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Abstract— In this paper, we consider a problem of designing
discrete-time systems which are optimal in frequency-weighted
least squares sense subject to a maximal output amplitude
constraint. In such problems, the optimality conditions do not
provide an explicit way of generating the optimal output as
a real-time implementable transformation of the input, due
to causal instability of the resulting dynamical equations and
sequential nature in which criterion function is revealed over
time. On the other hand, under some mild conditions, the
optimal system has exponentially fading memory which suggests
existence of arbitrarily good finite-latency approximations. In
this paper, we extend the method of balanced truncation for
linear systems to the class of nonlinear models with weakly
contractive operators. We then propose a causally stable finite-
latency nonlinear system which returns high-quality approxi-
mations to the optimal map. The proposed system is obtained
by a careful truncation of an infinite dimensional state space
representation of the optimal system, as suggested by the
derived generalization of the balanced truncation algorithm.

I. INTRODUCTION

Convex quadratic programs (QP) with box constraints (or
inequality constraints in general) are ubiquitous in science
and engineering problems, and some examples are: modeling
of the ocean circulation [1], support vector machines [2],
constrained linear quadratic optimal control [3], etc. Various
methods have been proposed for solving box constrained QP
in a finite-dimensional setting: active set methods (see [4]
and references therein), gradient projection and conjugate
gradients [5], Newton iteration [6], primal-dual methods
[7], etc. Such methods commonly rely on computer-aided
optimization solvers and require non-negligible computation
power, which makes them unfavorable in applications that
have strict power budget.

The infinite-dimensional bound-constraint quadratic pro-
grams are even more computationally demanding. An im-
portant instance is the infinite-horizon linear quadratic reg-
ulation problem (LQR) with bounded control. This problem
is mostly addressed approximately, where model predictive
control (MPC) has probably been the most popular method
for approximately solving infinite-horizon constrained LQR.
Such MPC schemes rely on replacing infinite-horizon with a
receding (i.e. finite) one, where, in general, an easier finite-
dimensional optimization problem is resolved at every time
instance [8]-[11].
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Another instance of the infinite-dimensional setup emerges
when one wants to design discrete-time systems which
are optimal in the sense of some frequency-weighted least
squares criterion subject to maximal output amplitude con-
straints. In particular, such optimization problems serve to
represent a number of peak-to-average-power ratio (PAPR)
reduction objectives which are of significant importance in
modern communication systems [12]-[14]. It is known for
such optimization problems that, in general, the optimality
conditions do not provide an explicit way of generating the
optimal output as a real-time implementable transformation
of the input. This is due to instability of the resulting
dynamical equations as well as sequential nature in which
criterion function is revealed over time Therefore, at each
time instance, the knowledge of the whole history of the
input signal should be known ahead of time in order to
calculate the current sample of the optimal output signal.
Due to difficulties in obtaining an explicit optimal solution,
receding horizon optimization, i.e. model predictive control,
appears to be a natural way of addressing these problems.
Unfortunately, the high cost associated with MPC computa-
tions at every time step makes it unfavorable in power and
time-sensitive applications such as those in signal processing
for communication systems.

In [15], it was shown that, under some mild assumptions,
the optimal system has exponentially fading memory. A
causal and stable nonlinear system was proposed which,
under an L1 dominance assumption about the equation co-
efficients, returns high-quality approximations to the optimal
solution. The L1 dominance is a very strong condition and
potentially diminishes the practical usefulness of the result.

In this paper, we propose a real-time realizable algorithm
which returns high-quality approximations to the optimal
map. The algorithm exploits the optimality conditions and is
realized as a causally stable finite-latency nonlinear discrete-
time system, and is allowed to look ahead at the input signal
over a finite horizon (and is, therefore, of finite latency). A
bound on the approximation error is derived by extending
the method of balanced truncation for linear systems to a
class of nonlinear models which include the optimal system
under consideration. The algorithm does not rely on any
special assumptions about the least squares criterion, except
for convexity, and, therefore, provides a much stronger result
than the one derived in [15]. Fading memory of the optimal
system justifies the finite horizon assumption and suggests
that such approach can serve as a cheaper alternative to
standard MPC-based algorithms, since it does not rely on
resolving an optimization problem at every time instant.
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II. NOTATION AND TERMINOLOGY

R,Z,N are the usual sets of real, integer, and positive
integer numbers. For an element w of a (real) Hilbert space
H , |w| denotes the norm. `(X) is the real vector space of
all functions x : Z → X , interpreted as discrete-time (DT)
signals, with x(t) used for the value of x at t ∈ Z. For
x ∈ `(X), the L2 norm |x| ∈ [0,∞] is defined by |x| =(∑

t |x(t)|2
) 1

2 , where |x(t)| is the norm in X . `2(X) is the
subset of finite energy signals from `(X), treated as a Hilbert
space, with the norm |x| defined above. E = {ei}∞i=−∞ ⊂
`2(R) such that ei(t) = 1 for t = i and ei(t) = 0 otherwise,
is the standard orthonormal basis in `2(R). We use shorthand
notation W = W (ω) to denote the Fourier transform of
signal w ∈ `2(R), instead of the standard notation W =
W (ejω). Systems are viewed as operators `2(X) → `2(Y ).
Gw denotes the response of system G to signal w (even
when G is not linear), and the series composition K = QG
of systems Q and G is the system mapping w to Q(Gw).

For a bounded linear operator A : `2(X) → `2(Y ),
A′ : `2(Y ) → `2(X) denotes the adjoint operator of A.
The matrix of A, in the standard bases {ei}∞i=−∞ and
{ẽi}∞i=−∞ of `2(X) and `2(Y ), respectively, is denoted
as A = (Aij)

∞
i,j=−∞. In this paper, A and A will be

used interchangeably to denote the same operator. For any
bounded (not necessarily linear) operator T : `2(X) →
`2(Y ), the operator norm ‖T‖ of T is defined as ‖T‖ =
supx∈`2(X),x 6=0 |Tx|/|x|.

For a positive real number r, function satr : R→ [−r, r]
is defined by

satr(ξ) =

{
ξ, |ξ| < r

rξ/|ξ|, |ξ| ≥ r
.

Similarly, operator Satr : `2(R)→ `2(R) is defined by

y = Satr(x)⇔ y(t) = satr(x(t)), ∀t ∈ Z.

III. PROBLEM FORMULATION

The problem setup presented in this section is (with some
minor modifications) taken from [15].

We aim to optimize and implement efficiently discrete-
time signal processing systems with scalar input v and scalar
output y:

S- -
v y

where the output y = Sv is expected to be optimal, in the
sense of minimizing a certain objective defined in terms of
input v. For a fixed r > 0, let Ωr = {w ∈ `2(R) : |w(t)| ≤
r, ∀t ∈ Z}. Let α : R→ C and β : R→ C be trigonometric
polynomials mapping ω ∈ R to α(ω) ≥ ε > 0 and
β(ω), respectively. For every discrete-time signal v ∈ `2(R),
the scalar signal y = Sv ∈ `2(R) should have samples

|y(t)| ≤ r, and minimize the functional

Jα,β(v, y) =
1

2π

∫ π

−π
α(ω)|Y (ω)|2dω−

1

π

∫ π

−π
Re{Y (ω)′β(ω)V (ω)}dω (1)

where V = V (ω) and Y = Y (ω) are the Fourier transforms
of v and y, respectively. Therefore, we are trying to solve
the time-domain-value-constrained frequency-weighted least
squares optimization problem

min
y
Jα,β(v, y), subject to y ∈ Ωr. (2)

Let us denote this optimization problem as P =
P(α, β,Ωr, v). It is clear that P is a convex infinite-
dimensional quadratic problem with box constraints, which
is feasible (see [15]) and has a unique solution due to strict
positivity of α. Let Tα and Tβ be the finite unit sample
response LTI systems with frequency responses α(ω) and
β(ω), respectively. The necessary and sufficient conditions
of optimality of P can be written as (see [15] or [16]):

y = Satr(y −Tαy + Tβv). (3)

Moreover, with w = Tβv and H = I − Tα, the above
optimality condition can be written as

y = Satr(Hy + w). (4)

Let H = H(ω) and h = h(t) be the frequency response and
unit sample response of H, respectively, and let T be the
order of the trigonometric polynomial α = α(ω). It follows
that h(−t) = h(t) for all t ∈ Z, and h(t) = 0 for all |t| > T .
The optimal condition (4) can now be written sample-wise
as

y(t) = satr

(
T∑

τ=−T
h(τ)y(t+ τ) + w(t)

)
. (5)

Due to the strict convexity of P, and hence uniqueness of the
optimal solution, equation (5) defines a system which maps
input signal w into output signal y. We denote this system
as S∗ and refer to it as “the optimal system” or “the optimal
map”, in the rest of this paper. It can be seen from (5) that, in
general, the optimal system S∗ is nonlinear and noncausal.
Moreover, the optimality condition (5) is not attractive as a
description of a real-time implementable system S mapping
w to the optimal y. Intuitively, it is clear that a necessary
condition for the existence of a finite-latency system, which
is a good approximation (e.g., in `∞ or H∞ sense) of the
optimal system S∗, is that S∗ possesses some type of ’near-
finite’ memory. That is, one hopes that system S∗ for any
two input signals that are close in the recent past and future,
but not necessarily close in the remote past and future, yields
present outputs which are close. Indeed, it has been shown
in [15] that if H has strictly positive frequency response then
system S∗ has exponentially fading memory (for the exact
definitions, statements and proofs see [15]). In the following
sections, we show that, with careful truncation and adequate
non-linear stability analysis, the optimal system S∗ can be
approximated arbitrarily well by a finite-latency system.
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IV. MAIN RESULTS

In this section, we first state and prove an extension of
the classical method of balanced truncation to a class of
nonlinear models with weakly contractive operators. We use
this result to show that a certain nonlinear model yields high-
quality approximations to the optimal map of problem (2).

A. Preliminaries

We first give some preliminary definitions, results and
assumptions which will be used in the following sections.

Definition 1: Let S : `2(R)→ `2(R) be a bounded linear
operator with matrix (in the standard basis) S = (sij)

∞
i,j=−∞.

We say that S is a banded operator if there exists a positive
integer N such that sij = 0 for all |i − j| > N . Minimal
integer N for which this is true is called the bandwidth of
S, in which case we say that S is an N -banded operator.

Definition 2: Let S : `2(R)→ `2(R) be a bounded linear
operator with matrix (in the standard basis) S = (sij)

∞
i,j=−∞.

We say that S is a Laurent operator if there exists f ∈ `2(R)
such that sij = f(i − j) for all i, j ∈ Z. Such f is called
the symbol of S.

Lemma 3: Let S : `2(R) → `2(R) be an N -banded
operator such that ‖S‖ < 1. For γ ∈ (0, 1] let Dγ ∈ `2(R)→
`2(R) be a bounded linear operator such that (Dγw)(t) =
γ|t|w(t) for all w ∈ `2(R), and let Sγ : `2(R) → `2(R) be
uniquely defined by SγDγ = DγS. There exists γ0 ∈ (0, 1)
such that ‖Sγ‖ < 1 for all γ ∈ (γ0, 1].

Proof: Operator Sγ is bounded. This immediately
follows from Hölder’s inequality:

‖Sγ‖2 ≤ ‖Sγ‖1‖Sγ‖∞ ≤

(
γ−N

N∑
t=−N

|f(t)|

)2

<∞.

Let g : (0, 1] → (0,∞) be defined by γ 7→ g(γ) = ‖Sγ‖.
Clearly, g(1) < 1. Let F = F (ω) be the Fourier transform
of f . Since ‖S‖ < 1 then |F (ω)| < 1 for all ω ∈ [0, 2π),
and hence |f(t)| < 1 for all t. From the definition of the
operator norm, we have that

‖Sγ‖ = sup
|u|=|v|=1

|(u,Sγv)| ≥ sup
u,v∈E

|(u,Sγv)| ≥ sup
i,j∈Z

|si,jγ |,

where Sγ = (si,jγ ) is the matrix of Sγ in the standard basis
of `2(R). By definition,

si,jγ =

{
γ|i|−|j|f(i− j), |i− j| ≤ N,
0, otherwise

.

Hence, for all |t| ≤ N , there exist, large enough, |i| and |j|
such that si,jγ = γ−|t|f(t). Therefore,

‖Sγ‖ ≥ max
|t|≤N

γ−|t||f(t)|.

Let c = min{|f(0)|,min0<|t|≤N |f(t)|
1
|t| }. Then c ≤ ε and

g(c) > 1, so, by the continuity of g, there exists γ0 ∈ (c, 1)
such that g(γ0) = 1 and g(γ) < 1 for all γ ∈ (γ0, 1). This
concludes the proof.

In the rest of this paper, and without loss of generality, we
assume that operator H is a contraction, that is, ||H|| < 1 or,
equivalently, |H(ω)| < 1 for all ω ∈ [0, 2π) (even more, we
can assume that 0 < H(ω) < 1). Indeed, let α0 > 0 such that
α(ω) < α0 for all ω ∈ [0, 2π) (such α0 exists since α is a
continuous function of ω). Let J̃α,β = 1

α0
Jα,β . Optimization

problem P is now equivalent to the one of minimizing J̃α,β
subject to ‖y‖∞ ≤ r. We denote this problem as P̃. The
necessary and sufficient condition of optimality of P̃ is now
given as

y = Satr(H̃y + w̃),

where H̃ = I − Tα/α0
and w̃ = Tβ/α0

v. This implies
that H̃(ω) = 1 − 1

α 0
α(ω) ∈ (0, 1), and, therefore, optimal

problem P is equivalent to the one for which operator H is
a contraction.

B. Generalized Balanced Truncation Theorem

We now state and prove a result on upper bounds on
error of approximating a certain class of nonlinear systems
by appropriately chosen reduced order models, similar to
those of the classical balanced truncation algorithm for linear
systems.

Let X , V and Y be Hilbert spaces. In general, X can be
infinite dimensional. Consider now systems G : `2(V ) →
`2(Y ) and G̃ : `2(V ) → `2(Y ) described by the following
state space models

G : x(t+ 1) = ϕ(Ax(t) +Bv(t)), y(t) = Cx(t), (6)

G̃ : x̃(t+ 1) = Θϕ(Ax̃(t) +Bv(t)), ỹ(t) = Cx̃(t), (7)

where A : X → X , B : V → X , C : X → V and Θ : X →
X are bounded linear operators, Θ is a projection, i.e., Θ2 =
Θ, and ϕ : X → X is a diagonal operator in the standard
basis in X . The following theorem gives an upper bound on
error of approximating G with G̃.

Theorem 4: Let σ1, σ2 > 0 be positive real numbers and
P = P ′ > 0, Q = Q′ > 0 be positive definite self-adjoint
operators satisfying the following Lyapunov inequalities

P −APA′ ≥ 1

σ2
1

BB′, Q−A′QA ≥ 1

σ2
2

C ′C. (8)

Let Θ and ϕ satisfy the following conditions

(P−1−Q)(I−Θ) = 0, P−1+Q ≥ Θ(P−1+Q)Θ, (9)

(ϕ(u) + ϕ(v))′P−1(ϕ(u) + ϕ(v)) ≤ (u+ v)′P−1(u+ v),
(10)

(ϕ(u)−ϕ(v))′Q(ϕ(u)−ϕ(v)) ≤ (u−v)′Q(u−v), ∀u, v ∈ X,
(11)

Then
||G− G̃|| ≤ 2σ1σ2.

Proof:
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Step 1: Show that P and Q satisfy the following dissipa-
tion inequalities:

σ2
1 |v|2 ≥ (Ax+Bw)′P−1(Ax+Bw)− x′P−1x, (12)

− 1

σ2
2

|Cx|2 ≥ (Ax)Q(Ax)−x′Qx, ∀v ∈ V, ∀x ∈ X. (13)

Indeed, dissipation inequality (13) immediately follows
from the second inequality in (8). The first inequality in
(8), after a congruence transformation by P−1/2 and some
algebraic manipulation, is equivalent to∥∥∥∥∥

[
P

1
2A′P−

1
2

1
σ1
B′P−

1
2

]∥∥∥∥∥ ≤ 1. (14)

Therefore, inequality∥∥∥[P− 1
2AP

1
2

1
σ1
P−

1
2B
]∥∥∥ ≤ 1, (15)

holds as well. After some straightforward algebraic manipu-
lation, (15) is equivalent to[

P
1
2A′P−1AP

1
2

1
σ1
P

1
2A′P−1B

1
σ1
B′P−1AP

1
2

1
σ2
1
B′P−1B

]
≤
[
I 0
0 I

]
. (16)

Identity matrices on the right-hand side of (16) are assumed
to be of appropriate (possibly different) dimensions. Inequal-
ity (16), after a congruence transformation by the block
diagonal matrix D = diag(P−

1
2 , σ1I), is equivalent to the

dissipation inequality (12).

Step 2: Show that the following dissipation inequality
holds:

σ(v, Cx− Cx̃) ≥ V (x+, x̃+)− V (x, x̃), (17)

where

σ(v, e) = 4σ2
1 |v|2 − σ−22 |e|2

V (x, x̃) = (x+ x̃)′P−1(x+ x̃) + (x− x̃)′Q(x− x̃)

To show this, consider the following state space model of
the error system G− G̃ mapping w to e = y − ỹ:

x+ = ϕ(Ax+Bw),

x̃+ = Θϕ(Ax̃+Bw), (18)
e = Cx− Cx̃.

The positive definite quadratic form V = V (x, x̃) can be
re-written as follows:

V (x, x̃) = x′(P−1+Q)x+2x′(P−1−Q)x̃+ x̃′(P−1+Q)x̃.
(19)

By expanding V (x+, x̃+), we have the sequence of inequali-
ties as shown in (20), where shorthand notation z = Ax+Bw
and z̃ = Ax̃ + Bw was used. The first inequality used (4),
the second inequality used (10)-(11), and the last inequality
used (12)-(13). This implies that (17) holds and, furthermore,
that ‖G− G̃‖ ≤ 2σ1σ2. This concludes the proof.

Theorem 4 is a generalization of the well known result
on upper bounds of H-infinity error for the exact imple-
mentation of the balanced truncation algorithm for linear
systems [17]. Indeed, let ϕ = I and let (A,B,C) be the
balanced realization of system G, where the controllability
and observability gramians Wc and Wo, respectively, satisfy
Wc = Wo = Σ > 0 for a block diagonal balanced
gramian Σ. Let σ be the smallest Hankel singular value
of G, and let Σ = diag(Σ0, σI) with block diagonal Σ0.
In the classical balanced truncation method, one aims at
truncating states of G that correspond to the lower-right
block σI of Σ. Therefore, the projection matrix Θ is defined
as Θ = diag(I, 0), where the dimension of the zero matrix 0
corresponds to that of the σI submatrix. It now follows that
the dissipation inequalities (8) are satisfied (with equality)
for σ1 = σ2 =

√
σ and P = Q = 1

σΣ. Expressions in
(9)-(11) hold by the definitions of P,Q and Θ. Therefore,
the balanced truncation error bound follows from Theorem
4, i.e., the upper bound on H-infinity error of approximating
G with G̃ is 2σ.

C. Main Theorem
In this section we first propose a finite-latency nonlinear

discrete-time system that approximates the optimal solution
of (2) with arbitrary precision. We then give an upper bound
on the approximation error.

As before, we assume that the optimal system S∗ maps
signal w ∈ `2(R) to y ∈ `2(R), as defined by

y(t) = satr

(
T∑

τ=−T
h(τ)y(t+ τ) + w(t)

)
. (21)

For a given integer m > T , let system Mm : `2(R) →
`2(R2m+1), mapping w to v̂, be defined by

v̂(t) = [w(t−m+1) w(t−m+2) . . . w(t+m+1)]T .
(22)

Let system T̂m : `2(R2m+1) → `2(R) be defined by the
following state space model

x̂(t+ 1) = satr(Âx̂(t) + v̂(t)), ŷ(t) = Ĉx̂(t), (23)

where x̂(t), v̂(t) ∈ R2m+1, and matrices Â = (Âij)
2m+1
i,j=1 ∈

R(2m+1)×(2m+1) and Ĉ = (Ĉj)
2m+1
j=1 ∈ R1×(2m+1) are

V (x+, x̃+) = ϕ(z)′(P−1 +Q)ϕ(z) + 2ϕ(z)′(P−1 −Q)Θϕ(z̃) + ϕ(z̃)′Θ(P−1 +Q)Θϕ(z̃)

≤ ϕ(z)′(P−1 +Q)ϕ(z) + 2ϕ(z)′(P−1 −Q)ϕ(z̃) + ϕ(z̃)′(P−1 +Q)ϕ(z̃)

= (ϕ(z) + ϕ(z̃))′P−1(ϕ(z) + ϕ(z̃)) + (ϕ(z)− ϕ(z̃))′Q(ϕ(z)− ϕ(z̃))

≤ (z + z̃)′P−1(z + z̃) + (z − z̃)′Q(z − z̃) ≤ 4σ2
1 |w| − σ−1

2 |Cx− Cx̃| − V (x, x̃) (20)
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w ∈ `2(R)

- Mm
- T̂m

-

v̂ ∈ `2(R2m+1) ŷ ∈ `2(R)

(a)

M̃∞
- T̂m,∞

- -

w ∈ `2(R) ŷ ∈ `2(R)ṽ ∈ `2(`2(R))

(b)

Fig. 1. Equivalent representations of the approximate system Ŝm: a)
Ŝm = T̂mMm (state-space model T̂m is finite dimensional) and b)
Ŝm = T̂m,∞M̃∞ (state-space model T̂m,∞ is infinite dimensional).

defined by Âij = h(i − j + 1), ∀i, j ∈ {1, . . . , 2m + 1},
Ĉk = 1 for k = m and Ĉk = 0 otherwise.

Systems T̂m and Mm are clearly time-invariant systems,
where the former is nonlinear and causally stable while the
latter is linear and non-causal but of finite latency (equal to
m+ 1). Let system Ŝm : `2(R)→ `2(R) mapping w to ŷ =
Ŝmw be defined as a series interconnection Ŝm = T̂mMm

of Mm and T̂m, see Fig. 1(a).
The following theorem establishes that the L2-induced

gain of the error of approximating the optimal system S∗

with the finite-latency system Ŝm is bounded by ε = cρm

for some c > 0 and ρ ∈ (0, 1).

Theorem 5: There exist ρ ∈ (0, 1) and c > 0 such that
‖S∗ − Ŝm‖ ≤ cρm for all m ∈ Z,m > T .

Proof:

Step 1: Represent system S∗ as a series interconnection of
two stable systems: a finite-latency system and a system
represented by an infinite-dimensional state space model.

To show this, let S : `2(R) → `2(R) be a forward-shift
operator defined by (Sw)(t) = w(t+ 1) for all w ∈ `2(R).
Let M∞ : `2(R) → `(`2(R)) be an unbounded operator
mapping w to v = M∞w such that v(t) = Stw. Let
operators A : `2(R) → `2(R), B : `2(R) → `2(R) and
C : `2(R)→ R be defined by

(Aξ)(t) =
T∑

τ=−T
h(τ)ξ(t− τ + 1), Bξ = ξ, Cξ = ξ(0),

for all ξ ∈ `2(R). Clearly, operator A is a (T + 1)-banded
Laurent operator whose symbol f = f(t) is defined by
f(t) = h(t − 1), for all t ∈ Z. This implies that A is a
contraction, due to |H(ω)| < 1 for all ω ∈ [0, 2π) [18].
Let now system T∞ : `(`2(R)) → `2(R), mapping v to
y = T∞v, be defined by the following infinite-dimensional

w ∈ `2(R)

- M∞ - T∞ -

v ∈ `(`2(R)) y ∈ `2(R)

(a)

M̃∞
- T̃∞

- -

w ∈ `2(R) y ∈ `2(R)ṽ ∈ `2(`2(R))

(b)

Fig. 2. Equivalent representations of the optimal system S∗: a) S∗ =
T∞M∞ (subsystem M∞ is unbounded) and b) S∗ = T̃∞M̃∞ (subsys-
tem M̃∞ is bounded)

state space model

T∞ : x(t+1) = Satr(Ax(t)+Bv(t)), y(t) = Cx(t). (24)

It immediately follows, from the definition (5) of the optimal
map S∗ and the above construction of M∞ and T∞, that
S∗ = T∞M∞, see Fig. 2(a).

A necessary assumption for the generalized balanced
truncation algorithm from theorem 4 is that the system to
be approximated is driven by square summable signals. Due
to unboundedness of M∞, the input of T∞ is not square
summable, and theorem 4 cannot be directly used to establish
useful bounds on approximation error. In order to mitigate
this, we introduce a suitable coordinate re-scaling as follows.

Let D : `2(R)→ `2(R) be a bounded linear operator such
that (Dw)(t) = γ

|t|
0 w(t), ∀w ∈ `2(R), where γ0 ∈ (0, 1) and

‖DAD−1‖ < 1. The existence of such γ0 is guaranteed by
Lemma 3. If we apply coordinate transformation x̃ = Dx to
(24), we get

T∞ : x̃(t+1) = ϕ(Ãx̃(t)+B̃Dv(t)), y(t) = C̃x̃(t), (25)

where ϕ = D SatrD
−1, Ã = DAD−1, B̃ = DBD−1 = I

and C̃ = CD−1 = C. Since operators D and Satr are both
diagonal operators, and Satr has Lipschitz constant equal to
1, it follows that the Lipschitz constant of the operator ϕ
is also equal to 1. In the rest of this proof, we assume that
δ ∈ (0, 1) is such that ‖Ã‖2 ≤ 1− δ < 1.

Let M̃∞ : `2(R) → `2(`2(R)), mapping w to ṽ, be such
that ṽ(t) = DStw. Consider a system T̃∞ described by the
following state space model

T̃∞ : x̃(t+ 1) = ϕ(Ãx̃(t) + B̃ṽ(t)), y(t) = C̃x̃(t), (26)

It now clearly follows that system S∗ can be represented as
a series interconnection S∗ = T̃∞M̃∞ of M̃∞ and S̃∞, see
Fig. 2(b). It is not hard to show that M̃∞ is bounded and

||M̃∞|| =
(

1+γ2
0

1−γ2
0

) 1
2

Indeed, for ṽ = M̃∞w, we have that

|ṽ|2 =
∞∑

t=−∞

∞∑
τ=−∞

γ
2|t−τ |
0 |w(τ)|2 =

1 + γ20
1− γ20

|w|2.
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Step 2: Represent system Ŝm as a series interconnection
of two stable systems: a finite-latency system and a system
represented by an infinite-dimensional state space model.

Let Θm : `2(R) → `2(R) be a projection operator such
that (Θmw)(t) = w(t) for −m + 1 ≤ t ≤ m + 1, and
(Θmw)(t) = 0 otherwise. Let X̂ = {Θmu : u ∈ `2(R)}.
Consider a system T̂m,∞ : `2(`2(R)) → `2(R), mapping
ṽ to ŷ, defined by the following infinite-dimensional state
space model

T̂m,∞ : x̂(t+ 1) = Θmϕ(Ãx̂(t) + B̃ṽ(t)), ŷ(t) = C̃x̂(t).
(27)

where x̂(t) ∈ X̂ for all t ∈ Z.
It is not hard to see that Ŝm = T̂m,∞M̃∞, see Fig. 1(b).
Indeed, the state space model of T̂m,∞ is formally infinite-
dimensional but in fact only 2m + 1 state components are
nonzero, and those exactly correspond to the state variables
of the subsystem T̂m of Ŝm.

Step 3: Find σ1 > 0, σ2 > 0, P : `2(R) → `2(R), and
Q : `2(R)→ `2(R) that satisfy the assumptions of Theorem
4 for Ã, B̃, C̃, Θm, and ϕ as given above.

To find this, let us first assume that δ ∈ (0, 1), as chosen in
Step 1, is such that ‖Ã‖2 ≤ 1−δ. It immediately follows that
inequality ÃÃ′ ≤ I − δI holds. Moreover, since B̃ = I , the
inequality I − ÃIÃ′ ≥ δB̃B̃′ holds as well. It now follows
that σ1 = 1√

δ
and P = I satisfy the first inequality in (8).

For an arbitrary, but fixed, ρ0 ∈ (0, 1), let Q : `2(R) →
`2(R) be defined as (Qw)(t) = ρ

|t|−m
0 w(t) for |t| ≤ m− 1,

and (Qw)(t) = w(t) otherwise, for all w ∈ `2(R). Similar
to the proof of Lemma 3, it can be shown that there exist
δ0 ∈ (0, 1) and ρ0 ∈ (0, 1) (ρ0 does not depend on m) such
that ‖Q1/2ÃQ−1/2‖2 ≤ 1− δ0 < 1. This implies that

I −Q−1/2Ã′QÃQ−1/2 ≥ δ0I,

and, moreover,

Q− Ã′QÃ ≥ δ0Q ≥
δ0
ρm0

C̃ ′C̃,

Therefore, the above defined Q and σ2 =
√

ρm0
δ0

satisfy the
second inequality in (8).

From the definition of P , Q, and Θm it immediately
follows that (9) is true, while (10) and (11) follow from
the fact that ϕ is diagonal and has Lipschitz constant equal
to 1, and P and Q are positive definite diagonal operators.

Step 4: The following series of inequalities hold

‖S∗ − Ŝm‖ = ‖(T̃∞ − T̂m,∞)M̃∞‖
≤ ‖T̃∞ − T̂m,∞‖‖M̃∞‖

≤
(

4

δδ0
· 1 + γ20

1− γ20

) 1
2

ρ
m/2
0 .

Therefore, ρ =
√
ρ0 and c =

(
4
δδ0
· 1+γ

2
0

1−γ2
0

) 1
2

satisfy the
condition of Theorem 5. This concludes the proof.

V. CONCLUSIONS

In this paper, a problem of designing discrete-time systems
which are optimal in frequency-weighted least squares sense
subject to a maximal output amplitude constraint was consid-
ered. An extension to the method of balanced truncation for
linear systems to a certain class of nonlinear models was
derived. A causally stable finite-latency nonlinear system
which returns high-quality approximations to the optimal
map was proposed. The approximate system was obtained
by a careful truncation of an infinite dimensional state space
representation of the optimal system, as suggested by the
derived generalization of the balanced truncation method.
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