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Causally Stable Approximation of Optimal Maps in Maximal Value
Constrained Least-Squares Optimization*
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Abstract—In this paper, we consider a problem of designing
discrete-time systems which are optimal in frequency-weighted
least squares sense subject to a maximal output amplitude
constraint. In such problems, the optimality conditions do not
provide an explicit way of generating the optimal output as
a real-time implementable transformation of the input, due
to causal instability of the resulting dynamical equations and
sequential nature in which criterion function is revealed over
time. On the other hand, under some mild conditions, the
optimal system has exponentially fading memory which suggests
existence of arbitrarily good finite-latency approximations. In
this paper, we extend the method of balanced truncation for
linear systems to the class of nonlinear models with weakly
contractive operators. We then propose a causally stable finite-
latency nonlinear system which returns high-quality approxi-
mations to the optimal map. The proposed system is obtained
by a careful truncation of an infinite dimensional state space
representation of the optimal system, as suggested by the
derived generalization of the balanced truncation algorithm.

I. INTRODUCTION

Convex quadratic programs (QP) with box constraints (or
inequality constraints in general) are ubiquitous in science
and engineering problems, and some examples are: modeling
of the ocean circulation [1], support vector machines [2],
constrained linear quadratic optimal control [3], etc. Various
methods have been proposed for solving box constrained QP
in a finite-dimensional setting: active set methods (see [4]
and references therein), gradient projection and conjugate
gradients [5], Newton iteration [6], primal-dual methods
[7], etc. Such methods commonly rely on computer-aided
optimization solvers and require non-negligible computation
power, which makes them unfavorable in applications that
have strict power budget.

The infinite-dimensional bound-constraint quadratic pro-
grams are even more computationally demanding. An im-
portant instance is the infinite-horizon linear quadratic reg-
ulation problem (LQR) with bounded control. This problem
is mostly addressed approximately, where model predictive
control (MPC) has probably been the most popular method
for approximately solving infinite-horizon constrained LQR.
Such MPC schemes rely on replacing infinite-horizon with a
receding (i.e. finite) one, where, in general, an easier finite-
dimensional optimization problem is resolved at every time
instance [8]-[11].
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Another instance of the infinite-dimensional setup emerges
when one wants to design discrete-time systems which
are optimal in the sense of some frequency-weighted least
squares criterion subject to maximal output amplitude con-
straints. In particular, such optimization problems serve to
represent a number of peak-to-average-power ratio (PAPR)
reduction objectives which are of significant importance in
modern communication systems [12]-[14]. It is known for
such optimization problems that, in general, the optimality
conditions do not provide an explicit way of generating the
optimal output as a real-time implementable transformation
of the input. This is due to instability of the resulting
dynamical equations as well as sequential nature in which
criterion function is revealed over time Therefore, at each
time instance, the knowledge of the whole history of the
input signal should be known ahead of time in order to
calculate the current sample of the optimal output signal.
Due to difficulties in obtaining an explicit optimal solution,
receding horizon optimization, i.e. model predictive control,
appears to be a natural way of addressing these problems.
Unfortunately, the high cost associated with MPC computa-
tions at every time step makes it unfavorable in power and
time-sensitive applications such as those in signal processing
for communication systems.

In [15], it was shown that, under some mild assumptions,
the optimal system has exponentially fading memory. A
causal and stable nonlinear system was proposed which,
under an L1 dominance assumption about the equation co-
efficients, returns high-quality approximations to the optimal
solution. The L1 dominance is a very strong condition and
potentially diminishes the practical usefulness of the result.

In this paper, we propose a real-time realizable algorithm
which returns high-quality approximations to the optimal
map. The algorithm exploits the optimality conditions and is
realized as a causally stable finite-latency nonlinear discrete-
time system, and is allowed to look ahead at the input signal
over a finite horizon (and is, therefore, of finite latency). A
bound on the approximation error is derived by extending
the method of balanced truncation for linear systems to a
class of nonlinear models which include the optimal system
under consideration. The algorithm does not rely on any
special assumptions about the least squares criterion, except
for convexity, and, therefore, provides a much stronger result
than the one derived in [15]. Fading memory of the optimal
system justifies the finite horizon assumption and suggests
that such approach can serve as a cheaper alternative to
standard MPC-based algorithms, since it does not rely on
resolving an optimization problem at every time instant.



II. NOTATION AND TERMINOLOGY

R,Z,N are the usual sets of real, integer, and positive
integer numbers. For an element w of a (real) Hilbert space
H, |w| denotes the norm. ¢(X) is the real vector space of
all functions = : Z — X, interpreted as discrete-time (DT)
signals, with z(t) used for the value of = at ¢ € Z. For
x € (X)), tklle L2 norm |x| € [0,00] is defined by |z| =
(3, |z(t)[?)* , where |z(t)| is the norm in X. ¢*(X) is the
subset of finite energy signals from ¢(X), treated as a Hilbert
space, with the norm |z| defined above. £ = {e;}°__ C
¢%(R) such that e;(t) = 1 for t = i and e;(t) = 0 otherwise,
is the standard orthonormal basis in ¢?(IR). We use shorthand
notation W = W (w) to denote the Fourier transform of
signal w € (?(R), instead of the standard notation W =
W (el“). Systems are viewed as operators ¢2(X) — (?(Y).
Guw denotes the response of system G to signal w (even
when G is not linear), and the series composition K = QG
of systems Q and G is the system mapping w to Q(Gw).

For a bounded linear operator A : (?(X) — (2(Y),

: 2(Y) — £?(X) denotes the adjoint operator of A.
The matrix of A, in the standard bases {e;}°_ .  and
{é;}2 . of £2(X) and ¢*(Y), respectively, is denoted
as A = (Aj)f5—_o- In this paper, A and A will be
used interchangeably to denote the same operator. For any
bounded (not necessarily linear) operator T : (?(X) —
¢2(Y), the operator norm ||T|| of T is defined as ||T| =
SUPger2(X),z#0 |T.’E|/‘$L’|

For a positive real number r, function sat, T, 7]
is defined by

3

i le) = {rf/a,

: /2(R) — F2(R) is defined by

R —[—

€l <r
i€l >r

Similarly, operator Sat,

y = Sat,(z) < y(t) = sat,.(z(t)), Vt € Z.

IIT. PROBLEM FORMULATION

The problem setup presented in this section is (with some
minor modifications) taken from [15].

We aim to optimize and implement efficiently discrete-
time signal processing systems with scalar input v and scalar
output y:

where the output y = Swv is expected to be optimal, in the
sense of minimizing a certain objective defined in terms of
input v. For a fixed 7 > 0, let Q, = {w € 2(R) : |w(t)| <
r, Vt € Z}. Let o : R — C and 8 : R — C be trigonometric
polynomials mapping w € R to a(w) > € > 0 and
B(w), respectively. For every discrete-time signal v € ¢?(R),
the scalar signal y Sv € (?(R) should have samples
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ly(t)| < r, and minimize the functional

1 s
Jaﬁ(vvy) - %/

1 s

= | Retv(erse)

i —T
where V = V(w) and Y = Y (w) are the Fourier transforms
of v and y, respectively. Therefore, we are trying to solve
the time-domain-value-constrained frequency-weighted least
squares optimization problem

a(w)[Y (w)[*dw—

V(w)tdo (1)

min J, g(v,y), subjecttoy € Q. 2)
y
Let us denote this optimization problem as P =
P(a, 8,€,,v). It is clear that P is a convex infinite-

dimensional quadratic problem with box constraints, which
is feasible (see [15]) and has a unique solution due to strict
positivity of «. Let T, and Tg be the finite unit sample
response LTI systems with frequency responses a(w) and
B(w), respectively. The necessary and sufficient conditions
of optimality of P can be written as (see [15] or [16]):

y = Sat,(y — Toy + Tpso).
I_—

3)

Moreover, with w = Tgv and H = T, the above

optimality condition can be written as

Y= Satr (Hy + w) 4

Let H = H(w) and h = h(t) be the frequency response and
unit sample response of H, respectively, and let T" be the
order of the trigonometric polynomial o = «(w). It follows
that h(—t) = h(t) for all t € Z, and h(t) = 0 for all |t| > T.
The optimal condition (4) can now be written sample-wise

as
) = sat, (Z h(t

T=—T

Due to the strict convexity of P, and hence uniqueness of the
optimal solution, equation (5) defines a system which maps
input signal w into output signal y. We denote this system
as S* and refer to it as “the optimal system” or “the optimal
map”, in the rest of this paper. It can be seen from (5) that, in
general, the optimal system S* is nonlinear and noncausal.
Moreover, the optimality condition (5) is not attractive as a
description of a real-time implementable system S mapping
w to the optimal y. Intuitively, it is clear that a necessary
condition for the existence of a finite-latency system, which
is a good approximation (e.g., in £, or H,, sense) of the
optimal system S*, is that S* possesses some type of "near-
finite’ memory. That is, one hopes that system S* for any
two input signals that are close in the recent past and future,
but not necessarily close in the remote past and future, yields
present outputs which are close. Indeed, it has been shown
in [15] that if H has strictly positive frequency response then
system S* has exponentially fading memory (for the exact
definitions, statements and proofs see [15]). In the following
sections, we show that, with careful truncation and adequate
non-linear stability analysis, the optimal system S* can be
approximated arbitrarily well by a finite-latency system.

y(t+7) +w()>. ®)



IV. MAIN RESULTS

In this section, we first state and prove an extension of
the classical method of balanced truncation to a class of
nonlinear models with weakly contractive operators. We use
this result to show that a certain nonlinear model yields high-
quality approximations to the optimal map of problem (2).

A. Preliminaries

We first give some preliminary definitions, results and
assumptions which will be used in the following sections.

Definition 1: Let S : £2(R) — ¢*(R) be a bounded linear
operator with matrix (in the standard basis) S = (54;)$5-_ -
We say that S is a banded operator if there exists a positive
integer N such that s;; = 0 for all | — j| > N. Minimal
integer N for which this is true is called the bandwidth of
S, in which case we say that S is an N-banded operator.

Definition 2: Let S : (?(R) — ¢*(R) be a bounded linear
operator with matrix (in the standard basis) S = (5;)55_ _ -
We say that S is a Laurent operator if there exists f € ¢*(R)
such that s;; = f(i — j) for all 4,j € Z. Such f is called
the symbol of S.

Lemma 3: Let S : (*(R) — (?(R) be an N-banded
operator such that ||S|| < 1. Fory € (0,1] let D., € £?(R) —
/%(R) be a bounded linear operator such that (D.w)(t) =
ylthw(t) for all w € £2(R), and let S, : £2(R) — (*(R) be
uniquely defined by S, D, = D.S. There exists v, € (0, 1)
such that ||S,|| < 1 for all v € (7o, 1].

Proof:  Operator S, is bounded. This immediately
follows from Holder’s inequality:
2
) < 00.

N
vV 1@
t=—N
Let g : (0,1] — (0,00) be defined by v — g(v) = [|S,].
Clearly, g(1) < 1. Let F = F(w) be the Fourier transform
of f. Since ||S|| < 1 then |F(w)| < 1 for all w € [0, 27),
and hence |f(t)] < 1 for all ¢. From the definition of the
operator norm, we have that

1S41I =

18511 < 11851111184 /lo < (

|(u;Syv)| = sup |(u,Syv)
u,veE

sup
lul=|v|=1

’

| > sup |s%
i,JEZL

where S, = (s57) is the matrix of S, in the standard basis

of ?(R). By definition,
Al — ),
0,

Hence, for all |t| < N, there exist, large enough,

such that s?/ = v~ Il f(t). Therefore,

S| > —Ith £(#)].
I wllf‘rfﬁ%v |f ()]

4] —

|i_j|§N7
= .

otherwise

S

i| and |7]

Let ¢ = min{|f(0)], ming ;< | £(£)] 7 }. Then ¢ < ¢ and
g(c) > 1, so, by the continuity of g, there exists yg € (¢, 1)
such that g(yo) = 1 and g() < 1 for all 4 € (v0,1). This
concludes the proof. [ ]
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In the rest of this paper, and without loss of generality, we
assume that operator H is a contraction, that is, ||H|| < 1 or,
equivalently, |H (w)| < 1 for all w € [0,27) (even more, we
can assume that 0 < H(w) < 1). Indeed, let ag > 0 such that
a(w) < ag for all w € [0,27) (such ag exists since « is a
continuous function of w). Let J, 5 = a%,‘]a, 5. Optimization
problem P is now equivalent to the one of minimizing J, s
subject to [|y]lsc < . We denote this problem as P. The
necessary and sufficient condition of optimality of P is now
given as

y = Sat,(Hy + @),

where H = I — To/a, and W = Tg/o,v. This implies
that H(w) = 1 — éoa(w) € (0,1), and, therefore, optimal
problem P is equivalent to the one for which operator H is
a contraction.

B. Generalized Balanced Truncation Theorem

We now state and prove a result on upper bounds on
error of approximating a certain class of nonlinear systems
by appropriately chosen reduced order models, similar to
those of the classical balanced truncation algorithm for linear
systems.

Let X, V and Y be Hilbert spaces. In general, X can be
infinite dimensional. Consider now systems G : (2(V) —
2(Y) and G : £2(V) — (2(Y) described by the following
state space models

G:z(t+1) = o(Az(t) + Bu(t)), y(t) =Cx(t), (6)

y(t) = Cz(t), (1)

where A: X - X, B:V—-X,C:X—=VadO: X —
X are bounded linear operators, © is a projection, i.e., 0% =
O, and ¢ : X — X is a diagonal operator in the standard
basis in X. The following theorem gives an upper bound on
error of approximating G with G.

G : Z(t + 1) = Op(AZ(t) + Bu(t)),

Theorem 4: Let 01,09 > 0 be positive real numbers and
P =P >0,Q = Q" > 0 be positive definite self-adjoint
operators satisfying the following Lyapunov inequalities

1 1

P—APA" > BB, Q-AQA> =C'C. (8
o1 93

Let © and ¢ satisfy the following conditions

(P'-Q)I-©)=0, P '+Q>06(P'+Q)O, 9

(p(u) + o(v)) P~ p(u) + (v)) < (u+v) P~ (u+w),

(10)
(p(w) =) Qp(u)—¢(v)) < (u—v)'Q(u—v),Yu,v € X,
(11)
Then
|G — G| < 20109.
Proof:



Step 1: Show that P and () satisfy the following dissipa-
tion inequalities:

(Az + Bw)' (12)

)Q(Az)

Indeed, dissipation inequality (13) immediately follows
from the second inequality in (8). The first inequality in
(8), after a congruence transformation by P~1/2 and some
algebraic manipulation, is equivalent to

o?v]? > P~ YAz + Bw) — 2'P ',

1
fF\C:r\z > (Az —2'Qx, Yv e V,Vx e X. (13)
2

P3 AP 3
1 B P~z ( )
Therefore, inequality
H[P—%AP% (}IP—%B}H <1, (15)

holds as well. After some straightforward algebraic manipu-
lation, (15) is equivalent to
I 0
<
< {O I} . (16)

P3A'P7'AP: LPpiAP-!
U%B’P*AP% LB'P'B

1
Identity matrices on the right-hand side of (16) are assumed
to be of appropriate (possibly different) dimensions. Inequal-
ity (16), after a congruence transformation by the block
diagonal matrix D = diag(P~2,0,1), is equivalent to the
dissipation inequality (12).

Step 2: Show that the following dissipation inequality
holds:

o(v,Cx —Cz) > V(xt,zT) -

Vi, ), a7y

where

o(v,€) = 03[0 — 03 e’

V(z, ) =(x+2)P e +2)+ (z —2)Q(x — 1)
To show this, consider the following state space model of
the error system G — G mapping w to e =y — §:

= ¢(Az + Bw),
7T = Op(AZ + Bw), (18)
e=Cz—C1z.

The positive definite quadratic form V' = V(x,Z) can be
re-written as follows:

By expanding V (z, Z"), we have the sequence of inequali-
ties as shown in (20), where shorthand notation z = Az+Bw
and Z = AZ + Bw was used. The first inequality used (4),
the second inequality used (10)-(11), and the last inequality
used (12)-(13). This implies that (17) holds and, furthermore,
that |G — G|| < 20105. This concludes the proof. |

Theorem 4 is a generalization of the well known result
on upper bounds of H-infinity error for the exact imple-
mentation of the balanced truncation algorithm for linear
systems [17]. Indeed, let ¢ = I and let (A, B,C) be the
balanced realization of system G, where the controllability
and observability gramians W, and W,, respectively, satisfy
W. = W, = ¥ > 0 for a block diagonal balanced
gramian Y. Let o be the smallest Hankel singular value
of G, and let ¥ = diag(Xy,0) with block diagonal .
In the classical balanced truncation method, one aims at
truncating states of G that correspond to the lower-right
block oI of Y. Therefore, the projection matrix © is defined
as © = diag([,0), where the dimension of the zero matrix 0
corresponds to that of the oI submatrix. It now follows that
the dissipation inequalities (8) are satisfied (with equality)
for o1 = 0o = yJoand P = Q = éZ. Expressions in
(9)-(11) hold by the definitions of P, and ©. Therefore,
the balanced truncation error bound follows from Theorem
4, i.e., the upper bound on H-infinity error of approximating
G with G is 20.

C. Main Theorem

In this section we first propose a finite-latency nonlinear
discrete-time system that approximates the optimal solution
of (2) with arbitrary precision. We then give an upper bound
on the approximation error.

As before, we assume that the optimal system S* maps
signal w € ?(R) to y € (*(R), as defined by

) = sat, ( Z h(t
T==T

y(t+7) 4+ w(t )). (21)

For a given integer m > T, let system M, : (?(R) —

£2(R?>™+1), mapping w to 9, be defined by

o(t) = [w(t—m+1) w(t—m+2) w(t+m+1)]7.
(22)

Let system T,, : 2(R?"*1) — (2(R) be defined by the
following state space model

E(t+1) = sat, (A2 (t) + 0(t)), §(t) = Cz(t), (23)

V(z, &) =2/ (P +Q)z+22' (P~ ' —Q)z+7 (P~ ' +Q)z.  Wwhere &(t),9(t) € R27™+1 and matrices A = (Alj)??ill €
(19) R(2m+1)x(2m+1) and C _ (C])?;nfq e R1Ix(2m+1) are
V(@ 75) = o(2) (P71 + Q)p(2) + 20(2) (P71 = Q)0p(2) + ¢(2)'O(P™" + Q)Oyp(2)
< o(2) (P + Q)p(2) +20(2) (P = Q)p(2) + 9(2) (P! + Q)e(2)
= (p(2) + () P (p(2) + 9(2)) + (0(2) = 9(2))' Qlep(2) — ¢(2))
<(z4+P 242 +(2-2'Q(z-2) < dot|w|—oy'|Cz—CZ| - V(z ) (20)
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w€£2(]R): b € £2(R*™H) :gelﬁ(R)
I I
— M., ’i‘m e —
I I
I I
(@)
wGEQ(R): ¥ € £2(A(R)) :QGZQ(R)
I _ R I
ﬁ_’ Moo T’"L,OO H‘—>
I I
()
Fig. 1. _Equivalent representations of the approximate system S a)
Sm :ATmMm (state-space model Tm is finite dimensional) and b)
Sm = Tm,coMso (state-space model Tm oo 18 infinite dimensional).

defined by A;; = h(i —j+1),¥i,j € {1,...,
C’k =1 for k = m and C’k = 0 otherwise.

Systems T, and M,, are clearly time-invariant systems,
where the former is nonlinear and causally stable while the
latter is linear and non-causal but of finite latency (equal to
m +1). Let system S,,, : £2(R) — ¢2(R) mapping w to § =
S,,w be defined as a series interconnection S,,, = T, M,,
of M,,, and ’i‘m, see Fig. 1(a).

The following theorem establishes that the L2-induced
gain of the error of approximating the optimal system S*
with the finite-latency system S, is bounded by € = cp™
for some ¢ > 0 and p € (0,1).

2m + 1},

Theorem 5: There exist p € (0,1) and ¢ > 0 such that
IS* = S| < cp™ forall m e Z,m > T.

Proof:

Step 1: Represent system S* as a series interconnection of
two stable systems: a finite-latency system and a system
represented by an infinite-dimensional state space model.

To show this, let S : ((R) — ¢?(R) be a forward-shift
operator defined by (Sw)(t) = w(t + 1) for all w € £2(R).
Let M, : /?(R) — £(¢*(R)) be an unbounded operator
mapping w to v = Myw such that v(t) = S'w. Let
operators A : (?(R) — (?(R), B : (*(R) — (*(R) and
C : *(R) — R be defined by

T
= > h(n)&

=T

t_T—’_l)v Bg:gv C§=£(0),

for all £ € ¢*(R). Clearly, operator A is a (T + 1)-banded
Laurent operator whose symbol f = f(t) is defined by
f(t) = h(t — 1), for all ¢ € Z. This implies that A is a
contraction, due to |H(w)| < 1 for all w € [0,27) [18].
Let now system T, : ((/*(R)) — ¢*(R), mapping v to
y = Twv, be defined by the following infinite-dimensional
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w € ((R)| v € 0(£*(R)) 'y € £(R)
— -
[ [
(2)
weP® selPPR) 1y e P(R)
L N
: J
(b)
Fig. 2. Equivalent representations of the optimal system S*: a) S* =

TOOIYIOo (subsystem M is unbounded) and b) S* =
tem M is bounded)

TooMcoo (subsys-

state space model
To : z(t+1) = Sat, (Az(t)+Bo(t)), y(t) = Cx(t). (24)

It immediately follows, from the definition (5) of the optimal
map S* and the above construction of M, and T, that
S* = T,M,,, see Fig. 2(a).

A necessary assumption for the generalized balanced
truncation algorithm from theorem 4 is that the system to
be approximated is driven by square summable signals. Due
to unboundedness of M, the input of T, is not square
summable, and theorem 4 cannot be directly used to establish
useful bounds on approximation error. In order to mitigate
this, we introduce a suitable coordinate re-scaling as follows.

Let D : ?(R) — ¢(R) be a bounded linear operator such
that (Dw)(t) = 7/lw(t), Vw € £2(R), where v € (0,1) and
|IDAD~Y| < 1. The existence of such vy is guaranteed by
Lemma 3. If we apply coordinate transformation & = Dz to
(24), we get

T : E(t+1) = p(AZ(t)+BDuv(t)), y(t) = Ci(t), (25)

where ¢ = DSat, D!, A= DAD', B=DBD ' =1
and C = CD~! = C. Since operators D and Sat,. are both
diagonal operators, and Sat, has Lipschitz constant equal to
1, it follows that the Lipschitz constant of the operator ¢
is also equal to 1. In the rest of this proof, we assume that
5 € (0,1) is such that || A2 <1—4§ < 1.

Let Mo : £2(R) — (2(¢2(R)), mapping w to ¥, be such

that 9(t) = DS*w. Consider a system T, described by the
following state space model
Too : #(t + 1) = p(AZ(t) + Bo(t)), y(t) = Ci(t), (26)

It now clearly follows that system S* can be represented as
a series interconnection 8* = T M, of M, and S, see
Fig. 2(b). It is not hard to show that M, is bounded and

1 -

M| = (iﬁ) * Indeed, for & = M.ow, we have that
. 2|t— 1 +'Y
=S S AR - Tl

0

t=—00 T=—00



Step 2: Represent system S, as a series interconnection
of two stable systems: a finite-latency system and a system
represented by an infinite-dimensional state space model.

Let ©,, : /?(R) — /%(R) be a projection operator such
that (©pw)(t) = w(t) for —m +1 <t < m+ 1, and
(©,,w)(t) = 0 otherwise. Let X = {O,,u : u € (2(R)}.
Consider a system T, o : (2(2(R)) — (*(R), mapping
v to ¢, defined by the following infinite-dimensional state
space model

Tonoo : 2(t +1) = O,,0(Az(t) + Bo(t)), §(t) = Ci(t).
27)
where i(t) € X for all t € Z. _
It is not hard to see that Sm = TWOOMOO, see Fig. 1(b).
Indeed, the state space model of Tm,oo is formally infinite-
dimensional but in fact only 2m + 1 state components are
nonzero, and those exactly correspond to the state variables
of the subsystem Tm of Sm.

Step 3: Find o1 > 0, 02 > 0, P : (*(R) — (*(R), and
Q : 2(R) — (*(R) that satisfy the assumptions of Theorem
4 for A, B, C, ©,,, and ¢ as given above.

To find this, let us first assume that 6 € (0, 1), as chosen in
Step 1, is such that ||A||2 < 1—4. It immediately follows that
inequality AA < I — 61 holds. Moreover, since B=1 , the
inequality I — ATA’ > §BB’ holds as well. It now follows
that o1 = % and P = [ satisfy the first inequality in (8).

For an arbitrary, but fixed, po € (0,1), let Q : /?(R) —
2(R) be defined as (Qu)(t) = pl" ™™ w(t) for [t| < m —1,
and (Qu)(t) = w(t) otherwise, for all w € ¢?(R). Similar
to the proof of Lemma 3, it can be shown that there exist
do € (0,1) and pg € (0,1) (pg does not depend on m) such
that |Q'/2AQ~1/2||> <1 —dy < 1. This implies that

I—-Q V2AQAQ™? > oI,

and, moreover,
do

Q- AQA> Q> Tné/éa
Po
Therefore, the above defined ) and o5 = \/% satisfy the
second inequality in (8).
From the definition of P, @), and ©,, it immediately
follows that (9) is true, while (10) and (11) follow from
the fact that ¢ is diagonal and has Lipschitz constant equal

to 1, and P and @ are positive definite diagonal operators.

Step 4: The following series of inequalities hold

||S* - Sm” = H(Too - Tm,OO)MOOH

< [ Too = T ool Moo |
1

4 1+72 2 m/2
< ’ 02 po/ .

550 1-— Yo

4 1492\?2 .
Therefore, p = /pg and ¢ = 550 1_32 satisfy the
0

condition of Theorem 5. This concludes the proof. |
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V. CONCLUSIONS

In this paper, a problem of designing discrete-time systems
which are optimal in frequency-weighted least squares sense
subject to a maximal output amplitude constraint was consid-
ered. An extension to the method of balanced truncation for
linear systems to a certain class of nonlinear models was
derived. A causally stable finite-latency nonlinear system
which returns high-quality approximations to the optimal
map was proposed. The approximate system was obtained
by a careful truncation of an infinite dimensional state space
representation of the optimal system, as suggested by the
derived generalization of the balanced truncation method.
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