Reproducible Workflow on a Public Cloud for
Computational Fluid Dynamics

Olivier Mesnard, Lorena A. Barba

Abstract—In a new effort to make our research transparent and reproducible by others, we developed a workflow to run and share
computational studies on the public cloud Microsoft Azure. It uses Docker containers to create an image of the application software
stack. We also adopt several tools that facilitate creating and managing virtual machines on compute nodes and submitting jobs to
these nodes. The configuration files for these tools are part of an expanded “reproducibility package” that includes workflow definitions
for cloud computing, in addition to input files and instructions. This facilitates re-creating the cloud environment to re-run the
computations under the same conditions. Although cloud providers have improved their offerings, many researchers using
high-performance computing (HPC) are still skeptical about cloud computing. Thus, we ran benchmarks for tightly coupled applications
to confirm that the latest HPC nodes of Microsoft Azure are indeed a viable alternative to traditional on-site HPC clusters. We also
show that cloud offerings are now adequate to complete computational fluid dynamics studies with in-house research software that
uses parallel computing with GPUs. Finally, we share with the community what we have learned from nearly two years of using Azure
cloud to enhance transparency and reproducibility in our computational simulations.

1 INTRODUCTION

EPRODUCIBLE research and replication studies are es-
Rsential components for the progress of evidence-based
science, even more now when nearly all fields advance
via computation. We use computer simulations and data
models to create new knowledge, but how do we provide
evidence that this new knowledge is justified? Traditional
journal publications exclude software and data products
from the peer-review process, yet reliance on ever more
complex computational artifacts and methods is the norm.
Lacking standards for documenting, reporting and review-
ing the computational facets of research, it becomes difficult
to verify and corroborate the findings presented in journals
and conferences [1].

The literature is cluttered with confused and some-
times contradictory definitions for reproducible research,
reproducibility, replicability, repetition, etc. [2]. It is thus
worth clarifying how we use these terms. “Reproducible
research” was used by geophysics professor Jon Claerbout
in the 1990s to mean computational studies that are pub-
lished with sufficient transparency so other scientists can re-
create the results. His research group at Stanford created a
reproducible-research environment [3] whose goal was com-
plete documentation of scientific computations, in such a
way that a reader could reproduce all the results and figures
in a paper using the author-provided computer programs
and raw data. This requires open data and open source
software and, for this reason, the reproducibility movement
is closely linked with the open science movement. The term
“replication” has been adopted to refer to an independent
study generating new data which, when analyzed, lead to
the same findings [4]. We follow this convention, adopted
also recently in reports from the National Academies of

e Mechanical and Aerospace Engineering, the George Washington Univer-
sity, Washington, DC 20052.
E-mail: mesnardo@gwu.edu

o Email: labarba@gwu.edu

Sciences, Engineering, and Medicine [5], [6].

Many efforts to develop cyberinfrastructure that sup-
ports reproducible research have been launched in past
years. They address concerns like automatic capture of
changes to software (version control systems), persistent
data archival, global registration of data identifiers, work-
flow management, and more. But capturing the whole
computational environment used in a research project re-
mains one of the most difficult problems. Computational
researchers often use a multi-layer stack of software appli-
cations that can be laborious to build from scratch. Con-
tainer technology like Docker is a recent addition to the
reproducibility toolbox [7]. In this work, we develop and
assess a workflow for reproducible research on the public
cloud provider Microsoft Azure, adopting Docker contain-
ers and several other tools to automate and fully document
scientific computations. The workflow follows the idea of
using container technology to enhance transparency and
reproducibility, and to reduce the burden of installing our
application software stack. We go one step further by mov-
ing the computational work to Azure cloud resources using
tools that programmatically capture the virtual environment
configuration. The configuration files become part of ex-
panded “reproducibility packages” for the study. This work
does not target portability of our software and workflow to
diverse high-performance computing (HPC) environments.
Our goal is, rather, to publish our computational research
with deep transparency. The workflow we developed and
document here is expressly designed for Azure cloud offer-
ings. An interested reader could thus re-run our simulations
under exactly the same conditions as we used, provided
they are willing and able to create an Azure account.

Universities and national laboratories spend millions of
dollars to deploy and maintain on-site HPC clusters. At the
George Washington University, we have access to a cluster
called Colonial One. The cluster is now 6 years old and
approaching its end-of-life. On average, its computational

resources are idle 9% of the time and unavailable to users for
roughly 5 days a year (due to maintenance). Administrators
of the cluster have been recently considering integrating
cloud-computing platforms in the research-computing port-
folio. Over the past decade, cloud-computing platforms
have rapidly evolved, now offering solutions for scientific
applications. From a user’s point of view, a cloud plat-
form offers great flexibility (hardware and virtual machines)
with instantaneous availability of infinite (in appearance)
computational resources. No more waiting time in job-
submission queues! This promises to greatly facilitate code
development, debugging, and testing. Resources allocated
on the cloud are released as soon as the job is done, avoiding
paying for idle time. On a public-cloud platform—such
as Microsoft Azure, Google Cloud, Amazon AWS—with a
“pay-as-you-go” type of subscription, a user directly sees
how much it costs to run a scientific application, while such
information usually remains obscure to the end-user on
university-managed clusters. Cost models that make sense
for researchers, labs, and universities are still unclear. Yet,
this information is key when making a decision to adopt a
cloud workflow for research.

Until recently, public cloud offerings were inadequate
to the needs of computational scientists using HPC, mainly
due to performance overhead of virtualization or lack of
support for fast networking [8] and hardware accelera-
tors. Freniere and co-authors (2016) used the OSU micro-
benchmark suite to report performance degradation in net-
working with Amazon AWS, compared to their on-site local
HPC cluster. We take the same approach with Microsoft
Azure to verify that their improved services are now suit-
able for HPC applications. We also share what we have
learned from nearly two years of using cloud computing for
our computational fluid dynamics (CFD) simulations, with
the hope that it will shed some light on the costs and bene-
fits, and help others considering using cloud computing for
their research.

2 REPRODUCIBLE CLOUD-BASED WORKFLOW

Scientific publications reporting computational results often
lack sufficient details to reproduce the researcher’s com-
putational environment; e.g., they may miss to mention
external libraries used along with the main computational
code. We have learned the hard way how different versions
of the same external library can alter the numerical results
and even the scientific findings of a computational study
[9]. This section presents an overview and mini-tutorial of
the workflow we developed to aim for the highest level of
reproducibility of our computational research, with the best
available technology solutions. In the process of creating this
reproducible workflow, we also evaluated the suitability of
public cloud offerings by Microsoft Azure for our research
computing needs. The tools we adopted for computing on
cloud resources are specific for this provider.

2.1 Use of Container Technology

To overcome the so-called “dependency hell” and facil-
itate reproducibility and portability, we use the container
technology provided by the open-source project Docker.

2

A container represents an isolated user space where ap-
plication programs run directly on the operating system’s
kernel of the host (with limited access to its resources). In
contrast with virtual machines, containers do not include
a full operating system, making them lighter and faster.
Containers allow re-creating the same runtime environment
of an application (including all its dependencies) from one
machine to another. They empower researchers to share pre-
built images of their software stack, ameliorating one of
the biggest pain points for reproducible research: building
the software on a different machine. The majority of enter-
prise developers today are familiar with Docker container
technology (first released six years ago). But in academic
settings, many are still unaware of its value. We present
this section as an overview for research software developers
unfamiliar with Docker, but comfortable with scripting,
version control, and distributed collaboration.

A container is an instance of an image. The developer
builds this image on a local machine and pushes it
to a public registry to share it with other users. Users
pull the image from the public registry—in our case,
DockerHub—and create containers out of it. To create a
Docker image, the developer writes a Dockerfile: an
ASCII file containing instructions that tell Docker what to
do. For example, we start building a new image from a
base image using the keyword FROM. We then write the
different shell instructions (prefixed with the keyword
RUN) to build a multi-layered runtime environment of the
application that includes all its dependencies. Once we
have built and tested the image on the local machine,
we push it to a repository on the DockerHub registry:
a place to store and retrieve Docker images. Listing 1
provides the command lines to build (docker build)
and push (docker push) an image of our CFD software
(barbagroup/petibm:0.4-GPU-IntelMPI-ubuntu)
that we used to obtain some of the results presented in the
next section. Here, CLOUDREPRO is an environment variable
set to the local path of the GitHub repository for this paper,
cloud-repro,! cloned on the user’s machine.

$ cd $CLOUDREPRO/docker/petibm

$ docker build
-—-tag=barbagroup/petibm:0.4-GPU-IntelMPI-ubuntu
-—-file=Dockerfile .

$ docker push

barbagroup/petibm:0.4-GPU-IntelMPI-ubuntu

Listing 1. Build and push a Docker image.

A reader interested in reproducing the computational re-
sults can now pull the application image from DockerHub,
and create a Docker container to run the CFD application
software in a faithfully reproduced local environment. Our
objective is to create and run containers on the public
cloud provider Microsoft Azure, and make it possible for
the readers to also run these containers to reproduce our
results. Figure 1 shows a graphical representation of the

1. https:/ / github.com /barbagroup /cloud-repro

Docker Terminologies:

Docker— An open source OS-level virtualization software to create and run multiple independent, isolated, and
portable containers on the same host Operating System.

Docker Image— Union of layered filesystems stacked on top of each other. Each layer defines a set of differences
from the previous layer. A user composes (builds) a Docker image using a Dockerfile, usually starting from a
base image (such as ubuntu:16.04).

Docker Container— A standardized unit created from a Docker image to deploy an application or a runtime
environment. A Docker container can be seen as an instance of a Docker image that includes an additional
writable layer at the top of the layered stack. When a container is deleted, so is the writable layer, while the image
remains unchanged.

Dockerfile— An ASCII file including the sequence of instructions to create a Docker image for the computational
runtime environment. A Dockerfile contains Docker keywords such as FROM, RUN, or COPY. Each instructions in
the Dockerfile creates a layer in the Docker image.

DockerHub— The official registry of Docker Inc.; a cloud-based registry service to store, share, and retrieve

(public or private) Docker images.

e

Git

Docker

Azure-CLI

=

Azure-CLI Azure-CLI

Shipyard

G T

Shipyard

config.yaml
credentials.yaml
pool.yaml
jobs.yaml

Fig. 1. Reproducible workflow on the public cloud provider Microsoft Azure. Our CFD software is version-controlled with Git and GitHub. We push
to DockerHub a Docker image of our CFD application with all its dependencies. Azure CLI is used to configure accounts on Microsoft Azure and
to upload/download data to/from an Azure Storage account. With Batch Shipyard, we create a pool on Azure Batch and run container-based
simulations using our Docker image. Figure available under CC BY 4.0 license (https://doi.org/10.6084/m9.figshare.9636722.v1).

workflow we developed using Docker and various tools
for running CFD simulations on Microsoft Azure. The next
section explains these tools.

2.2 Use of Public Cloud Resources

To run computational jobs on Microsoft Azure, we use
several tools that facilitate creating and managing virtual
machines on compute nodes, and submitting jobs to those
nodes. We use a service called Azure Batch that leverages
Microsoft Azure at no extra cost, relieving the user from
manually creating, configuring, and managing an HPC-
capable cluster of cloud nodes, including virtual machines,
virtual networks, job and task scheduling infrastructure.
Azure Batch works with both embarrassingly parallel work-
loads and tightly coupled MPI jobs (the latter being the

case of our CFD software). To use Azure Batch, we first
need to configure a workspace on Microsoft Azure. This
can be done either via the Azure Portal in a web browser
or from a local terminal using the open-source tool Azure
CLI.? We prefer to use the command-line solution (program
az), as it allows us to keep track of the steps taken to
configure the cloud workspace (see Listing 2). First, we
set the Azure subscription we want to use (let’s call it
reprosubscription). Next, we create a resource group
(reprorg) located in this case in the East US region, which
will contain all the Azure resources. We create an Azure
Storage account (reprostorage) in the resource group, as
well as an Azure Batch account (reprobatch) associated

2. Azure CLI (version 2.0.57): https:/ /github.com/Azure/azure-cli

to the storage account. Finally, we create a fileshare (in this
case of size 100 GB) in the storage.

$ az account set —--subscription reprosubscription
$ az group create —--name reprorg --location eastus
$ az storage account create —--name reprostorage

—--resource-group reprorg -—--sku Standard_LRS
—--location eastus

$ az batch account create —--name reprobatch
—--resource-group reprorg --location eastus
—-—-storage—account reprostorage

$ az storage share create --name fileshare
——account—-name reprostorage —--account-key

storagekey —--—quota 100

Listing 2. Configure the workspace on Microsoft Azure.

To create computational nodes and submit container-
based jobs to Azure Batch, we use the open-source
command-line utility Batch Shipyard.> Batch Shipyard is
entirely driven by configuration files: the utility parses user-
written YAML files to automatically create pools of compute
nodes on Azure Batch and to submit jobs to those pools.
Typically, we need to provide four configuration files:

e config.yaml contains information about the Azure
Storage account and Docker images to use.

e credentials.yaml stores the necessary creden-
tials to use the different Microsoft Azure service
platforms (e.g., Azure Batch and Azure Storage).

e pool.yaml is where the user configures the pool of
virtual machines to create.

e Jjobs.yaml details the configuration of the jobs to
submit to the pool.

Once the configuration files are written, we invoke
Batch Shipyard (program shipyard) on our local machine.
The folder examples/snake2d2k35/config_shipyard
in the repository accompanying this paper contains an ex-
ample YAML files to create a pool of two NC24r compute
nodes (featuring K80 GPUs and using InfiniBand network).
Listing 3 shows the commands to run in your local terminal
to create a pool of compute nodes on Azure Batch and
submit jobs to it. The Docker image of our CFD application
is pulled from the registry to the virtual machines during
the pool creation (shipyard pool add). We then upload
the input files to the compute nodes (shipyard data
ingress) and submit jobs to the pool (shipyard jobs
add). The tasks for a job will start automatically upon
submission.

$ cd $SCLOUDREPRO/examples/snake2d2k35

$ az storage directory create —--name snake2d2k35
—--share-name fileshare --account-name
reprostorage

3. Batch Shipyard (version 3.6.1): https:/ /github.com/Azure/batch-
shipyard

export SHIPYARD_CONFIGDIR=config_shipyard

$

$ shipyard pool add

$ shipyard data ingress
$

shipyard jobs add

Listing 3. Create a pool and submit jobs to it.

Once the simulations are done (i.e., the job tasks are
complete), we delete the jobs and the pool (Listing 4). The
output of the computation is now stored in the fileshare
in our Azure Storage account. We can download the data
to our local machine to perform additional post-processing
steps (such as flow visualizations).

shipyard pool del
shipyard jobs del

mkdir output

«vr W A

az storage file download-batch --source
fileshare/snake2d2k25 --destination output

——account—name reprostorage

Listing 4. Delete the pool and jobs, and download to output to a local

machine.

Reproducible research requires authors to make their
code and data available. Thus, the Dockerfile and YAML
configuration files should be made part of an extended
reproducibility package that includes workflow instruc-
tions for cloud computing, in addition to other input files.
Such a reproducibility package facilitates re-creating the
cloud environment to run the simulations under the same
conditions. The reproducibility packages of the examples
showcased in the next section are available in the GitHub
repository cloud-repro, which includes instructions on
how to reproduce the results.

3 RESULTS

The top concerns of researchers considering cloud comput-
ing are performance and cost. Until just a few years ago,
the products offered by cloud providers were unsuitable to
the needs of computational scientists using HPC, due to
performance overhead of virtualization or lack of support
for fast networking [8]. Azure only introduced nodes with
GPU devices during late 2016 and Infiniband support for
Linux virtual machines on the NC-series in 2017. Our first
objective was to assess performance on cloud nodes for
the type of computations in our research workflows with
tightly coupled parallel applications. We present results
from benchmarks and test-cases showing that we are able
to obtain similar performance in terms of latency and band-
width using the Azure virtual network, comparing to a
traditional university-managed HPC cluster (Colonial One).
Table 1 lists the hardware specifications of the nodes used
on Microsoft Azure and Colonial One. Our target research
application relies on three-dimensional CFD simulations
with our in-house research software. We include here a
sample of the types of results needed to answer our research

question, obtained by running on the public cloud using the
reproducible workflow described in Section 2. The goal is to
showcase the potential of cloud computing for CFD, share
the lessons we learned in the process, as well as analyze the
cost scenarios for full applications.

3.1 MPI Communication Benchmarks

We ran point-to-point MPI benchmarks from the Ohio State
University Micro-Benchmarks suite* on Microsoft Azure
and Colonial One, to investigate performance in terms the
latency and bandwidth. The latency test is carried out in a
ping-pong fashion and measures the time elapsed to get a
response; the sender sends a message with a certain data
size and waits for the receiver to send back the message
with the same data size. The bandwidth test measures
the maximum sustained rate that can be achieved on the
network; the sender sends a fixed number of messages to a
receiver that replies only after receiving all of them. The
tests ran on NC24r nodes on Azure and Ivygpu nodes
on Colonial One, all of them featuring a network interface
for RDMA (Remote Direct Memory Access) connectivity to
communicate over InfiniBand. (RDMA allows direct access
to a remote’s memory without involving the operating
system of the host and remote.) Fig. 2 reports the mean la-
tencies and bandwidths obtained over 5 repetitions on both
platforms. For small message sizes, the average latencies on
Colonial One and Azure are 1.25 and 1.95us, respectively.
For all message sizes, the latency reported on Azure is
slightly higher than the value obtained on Colonial One.
The maximum sustained bandwidth rates for Colonial One
and Azure are on average 6.2 and 5.2 GB/s, respectively. For
all message sizes, a similar bandwidth rate was achieved on
Azure and Colonial One. Over the last few years, Microsoft
Azure has indeed improved its HPC solutions to provide
networking capabilities that are comparable or even better
than our 6-year-old university-managed cluster.

3.2 Poisson Benchmarks

CFD algorithms often require solving linear systems with
iterative methods. For example, the Navier-Stokes solver
implemented in our software requires the solution of a
Poisson system at every time step to project the velocity
field onto the divergence-free space (to satisfy the incom-
pressibility constraint). We investigated the time-to-solution
for a three-dimensional Poisson system (obtained with a 7-
point stencil central-difference scheme) on different nodes

4. 0OSU Micro-Benchmarks
ohio-state.edu/benchmarks/

(version 5.6): http://mvapich.cse.

103 q
—e— Azure Batch (NC24r)

Colonial One (Ivygpu)

—_

(=]
(S
s

Point-to-point
latency (us)

101<

100<

100 10' 102 103 10* 105 106
Message size (bytes)

1034 -

1024 y

Point-to-point
bandwidth (MB/s)

10° 10' 102 10° 10%* 10° 106
Message size (bytes)

Fig. 2. Point-to-point latency (top) and bandwidth (bottom) obtained on
Colonial One (Ivygpu nodes) and on Microsoft Azure (NC24r nodes)
with the Intel MPI library. Benchmark results are averaged over 5 repeti-
tions.

of Microsoft Azure and Colonial One. The solution method
was a Conjugate-Gradient (CG) method with a classical
algebraic multi-grid (AMG) preconditioner using an exit
criterion set to an absolute tolerance of 10712, The iterative
solver ran on CPU nodes (H16r instances on Azure and
Short nodes on Colonial One) using the CG algorithm from
the PETSc library [10] and an AMG preconditioner from
Hypre BoomerAMG. Fig. 3 (top) reports the mean runtimes
(averaged over 5 repetitions) to iteratively solve the system,
on a uniform grid of 50 million cells (1000 x 1000 x 50), as
we increase the number of nodes in the pool (strong scaling).
Runtimes obtained on Colonial One and Azure are similar.
We also solved the Poisson system with the NVIDIA AmgX
library on multiple GPU devices using NC24r instances on
Azure and Ivygpu nodes on Colonial One. The Poisson sys-
tem for a base mesh of 6.25 million cells (500 x 500 x 25) was
solved on a single compute node using 12 MPI processes

TABLE 1
Hardware specifications of nodes used on Microsoft Azure and Colonial One. On both platforms, MPI applications take advantage of RDMA
(Remote Direct Memory Access) network with FDR InfiniBand and ECC is enabled for GPU computing.

Platform Node Intel Xeon CPU #threads NVIDIA GPU RAM (GiB) SSD Storage (GiB)
A NC24r Dual 12-Core E5-2690v3 (2.60GHz) 24 2 x K80 224 1440
zure
Hl6r Dual 8-Core E5-2667v3 (3.20GHz) 16 - 112 2000
. Ivygpu Dual 6-Core E5-2620v2 (2.10GHz) 12 2 x K20 120 93
Colonial One
Short Dual 8-Core E5-2650v2 (2.60GHz) 16 - 120 93

and 2 GPU devices; we then doubled the mesh size as we
doubled the number of nodes, keeping the same number
of MPI processes and GPUs per node (weak scaling). The
number of iterations to reach convergence increases with
the size of the system, so we normalize the runtimes by the
number of iterations. Fig. 3 (bottom left) shows the normal-
ized mean runtimes (5 repetitions) obtained on Azure and
Colonial One. The smaller runtimes on Azure are explained
by the fact that the NC-series of Microsoft Azure features
NVIDIA K80 GPU devices with a higher compute capability
than the K20 GPUs on Colonial One. The bottom-right
panel of the figure reports the normalized mean runtimes
obtained on Azure when we load the bandwidth with a
larger problem; the base mesh now contains 25 millions cells
(1000 x 500 x 50). We observe larger variations in the time-
to-solution for the Poisson system on Microsoft Azure with
GPU computing; runtimes are more uniform on Colonial
One.

25
—— Colonial One
201 = Azure
® 15
£
F‘ 101 -\X\
5 | =
PETSc I
0 T T T T
1 2 4 8
Number of nodes
0.05 0.2 I
-— L —
—~ —_ T
L 7 2 T 1
o 1T = I o 1T
£ 0.025 g 0.1
B [
AmgX AmgX
0.0+ T T T 0.0+ - : .
1 2 4 8 1 2 4 8

Number of nodes Number of nodes

Fig. 3. Runtime to solve a Poisson system on Colonial One and Microsoft
Azure. Benchmarks were repeated 5 times and we show the mean
runtime and the extrema. Top: system solved on a fixed mesh size of
50 million cells (strong scaling) using PETSc on Azure H16r nodes (16
processes per node), and Colonial One short nodes (16 processes per
node). Bottom-left: systems solved using AmgX on Azure NC24r nodes
(12 processes and 2 GPUs per node), and Colonial One Ivygpu nodes
(12 processes and 2 GPUs per node); the base mesh size contains 6.25
million cells and we scale it with the number of nodes (weak scaling).
Bottom-right: systems solved with AmgX on Azure NC24r nodes (24
processes and 4 GPUs per node), using a finer base mesh size of
25 million cells. Runtimes obtained with AmgX were normalized by the
number of iterations required to reach a absolute tolerance of 10~ 12.

3.3 Flow Around a Flying Snake Cross-Section

Our research lab is interested in understanding the aero-
dynamics of flying animals via CFD simulations. One of our
applications deals with the aerodynamics of a snake species,
Chrysopelea paradisi, that lives in South-East Asia. This arbo-
real reptile has the remarkable capacity to turn its entire
body into a wing and glide over several meters [11]. The so-
called “flying snake” jumps from tree branches, undulates

6

in the air, and is able to produce lift by expanding its ribcage
to flatten its ventral surface (morphing its normally circular
cross-section into a triangular shape).

To study the flow around the flying snake, we developed
a CFD software called PetIBM [12], an open-source toolbox
that solves the two- and three-dimensional incompressible
Navier-Stokes equations using a projection method (seen as
an approximate block-LU decomposition of the fully dis-
cretized equations [13]) and an immersed-boundary method
(IBM). Within this framework, the fluid equations are solved
over an extended grid that does not conform to the surface
of the body immersed in the computational domain. To
model the presence of the body, the momentum equation is
augmented with a forcing term that is activated in the vicin-
ity of the immersed boundary. This technique allows the
use of simple fixed structured Cartesian grids to solve the
equations. PetIBM implements immersed boundary meth-
ods (IBMs) that fit into the projection method; in the present
study, we use the IBM scheme proposed in [14]. PetIBM runs
on distributed-memory architectures using the efficient data
structures and parallel routines from the PETSc library. The
software also implements the possibility to solve linear sys-
tems on multiple GPU devices distributed across the nodes
with the NVIDIA AmgX library and our AmgXWrapper
[15]. One of the requirements for reproducible computa-
tional results is to make the code available under a public
license (ideally allowing reuse and modification by others).
In that regard, PetIBM is open source, version-controlled on
GitHub,® and shared under the permissive (non copy-left)
BSD-3 clause license. We also provide a Docker image of
PetIBM on DockerHub and its Dockerfile is available in the
GitHub repository of the software.

3.3.1 2D Flow Around a Snake Cross-Section

We submitted a job on Azure Batch (with Batch Shipyard) to
compute the two-dimensional flow around an anatomically
accurate sectional shape of the gliding snake. The cross-
section has a chord-length ¢ = 1 and forms a 35-degree
angle of attack with the incoming freestream flow. The
Reynolds number, based on the freestream speed, the body
chord-length, the kinematic viscosity, is set to Re = 2000.
The immersed boundary is centered in a 30c x 30c com-
putational domain that contains just over 2.9 million cells.
The grid is uniform with the highest resolution in the
vicinity of the body and stretched to the external boundaries
with a constant ratio (see Table 2 for details about the
grid). The discretization of the immersed boundary has the
same resolution as the background fluid grid. A convective
condition was used at the outlet boundary while freestream
conditions were enforced on the three other boundaries. The
job was submitted to a pool of two NC24r nodes, using 12
MPI processes and 2 GPU devices per node. It completed
200,000 time steps (i.e., 80 time units of flow simulation
with time-step size At = 0.0004¢/Us,) in just above 7 hours
(wall-clock time).

Fig. 5 shows the history of the force coefficients on
the two-dimensional cross-section. The lift coefficient only
maintains its maximum mean value during the early stage
of the simulation (up to 40 time units). Between 40 and

5. PetIBM (version 0.4): https:/ /github.com/barbagroup /PetIBM

50 time units, the mean value starts to drop. The time-
averaged force coefficients (between 40 and 80 time units)
are reported in Table 3. Fig. 4 shows snapshots of the
vorticity field after 20, 44, 45, and 80 time units of flow
simulation. After 20 time units, the vortices shed from the
snake section are almost aligned in the near wake (with
a slight deflection towards the lower part of the domain).
Snapshots of the vorticity at time units 44 and 45 show that
the initial alignment is perturbed by vortex-merging events
(same-sign vortices merging together to form a stronger
one). Following that, the wake signature is altered for the
rest of the simulation: vortices are not aligned anymore, the
wake becomes wider (leading to lower aerodynamic forces)
with a 15+1P vortex signature (a single clockwise-rotating
vortex on the upper part and a vortex pair on the lower

part).

y/c

y/c

y/c

y/c

20, 44, 45, and 80 time units of flow simulation with PetIBM for the snake
cross-section at a 35-degree angle of attack and Reynolds number 2000.
Vortex merging events trigger a change in the wake signature causing
the drop in the mean value of the lift coefficient.

Fig. 4. Filled contour of the vorticity field (—5 < w.c/Us < 5) after

3.3.2 3D Flow Around a Snake Cylinder

Although the two-dimensional simulations can give us
some insights into to flow dynamics happening in the wake

7

behind the snake, we know that at this Reynolds number
(Re = 2000), three-dimensional structures will develop in
the wake. We submitted jobs on Azure Batch to perform
direct numerical simulation of the three-dimensional flow
around a snake model: a cylinder with the same anatom-
ically accurate cross-section. The computational domain
extends in the z-direction over a length of 3.2c and the
grid now contains about 46 million cells (with a uniform
discretization in the z-direction and periodic boundary con-
ditions; see Table 2). The job was submitted to a pool of two
NC24r nodes using 24 MPI processes and 4 GPU devices
per node. The task completed 100, 000 time steps (100 time
units with a time-step size At = 0.01¢/U,) in about 5 days
and 16 hours.

Fig. 5 compares the history of the force coefficients
between the two- and three-dimensional configurations.
The force coefficients resulting from the two-dimensional
simulation of the snake are higher than those obtained for
the snake cylinder; we computed a relative difference of
+37.9% and +14.4% for the time-averaged drag and lift
coefficient, respectively (see Table 3). Two-dimensional com-
putational simulations of fundamentally three-dimensional
flows lead to incorrect estimation of the force coefficients, as
is well known [16]. The grid used for the three-dimensional
simulation contains about 46 million cells and is somewhat
coarse for direct numerical simulation at this Reynolds num-
ber, but acceptable for our exploratory analysis. A finer grid
would be preferable to capture the flow dynamics in detail,
but the purpose of this paper is not targeting the physics.
We did however run a simulation on a finer grid (about
233 million cells) resulting in a relative difference (with
respect to the “coarse”-grid simulation) of +6.5% and +3%
for the time-averaged drag and lift coefficients, respectively.
We decided to continue this work with the coarser grid due
to the large cost difference (see Section 4). Details about this
fine-grid simulation are available as supplementary material
on the GitHub repository for this study.®

Fig. 6 shows the instantaneous spanwise vorticity av-
eraged along the z-direction after 80 and 100 time units.
Compared to the snapshots from the two-dimensional sim-
ulation, we observe that free-shear layers roll up into vor-
tices further away from the snake body and that the von
Kéarmén street exhibits a narrower wake than in the two-
dimensional simulations. We also note the presence of an
unsteady recirculation region just behind the snake cylinder,
and alternating regions of positive and negative cross-flow
velocity showing the presence of von Karman vortices (Fig.
7). Fig. 8 shows a side-view of the isosurfaces of the Q-
criterion after 100 time units and highlights the complexity
of the three-dimensional turbulent wake generated by the
snake model.

The selection of results presented here corresponds to
a typical set of experiments included in a CFD study. A
comprehensive study might include several similar sets,
leading to additional insights about the flow dynamics, and
clues to future avenues of research. We include this selection
here to represent a typical workflow, and combine our
discussion with a meaningful analysis of the costs associated

6. https:/ /nbviewerjupyter.org/github/barbagroup/cloud-repro/
blob/master/misc/independence/grid.ipynb

TABLE 2
Details about the computational grids used for the snake simulations with PetlBM. Distances are expressed in terms of chord-length units.

Case Domain Uniform region Smallest cell-width Stretching ratio Size
2D 30x30 [-0.52,3.48] x [-2,2] 0.004 x 0.004 1.01 1704 x 1706
3D 30x30x32 [—0.52,3.48] x [—2,2] X [0,3.2] 0.008 x 0.008 x 0.08 1.01 1071 x 1072 x 40

— O (BD) - Cp (2D)
— C.(2D)

£ 3.01
=]

81.51
—
o

0 10 20 30 40 50 60 70 80
Non-dimensional time

Fig. 5. History of the force coefficients obtained with two- and three-
dimensional simulations at Reynolds number 2000 for a snake cross-
section with a 35-degree angle of attack. As expected, the two-
dimensional simulations over-estimate the force coefficients of what is
essentially a three-dimensional flow problem.

with running CFD studies in a public cloud.

TABLE 3
Time-averaged force coefficients on the snake model at Reynolds
number 2000 and angle of attack 35° for the two- and
three-dimensional configurations. (We average the force coefficients
between 40 and 80 time units of flow simulation and report the relative
difference of the 2D values with respect to the 3D ones.)

<Cp >
3D 0.8390
2D 1.1567 (+37.9%)

<Cp >
1.5972
1.8279 (+14.4%)

Case

4 CoOST ANALYSIS AND USER EXPERIENCE

For the year 2018, Microsoft Azure granted our research
lab a sponsorship (in terms of cloud credits) to run CFD
simulations with our in-house software. With a “pay-as-
you-go” subscription, users can immediately see how much
it costs to run a scientific application on a public cloud;
such information is often hidden to end-users on university-
managed clusters. From May to December, we spent a total
of 20,614 USD to run CFD simulations, including a couple
dozens of snake simulations. (The output of those simula-
tions is now being processed to further analyze the complex
flow dynamics generated behind the snake model.) During
that period, we have been charged for data management,
networking, storage, bandwidth, and virtual machines (Ta-
ble 4). More than 99% of the charges incurred were for the
usage of virtual machines, mainly instances from the NC-
series (Table 5). To run PetIBM simulations of the snake
model, we used the NC24r virtual machines to get access to
NVIDIA K80 GPUs and InfiniBand networking. For exam-
ple, the two-dimensional snake run reported in the present
article cost 55.4 USD (2 NC24r instances with a hourly

Fig. 6. Filled contour of the spanwise-averaged z-component of the
vorticity (—5 < w.¢/Us < 5) field after 80 and 100 time units of a three-
dimensional flow simulation with PetIBM for the snake cylinder with a
cross-section at a 35-degree angle of attack and Reynolds number 2000.

Fig. 7. Filled contour of the streamwise velocity (top) and cross-flow ve-
locity (bottom) behind the snake cylinder in the z/z plane at y/c = —0.2
in the wake of the snake cylinder with a 35-degree angle of attack at
Reynolds number 2000 after 100 time-units of flow simulations. There
are 52 contours from —1.0 to 1.0. The grey area shows a projection
of the snake cylinder in the z/z plane. The solid black line defines the
contour with u, = 0 (top) and u, = 0 (bottom).

price of 3.96 USD for about 7 hours). The three-dimensional
computation cost 1077.1 USD (2 NC24r instances for about
136 hours). (Note that with 3-year-reserved instances, the
two- and three-dimensional snake simulations would have
only cost 24.6 and 478.1 USD, respectively.) The three-
dimensional simulation on the finer grid (233 million cells)
ran on 6 NC24r instances and cost about 7965 USD to
compute 100,000 time steps (cost not included in 4). This
is more than 7 times the cost we paid for the “coarse”-grid
run! It would have been too expensive to run a batch of

Fig. 8. Lateral view of the isosurfaces of the Q-criterion (Q = 1) in the wake of the snake cylinder (with a 35-degree angle of attack) at Reynolds
number 2000. The isosurfaces are colored with the streamwise vorticity (—5 < wzc/Us < 5). The figure was generated using the visualization

software Vislt [17].

TABLE 4
Charges incurred for the usage of different services on Microsoft Azure.

Service name Cost (USD) % of total cost
Bandwidth 46.85 0.23
Data Management 0.56 0.003
Networking 1.38 0.007
Storage 25.93 0.16
Virtual Machines 20, 582.64 99.6
Total 20,614

simulations on the finer grid for our exploratory analysis of
the flow around the snake cylinder.

Running CFD simulations on Microsoft Azure was a first
time for our research lab. As novices in cloud computing, it
took us several months to become familiar with the technical
vocabulary and the infrastructure of Microsoft Azure before
we could submit our first simulation of the flow around a
snake profile.

Command-line utilities such as Azure CLI and Batch
Shipyard were of great help to create and manage resources
on Microsoft Azure for executing our reproducible research
workflow. (In our lab, we tend to avoid interacting directly
with graphical-user interfaces to keep a trace of the com-
mands run and make the workflow more reproducible.)
Azure CLI helped us set up the Azure Batch and Storage
accounts as well as moving data between the cloud platform
and our local machines. Thanks to Batch Shipyard, we did
not have to dig into the software development kit of Azure
Batch to use the service. Writing YAML configuration files
was all we needed to do to create a pool of virtual machines
with Batch Shipyard and to submit jobs to it. With Batch

7. The NC24r configuration provides a low latency, high throughput
network interface optimized for tightly coupled parallel applications.

Shipyard, we have painlessly submitted jobs on Azure Batch
to run multi-instance tasks in Docker containers, everything
from the command-line terminal on a local machine. Note
that Batch Shipyard also supports Singularity containers.
Singularity is an open source container platform designed
for HPC workloads. Singularity containers can be used
on traditional HPC clusters such as Colonial One; Docker
containers usually cannot. Indeed, running a Docker con-
tainer involves running a Docker daemon (a background
process) which requires root privileges (that users do not
and should not have on production clusters). The container
technology from Singularity was designed from the ground
up to prevent escalation in user privileges.

Our in-house CFD software, PetIBM, relies on MPI to
run applications on distributed-memory architectures. The
Poisson system is solved on distributed GPU devices using
the NVIDIA AmgX library. Thus, we used Azure instances
of the NC-series, which feature a network interface for re-
mote direct memory access (RDMA) connectivity, allowing
nodes in the same pool to communicate over InfiniBand
network. The Docker images were specifically built to be
able to run MPI applications on RDMA-capable virtual
machines (such as the NC24r instance with a CentOS-based
7.3 HPC image) with multiple-instance tasks on Azure Batch
service. As of this writing, only Intel MPI 5.x versions are
supported with the Azure Linux RDMA drivers. Both the
Docker image and the configurations files for deploying the
cloud resources give an interested reader the opportunity
to reproduce our computations in an identical environment.
Even if this opportunity is not accompanied by portability—
e.g., one may depend on a different MPI library to use
a different system—the human-readable Docker files and
configuration files do offer transparency.

Microsoft Azure offers the possibility of taking ad-
vantage of surplus capacity with “low-priority” virtual
machines that are substantially cheaper than “dedicated”
ones (see Table 5 for pricing options on the NC series

10

TABLE 5
NC series on Microsoft Azure. (Prices as of March 24, 2019, for CentOS or Ubuntu Linux Virtual Machines in the East US region.)

pay-as-you-go

RAM disk sizes

pay-as-you-go

1-year reserved 3-year reserved

Instance cores)) GPU (dedicated) (low-priority)
(GiB) (GiB) ($/hr) ($/hr)
($/hr) ($/hr)
NC6 6 56 340 1 x K80 0.90 0.18 0.5733 0.3996
NC12 12 112 680 2 x K80 1.80 0.36 1.1466 0.7991
NC24 24 224 1,440 4 x K80 3.60 0.72 2.2932 1.5981
NC24r7 24 224 1,440 4 x K80 3.96 0.792 2.5224 1.7578

with Linux-based virtual machines). For example, the low-
priority NC24r instance costs 0.792 USD per hour, 5 times
cheaper than its dedicated counterpart. The reader should
keep in mind that low-priority virtual machines may not be
available for allocation or may be preempted at any time.
Thus, low-priority instances should be avoided for long-
running MPI jobs in pools where inter-node communication
is enabled. We only used dedicated virtual machines to run
our CFD simulations. Moreover, our job tasks used a shared
filesystem (GlusterFS on compute nodes) for I/O operations
and Batch Shipyard would fail to create the pool if low-
priority nodes were requested.

Microsoft Azure implements quotas and limits on re-
sources with Azure Batch service, such as the maximum
number of dedicated cores that can be used in a certain
region. To be able to run our simulations, we had to contact
Azure Support through Azure Portal to request a quota
increase for a given type of instances in a specific region and
for a given subscription. We had to go through this process
at least five times during our sponsorship period. Readers
should be aware of these quotas and limits before scaling
up workloads on Azure Batch.

XPLORING public cloud services as an alternative (or
E complementary) solution to university-managed HPC
clusters to run CFD simulations with our in-house soft-
ware, we used Microsoft Azure to generate reproducible
computational results. Our reproducible workflow makes
use of Docker containers to faithfully port the runtime
environment of our CFD application to Azure, and the
command-line utilities Azure CLI and Batch Shipyard to
run multi-instance tasks within Docker containers on the
Azure Batch platform. We ran CFD simulations on instances
of the NC-series that feature NVIDIA K80 GPU devices and
have access to InfiniBand network. Latency and bandwidth
micro-benchmarks show that our university-managed HPC
system and Microsoft Azure can deliver similar perfor-
mances. Thanks to a Microsoft Azure sponsorship, we were
able to run dozens of CFD simulations of a gliding snake’s
model. Our study of the three-dimensional flow around a
cylinder with an anatomically accurate cross-section of the
flying snake is currently ongoing. We plan to analyze the
output data from these runs, and publish them in a later
paper.

In this work, we show that public cloud resources are
today able to deliver similar performances to a university-
managed cluster, and thus can be regarded as a suitable
solution for research computing. But in addition to per-

formance, researchers also worry about cost. We share the
actual costs incurred to run two- and three-dimensional
CFD simulations using cloud services with a pay-as-you-
go model, and report on reduced costs possible with re-
served instances. Universities (and possibly funding agen-
cies) may obtain even more favorable pricing through bids
or medium-term contracts. Researchers thinking of adding
cloud computing to proposal budgets might encounter other
barriers, however. For example, some universities exempt
large equipment purchases from indirect (facilities and ad-
ministrative, F&A) costs, while they may add these over-
head rates to cloud purchases. Until these internal policies
are adjusted, cloud computing may not be adopted widely.

In a heightened effort to make our research transpar-
ent and reproducible by others, we maintain in a public
version-controlled repository all the files necessary to re-
run the examples highlighted in this paper. The repository is
found at https://github.com/barbagroup/cloud-repro and
is also permanently archived in Zenodo [18]. Our expanded
reproducibility packages contain input files, Batch Shipyard
configuration files, command-line instructions to set up
and submit jobs to Microsoft Azure, as well as the post-
processing scripts to reproduce the figures of this paper. We
included in the Zenodo archive all secondary data required
to reproduce the figures without running the simulations
again. Although they are not required to reproduce the
computations, the Dockerfiles to build Docker images are
also made available. We even include a Dockerfile to re-
produce the local environment with the visualization tools
needed for post-processing. These files contain details about
all the libraries needed to create the computational runtime
environment. Both the Dockerfiles and the workflow files
may not execute as they were designed to do in a period
of a few years, due to technology changes. Obsolescence
of digital research objects, including software libraries and
computational environments, is an acknowledged source of
non-reproducibility, in the long run. The recent report of
the National Academies highlights this [6, p. 57]. Indeed,
tools in our workflow that we have no control over (Azure
CLI, Batch Shipyard) will likely change, perhaps breaking
backward compatibility. That is inevitable. But when they
do, our fully documented workflow (via human-readable
configuration files) will continue to offer transparency of
what we did and how we did it.

ACKNOWLEDGMENTS

This work was possible thanks to a sponsorship from
the Microsoft Azure for Research program® and supported
by NSF Grant No. CCF-1747669. We would like to thank
Kenji Takeda, Fred Park, and Joshua Poulson of Microsoft
for constructive interactions and listening to our feedback
about their products. We are also immensely grateful to
the reviewers, Patrick O’Leary [19] and Freddie Witherden
[20], for their contributions, which helped make the paper’s
audience and purpose more clear, in addition to other im-
provements. We include our detailed replies to the reviewer
suggestions as a markdown file in the GitHub repository for
this paper (exported from GitHub issues).

Olivier Mesnard is a doctoral student at the George
Washington University. His research interests include com-
putational fluid dynamics and immersed boundary meth-
ods with application to animal locomotion. Mesnard has an
Engineering degree from Institut Supérieur de Mécanique
de Paris and an MS from Université Pierre et Marie Curie.
Contact him at mesnardo@gwu.edu.

Lorena A. Barba is a professor of mechanical and
aerospace engineering at the George Washington University.
Her research interests include computational fluid dynam-
ics, biophysics, and high-performance computing. She is co-
Editor of the CiSE Reproducible Research Track, Associate
Editor for The ReScience Journal, Associate Editor-in-Chief
of the Journal of Open Source Software, and Editor-in-Chief
of the Journal of Open Source Education. Barba received a
PhD in aeronautics from the California Institute of Technol-
ogy. Contact her at labarba@gwu.edu.

REFERENCES

[1] D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stod-
den, “Reproducible research in computational harmonic analysis,”
Computing in Science & Engineering, vol. 11, no. 1, 2009.

[2] L. A. Barba, “Terminologies for reproducible research,” arXiv
preprint arXiv:1802.03311, 2018.

[3] M. Schwab, N. Karrenbach, and J. Claerbout, “Making scientific
computations reproducible,” Computing in Science & Engineering,
vol. 2, no. 6, pp. 61-67, 2000.

[4] R. D. Peng, “Reproducible research in computational science,”
Science, vol. 334, no. 6060, pp. 1226-1227, 2011.

[5] National Academies of Sciences, Engineering, and Medicine, Open
Source Software Policy Options for NASA Earth and Space Sciences.
Washington, DC: The National Academies Press, 2018. [Online].
Available: https:/ /doi.org/10.17226 /25217

[6] , Reproducibility and Replicability in Science. ~ Wash-
ington, DC: The National Academies Press, 2019.
[Online]. Available: https:/ /www.nap.edu/ catalog/25303/

reproducibility-and-replicability-in-science

[7] C. Boettiger, “An introduction to Docker for reproducible re-
search,” ACM SIGOPS Operating Systems Review, vol. 49, no. 1,
pp. 71-79, 2015.

[8] C. Freniere, A. Pathak, M. Raessi, and G. Khanna, “The feasi-
bility of Amazon’s cloud computing platform for parallel, GPU-
accelerated, multiphase-flow simulations,” Computing in Science &
Engineering, vol. 18, no. 5, p. 68, 2016.

[9] O. Mesnard and L. A. Barba, “Reproducible and replicable
computational fluid dynamics: it’s harder than you think,”
Computing in Science & Engineering, vol. 19, no. 4, p. 44, 2017.
[Online]. Available: https://doi.org/10.1109/MCSE.2017.3151254

8. Microsoft Azure for Research: https://www.microsoft.com/
en-us/research/academic-program/microsoft-azure-for-research/

11

[10] S. Balay, S. Abhyankar, M. F. Adams,]. Brown, P. Brune,
K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T.
Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini,
H. Zhang, and H. Zhang, “PETSc users manual,” Argonne
National Laboratory, Tech. Rep. ANL-95/11 - Revision 3.10, 2018.
[Online]. Available: http://www.mcs.anl.gov/petsc

[11] J. J. Socha, “Gliding flight in chrysopelea: Turning a snake into
a wing,” Integrative and Comparative Biology, vol. 51, no. 6, pp.
969-982, 2011. [Online]. Available: https://dx.doi.org/10.1093/
icb/icr092

[12] P-Y.Chuang, O. Mesnard, A. Krishnan, and L. A. Barba, “PetIBM:
toolbox and applications of the immersed-boundary method on
distributed-memory architectures,” The Journal of Open Source
Software, vol. 3, no. 25, p. 558, May 2018. [Online]. Available:
https://doi.org/10.21105/joss.00558

[13] J. B. Perot, “An analysis of the fractional step method,” Journal of
Computational Physics, vol. 108, no. 1, pp. 51-58, 1993.

[14] R-Y. Li, C.-M. Xie, W.-X. Huang, and C.-X. Xu, “An efficient
immersed boundary projection method for flow over complex/-
moving boundaries,” Computers & Fluids, vol. 140, pp. 122-135,
2016.

[15] P-Y. Chuang and L. A. Barba, “AmgXWrapper: An interface
between PETSc and the NVIDIA AmgX library,” The Journal of
Open Source Software, vol. 2, no. 16, Aug. 2017. [Online]. Available:
https://doi.org/10.21105/joss.00280

[16] R. Mittal and S. Balachandar, “Effect of three-dimensionality on
the lift and drag of nominally two-dimensional cylinders,” Physics
of Fluids, vol. 7, no. 8, pp. 1841-1865, 1995.

[17] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pug-
mire, K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan,
T. Fogal, A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Riibel,
M. Durant, J. M. Favre, and P. Navratil, “Vislt: An End-User
Tool For Visualizing and Analyzing Very Large Data,” in High
Performance Visualization-Enabling Extreme-Scale Scientific Insight,
Oct. 2012, pp. 357-372.

[18] O. Mesnard and L. A. Barba, “Cloud-repro: Reproducible
workflow on a public cloud for computational fluid dynamics,”
Zenodo archive, April 2019. [Online]. Available: https://doi.org/
10.5281/zenodo.2642710

[19] P. O’Leary, “Review: “reproducible workflow on a public
cloud for computational fluid dynamics”.” [Online]. Available:
https://doi.org/10.22541%2Fau.156415458.85375575

[20] E. Witherden, “Review of reproducible workflow on
a public cloud for computational fluid dynamics,” Jul
2019. [Online]. Available: https://figshare.com/articles/

Review_of_Reproducible_Workflow_on_a_Public_Cloud_for_
Computational_Fluid_Dynamics/9159740/1

