.silhouette.rocks/

[22] Christopher, David Walling, Weijia Xu, Stephen A. Mock,
Niall Gaffney, and Dan Stanzione Jordan, "Wrangler's user
environment: A software framework for management of data-
intensive computing system," in 2015 IEEE International
Conference on Big Data, 2015, pp. 2479-2486.

[23] Shamanth Kumar and Fred Morstatter and Huan Liu, Twitter
data analytics.. New York, USA, 2014.

[24] "Fohringer, J., D. Dransch, H. Kreibich, and K. Schroter.
"Social media as an information source for rapid flood
inundation mapping," Natural Hazards and Earth System
Sciences , vol. 15, no. 12, pp. 2725-2738, 2015.

[25] Oshini Goonetilleke, Timos Sellis, and Xiuzhen Zhang and
Saket Sathe, "Twitter analytics: a big data management
perspective," ACM SIGKDD Explorations Newsletter, vol.
16, no. 1, pp. 11-20, 2014.

