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Abstract: In this paper, we consider a problem of designing discrete-time systems which
are optimal in frequency-weighted least squares sense subject to a maximal output amplitude
constraint. It can be shown for such problems, in general, that the optimality conditions do
not provide an explicit way of generating the optimal output as a real-time implementable
transformation of the input, due to instability of the resulting dynamical equations and
sequential nature in which criterion function is revealed over time. In this paper, we show that,
under some mild assumptions, the optimal system has exponentially fading memory. We then
propose a causal and stable finite-dimensional nonlinear system which, under an L1 dominance
assumption about the equation coefficients, returns high-quality approximations to the optimal
solution. The fading memory of the optimal system justifies the receding horizon assumption
and suggests that such approach can serve as a cheaper alternative to standard MPC-based
algorithms. The result is illustrated on a problem of minimizing peak-to-average-power ratio
of a communication signal, stemming from power-efficient transceiver design in modern digital
communication systems.
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control, linear optimal control, state space realization.

1. INTRODUCTION

Quadratic programs (QP) with box constraints (or in-
equality constraints in general) have over years attracted
attention by researches from various communities. For
instance, many physics and engineering problems can be
formulated as QPs with inequality constraints, e.g. flow
through a porous medium (see Lin and Cryer (1985)),
soil moisture in hydrology (see Mead and Renaut (2010)),
modeling of the ocean circulation (see Oreborn (1986)),
support vector machines (see Osuna et al. (1997)), con-
strained linear quadratic optimal control (see Goodwin
et al. (2005)), etc.

Various methods have been proposed for solving box con-
strained QP in a finite-dimensional setting: active set
methods (see Moré and Toraldo (1989), Kunisch and
Rendl (2003), Hungerländer and Rendl (2015)), gradi-
ent projection and conjugate gradients (see Bertsekas
(1976); Dembo and Tulowitzki (1983)), Newton iteration
(see Li and Swetits (1993)), primal-dual methods (see
Pardalos et al. (1990)), etc. Such methods commonly rely
on computer-aided optimization solvers and require non-
negligible computation power, which makes them unfa-
vorable in applications that have strict power budget.
The infinite-dimensional bound-constraint quadratic pro-
grams are even more computationally demanding. An im-
portant instance is the infinite-horizon linear quadratic
� This work was supported by the National Science Foundation
under award number 1743938.

regulation problem (LQR) with bounded control. This
problem is mostly addressed approximately, where model
predictive control (MPC) has probably been the most
popular method for approximately solving infinite-horizon
constrained LQR. Such MPC schemes rely on replacing
infinite-horizon with a receding (i.e. finite) one, where,
in general, an easier finite-dimensional optimization prob-
lem is resolved at every time instance, see e.g., Sznaier
and Damborg (1987); Chmielewski and Manousiouthakis
(1996); Grieder et al. (2004); Stathopoulos et al. (2017).

Another instance of the infinite-dimensional setup emerges
when one wants to design discrete-time systems which
are optimal in the sense of some frequency-weighted least
squares criterion subject to maximal output amplitude
constraints. In particular, such optimization problems
serve to represent a number of peak-to-average-power
ratio (PAPR) reduction objectives which are of signifi-
cant importance in modern communication systems, see
e.g., Proakis and Salehi (2007); Reine and Zang (2013);
Sochacki (2016). It is known for such optimization prob-
lems that, in general, the optimality conditions do not
provide an explicit way of generating the optimal out-
put as a real-time implementable transformation of the
input. This is due to instability of the resulting dynamical
equations as well as sequential nature in which criterion
function is revealed over time (the quadratic functional to
be minimized is commonly a function of the input signal,
which comes sequentially over time). Therefore, at each
time instance, the knowledge of the whole history of the
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methods (see Moré and Toraldo (1989), Kunisch and
Rendl (2003), Hungerländer and Rendl (2015)), gradi-
ent projection and conjugate gradients (see Bertsekas
(1976); Dembo and Tulowitzki (1983)), Newton iteration
(see Li and Swetits (1993)), primal-dual methods (see
Pardalos et al. (1990)), etc. Such methods commonly rely
on computer-aided optimization solvers and require non-
negligible computation power, which makes them unfa-
vorable in applications that have strict power budget.
The infinite-dimensional bound-constraint quadratic pro-
grams are even more computationally demanding. An im-
portant instance is the infinite-horizon linear quadratic
� This work was supported by the National Science Foundation
under award number 1743938.

regulation problem (LQR) with bounded control. This
problem is mostly addressed approximately, where model
predictive control (MPC) has probably been the most
popular method for approximately solving infinite-horizon
constrained LQR. Such MPC schemes rely on replacing
infinite-horizon with a receding (i.e. finite) one, where,
in general, an easier finite-dimensional optimization prob-
lem is resolved at every time instance, see e.g., Sznaier
and Damborg (1987); Chmielewski and Manousiouthakis
(1996); Grieder et al. (2004); Stathopoulos et al. (2017).

Another instance of the infinite-dimensional setup emerges
when one wants to design discrete-time systems which
are optimal in the sense of some frequency-weighted least
squares criterion subject to maximal output amplitude
constraints. In particular, such optimization problems
serve to represent a number of peak-to-average-power
ratio (PAPR) reduction objectives which are of signifi-
cant importance in modern communication systems, see
e.g., Proakis and Salehi (2007); Reine and Zang (2013);
Sochacki (2016). It is known for such optimization prob-
lems that, in general, the optimality conditions do not
provide an explicit way of generating the optimal out-
put as a real-time implementable transformation of the
input. This is due to instability of the resulting dynamical
equations as well as sequential nature in which criterion
function is revealed over time (the quadratic functional to
be minimized is commonly a function of the input signal,
which comes sequentially over time). Therefore, at each
time instance, the knowledge of the whole history of the

6th IFAC Conference on Nonlinear Model Predictive Control
Madison, WI, USA, August 19-22, 2018

Copyright © 2018 IFAC 168

Real-Time Realization of a Family of
Optimal Infinite-Memory Non-Causal

Systems �

Omer Tanovic ∗ Alexandre Megretski ∗

∗ Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA

(e-mail: otanovic@mit.edu, ameg@mit.edu).

Abstract: In this paper, we consider a problem of designing discrete-time systems which
are optimal in frequency-weighted least squares sense subject to a maximal output amplitude
constraint. It can be shown for such problems, in general, that the optimality conditions do
not provide an explicit way of generating the optimal output as a real-time implementable
transformation of the input, due to instability of the resulting dynamical equations and
sequential nature in which criterion function is revealed over time. In this paper, we show that,
under some mild assumptions, the optimal system has exponentially fading memory. We then
propose a causal and stable finite-dimensional nonlinear system which, under an L1 dominance
assumption about the equation coefficients, returns high-quality approximations to the optimal
solution. The fading memory of the optimal system justifies the receding horizon assumption
and suggests that such approach can serve as a cheaper alternative to standard MPC-based
algorithms. The result is illustrated on a problem of minimizing peak-to-average-power ratio
of a communication signal, stemming from power-efficient transceiver design in modern digital
communication systems.

Keywords: Model approximation, non-causal systems, non-linear systems, model predictive
control, linear optimal control, state space realization.

1. INTRODUCTION

Quadratic programs (QP) with box constraints (or in-
equality constraints in general) have over years attracted
attention by researches from various communities. For
instance, many physics and engineering problems can be
formulated as QPs with inequality constraints, e.g. flow
through a porous medium (see Lin and Cryer (1985)),
soil moisture in hydrology (see Mead and Renaut (2010)),
modeling of the ocean circulation (see Oreborn (1986)),
support vector machines (see Osuna et al. (1997)), con-
strained linear quadratic optimal control (see Goodwin
et al. (2005)), etc.

Various methods have been proposed for solving box con-
strained QP in a finite-dimensional setting: active set
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input signal should be known ahead of time in order to
calculate the current sample of the optimal output signal.
Due to difficulties in obtaining an explicit optimal solu-
tion, receding horizon optimization, i.e. model predictive
control, appears to be a natural way of addressing these
problems. Unfortunately, the high cost associated with
MPC computations at every time step makes it unfavor-
able in power and time-sensitive applications such as those
in signal processing for communication systems.

In this paper, we show that, under some mild assumptions,
the optimal map uniquely defines a discrete-time system
with exponentially fading memory. We then propose a real-
time realizable algorithm which, under an L1 dominance
assumption about the equation coefficients, returns high-
quality approximations to the optimal solution. The al-
gorithm exploits the optimality conditions and is realized
as a causal and stable finite-memory nonlinear discrete-
time system, and is allowed to look ahead at the input
signal over a finite horizon. Fading memory of the optimal
system justifies the finite horizon assumption and suggests
that such approach can serve as a cheaper alternative to
standard MPC-based algorithms, since it does not rely on
resolving an optimization problem at every time instant.
We illustrate this result on a problem of minimizing peak-
to-average-power ratio of a communication signal, which
pertains to power-efficient transceiver design in modern
digital communication systems.

2. NOTATION AND TERMINOLOGY

R,C,Z,N are the usual sets of complex, real, integer, and
positive integer numbers, and T = {z ∈ C : |z| = 1} is the
unit circle in C. For elements f, g of a (real) Hilbert space
H, (f, g)H and |f |H denote the scalar product and the
norm. � is the real vector space of all functions x : Z → C,
interpreted as discrete-time (DT) signals, with x(t) used
for the value of x at t ∈ Z. For x ∈ �, the L1 norm
‖x‖1 ∈ [0,∞], the L2 norm ‖x‖ ∈ [0,∞], and the L-Infinity
norm ‖x‖∞ ∈ [0,∞] are defined by

‖x‖1 =
∑
t

|x(t)|, ‖x‖∞ = sup
t

|x(t)|, |x| =

(∑
t

|x(t)|2
) 1

2

.

�1 and �∞ are the subsets of absolutely summable and
bounded signals from �, respectively, treated as Banach
spaces, with norms ||x||1 and ||x||∞ as defined above. �2

is the subset of finite energy signals from �, treated as a
Hilbert space, with the norm |x| defined above. {ei}∞i=−∞
such that ei(t) = 1 for t = i and ei(t) = 0 otherwise, is the
standard orthonormal basis in the above defined spaces.

L2 is the real Hilbert space of all square integrable func-
tions f : T → C satisfying the real symmetry condition
f(z̄) ≡ f(z) for all z ∈ T, with the norm defined by

|f |2 =
1

2π

∫ π

−π

|f(ejω)|2dω.

The Fourier transform F : �2 → L2, where X = F(x) is
defined by

X(z) =
∑
t∈Z

z−tx(t),

is a norm-preserving bijection between �2 and L2. In the
rest of this paper, for simplicity, we will abuse notation

by writing X(ω), instead of X(ejω), to denote the value
of X = F(x) at z = ejω. For a bounded linear operator
A : �2 → �2, A′ : �2 → �2 denotes adjoint operator of A.

For a positive real number r, let function satr : C → [−r, r]
be defined by

satr(ξ) =

{
ξ, |ξ| < r

rξ/|ξ|, |ξ| ≥ r
.

Similarly, let Satr : �2 → �2 be defined by

y = Satr(x) ⇔ (ei, y) = satr((ei, x)), ∀i ∈ Z.

3. PROBLEM FORMULATION

We aim to optimize and implement efficiently discrete-time
signal processing systems with scalar input v and scalar
output y:

S� �
v y

where the output y = Sv is expected to be optimal, in
the sense of minimizing a certain objective defined in
terms of input v. Let r > 0, and let α : R → C and
β : R → C be trigonometric polynomials mapping ω ∈ R
to α(ω) > 1 and β(ω), respectively. For every discrete-time
signal v ∈ �2, the scalar signal y = Sv ∈ �2 should have
samples |y(t)| ≤ r, and minimize the functional

Jα,β(v, y) =
1

2π

∫ π

−π

Y (ω)′α(ω)Y (ω)dω−

1

π

∫ π

−π

Re{Y (ω)′β(ω)V (ω)}dω (1)

where V = V (ω) and Y = Y (ω) are the Fourier trans-
forms of v and y, respectively. Therefore, we are try-
ing to solve the time-domain-value-constrained frequency-
weighted least squares optimization problem

min
y

Jα,β(v, y), subject to ||y||∞ ≤ r. (2)

Remark: In fact, it is sufficient to assume that α(ω) ≥ ε,
for some ε > 0, since by proper scaling of Jα,β(v, y) we
could arrive at an optimization problem equivalent to (2).

It is clear that (2) is a convex infinite-dimensional
quadratic problem with box constraints, which is feasible
(see the appendix) and has a unique solution due to strict
positivity of α. Let Tα and Tβ be the finite unit sample
response LTI systems with frequency responses α(ω) and
β(ω), respectively. The necessary and sufficient conditions
of optimality of (2) can be written as (the proof is omitted
due to space constraints):

y = Satr(Tβv + y −Tαy). (3)

Moreover, with w = Tβv and H = Tα − I, the above
optimality condition can be written as

y = Satr(w −Hy). (4)

Let H = H(ω) and h = h(t) be the frequency response
and unit sample response of H, respectively, and let T be
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the order of trigonometric polynomial α = α(ω). We have
that H(ω) = α(ω)−1 > 0 for all ω ∈ [0, 2π), and therefore
h(−t) = h(t) for all t ∈ Z. Furthermore, h(t) = 0 for all
|t| > T . The optimal condition (4) can now be written
sample-wise as

y(t) = satr

(
w(t)−

T∑
τ=−T

h(τ)y(t+ τ)

)
. (5)

Due to strict convexity of problem (2), and hence unique-
ness of the optimal solution, equation (5) defines a system
which maps input signal w into output signal y. We denote
this system as S∗ and refer to it as “the optimal system”,
in the rest of this paper. It is clear from (5) that, in
general, the optimal system S∗ is nonlinear and noncausal.
Moreover, the optimality condition (5) is not attractive
as a description of a real-time implementable system S
mapping w to the optimal y. In the following sections,
we show that, with adequate non-linear stability analysis
and careful structuring, the optimal system S∗ can be
approximately realized in the form of a finite memory real-
time signal processing algorithm.

4. MAIN RESULTS

4.1 Fading Memory Property of the Optimal Solution

If one hopes to find a finite memory system which ap-
proximates (in some sense) the optimal system S∗ then
it would be reasonable to assume that S∗ posesses some
type of near-finite memory. In fact, it has been shown
that fading memory is a sufficient condition for any time-
invariant causal operator to be approximated by a nonlin-
ear moving-average operator, see Boyd and Chua (1985).
Since S∗ is noncausal, we first need to define fading mem-
ory for non-causal discrete-time systems. The following
definition of fading memory is an intuitive one: a system
has fading memory if two input signals that are close in
the recent past and future, but not necessarily close in the
remote past and future, yield present outputs which are
close. This is a generalization of a standard definition of
fading memory for causal systems, see e.g. Boyd and Chua
(1985).

For every integer T > 0 let PT : �2 → �2 be defined by

(PTw)(t) =

{
w(t), |t| ≤ T

0, |t| > T
.

Definition 1. A noncausal discrete-time system S has fad-
ing memory on �2 if for all r > 0

lim
T→∞

sup
w1,w2∈�2,

PTw1=PTw2,
||w1−w2||∞≤r

|y1(0)− y2(0)| = 0, (6)

where y1 = Sw1 and y2 = Sw2. Furthermore, if there exist
γ > 0 and ε > 0 such that

|y1(0)− y2(0)| ≤ γ||w1 − w2||∞e−εT , (7)

for any w1, w2 ∈ �2 such that PTw1 = PTw2, we say that
S has exponentially fading memory.

We are now ready to state the theorem which establishes
fading memory property of the optimal system S∗.

Theorem 2. Suppose that H has strictly positive fre-
quency response. Then the optimal system S∗ has expo-
nentially fading memory.

Proof. Omitted due to space constraints.�

4.2 A Real-Time Algorithm for Sequentially Calculating
High-Quality Approximations to Optimal Solution

In this section we propose an algorithm for sequentially
obtaining high-quality approximations to the optimal so-
lution of problem (2). We first define what is meant by
“approximate” systems. Let ε > 0. System T : �2 → �2 is
an ε-approximation to system S : �2 → �2 if

|Sw(t)−Tw(t)| < ε||w||∞, ∀t ∈ Z, ∀w ∈ �2.

In addition to the positivity and finite impulse response
properties, we also assume that H has an “L1 dominance”

property in the sense that
∑T

t=−T |h(t)| < 1.

As before, we assume that the optimal system S∗ maps
signal w ∈ �2 to y ∈ �2, as defined by (5). For a given

integer m > T , let matrices Â ∈ R(m+T )×(m+T ) and
Ĉ ∈ R(m+T ) be defined by (8). In the following, for
simplicity, we use the shorthand notation h(t) = ht. The
following theorem establishes that a certain finite-memory
causal system Ŝ is an ε-approximation to the optimal

Â =




0 1 0 . . . 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 0 1 . . . 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . 1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
hT hT−1 hT−2 . . . h1 h0 . . . hT 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 hT hT−1 . . . h2 h1 . . . hT−1 hT 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . 0 0 0 . . . hT hT−1 hT−2 . . . h0 h1 h2 . . . hT 0
0 0 0 . . . 0 0 . . . 0 0 0 . . . 0 hT hT−1 . . . h1 h0 h1 . . . hT−1 hT

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 hT hT−1 . . . h1 h0

0 0 0 . . . 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 hT . . . h2 h1




, Ĉ =




0
0
...
0
1
0
...
0
0
...
0
0




(8)
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the order of trigonometric polynomial α = α(ω). We have
that H(ω) = α(ω)−1 > 0 for all ω ∈ [0, 2π), and therefore
h(−t) = h(t) for all t ∈ Z. Furthermore, h(t) = 0 for all
|t| > T . The optimal condition (4) can now be written
sample-wise as

y(t) = satr

(
w(t)−

T∑
τ=−T

h(τ)y(t+ τ)

)
. (5)

Due to strict convexity of problem (2), and hence unique-
ness of the optimal solution, equation (5) defines a system
which maps input signal w into output signal y. We denote
this system as S∗ and refer to it as “the optimal system”,
in the rest of this paper. It is clear from (5) that, in
general, the optimal system S∗ is nonlinear and noncausal.
Moreover, the optimality condition (5) is not attractive
as a description of a real-time implementable system S
mapping w to the optimal y. In the following sections,
we show that, with adequate non-linear stability analysis
and careful structuring, the optimal system S∗ can be
approximately realized in the form of a finite memory real-
time signal processing algorithm.

4. MAIN RESULTS

4.1 Fading Memory Property of the Optimal Solution

If one hopes to find a finite memory system which ap-
proximates (in some sense) the optimal system S∗ then
it would be reasonable to assume that S∗ posesses some
type of near-finite memory. In fact, it has been shown
that fading memory is a sufficient condition for any time-
invariant causal operator to be approximated by a nonlin-
ear moving-average operator, see Boyd and Chua (1985).
Since S∗ is noncausal, we first need to define fading mem-
ory for non-causal discrete-time systems. The following
definition of fading memory is an intuitive one: a system
has fading memory if two input signals that are close in
the recent past and future, but not necessarily close in the
remote past and future, yield present outputs which are
close. This is a generalization of a standard definition of
fading memory for causal systems, see e.g. Boyd and Chua
(1985).

For every integer T > 0 let PT : �2 → �2 be defined by

(PTw)(t) =

{
w(t), |t| ≤ T

0, |t| > T
.

Definition 1. A noncausal discrete-time system S has fad-
ing memory on �2 if for all r > 0

lim
T→∞

sup
w1,w2∈�2,

PTw1=PTw2,
||w1−w2||∞≤r

|y1(0)− y2(0)| = 0, (6)

where y1 = Sw1 and y2 = Sw2. Furthermore, if there exist
γ > 0 and ε > 0 such that

|y1(0)− y2(0)| ≤ γ||w1 − w2||∞e−εT , (7)

for any w1, w2 ∈ �2 such that PTw1 = PTw2, we say that
S has exponentially fading memory.

We are now ready to state the theorem which establishes
fading memory property of the optimal system S∗.

Theorem 2. Suppose that H has strictly positive fre-
quency response. Then the optimal system S∗ has expo-
nentially fading memory.

Proof. Omitted due to space constraints.�

4.2 A Real-Time Algorithm for Sequentially Calculating
High-Quality Approximations to Optimal Solution

In this section we propose an algorithm for sequentially
obtaining high-quality approximations to the optimal so-
lution of problem (2). We first define what is meant by
“approximate” systems. Let ε > 0. System T : �2 → �2 is
an ε-approximation to system S : �2 → �2 if

|Sw(t)−Tw(t)| < ε||w||∞, ∀t ∈ Z, ∀w ∈ �2.

In addition to the positivity and finite impulse response
properties, we also assume that H has an “L1 dominance”

property in the sense that
∑T

t=−T |h(t)| < 1.

As before, we assume that the optimal system S∗ maps
signal w ∈ �2 to y ∈ �2, as defined by (5). For a given

integer m > T , let matrices Â ∈ R(m+T )×(m+T ) and
Ĉ ∈ R(m+T ) be defined by (8). In the following, for
simplicity, we use the shorthand notation h(t) = ht. The
following theorem establishes that a certain finite-memory
causal system Ŝ is an ε-approximation to the optimal

Â =



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0 0 0 . . . 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 hT . . . h2 h1
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

, Ĉ =




0
0
...
0
1
0
...
0
0
...
0
0




(8)
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system S∗, where ε = ρm for some ρ ∈ (0, 1) and positive
integer m > T .

Theorem 3. Let the system Ŝ mapping w to ỹ be defined
by the following state space model

x(t+ 1) = satr(Âx(t) + ŵ(t)), x(t0) = 0,

ŷ(t) = Ĉx(t),

where matrices Â and Ĉ are as defined in (8), m ∈ Z,
m > T , x(t), ŵ(t) ∈ CT+m, and

ŵ(t) = [0 . . . 0 w(t+ 1) w(t+ 2) . . . w(t+m+ 1)]
T

for all t ≥ t0. Let P : R → R be defined as

P (x) =

(
1−

T∑
τ=1

|hτ |

)
xT+1 −

T∑
τ=0

|hτ |xT−τ .

Then

|y(t)− ŷ(t)| ≤ ||w||∞ρm, ∀t ≥ t0 +m,

where ρ ∈ (0, 1) such that P (ρ) = 0 and P (x) > 0 for all
x ∈ (ρ, 1).

Proof. Omitted due to space constraints.�

5. AN APPLICATION OF THEOREM 3.

5.1 Optimal peak-to-average-power ratio reduction

An important application which involves an optimiza-
tion setup as defined in (2) is peak-to-average-power ra-
tio (PAPR) reduction in digital communication systems.
Power efficiency (PE) is one of the most important char-
acteristics of a transmitter circuit, and in order to achieve
high PE, the power amplifier (PA), that is used to amplify
communication signals, must be operated close to its sat-
uration level. Modern communication signals (e.g., LTE)
have high PAPR and suffer from significant distortion
when passed through a nonlinear PA operating close to
saturation. This causes in-band and out of band spectral
content which degrades spectral efficiency and error vector
magnitude (EVM) specifications of communication system
. The conventional solution to this problem is to back-off
the operating point of the PA, which drastically decreases
power efficiency of a transmitter. For example, high value
of PAPR represents the main drawback of currently used
signal standards (OFDM/LTE) in forthcoming wide-band
communication systems.

A very simple and popular method for PAPR reduction
is to intentionally clip and filter baseband signal before
amplification (Ochiai and Imai (2002), Wang and Luo
(2011), Zhu et al. (2013), see Fig. 1. Since large peaks
occur with very low probability, clipping seems to be
an effective method for PAPR reduction. The out-of-
band spectral regrowth caused by clipping is mitigated
by post filtering, which in turn might generate some
peak regrowth. These clipping and filtering operations
are denoted as the operation of system S in Fig. 1. The

� clipping
+

filtering
� DAC

+
Modulation

�
�
�

�
�
�PA

�
��

�

antenna

�
w[n] y[n] s(t)

S

Fig. 1. Simplified block diagram of a typical transmitter
circuit. A digital pulse shaping filter S is series inter-
connection of an upsampler and a shaping filter F.

problem of designing optimal S can be posed as an infinite
dimensional convex quadratic optimization problem with
box constraints as defined in (2). Here a tradeoff has to
be made between minimizing the output peak amplitude,
satisfying the spectral mask condition, and satisfying the
EVM specification. Namely, the spectral mask condition
pertains to keeping the spectral content of y = Sw
mostly in a desired baseband frequency range. The EVM
condition pertains to keeping ||y−w|| small, where || · || is
an appropriate metric/norm.

Now, a design of an optimal PAPR reduction system can
be posed as

min
y

J(w, y), subject to ||y||∞ ≤ r. (9)

where 0 < r < ||w||∞, and

J(w, y) =
1

2π

∫ π

−π

L(ω)|Y (ω)|2dω+

1

2π

∫ π

−π

γ|Y (ω)−W (ω)|2dω (10)

with L(ω) > 0, for all ω ∈ R and γ > 0. Clearly,
the frequency weighting function L(ω) penalizes high fre-
quency content of y and therefore the first term in (10)
enforces spectral mask condition. The second summand
in (10) serves to enforce closeness of optimal y to the
true baseband signal w, and therefore parameter γ con-
trols the tradeoff between spectral mask and EVM con-
ditions. It can be seen that (9) is equivalent to (2), with
α(ω) = L(ω) + γ and β(ω) = γ, for all ω ∈ R. Therefore,
the optimal system S defined by the solution of (9) has
exponentially fading memory and can be approximated
by a finite-memory causal system using the proposed algo-
rithm from Theorem 3. provided that the “L1 dominance”
condition is satisfied.

5.2 Numerical Experiment

In this subsection, we illustrate the use of the algo-
rithm proposed in Theorem 3 in the design of an op-
timal PAPR reduction system, as described above. The
frequency weighting function L = L(ω) is defined as a fre-
quency response of a LTI system with unit sample response
l = l(t), such that l(t) = l(−t) for all t ∈ Z and l(t) = 0
for |t| > 27. The frequency response of this filter, for
ω ∈ (0, π), is depicted in Fig. 2. The trade-off parameter γ
is set to γ = 1.5. Input (baseband) signal w is obtained by
upsampling and spectrally shaping a uniformly distributed
64QAM sequence (Proakis and Salehi (2007)). Signal w
is spectrally shaped so that most of its spectral content
is distributed in the frequency range (−π/2, π, 2) (on in-
terval (−π, π), and 2π-periodically extended otherwise).
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Fig. 2. Frequency weighting function L(ω) (i.e., frequency
response of l = l(t).

Fig. 3. Comparison of output signals of S obtained by the
algorithm from Theorem 3 (solid) and a fixed point
iteration in (4) (dash-dot).

Supremum bound on y as chosen as r = 0.75||w||∞. Unit
sample response l(t) and parameter γ were chosen such
that the unit sample response h = h(t) of H = I − Tα

satisfies
∑T

t=−T |h(t)| = 0.9 < 1, where T = 27. It follows

from Theorem 3. that ρ = 0.96. In order for system Ŝ to
be ε-approximation with ε = 10−3, the latency parameter
m is chosen as m =

⌈
logρ(ε)

⌉
= 170. The output signal

ŷ, which is calculated applying the proposed algorithm
from Theorem 3, is compared to a suboptimal solution
y∗ to problem (2) obtained by running the fixed point
iteration (4) on the whole length of input signal w. Signals
ŷ and y∗ are compared in Fig. 3. As can be seen, the upper
bound on error ε = ρm, as stated by Theorem 3, is very
conservative and much better error can be achieved (infact,
|y∗(t)− ŷ(t)| < 10−6 for almost all t used in simulation) .

6. CONCLUSION

In this paper, we consider a problem of designing discrete-
time systems which are optimal in frequency-weighted
least squares sense subject to a maximal output ampli-
tude constraint. We have shown that the optimal system,
correspoding to the optimal solution of such problem, has
exponentially fading memory. An algorithm is proposed,
based on time and value iterations of a carefully chosen
causal and stable finite memory system, which, under some
L1 dominance assumption, returns high quality approxi-
mations to the optimal solution. The result is illustrated

on a problem of minimizing peak-to-average-power ratio
of a communication signal, stemming from power-efficient
transceiver design in modern digital communication sys-
tems. A problem of subsequent interest is the extension
of the proposed algorithm to more general settings were
contractivity of H in the sense of L1-norm does not hold.

REFERENCES

Bertsekas, D. (1976). On the Goldstein-Levitin-Polyak
gradient projection method. IEEE Transactions on
Automatic Control, 21(2), 174–184.

Boyd, S. and Chua, L. (1985). Fading memory and
the problem of approximating nonlinear operators with
Volterra series. IEEE Transactions on Circuits and
Systems, 32(11), 1150–1161.

Chmielewski, D. and Manousiouthakis, V. (1996). On con-
strained infinite-time linear quadratic optimal control.
Systems & Control Letters, 29(3), 121 – 129.

Dembo, R. and Tulowitzki, U. (1983). On the minimiza-
tion of quadratic functions subject to box constraints.
Technical report, Working Paper Series B #71, School
of Organization and Management, Yale University, New
Haven, Connecticut.

Goodwin, G., Seron, M., and de Doná, J. (2005). Con-
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Fig. 2. Frequency weighting function L(ω) (i.e., frequency
response of l = l(t).

Fig. 3. Comparison of output signals of S obtained by the
algorithm from Theorem 3 (solid) and a fixed point
iteration in (4) (dash-dot).

Supremum bound on y as chosen as r = 0.75||w||∞. Unit
sample response l(t) and parameter γ were chosen such
that the unit sample response h = h(t) of H = I − Tα

satisfies
∑T

t=−T |h(t)| = 0.9 < 1, where T = 27. It follows

from Theorem 3. that ρ = 0.96. In order for system Ŝ to
be ε-approximation with ε = 10−3, the latency parameter
m is chosen as m =

⌈
logρ(ε)

⌉
= 170. The output signal

ŷ, which is calculated applying the proposed algorithm
from Theorem 3, is compared to a suboptimal solution
y∗ to problem (2) obtained by running the fixed point
iteration (4) on the whole length of input signal w. Signals
ŷ and y∗ are compared in Fig. 3. As can be seen, the upper
bound on error ε = ρm, as stated by Theorem 3, is very
conservative and much better error can be achieved (infact,
|y∗(t)− ŷ(t)| < 10−6 for almost all t used in simulation) .

6. CONCLUSION

In this paper, we consider a problem of designing discrete-
time systems which are optimal in frequency-weighted
least squares sense subject to a maximal output ampli-
tude constraint. We have shown that the optimal system,
correspoding to the optimal solution of such problem, has
exponentially fading memory. An algorithm is proposed,
based on time and value iterations of a carefully chosen
causal and stable finite memory system, which, under some
L1 dominance assumption, returns high quality approxi-
mations to the optimal solution. The result is illustrated

on a problem of minimizing peak-to-average-power ratio
of a communication signal, stemming from power-efficient
transceiver design in modern digital communication sys-
tems. A problem of subsequent interest is the extension
of the proposed algorithm to more general settings were
contractivity of H in the sense of L1-norm does not hold.
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Linköping, Sweden.

Osuna, E., Freund, R., and Girosi, F. (1997). Support
vector machines: Training and applications. Technical
report, Cambridge, MA, USA.

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

172



152	 Omer Tanovic  et al. / IFAC PapersOnLine 51-20 (2018) 147–152

Pardalos, P.M., Ye, Y., and Han, C.G. (1990). An interior-
point algorithm for large-scale quadratic problems with
box constraints. In A. Bensoussan and J.L. Lions (eds.),
Analysis and Optimization of Systes, 413–422. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Proakis, J. and Salehi, M. (2007). Digital Communica-
tions. McGraw-Hill Education.

Reine, R. and Zang, Z. (2013). A quadratic programming
approach in pulse shaping filter design to reducing
PAPR in OFDM systems. In 2013 19th Asia-Pacific
Conference on Communications (APCC), 572–576.

Sochacki, J.J. (2016). A preoptimized peak to average
power ratio pulse shaping filter and its effect on system
specifications. IEEE Transactions on Microwave Theory
and Techniques, 64(7), 2137–2145.

Stathopoulos, G., Korda, M., and Jones, C.N. (2017).
Solving the infinite-horizon constrained LQR problem
using accelerated dual proximal methods. IEEE Trans-
actions on Automatic Control, 62(4), 1752–1767.

Sznaier, M. and Damborg, M.J. (1987). Suboptimal con-
trol of linear systems with state and control inequality
constraints. In 26th IEEE Conference on Decision and
Control, volume 26, 761–762.

Wang, Y.C. and Luo, Z.Q. (2011). Optimized iterative
clipping and filtering for papr reduction of ofdm signals.
IEEE Transactions on Communications, 59(1), 33–37.

Zhu, X., Pan, W., Li, H., and Tang, Y. (2013). Simplified
approach to optimized iterative clipping and filtering for
PAPR reduction of OFDM signals. IEEE Transactions
on Communications, 61(5), 1891–1901.

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

173


