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ABSTRACT

Baobabs (Adansonia) are a cohesive group of tropical trees with a disjunct distribution in

Australia, Madagascar, and continental Africa, and diverse flowers associated with two
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ANCIENT INTROGRESSION IN THE BAOBABS

pollination modes. We used custom targeted sequence capture in conjunction with new and
existing phylogenetic comparative methods to explore the evolution of floral traits and
pollination systems while allowing for reticulate evolution. Our analyses suggest that
relationships in Adansonia are confounded by reticulation, with network inference methods
supporting at least one reticulation event. The best supported hypothesis involves introgression
between A. rubrostipa and core Longitubae, both of which are hawkmoth pollinated with
yellow/red flowers, but there is also some support for introgression between the African lineage
and Malagasy Brevitubae, which are both mammal-pollinated with white flowers. New
comparative methods for phylogenetic networks were developed that allow maximum-likelihood
inference of ancestral states and applied to study the apparent homoplasy in floral biology and
pollination mode seen in Adansonia. This analysis supports a role for introgressive hybridization
in morphological evolution even in a clade with highly divergent and geographically widespread
species. Our new comparative methods for discrete traits on species networks are implemented in

the software PhyloNetworks.
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It is widely accepted that hybridization and its genetic consequence, introgression, are
widespread phenomena in plants (Arnold, 1992; Reiseberg and Wendel, 1993; Soltis & Soltis,
2009; Payseur & Rieseberg, 2016), and equally in other clades, including animals (Mallett, 2008;
Schwenk et al., 2008; Payseur & Rieseberg, 2016). Furthermore, it has also long been
appreciated that introgression can be an agent of adaptive evolution in cases where beneficial
traits are transferred from a donor to a recipient taxon (Arnold 2004; Reiseberg and Wendel,
1993; Arnold and Kunte, 2017; Suarez-Gonzalez et al. 2018). These facts raise the possibility
that adaptive introgression could sometimes carry ecologically important traits between species,
and that such events might explain apparent homoplasy when these traits are mapped onto binary
trees that do not incorporate the true hybridization history. However, we know relatively little
about this possibility. Macroevolutionary methods for systematically detecting reticulation using
phylogenomic data are relatively new (Yu et al. 2011, 2014; Park and Nakhleh, 2012; Solis-
Lemus et al. 2016; Zhang et al. 2017), and still not widely deployed due to the large amounts of
data they require and their computational intensity. Furthermore, comparative methods for
ancestral state reconstruction on phylogenetic networks are needed to assess the likelihood that a
trait was acquired via a minor hybridization edge, but such methods are also in their infancy
(Bastide at al. 2018). Here, we used phylogenomic data to infer the history of reticulation in
baobabs and then developed and deployed network-aware ancestral state reconstruction methods
to evaluate the possible role of adaptive introgression in explaining apparent floral homoplasy.

The baobab genus Adansonia (Malvaceae) includes eight morphologically distinct
species (Fig. 1) (Baum 1995b; Cron et al. 2016). The group possesses an unusual geographic
distribution, with one tetraploid species (4. digitata) that is widespread across continental Africa,

one diploid species (4. gregorii) endemic to Northwestern Australia, and six diploid species that
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are restricted to Madagascar. Previous phylogenetic analyses identified three distinct lineages
corresponding to geography; however, relationships among these remain unresolved (Baum et al.
1998; Pettigrew et al. 2015).

Within Madagascar, the six recognized species are assigned to two sections based on
morphology (Baum 1995b). Brevitubae includes a pair of allopatric species, A. grandidieri in the
southwest and A. suarezensis in the north, which form a clade well-supported by ITS sequences
(Baum et al. 1998). Both species are dry-season flowering whose flowers are characterized by
short staminal tubes, white petals, cream-colored inner calyces, and are inferred to be mammal
pollinated (Baum 1995a; Andriafidison et al. 2006). The four species of Longitubae are wet-
season flowering and share elongated flowers, with long staminal columns, red or yellow petals,
and a reddish inner calyx and style. This floral morphology is associated with pollination by
long-tongued hawkmoths (Baum 1995a; Ryckewaert et al. 2011). Despite their floral similarities,
prior molecular analyses have found limited support for the monophyly of the Malagasy
Longitubae, although they do support a clade composed of 4. madagascariensis, A. za, and A.
perrieri (hereafter referred to as “core” Longitubae), to the exclusion of A. rubrostipa (Baum et
al. 1998). Despite differences in flowering phenology among sympatric Longitubae species, prior
work has suggested gene tree discordance in this group (Baum et al. 1998) and the possibility of
introgression (Leong Pock Tsy et al. 2013).

In order to infer explicit phylogenetic networks, that is genealogical histories that take
account of both incomplete lineage sorting (ILS) and reticulation (hybridization and
introgression), information from many independent gene genealogies are needed (Raymond et al.
2002; Yu et al. 2011, 2014; Solis-Lemus et al. 2016; Zhang et al. 2017). Targeted sequence

capture, or hyb-seq, has increased in popularity as a source of hundreds of low-copy nuclear
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Figure 1. Eight species of Adansonia. A) A. digitata, continental Africa, B) A. gregorii,

Australia, C) 4. grandidieri, Madagascar, D) A. suarezensis, Madagascar, E) 4.
madagascariensis, Madagascar, F) A. perrieri, Madagascar, G) A. za, Madagascar, H) 4.

rubrostipa, Madagascar.

92  genes for the purpose of multigene phylogenetics in non-model systems (Ekblom and Galindo
93  2011; Zimmer and Wen 2015; Grover et al. 2015, Harvey et al. 2016, Chau et al. 2018; Wolf et
94  al. 2018). Biotinylated RNA “baits” selectively enrich targeted genomic loci in next-generation
95  sequencing libraries. Furthermore, organellar and ribosomal sequences can usually be recovered
96  from the off-target reads (Weitemier et al. 2014). Targeted sequence capture is typically used
97  with short-read sequencing, which makes it appropriate and useful for samples with degraded or
98  poor-quality DNA, such as herbarium specimens (Hart et al. 2016, Villaverde et al. 2018).

99 Even when care is taken in bait design to target single-copy genes, the prevalence of

100  tandem, segmental, and whole genome duplications in plants (Van de Peer et al. 2009; Jiao et al.
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2011; Wendel 2015; Conover et al. 2018) often leads to the joint recovery of paralogs.
Accordingly, caution needs to be exercised (Nicholls et al. 2015) in ortholog assignment and in
screening for chimeric sequences (Philippe et al. 2011; Struck 2013). Several bioinformatic
pipelines have been developed to facilitate assembly from hyb-seq data (Yang and Smith 2014;
Johnson et al. 2016; Kamneva et al. 2017, Fér and Schmickl 2018).

Here we used custom-designed baits to obtain sequences of hundreds of independent low-
copy nuclear loci for all species of baobab. Despite the large size of our data set, relationships
among the three geographic lineages could not be resolved. Within Madagascar the optimal
population trees support a sister group relationship between Brevitubae and core Longitubae to
the exclusion of 4. rubrostipa. This implies floral homoplasy since core Longitubae and A.
rubrostipa share elongated, yellow and red, hawkmoth-pollinated flowers, whereas Brevitubae
and A. digitata have short, white, mammal-pollinated flowers (4. gregorii has a relatively short,
white, mainly hawkmoth-pollinated flowers; Baum 1995a). These-data show that relationships in
Adansonia are confounded by reticulation, with network inference methods supporting at least
one major reticulation event, and possibly a second, though this inference is confounded by
methodological limitations and read assembly challenges, possibly due to paralogy. We
developed new phylogenetic comparative methods for species networks, in which discrete
morphological traits may be inherited via reticulation. Using this method we show that

reticulation edges help explain evolution of floral biology and apparent homoplasy in baobabs.

METHODS

Bait Design

http://mc.manuscriptcentral.com/systbiol
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Total RNA was extracted from fresh leaf tissue of Adansonia digitata L. and Bombax
ceiba L., as in Chang et al. (1993), followed by cleanup using the Qiagen RNeasy kit following
manufacturer instructions (QIAGEN Inc., Valencia, California, USA). RNA quality assessment
was performed by Agilent RNA PicoChip Analysis (Agilent Technologies, Inc., Santa Clara,
California, USA) using 1ul of each sample diluted to 5 ng/ul. RNA library preparation was
performed at the University of Wisconsin - Madison Biotechnology Center (Madison, WI) using
an [llumina TruSeq RNA Sample Prep kit (Illumina Inc., San Diego, CA, USA) followed by
purification with Agencourt AMPure XP beads (Beckman Coulter, USA). Library quantification
was checked with a Qubit dSDNA HS Assay Kit (Thermo Fisher Scientific, USA) per
manufacturer instructions. Samples were adjusted to a final concentration of 28-31ng/ul. Quality
and quantity of the finished libraries were assessed using an Agilent DNA1000 chip (Agilent
Technologies, USA) and Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, USA),
respectively. Libraries were standardized to 2nM. Cluster generation was performed using
[llumina TruSeq Cluster Kits and the Illumina Cluster Station (Illumina Inc., San Diego, CA,
USA). Paired-end, 100bp sequencing was performed at the University of Wisconsin - Madison
Biotechnology Center (Madison, WI) using SBS chemistry on an [llumina HiSeq2000
sequencer. Images were analyzed using the Illumina Pipeline, version 1.8.2, and raw reads were
assembled de novo with Trinity version 2.1.0 (Luo et al. 2012). The resulting contigs were used
as BLAST queries against each other, the Arabidopsis ultra-conserved sequence database
(http://cgpdb.ucdavis.edu/cgpdb2/), and the Gossypium exome (Paterson et al. 2012). For each
contig showing reciprocal best-BLAST matches between Adansonia and Bombax, Adansonia-

Bombax-Gossypium alignments were identified that had >800bp of continuously aligned
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sequences and an average pairwise sequence similarity between the Bombacoids and cotton >
93.5%. These candidates were screened to remove candidate targets with repetitive sequences by
RepeatMasker (Smit et al. 2015) and for potential gene families (sequences that clustered with
two or more genes from the cotton transcriptome). When base calls were ambiguous in
Adansonia, the bait sequence was based on Bombax. When both species were polymorphic at a
position, the most common base call was selected. The resulting targets were used as the basis
for the design and synthesis of 120 bp, 2X-tiled MYbaits (Arbor Biosciences, formerly
Mycroarray, Ann Arbor, MI, USA), available as Supplementary File S1. Transcriptomes are
available on NCBI Sequence Read Archive under accession PRINA493960 (Conover et al.

2018).

Taxon Sampling and Targeted Sequence Capture

Sampling included one to three accessions per Adansonia species in addition to three
outgroups (Table S1). DNA was extracted from silica-dried leaf tissue or seeds with the Qiagen
DNeasy Plant Mini Plant Kit (Qiagen, USA), following manufacturer instructions, but with the
following modifications: (1) increased lysis buffer to 650ul and included 10ul Proteinase K
(25mg/mL), (2) tissue and lysis buffer was incubated at 65°C for 20 minutes rather than the
recommended 10 minutes, (3) all centrifugation steps were performed at 4°C, and (4) final
elution used heated buffer (approx. 80°C) and was then incubated at room temperature for 10
minutes before centrifugation. DNA quality and quantity were estimated by 1% agarose gel
electrophoresis. Qubit Fluorometric Quantitation (Life Technologies) was used for further

quantification prior to DNA library preparation.
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170 DNA library construction was performed at the University of Wisconsin - Madison

171  Biotechnology Center or the Genomics Core Facility at West Virginia University. Genomic

172 DNA was sheared using a Covaris shredder to achieve a standard fragment range of 500-600 bp.
173 Sequence capture was performed at lowa State University using the MYbaits protocol version 2
174  (Arbor Biosciences, formerly Mycroarray, Ann Arbor, MI, USA). Briefly, libraries were

175  denatured and hybridized with biotinylated RNA capture baits over 36 hours. Quantity and

176  quality of the captured libraries were assessed via Quan-it PicoGreen dsDNA assay

177  (ThermoFisher Scientific, USA) and Agilent Bioanalyzer 2100, respectively. Enrichment of

178  post-capture capture libraries was verified via QPCR as described previously (Salmon 2012,

179  Grover 2017).

180 Target-enriched, [llumina TruSeq libraries for an initial twelve accessions (see Table S1)
181  were sequenced on a single lane of Illumina MiSeq as 2x300bp by the UW-Madison

182  Biotechnology Center (Madison, WI). An additional four accessions (see Table S1) were

183  sequenced at the Beijing Genomics Institute (BGI, Hong Kong) on the Illumina HiSeq2500 as
184  2x250bp. Raw reads were quality trimmed using Trimmomatic v0.36 (Bolger et al. 2014 ) with
185  the parameters ILLUMINACLIP:Adapters.fa:2:30:15 LEADING:28 TRAILING:28

186  SLIDINGWINDOW:8:28 SLIDINGWINDOW:1:10 MINLEN:65 TOPHRED?33 (all scripts

187  available at https://github.com/nkarimi/Adansonia_HybSeq)

188

189  Read Assembly and Dataset Selection

190

191 The first phase of assembly (see Supplementary Fig. S1 for flow chart) used the

192 HybPiper package (Johnson et al. 2016) with our initial target set as a reference. HybPiper,
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yields a “paralog warning” whenever more than one contig is assembled that covered >85% of
the target. For putative single-copy targets, which yielded no paralog warnings for any of the
initial 12 (MiSeq-derived) accessions, we retained the resulting sequences and aligned them
using MAFFT version 7.299 (Katoh et al. 2012). Whenever HybPiper gave a paralog warning
for any of these taxa we retained all sequence variants for all accessions, aligned them using
MAFFT, and generated maximum likelihood trees in Geneious version 8.0.5

(http://www.geneious.com, Kearse et al. 2012) using the RAXML plugin. The resulting gene

trees were inspected to determine if the multiple contigs most likely represented alleles
(accessions from the same species form a clade) or paralogs (distinct clades each with multiple
species). For gene trees without evidence of paralogs, we retained a single allelic sequence for
each accession (the longest one, as selected by HybPiper).

Rather than discarding targets with paralogs, we sought to generate paralog-specific
references using gene tree-guided orthology identification. As summarized in Supplementary

Fig. S1, a separate consensus sequence was generated from all sequences of each putative

paralog and these paralog-specific consensus sequences were used as new, operational targets for

assembly in HybPiper. If the resulting assemblies lacked paralog warnings, and also appeared as

distinct clades on gene trees generated after alignment of all paralogs for a given original target,

each paralog assembly was retained. If sequences from the operational targets did not separate on

the resulting gene trees, suggesting orthology-paralogy mixing, the target was dropped. If,

alternatively, gene trees suggested yet further paralogs, the process was repeated iteratively until

each target was either dropped due to orthology-paralogy mixing or yielded one or multiple

alignments of putatively orthologous sequences.

10
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Preliminary network analyses suggested that Malagasy Longitubae samples sequenced on
the HiSeq platform might share erroneous signals of gene flow, perhaps due to the assembly of
distant paralogs that were not found using the shallower read-depth of the MiSeq platform. Two
morphologically and geographically distinct species, A. rubrostipa and A. perrieri, were both
represented by one accession generated on the MiSeq platform (Aru001; Ape001) and one on
HiSeq (Arul27; Ape009). Therefore, we used PAUP* 4.0a (Swofford 2003) to identify all
targets whose optimal gene trees (as estimated by maximum likelihood trees in RAXML version
8.2.10 (Stamatakis 2006) failed to satisfy the unrooted backbone constraint ((Aru001,
Arul27),(Ape001, Ape009)). Removal of these genes resulted in our primary HybPiper data set
of 372 putative orthologs.

Although prior work has shown that allele phasing may have minimal impact on
phylogenetic inference (Kates et al. 2017), we sought to obtain allelic information as an
additional set of alignments. To generate clean targets for haplotype assembly, we used
consensuses of all targets (for all accessions) in the primary HybPiper data set after dropping a
further 28 targets whose optimal RAXML trees that suggested the possibility of mis-assembly.
This included trees with single terminal branches at least three times longer than others on that
tree, or topologies that could not be rooted to support a monophyletic Adansonia clade. The 344
“cleaned” targets meeting these criteria were used to infer phased haplotypes. Trimmed reads
were mapped to the 344 accession-specific references using BWA v.0.7.15 (Li and Durban 2009)
with the bwa mem algorithm. Haplotypes were then inferred using HapHunt in BamBam (Page et
al. 2014) under the following parameters: (1) 5 runs per accession; (2) a minimum of 20x
coverage of each single nucleotide polymorphism (SNP); and (3) four haplotypes allowed for the

tetraploid 4. digitata and two for all other taxa. We then generated 10 alternative HapHunt

11
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alignments (HH1-10), each containing one haplotype sequence per target per accession, sampled

at random from the haplotypes inferred for that accession.

Species-Tree Phylogenetic Analyses and Network Inference

Bayesian phylogenetic inference was performed on all datasets with MrBayes
(Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003), either as a free-standing
application or as implemented in the TICR pipeline (Stenz et al. 2015). MrBayes analyses used 4
linked chains with a heat of 0.2 and ran for two million generations, with 25% discarded as burn-
in. The resulting posterior distributions were analyzed in BUCKYy version 1.4.4 (Ané et al. 2006,
Larget et al. 2010) using alpha=1 and 1,000,000 generations. The nuclear HapHunt datasets,
HH1-10, were analyzed individually. Additionally, to shed light on the effect of allele sampling,
we combined the 10 posterior tree distributions for each gene into a composite posterior and used
the resulting combined HapHunt data set for several downstream analyses.

Bayesian Concordance Analysis (Ané et al. 2007; Baum 2007) was implemented with
BUCKYy (Ané et al. 2007; Larget et al. 2011). BUCKYy allows one to estimate the proportion of
gene trees supporting a certain clade (the concordance factor, CF), while taking into account
uncertainty in individual gene trees and also estimates a population tree (="species tree") under
the assumption that all discordance is due to ILS.

We also generated maximum likelihood gene trees with RAXML version 8.2.10
(Stamatakis 2006, 2014) and then used these to infer a population tree in ASTRAL-III (Mirarab

et al. 2014; Zhang et al. 2018). Concatenated nuclear gene alignments were also used to infer a

12
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population tree using SVD quartets (Chifman and Kubatko 2015) in PAUP* (version 4a;
Swofford et al. 2003).

To infer an explicit population network we used the maximum pseudolikelihood method
implemented in SNaQ (Solis-Lemus and An¢ 2016), which infers reticulate evolutionary
histories while accounting for ILS. The concordance factor table generated by BUCKYy in the
TICR pipeline was used as input into SNaQ. To test for the effect of input tree, starting
population trees with branch lengths in coalescent units were obtained from both BUCKy and
from the TICR pipeline, the latter of which uses Quartet MaxCut (Snir and Rao 2012).

We ran 50 independent runs of SNaQ for each dataset to infer the optimal network
without hybridization edges (h0). This was then used as input for network searches with one
hybridization edge (h1). Network searches were increased sequentially, up to 3 hybridization
edges, in each case starting from the previous (h1 or h2) optimal network. The preferred number
of hybridizations was determined based on analysis of the slope of a plot of log-pseudolikelihood
against hybridization number (Solis-Lemus and Ané 2016). The network with the best log-
pseudolikelihood score for the optimal number of hybridizations (in each case one hybridization)
was then selected as starting network for bootstrap analysis. We generated a total of 100
independent bootstrap replicates (sampling from the confidence intervals for each possible
quartet CF) with 20 runs per replicate, where 10 runs/replicate started with the optimal

hybridization network and the other 10 started with the hO population tree.

Four-Taxon D-statistic (ABBA-BABA)

13
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Guided by sensitivity of SNaQ to taxon sampling (see Results), we also used the D-
statistic “ABBA-BABA” test (Kulathinal et al. 2009) on the concatenated gene alignments from
the HybPiper dataset using a modification of the “CalcD” function from the R package evobiR
(Blackmon et al. 2015) with ambiguous sites dropped. To test for a hybridization between A.
digitata and Brevitubae we analyzed all 162 BLdo quartets, namely those that contain one
member each of Brevitubae (4. grandidieri; A. suarezensis;), core Longitubae (4.
madagascariensis; A. perrieri; A. za), A. digitata, and the outgroup. Likewise, to test for a
hybridization between A. rubrostipa and the core Longitubae we tested all 108 BLro quartets,
namely those that contain one member each of Brevitubae, core Longitubae, A. rubrostipa and
the outgroup. To test for sensitivity to taxon selection, we also used A. gregorii in place of the
outgroups, yielding datasets BLdg and BLrg. For each quartet we calculated both the total
number of ABBA and BABA sites in the concatenated alignment and the number of genes
having more ABBA sites than BABA sites, or vice versa. Positive D-statistics show an excess of
ABBA sites, while negative values show an excess of BABA sites. To evaluate significance, we
used non-parametric bootstrap resampling of genes to obtain (for each 4-taxon data set) a Z-
score, which is the calculated D-statistic divided by the bootstrap-estimated standard deviation of

the D-statistic.

Plastome Assembly and Analysis

Reference guided assemblies of off-target plastid reads obtained after hyb-seq were

performed using Burrows Wheeler Aligner (Li and Durban 2009) with the bwa mem algorithm

and the Gossypium raimondii plastome sequence as reference (NCBI GenBank ID: HQ325744).

14

http://mc.manuscriptcentral.com/systbiol



Page 15 of 60

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

327

Systematic Biology

Karimi, Grover, Ané, Gallagher, Wendel, Baum

Consensus sequences of the mapped reads were extracted from the BAM alignments and aligned
with MAFFT (Katoh et al. 2012) using the FFT-NS-2 algorithm. We tested for recombination
blocks within the plastomes using MDL (Ané 2011) with a minimum block length of one
hundred parsimony informative sites. On each of the resulting partitions and the total
concatenated alignment, jModelTest 2 (Darriba et al. 2012) was used to select a model of
evolution, after which Bayesian phylogenetic inference was performed with MrBayes v3.2.3
(Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003). Analyses were run for 2
million generations with 4 runs, 4 chains and a heat of 0.2 with 25% of generations discarded as
burn-in. We also used RAXML version 8.2.10 (Stamatakis 2006, 2014) to infer maximum
likelihood trees using the GTR-I" model with 100 bootstrap replicates.

To test whether ILS, given the optimal network, could plausibly explain the recovered
plastid phylogeny, we simulated expected plastid trees given two alternative population networks
as inferred from the nuclear data. For each, we simulated 100,000 gene trees in the program
hybrid-lambda (Zhu et al. 2015), after first multiplying all branch lengths in the network by 4 to
account for the fact that plastid DNA experiences an effective population size one quarter that of
nuclear genes. External branches were set to an arbitrary length of 1. Simulated tree topologies
were input into PAUP* (version 4a; Swofford et al. 2003). We used tree filters to determine the

frequency of targeted topologies among the 100,000 simulated gene trees.

Phylogenetic Comparative Method for Discrete Traits on a Species Network

To analyze flower color and pollinator mode in baobabs, we implemented maximum

likelihood estimation of evolutionary parameters for discrete traits. We consider a trait with &
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possible states as evolving under a Markov process along each edge of a known species network.
At a reticulation node in the network, we assume that the trait of the hybrid population, Y5, was
inherited from either one of its parent populations, Y; or ¥>, with probabilities equal to the
proportion of genes contributed by each parent population y; and y»:

v, = {Yl with probability y;
h = Y, with probabilityy, = 1 -y,

This model may be interpreted in various ways. For instance, the trait might be controlled by a
single gene, but this gene is unknown and probabilities y1 and y» serve as prior probabilities that
this unknown gene came from one parent or the other. Alternatively, the trait might be controlled
by many genes of small effects, of which proportions yi and y» are expected to come from each
parental population a priori. The y inheritance probabilities are assumed to be known, along with
the network topology and branch lengths. At the root of the phylogenetic network, the prior
probability of each state may be assumed to be uniform across the k states, or may be taken as
the stationary distribution of the process given the transition rates. This model was already
considered by Strimmer et al. (2001), who applied it to nucleotide data for the inference of
ancestral recombination graphs. Like in Strimmer et al. (2001), we calculate the likelihood of the
trait data as a linear combination of likelihoods from each tree displayed in the network. The
transition rates between states are estimated with maximum likelihood.

Conditional on the estimated rates, ancestral state estimations are obtained as the
posterior probabilities of each state given the trait data at the leaves of the phylogenetic network.
At each reticulation node, the posterior probability pethat the trait was inherited via gene flow is
calculated as the posterior probability that the trait state was inherited from the minor parent

population (with inheritance y<0.5) given the trait data at the leaves of the network and given the

estimated rates. This posterior probability peris compared to the prior probability y, to get a
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Bayes factor comparing the hypotheses of inheritance via gene flow versus vertical inheritance:

Pef 17V
Y 1-pg

Our implementation is available in the open source Julia package PhyloNetworks (Solis-

Lemus et al. 2017), version 0.9.1.

Ancestral Trait Reconstruction and Network Calibration

To infer the most likely flower color and pollinator of ancestral populations, we
considered a Markov process for the evolution of these traits on inferred phylogenetic networks,
as described above. For pollinators, we considered a binary trait with states hawkmoth-pollinated
and mammal-pollinated and for flower color we considered a binary trait with states white and
pigmented (=yellow or red). We scored the closest outgroup, Scleronema micranthaum as white
flowered. Given that the methods cannot handle multiple states, Scleronema was dropped from
the pollination analysis due to being interpreted as having mixed bat and moth pollination (van
Dulmen 1998). In each case traits evolved along each lineage according to a 2-state Markov
process with 2 transition rates and we assumed an equal prior probability for all states at the root
of the phylogenetic network.

The trait evolution model uses branch lengths in the network as a measure of
evolutionary time. However, SNaQ infers branch lengths in coalescent units for internal
branches, and does not infer any length for external branches (present-day populations).
Therefore, we calibrated the branch lengths of the network using the approach developed by
Bastide et al. (2018) and implemented in PhyloNetworks (Solis-Lemus et al. 2017). Briefly, we

calculated the pairwise genetic distances between taxa from the individual gene trees, in which
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branch lengths measure the number of substitutions per site. To account for rate variation across
loci, the tree for each locus was re-scaled to a common median patristic distance between
outgroup taxa and ingroup taxa (all loci have at least one outgroup taxon and one ingroup taxon).
Note that the total tree length was not used to normalize gene trees, because genes with missing
taxa are expected to have a lower tree length due to missing branches. The observed pairwise
distance matrix was calculated by averaging the pairwise distances across all loci, for each pair
of taxa. Ages of nodes in the network were optimized to yield phylogenetic distances that
matched the observed pairwise distances as well as possible, according to the ordinary least-
squares criterion. Networks inferred from the primary data set of 372 genes were calibrated using
the pairwise distances obtained from the RAXML trees of these 372 genes. Networks inferred
from the 344-gene HapHunt data set were calibrated using the pairwise distances obtained from
the RAXML trees of one of the haplotype sets (HH6), whose network estimated with SNaQ has
an estimated y closest to that of the combined HH1-10 network. Ancestral trait reconstructions

were then performed independently using each calibrated network.

RESULTS

Targets and Dataset Selection

Analysis of transcriptomes recovered a total of 380 candidate sequences that met our

criteria, for an initial total target space of 734,503 base pairs. The mean targeted locus was

1932.9 base pairs in length (minimum length of 763 bp and maximum of 7042 bp) with an

average GC content of 42.8%. These targets are available as Supplementary File S1. An average
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of 9.3M and 17.9M read pairs were recovered for each accession sequenced on the MiSeq and
HiSeq, respectively. MiSeq was run at 2x300nt and, thus, recovered an additional 100nt per read
pair than HiSeq, which was run at 2x250nt. Nonetheless, even multiplexing 24 samples per
HiSeq2500 (RapidRun) lane as compared to 12 samples per MiSeq lane, HiSeq still recovered an
average of 3.4 Gb more sequence per sample. If all reads were on-target the average MiSeq and
HiSeq coverage per nucleotide in the target would 5,000-fold to 12,000-fold, respectively. Even
allowing for the fact that about half of the sequences are off-target, we expected all targeted
genes to exceed 1000x coverage.

Following initial read mapping to the 380 gene bait set in HybPiper, we removed 45
targets and split some of the other targets into more than one discrete paralog. The resulting data
set included 412 genes, some of which seemed to cluster sequences by platform (MiSeq vs.
HiSeq) rather than species. We infer that the increased coverage of sequencing in using HiSeq
resulted in additional paralogous sequences being assembled for some HiSeq-based accessions,
resulting in erroneous clustering of these accessions. Using the topological constraints described
in the methods, we identified forty loci whose gene trees might have been distorted by a HiSeq-
MiSeq artifact, which were subsequently removed, generating our primary HybPiper dataset of
372 genes. These 372 genes were from 241 original targets which yielded single copy assemblies
and 55 original targets yielded multiple paralogs. Of the latter, 53 were split into two paralogs (in
five cases we did not retain both copies), five original targets were split into three paralogs, and
one target was split into each of four, five, and six paralogs. In total 131 paralogous alignments
were included in the 372-gene HybPiper data set.

After dropping a further 28 targets, as described in Methods, 344 modified targets were

used to call haplotypes with HapHunt. Consistent with baobabs being outcrossing (Baum, 1995a;
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Venter et al. 2017), haplotype recovery for the diploid Adansonia taxa resulted in an average of
73.5% loci inferred to be heterozygous (i.e., with two variant sequences per accession). Across
the three accessions of tetraploid 4. digitata, 1.5% of loci were homozygous for a single allele,

50% yielded two variants, 12.5% yielded three, and 36% recovered four (Fig. S2).

Population Tree Inference

We generated population (=species) trees using three approaches: BUCKy and ASTRAL,
which use gene trees, and SVDQuartets, which uses the concatenated data. Results from all
approaches were in agreement with the exception of the SVDQuartets tree from the HybPiper
dataset (Fig. S3a), which placed A. rubrostipa sister to the Brevitubae taxa (PP=59) and placed
A. perrieri as sister to the rest of the core Longitubae (PP=93). Using the other methods, the
optimal population trees inferred for the HybPiper and HapHunt datasets were identical except in
their resolution of the basal node within Adansonia (Fig. 2; Fig. S3). Whereas the HybPiper data
placed A. gregorii sister to the rest of the genus (Posterior Probability=PP=0.50, CF=0.19), the
HapHunt data placed it sister to A. digitata (PP=1, CF=0.37). In other regards, the optimal
population tree is robust to assembly method. Furthermore, the topology matches the
concordance tree constructed by BUCKYy. The concordance factors are similar for the two data
sets, but generally higher for the HapHunt data. The most dramatic difference relates to the
monophyly of the Malagasy clade whose CF is 0.50 for the HapHunt data, as contrasted with

CF=0.27 for the HybPiper data set.
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Figure 2. Population trees from (a) the primary HybPiper dataset with 372 genes and (b) the

combined HapHunt dataset with 344 genes. Outgroups not shown. BUCKy and ASTRAL

yielded the same tree topologies. BUCKy concordance factors added above branches (numbers

in italics are not significantly higher than at least one conflicting clade); ASTRAL posterior

probabilities added below. Trees scaled with branch lengths in coalescent units (from BUCKYy).

On the optimal tree for both datasets, the Malagasy Longitubae do not form a clade.

Instead, 4. rubrostipa is sister to a clade including Brevitubae plus core Longitubae (4.

madagascariensis, A. perrieri, and A. za). Although the Brevitubae-core Longitubae clade has a

concordance factor of only 0.19 based on the HybPiper data, the corresponding credibility
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interval (0.169 - 0.210) does not include the CF of a four-species Longitubae clade (0.116 -
0.151). In contrast, the Brevitubae-core Longitubae clade in the summed HapHunt dataset has a
CF=0.23 whose credibility interval (0.198 - 0.253) does overlap that of 4-taxon Longitubae clade
(0.151 - 0.206). The Brevitubae plus core Longitubae clade is supported in ASTRAL analyses
(posterior probability of 0.64 and 0.66, respectively).

The consistent signal contradicting the monophyly of Malagasy Longitubae is surprising,
given that the four species have very similar, elongated red-yellow flowers, which are quite
different from the shorter, white flowers of Brevitubae and the outgroups. As a result, these data
suggest either homoplasy of floral traits or that genes have discordant histories, whether due to
ILS or introgression or both.

The three species of core Longitubae (4. madagascariensis, A. perrieri, and A. za) are
supported as a clade, but the two accessions of 4. za are consistently resolved as non-
monophyletic, with one 4. za accession (from southern Madagascar) being sister to all other
sampled core Longitubae (all of which are from northern populations), including the other A4. za
accession. Similar non-monophyly of 4. za was reported based on ITS analysis (Baum et al.

1998).

Phylogenetic Network Inference

Based on the slope heuristic, SNaQ analyses favored h1 networks with a single
reticulation edge for all data sets, with vy, the proportion of genes inferred to have followed this
edge, ranging from 7-23%. It is not surprising that the h1 network is supported since, when we

allowed 2 or more reticulation edges, higher order reticulation events had estimates of y <2%. It
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should be noted, however, that SNaQ is constrained to ignore intersecting hybridization
scenarios, meaning that once a preferred introgression edge is added, many other potential edges
are not able to be recovered in the search (Solis-Lemus and Ané 2017).

With all taxa included, the HybPiper data supported introgression from the African
lineage (the stem lineage of 4. digitata) into the stem lineage of Brevitubae, with y = 12.4% (Fig.
3a). This hybridization edge was recovered in 73% of the bootstrap replicates. Reducing this data
set to those genes that were used for haplotype inference, yielded the same network (as in Fig.

3a), with the hybridization edge being found in 95% of bootstrap replicates and y = 8%.

23

http://mc.manuscriptcentral.com/systbiol



484

485
486

487

Branch lengths scaled in coalescent units and introgression fractions, y, shown in grey.

a)

Outgroups

—A. gregorii 01

—_A.digitata 01

— A, digitata 02
| . digitata 03
\ 12.4%

| I:: rubrostipa 071
==l al

. rubrostipa 127

VA suarezensis 01
. A. grandidierni 01
__I:A. grandidierii 02
—A. Za 135
—A. perrieri 01
rLA.ﬂemEn' o8
—= I A. za 037
J:—A. madagascanensis 06
LA madagascariensis 018
c)
A. gregorii 01
A.digitata 07

EA. digitata 02

A. digitata 03

Systematic Biology
ANCIENT INTROGRESSION IN THE BAOBABS

b)
—— Outgroups

4:9?‘59 o

___A.digitata 01

l::. digitata 02

\ . digitata 03
\ T.2%

) . rubrostipa 07

. rubrostipa 127

——A. suarezensis 01

I::. grandidieri 01

grandidierii 02
— A za 135

.perrieri 071

. perrierf 09
A, za 037

A. madagascariensis 08
d)

. madagascariensis 078
—A. gregoni 01

A. rubrostipa 01

A. rubrostipa 127

A. suarezensis 07
1

[-—A. grandidieri 07

____Adigitata 01

|:A. digitata 02

A. digitata 03

. rubrostipa 07

A. grandidierii 02

. rubrostipa 127

A. za 135

A. suarerensis 01

[

_|:A. grandidieri 071

A, grandidierii 02
\ ——Azat35
% perrieri 01
A.perrieri 09 |
1|, A. za 037 —
i |:A. madagascariensis 08

A. madagascariensis 018
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http://mc.manuscriptcentral.com/systbiol

. parrien 09
| ——A. za 037
I

madagascariensis 08

. madagascariensis 018

24

Page 24 of 60



Page 25 of 60

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

510

Systematic Biology

Karimi, Grover, Ané, Gallagher, Wendel, Baum

The HapHunt dataset with all taxa included also identified (in 70% of bootstrap
replicates) an introgression between Brevitubae and a non-Malagasy lineage (Fig. 3b). However,
the direction of introgression is reversed, suggesting introgression of 7.2% of genes from
Brevitubae into a common ancestor of 4. digitata and A. gregorii. Interpreted literally, this
scenario is extremely unlikely for geographic and temporal reasons.

Given the difficulty of resolving the deep splits and the fact that directionality sometimes
cannot be determined reliably with SNaQ, (Solis-Lemus and An¢ 2017), we explored the
sensitivity of these results to taxon sampling. In the process we discovered that deletion of the
outgroups suggested a different reticulation history. For both the HybPiper and HapHunt data
sets, the optimal networks after pruning outgroups implies introgression (y = 13-17%) between
A. rubrostipa and the stem lineage of the core Malagasy Longitubae clade (Fig. 3c,d).

Given the impossibility of inferring intersecting hybridization cycles with SNaQ, we
sought to test for additional introgression events after deleting selected taxa (Fig. S5). Including
an outgroup but deleting Brevitubae taxa from the HybPiper data set supported gene flow from
A. rubrostipa to the southern 4. za sample, with y = 19.5% (Fig. S5d). In contrast, deleting A.
rubrostipa supported reticulation between A. digitata or A. digitata+A.gregorii and Brevitubae (y
= 11-15%; Fig. S5a,c), as well as additional gene flow between northern and southern 4. za
accessions (y = 42%, Fig. S5b). Taken together the nuclear data provides evidence of
introgression between A4. rubrostipa and core Longitubae or from an African lineage into
Brevitubae, plus the possibility of additional gene flow between accessions of 4. za.

When analyzed each of the ten individual HapHunt datasets, six yielded results consistent

with the combined HapHunt dataset (Fig. S4) only differing in the hybridization fraction, v,
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which ranged from 7.2 - 8.5%. Of the remaining four, two indicated a hybrid edge between A.
digitata and one member of Brevitubae, 4. suarezensis, similar to the combined HapHunt dataset
when A. gregorii was pruned (no shown). One out of the ten HapHunt datasets yielded a
network similar to the one obtained without outgroups, which involves gene flow from A.

rubrostipa to the core Longitubae clade (y=13.2%; Fig. S4, I).

D-statistic (ABBA-BABA)

Depending on taxon-sampling, SNaQ yielded one of two reticulation edges: between A.
digitata and Brevitubae, or between A. rubrostipa and Longitubae. On an unrooted network (Fig.
4), these two scenarios are quite close and form intersecting loops. This means that SNaQ, can
never yield support for both occurring on the same network, leaving us unsure if one edge is true,

with the other being an artifact of some kind, or if both occurred.

1 To evaluate these two
All data
A. digitata {d) (B) Brevitubae 5 hypotheses separately we conducted
outgroup/A.gregorii (o/g) / > ABBA-BABA tests targeted at cither
A. rubrostipa {r) (L) Core Longitubae 7 of the two hybridizations individually.
Minus
outgroups

3 To test the 4. digitata-Brevitubae

Figure 4. Scenarios for intersecting cycles given an
edge, we dropped 4. rubrostipa and

unrooted phylogenetic network for all accessions (top)
looked for polymorphisms supporting

or all accessions minus outgroups (bottom).
each partition of the four remaining

groups, B, L, d, and o/g (Fig. 5). Likewise, we analyzed the BLro and BLrg datasets to test for

gene flow between A. rubrostipa and core Longitubae. Support for the reticulation events would
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534  come from an excess of BABA over ABBA sites in BLdo/BLdg and the reverse under
535 BLro/BLrg.
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Figure 5. Summary of ABBA-BABA tests. Effect of quartet on the distribution of Z-scores (a).

Taxon selection and resulting Z-scores for BLre auartet (b). See Sunnlemental Data for details.
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As summarized in Figure 5a, summing over both the HybPiper and HapHunt data sets,
only BLrg quartets yielded statistically consistent deviations from null expectations, supporting
positive values of D and, consequently indicating introgression between core Longitubae and A.
rubrostipa. The support for this conclusion is especially consistent for the HapHunt data set,
which yields a positive Z-score, regardless of which set of 4 taxa are included in the test (Fig.

5b).

Plastid-Nuclear Incongruence Suggests Additional Reticulation Events Within Madagascar

Reference-guided assembly yielded nearly-complete plastid genomes for each accession
(number of reads assembled and read coverage is reported in Supplementary Table S2), with a
shared alignment of 163,590 bp, containing 167- 4,795 pairwise SNPs among taxa. Although it is
generally assumed that the whole plastome has a single phylogenetic history, we first used MDL
(Ané 2011) to identify possible recombination breakpoints. This recovered four partitions,
representing 39.2, 21.7, 13.1, and 89.6 kilobases, respectively. All but the third partition (13.1
kb) supported a combined Australian and African clade (as seen in the HapHunt data set).
Likewise, three partitions supported A. suarezensis as sister to the remaining Malagasy species,
while partition two (21.7 kb) was unable or reject this arrangement based on bootstrap and
posterior probabilities (Fig. S6). As the conflicts among the plastid partitions are relatively minor
and plastid recombination is unlikely, we used the concatenated plastid tree to represent the

plastid history (Fig. 6).
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577

The plastid data strongly support a
clade composed of the African and
Australian species. The tree also implies
non-monophyly of Brevitubae, with A.
suarezensis strongly supported as sister to
the rest of the Malagasy clade. It is worth
noting that the plastid marker analyzed by
Baum et al. (1998), rpl16, also supported
a clade composed of all Malagasy species
except 4. suarezensis. This is surprising
given the many morphological similarities
shared between 4. suarezensis and A.
grandidieri, including a distinctive crown
architecture, white, upright flowers with
short-staminal tubes, winter flowering,
large seeds, and cryptocotylar
germination (Baum 1995a). The plastid
tree is also discordant with the nuclear

population tree in supporting the

monophyly of the four Malagasy Longitubae (4. rubrostipa, A. za, A. perrieri, and A.

madagascariensis).

To evaluate whether nuclear-plastid discordance can be explained by ILS on the nuclear-

derived network, we simulated 100,000 plastid trees on the optimal networks for the 372-gene
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HybPiper dataset, either with all taxa included (network with 4. digitata-Brevitubae
introgression) or with outgroups excluded (network with 4. rubrostipa-core Longitubae
introgression). Only one simulated tree (out of 100,000) supported A. suarezensis as sister to the
rest of the Malagasy clade when using the 4. digitata-Brevitubae introgression network, and four
when using the A. rubrostipa-core Longitubae introgression network. Despite suggesting rarity
of this topology, it is noteworthy that a clade of all Malagasy species except A. suarezensis was
found in nine maximum likelihood gene trees, out of the 372 genes (2.4%) in the primary data
set, with three of these nine trees placing 4. suarezensis sister to the rest of the Malagasy taxa.
The plastid tree also differs from the nuclear population tree in supporting southern 4. za
as sister to all Malagasy Longitubae, including 4. rubrostipa. None of the simulated trees under
the A. digitata-Brevitubae introgression have this resolution, but this topology is found in four
trees simulated under the 4. rubrostipa-core Longitubae introgression network. Similarly, among
the 372 individual maximum likelihood gene trees inferred from the primary dataset, four (1%)
had all Malagasy Longitubae (including A. rubrostipa) monophyletic sister to southern 4. za.
While there is discordance under both networks, the plastid data is easier to reconcile with A.

rubrostipa - core Longitubae introgression than 4. digitata-Brevitubae introgression.

Ancestral Trait Reconstruction: Introgression Explains the Shift in Pollination Syndrome in

Brevitubae

Given that the estimated population tree shows non-monophyly of Malagasy Longitubae,
which includes all the colored, hawkmoth pollinated species, we sought to explore the possibility

that reticulation edges could help explain the evolution of floral morphology and pollination
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systems in Adansonia. We conducted ancestral state reconstruction of flower color and inferred
pollination mode on time-calibrated networks. Time-calibrated networks from the HapHunt data
featured many collapsed internal branches, reflecting temporally improbable introgression edges,
especially that representing gene flow between the common ancestor of A. gregorii and A.
digitata and Brevitubae.

For each model and trait, AIC favored equal rates of gain vs. loss and, with these
parameters, there was consistent support for introgressed genetic material having played a role in
floral evolution (Fig. 7; Table S3). A Bayes factor (Bf) over 1 indicates positive evidence that
trait was acquired from the minor rather than from the major parent at a reticulation node. By this
criterion, focusing on the HybPiper networks, there is strong evidence of flower-color
introgression, whether it be of pigment from A. rubrostipa to Longitubae on the network without
outgroups (Bf = 7.4) or of non-pigment from A. digitata to Brevitubae on the network with
outgroups (Bf = 8.0). There is also some support, with a Bayes factors of 2.4-3.0, for
introgression introducing hawkmoth pollination into core Longitubae (no outgroups) or mammal
pollination into Brevitubae (with outgroups). In either case, these data illustrate the potential for

introgressive hybridization to transfer ecologically important traits between lineages.
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Figure 7. Ancestral state reconstruction of flower color (top) and pollination system (bottom) on

time-calibrated networks inferred from the HybPiper nuclear dataset. Analyses on the left were

based on networks with outgroups included, although these outgroups were excluded from

analysis of pollination mode because Scleronema has a mixed pollination system (see Methods).

DISCUSSION

Inference of Reticulation with Hyb-Seq data
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Our data support a history of reticulation in Adansonia but, despite using a custom set of
baits for 380 nuclear loci, the detailed reticulation history proved sensitive to assembly method
and taxon inclusion. Recently, Lambert et al. (2019) also found that detection of introgression
was sensitive to sequencing batch. Deeper sequencing, as achieved in our data set with the HiSeq
platform used on some accessions, has been shown to improve detection of hidden paralogy
(Philippe et al. 2011). Given this, we suspect that using a mixture of accessions sequenced with
different platforms resulted in different paralogs being assembled for some accessions. To
overcome these difficulties, we developed a thorough but laborious procedure of iterative
assembly and tree examination to arrive at a conservative, manually curated data set.

Even after careful curation, conflicting reticulation histories were suggested depending
on whether we did or did not include outgroups: analysis of all taxa supports a Brevitubae - 4.
digitata hybridization network, suggesting gene flow from Africa to Madagascar, whereas
exclusion of the outgroups supports an A. rubrostipa — core Longitubae network, and hence
introgression within Madagascar. Based on ABBA-BABA tests, concordance with the plastid
data, and geographical proximity, we believe that exclusion of outgroups yields a more plausible
result. This highlights the need to carefully examine alternative assemblies and taxon inclusion

sets when using Hyb-Seq data for network inference.

Biogeography of Adansonia
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In this study, despite obtaining hundreds of low-copy nuclear loci, relationships among
the three primary geographic lineages of Adansonia could not be resolved. This begs the
question as to the geographic origins of the genus. Given that the sister lineage to Adansonia is
Neotropical (Carvalho et al. 2016), it was previously suggested that the stem lineage of
Adansonia migrated across the Atlantic to Africa (Baum, 1998), perhaps as part of the
Boreotropical migration route that was open during periods of warmer climate in the Eocene
(Tiffney 1985). This hypothesis is supported by the presence of Bombacoid pollen fossils in
North America (Wolfe 1975) and Europe (Krutzsch 1989). However, the alternative of trans-
Pacific dispersal into Australia and subsequently along the Indian Ocean rim needs also to be
considered given the presence of bombacoid pollen fossils in Antarctica during the Eocene
(Pross et al., 2012). Whereas the trans-Atlantic hypothesis is compatible with any resolution of
the three geographic lineages of Adansonia, the trans-Pacific hypothesis predicts, by parsimony,
that the African and Malagasy taxa would be sister to one another.

The nuclear data provide do not resolve the basal relationships of A4dansonia: branch
lengths are short and different assembly methods favor (albeit very weakly) different resolutions.
The plastid data give strong support for an Africa+Australia clade, thus contradicting trans-
Pacific dispersal. While one might attribute this to incomplete lineage sorting on the short
internal branches of the inferred population trees, such a scenario would imply that multiple
lineages carrying divergent plastid haplotypes dispersed across the Indian Ocean to
Africa/Madagascar, which seems unlikely. Instead it seems more probable that there was an
almost simultaneous divergence into the three extant lineages somewhere in northwest Africa or

the Middle East. Nonetheless, pending datasets with additional 4. gregorii accessions and fewer
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paralogy-calling uncertainties, we currently consider the biogeographic history of baobabs to be

unresolved.

Introgression between the African lineage and Brevitubae by Overwater Dispersal

While less certain than the 4. rubrostipa — core Longitubae introgression, our analyses
suggests the possibility of gene flow from an ancestor of A. digitata, presumably living in
continental Africa, into an ancestor of Malagasy Brevitubae. While this conclusion could be an
artifact driven by inclusion of relatively distant outgroups, and is not strongly supported by
ABBA-BABA tests, it is certainly plausible that there was more than one dispersal event of
baobabs to Madagascar. Many lineages endemic to Madagascar are of African origin (Haber et
al. 2017; Yoder et al. 1996) and multiple long-distance dispersal events to Madagascar within a
single lineage are known (Kainulainen et al. 2017).

Networks that support A. digitata — Brevitubae introgression suggest that perhaps 10% of
the genome of extant Brevitubae descended from A. digitata. This suggests that a single tree
established in Madagascar, became reproductively mature, crossed with a local population and
generated hybrid genotypes that were sufficiently favored (perhaps by mammal pollinators) that
a significant fraction of the recipient species' genome was replaced. Alternatively, a population
of A. digitata could have established in Madagascar before hybridizing with resident species and
then was extirpated. While there are few clear cases of transoceanic dispersal and hybridization,
this has famously been shown in cotton for which the allopolyploid cotton lineage of the

Americas resulted from trans-oceanic dispersal of an A-genome taxon from Africa or Asia into
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the New World followed by hybridization with an indigenous American D-genome diploid
(Wendel and Grover 2015, and references therein).

If introgression occurred from the African lineage (4. digitata) into the Malagasy clade, it
must have been quite ancient. It presumably predated the origin of tetraploidy in A. digitata and
the transition of the Malagasy Brevitubae to dry season flowering or its divergence into its two
extant species (4. grandidieri and A. suarezensis). If the two lineages occurred in sympatry, gene
exchange is plausible despite the main pollinators being different; based on extant species,
nocturnal primates and hawkmoths would occasionally visit both flower types (Baum 1995a). To

date, no artificial crossing studies have been done testing interfertility.

Ancient Introgression between A. rubrostipa and Longitubae

Plastid and nuclear discordance suggests a history of gene flow between A. rubrostipa
and core Longitubae. This conclusion is supported by SNaQ analyses that exclude outgroups and
gains strong statistical support from ABBA-BABA tests. Given that 4. rubrostipa and the other
extant Longitubae share similar flower morphologies and pollination systems, and also have
widely overlapping ranges and some potential for occasional flowering season overlap, such
hybridization is plausible. Indeed, there are reasons to infer that there was not just one ancient
hybridization event but several instances of gene flow between A. rubrostipa and core
Longitubae both before and after the divergence of the latter into its three extant species. Such
gene flow is in agreement with analyses based on nuclear microsatellite data (Leong Pock Tsy et
al. 2013). Furthermore, a specific A. rubrostipa - A. za hybridization was identified in a hl

search after pruning Brevitubae taxa, though with lower likelihood than the corresponding h1 4.
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digitata - Brevitubae network. Due to intersecting cycles (shared branches) an A. rubrostipa - A.
za reticulation edge cannot be found by SNaQ on an h2 network with either an 4. digitata —
Brevitubae or an 4. rubrostipa — core Longitubae edge. Reticulation between A. rubrostipa and
A. za was recovered, however, when used as the input network for the starting search. This also
agrees with our unpublished data documenting additional reticulation events among the

Malagasy Longitubae, all of which are wet-season flowering and primarily hawkmoth pollinated.

Plastid-Nuclear Tree and the Plastid Non-Monophyly of Brevitubae

The primary population tree derived from nuclear genes conflicts markedly with the
plastid tree in the placement of two species, 4. suarezensis and A. rubrostipa. Cases of plastid-
nuclear tree discordance are commonly attributed to “chloroplast capture” (Rieseberg and Soltis
1991; Tsitrone et al. 2003; Feliner et al. 2017), which is to say introgression affecting the plastid
but not (much of) the nuclear genome. Since we reconstructed an explicit network from the
nuclear data, rather than just a single tree, we could assess whether the same hybridization
history, combined with incomplete lineage sorting, could explain plastid-nuclear discordance.

The plastid data provides strong support (100% bootstrap and 1.0 PP) for the placement
of A. suarezensis as sister to the rest of the Malagasy baobab clade. Simulations suggest that this
resolution is unlikely, with a probability of <4 x 107, given neutral evolution and ILS along the
nuclear-inferred networks. Nonetheless, the nuclear genes themselves suggest that such a signal
also exists in the nuclear genome, with 2% of nuclear gene trees placing 4. suarezensis as sister
to the rest of the Malagasy clade. This hints at a possible undetected minor introgression event,

an “introgressive kiss,” either involving the 4. grandidieri lineage and the stem lineage of the
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Malagasy Longitubae or between A. suarezensis and a now extinct sister lineage to the entire
Malagasy clade. While such additional hybridizations seem relatively unlikely given the long
stem lineage of Brevitubae (i.e., 4. suarezensis and A. grandidieri) and their synapomorphy of
winter-flowering, it cannot be ruled out.

The plastid tree is also distinct in embedding 4. rubrostipa within the Malagasy
Longitubae and placing southern accessions of 4. za sister to the remainder of the Longitubae
clade. This topology has a low probability of arising simply by ILS, especially on networks with
a Brevitubae-A4. digitata reticulation. Consequently, this result further supports the possibility of

additional undetected reticulation events within the Longitubae clade.

Adaptive Introgression of Pollination Traits

We developed methods for time-calibrating networks, inferring the probabilities of
alternative character states at ancestral nodes, and then estimating the posterior probability that a
trait was acquired from the minor or major parent during hybridization. These methods should
have broad applicability for studying character evolution in the context of phylogenetic
networks. As an example of their application we used ancestral trait reconstruction analysis to
explore whether adaptive introgression of floral pigment and pollination mode might explain the
implied homoplasy associated with these traits when mapped onto the dominant population tree.

Considering, first, the best supported network, namely that entailing introgression from
A. rubrostipa into a common ancestor of the three species of core Longitubae, we found strong
support for the hypothesis that introgression transferred the shared floral traits of a red style, red

interior calyx and colored petals from the 4. rubrostipa lineage into Longitubae. Furthermore, as
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shown by analysis of pollination mode evolution on this network, a consequence of this
introgression was likely to include a shift towards hawkmoth pollination. Indeed, it is plausible
that adaptive introgression of a suite of floral traits, including not just pigmentation but staminal
tube length, nectar composition, and scent, could have been driven by them promoting the
frequency and efficiency of pollinator visits by hawkmoths.

Although less well-supported by our data, the 4. digitata — Brevitubae gene flow
hypothesis also supports a role for introgression in floral homoplasy. In this case, the highest
likelihood reconstructions imply an introgression-mediated reversal in Brevitubae to an all-white
flower and a concomitant switch to mammal pollination. Although not formally analyzed here,
we presume that introgression would also explain similarities between the donor and recipient
taxa in shared traits such as nectar volume, nectar chemistry, and scent profile. On the other
hand, to explain some striking differences in flower form between Brevitubae and A. digitata,
including the latter’s long-pendulous flowers and extremely wide, reflexed petals, one could
either suppose that these traits evolved in 4. digitata after the introgression event or that these
traits we present but failed to introgress.

While examples of introgression facilitating pollinator shifts have been reported (i.e.
Louisiana irises, Wesselingh 2006; Monkeyflowers, Stankowski and Streisfeld 2015), this is the
first case we are aware of that involves transitions between hawkmoth and mammal pollination.
In the future it would be exciting to look more broadly at the genomes of all Adansonia species
in the hopes of identifying candidate genes for various traits involved in the observed pollination
syndromes, such as flower color, nectar characteristics or floral scent chemistry. Such genome-

scale work would not only solidify the history of ancient introgression in the baobabs, but could

39

http://mc.manuscriptcentral.com/systbiol



787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Systematic Biology Page 40 of 60

ANCIENT INTROGRESSION IN THE BAOBABS

provide a model for understanding mechanisms involved in introgressive pollination system

evolution.
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FIGURE CAPTIONS:

Figure 2. Eight species of Adansonia. A) A. digitata, continental Africa, B) A. gregorii,
Australia, C) 4. grandidieri, Madagascar, D) 4. suarezensis, Madagascar, E) A.
madagascariensis, Madagascar, F) A. perrieri, Madagascar, G) 4. za, Madagascar, H) 4.

rubrostipa, Madagascar.

Figure 2. Population trees from (a) the primary HybPiper dataset with 372 genes and (b) the
combined HapHunt dataset with 344 genes. Outgroups not shown. BUCKy and ASTRAL
yielded the same tree topologies. BUCKy concordance factors added above branches (numbers
in italics are not significantly higher than at least one conflicting clade); ASTRAL posterior

probabilities added below. Trees scaled with branch lengths in coalescent units (from BUCKY).

Figure 3. Phylogenetic networks as inferred by SNaQ from the HybPiper dataset (left) and
HapHunt dataset (right), with all taxa included (a & b) or after deleting outgroups (¢ & d).

Branch lengths scaled in coalescent units and introgression fractions, y, shown in grey.
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Figure 4. Scenarios for intersecting cycles given an unrooted phylogenetic network for all

accessions (top) or all accessions minus outgroups (bottom).

Figure 5. Summary of ABBA-BABA tests. Effect of quartet on the distribution of Z-scores (a).

Taxon selection and resulting Z-scores for BLrg quartet (b). See Supplemental Data for details.

Figure 6: Concatenated plastid tree inferred by maximum likelihood and Bayesian phylogenetic
inference. All branches have posterior probabilities (PP) of 1.0 and bootstrap support (BS) of

100%, unless otherwise indicated (PP/BS). Outgroups removed from figure.

Figure 7. Ancestral state reconstruction of flower color (top) and pollination system (bottom) on
time-calibrated networks inferred from the HybPiper nuclear dataset. Analyses on the left were
based on networks with outgroups included, although these outgroups were excluded from

analysis of pollination mode because Scleronema has a mixed pollination system (see Methods).

SUPPLEMENTAL MATERIAL

Figure S1. Read assembly pipeline.
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Figure S2. Haplotype recovery heatmap.
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Figure S3. SVDQuartets tree from the (a) HybPiper and (b) HapHunt datasets.
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TABLE S1. Sampling. Wisconsin State Herbarium (WIS); George Brown Darwin Botanical Gardens, Australia
(GBDBG); University of Wisconsin — Madison, Department of Botany Greenhouse (UWBG), Missouri Botanical Garden

Herbarium (MO)

Taxon Sample ID ls);b:‘]tl;z:::ng 11;]:2:: Source

Adansonia digitata L. Adi001 MiSeq 10,698,792 Accession # UW11 (UWBG)
Adansonia digitata L. Adi002 MiSeq 10,785,012 Eﬁ{’;;séf)“ #FUW2291
Adansonia digitata L. Adi003 MiSeq 10,947,592 ISSe 12{??4?7% 2016; GenBank
gziai?sonia grandidieri Aga001 MiSeq 9,040,756 (AC(}:](;]:)S]S;OGI; #97-B002010-1
gziai?sonia grandidieri Aga002 MiSeq 8,093,124 (AC(}:](;]:)S]S;OGI; # 03-B000192-1
ﬁﬁﬁse(ffia gregorii Age001 MiSeq 10,627.128 g?ﬁg:ﬁtem Australia,
/écaigﬁigsia perrieri Ape001 MiSeq 10,627.128 é:g}:)sgo(}r;s # 92-B000060-1
ézgﬁigﬁm perrieri Ape009 HiSeq 18,871,820 IZ\I(;)lr‘t‘I}ggn(l\v/\lfaIlcsla)lgascar, Karimi-
iiil’sgoazigariensis Baill. Ama006 HiSeq 18,105,976 I2\1(;) &?818161\(/1\;?;%3803& Karimi
iiil’sgoazigariensis Baill. Ama0l8 HiSeq 17,421,708 I2\1(;) lrétl}fglir;%l\(/l\;(;;%ascar’ Karimi-
id}a)t::r(?nia rubrostipa Jum. Aru001 MiSeq 8,890,992 ]S)(.)X}];v;zi:legri 3l)\/l(all\ia(l)%ascar,
Adansonia rubrostipa Jum. Arul27 HiSeq 16,620,060 Western Madagascar, Karimi-

& Perr.
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Adansonia suarezensis

Accession #UW11 (GBDBG):
Seed from Northern

H.Perrier Asu001 MiSeq 11,343,772 Madagascar, Baum 320A
(WIS)
. . . Northern Madagascar, Karimi-
Adansonia za Baill. Aza037 HiSeq 18,017,204 2014-37 (WIS)
. . . Southern Madagascar, Karimi-
Adansonia za Baill. Azal35 HiSeq 18,420,364 2014-135 (WIS)
Bombax ceiba L. Bce020 MiSeq 7,398,256 Accession #UW10 (UWBG)
Accession #UW1255
Pseudobombax croizatii . (UWBG): Seed from Puerto
A.Robyns. Por0’8 MiSeq 7,398,256 Ayacucho in Venezuela, Paul
E. Berry (MO)
Scleronema micrantha . . See Alverson et al. (1999);
Ducke Smil63 MiSeq 7,398,256 GenBank: AF111735
Table S2. Plastid genomes assembly statistics.
Number of Read coverage per position
Taxon (Sample ID) reads Length Mean, Median (Max)
assembled
A. digitata (Adi001) 149,590 163,590 156, 160 (799)
A. digitata (Adi002) 187,363 165,284 200, 207 (1089)
A. digitata (Adi003) 64,640 163,583 58,57 (764)
A. grandidieri (Aga001) 153,977 164,023 176, 179 (683)
A. grandidieri (Aga002) 128,584 164,895 144, 147 (858)
A. gregorii (Age001) 255,131 162,886 251,206 (1237)
A. madagascariensis
723,721 174,559 1068, 1111 (1905)
(Ama006)
A. madagascariensis
(Ama018) 773,851 174,923 1139, 1218 (1753)
A. perrieri (Ape001) 112,439 165,008 115, 116 (886)
A. perrieri (Ape009) 469,746 171,757 689, 679 (2854)
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A. rubrostipa (Aru001) 505,615 169,338 599, 625 (1245)
A. rubrostipa (Arul27) 880,514 175,580 1297, 1384 (2148)
A. suarezensis (Asu001) 228,382 166,192 256, 263 (1340)
A. za (Aza037) 230,053 169,304 332,315 (2228)
A. za (Azal35) 412,706 171,535 604, 617 (1205)
Bombax ceiba (Bce020) 292,221 168,276 363, 379 (805)
Pseudobombax croizatii 43,136 162,438 35,35 (516)
Scleronema micrantha 89,205 163,933 100, 102 (355)
1159
1160  Table S3: Transition rates were obtained after scaling each network to a unit height from the
1161  crown node of the Adansonia clade to the tips. In other words, transition rates represent the
1162  expected number of transitions along one lineage from the Adansonia crown node to the present.
trait network data network sampling rates likelihood  aic bf ratel rate2
pollinator primary with_outgroups unconstrained -6.8396016 17.6792031 4.62653448 0.84619726 0
pollinator primary with_outgroups equal -7.1081293  16.2162586 3.00777996 0.48039017
pollinator primary only_ingroup unconstrained  -6.6229669  17.2459338 1.31188554 0 0.41610137
pollinator primary only_ingroup equal -6.8878524  15.7757049  2.42869936 0.34390221
pollinator haplotype with_outgroups unconstrained -7.3578779  18.7157557 0.48726114 0.8037555  0.69949582
pollinator haplotype with_outgroups equal -7.3644757 16.7289514  0.46824808 0.75649948
pollinator haplotype only_ingroup unconstrained -6.622447  17.2448939  1.35134808 0 0.55952334
pollinator haplotype only_ingroup equal -6.7584202  15.5168404 2.63642415 0.49816399
flower_color primary with_outgroups unconstrained -7.3516439  18.7032878 15.451702  0.2250505 0
flower_color primary with_outgroups equal -7.5244653  17.0489307 8.00153837 0.25784836
flower_color primary only_ingroup unconstrained -6.1020516  16.2041032  9.86561932 0.2911427 0
flower_color primary only_ingroup equal -6.4977478 14.9954955 7.35164968 0.21914787
flower_color haplotype with_outgroups unconstrained -6.2030723  16.4061447 0.07258259 0.1765216  0.75842377
flower_color haplotype with_outgroups equal -6.6398703  15.2797405 0.29044977 0.41915283
flower_color haplotype only_ingroup unconstrained -6.2711902  16.5423803 2.78646403 0.21776477 0.79936157
flower_color haplotype only_ingroup equal -6.4754053  14.9508107 4.66515625 0.36115074
1163
1164  Data available from the Dryad Digital Repository:
1165  File S1. Hyb-Seq Targets; http://dx.doi.org/10.5061/dryad.[NNNN]
1166
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