2018 IEEE 25th International Conference on High Performance Computing (HiPC)

Parallel Nonnegative CP Decomposition
of Dense Tensors

Grey Ballard and Koby Hayashi
Wake Forest University
Winston Salem NC 27109
Email: {ballard,hayakbl3} @wfu.edu

Abstract—The CP tensor decomposition is a low-rank approx-
imation of a tensor. We present a distributed-memory parallel
algorithm and implementation of an alternating optimization
method for computing a CP decomposition of dense tensors
that can enforce nonnegativity of the computed low-rank fac-
tors. The principal task is to parallelize the Matricized-Tensor
Times Khatri-Rao Product (MTTKRP) bottleneck subcomputa-
tion. The algorithm is computation efficient, using dimension
trees to avoid redundant computation across MTTKRPs within
the alternating method. Our approach is also communication
efficient, using a data distribution and parallel algorithm across
a multidimensional processor grid that can be tuned to minimize
communication. We benchmark our software on synthetic as
well as hyperspectral image and neuroscience dynamic functional
connectivity data, demonstrating that our algorithm scales well
to 100s of nodes (up to 4096 cores) and is faster and more general
than the currently available parallel software.

I. INTRODUCTION

The CP decomposition is a low-rank approximation of a
multi-dimensional array, or tensor, which generalizes matrix
approximations like the truncated singular value decomposi-
tion. It approximates the input tensor by a sum of rank-one
tensors, which are outer products of vectors. CP is often used
for finding hidden patterns, or latent factors, within tensor data,
particularly when the goal is to interpret the factors, and it is
popular within the signal processing, machine learning, and
scientific computing communities.

To aid in interpretability, domain-specific constraints are
often imposed on the computed factors. We focus in this paper
on dense tensors (when nearly all of the tensor entries are
nonzero) and on constraining solutions to have nonnegative
entries, which is useful when the tensor data itself is nonneg-
ative. Formally, NNCP can be defined as
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where H (:,4) o -+ o H®)(:,4) is the outer product of the
it" vector from all the N factors that yields a rank one tensor
M and Zle HY(:r) oo HM(:,r) results in a sum
of R rank one tensors that will be of the same dimension as
the input tensor A. For example, in imaging and microscopy
applications, tensor values often correspond to intensities, and
NNCP can be used to cluster and analyze the data in a lower-
dimensional space [1]. In this work, we consider two such
applications: a series of time-lapse hyperspectral images [2]
and a dynamic functional correlation data set generated from
functional magnetic resonance images of human brains [3].

One approach to handling multidimensional data is to
“matricize” it, combining sets of modes to reshape the data
into a matrix, so that standard matrix methods like principal
component analysis or nonnegative matrix factorization can be
applied. While this approach can be effective in certain cases,
reshaping the data destroys multidimensional relationships
among entries that the matrix methods cannot recover. By
maintaining the tensor structure of the data, the low-rank
representations preserve these relationships, often producing
better and more interpretable results.

However, tensor methods are more complicated both math-
ematically and computationally. The kernel computations
within standard algorithms for computing NNCP can be for-
mulated as matrix computations, but the complicated layout of
tensors in memory prevents the straightforward use of BLAS
and LAPACK libraries. In particular, the matrix formulation of
subcomputations involve different views of the tensor data, so
no single layout yields a column- or row-major matrix layout
for all subcomputations. Likewise, the parallelization approach
for tensor methods is not a straightforward application of
parallel matrix computation algorithms.

In developing an efficient parallel algorithm for computing a
NNCP of a dense tensor, the key is to parallelize the bottleneck
computation known as Matricized-Tensor Times Khatri-Rao
Product (MTTKRP), which is performed repeatedly for each
mode of the tensor. The parallelization must load balance the
computation, minimize communication across processors, and
distribute the results so that the rest of the computation can
be performed independently. In our algorithm, not only do
we load balance the computation, but we also compute and
store temporary values that can be used across MTTKRPs
of different modes using a technique known as dimension
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trees, significantly reducing the computational cost compared
to standard approaches. Our parallelization strategy also avoids
communicating tensor entries and minimizes the communica-
tion of factor matrix entries, helping the algorithm to remain
computation bound and scalable to high core counts.

As we detail in the related work, the general techniques for
reducing computation and communication have been used in
similar contexts. The recomputation avoidance was proposed
in a sequential algorithm [4], the parallelization scheme was
proposed and analyzed for general tensors [?], and the algo-
rithm was implemented for 3D tensors [6].

We summarize our main contributions as follows:

o we present the first distributed-memory parallel imple-
mentation of NNCP algorithms for arbitrary-dimension
dense tensors,

« we optimize the use of dimension trees for dense tensors,
avoiding recomputation across multiple MTTKRPs,

o our parallel algorithm is communication optimal with a
carefully chosen processor grid,

« we demonstrate a performance improvement of up to
2.2x over the existing state-of-the-art parallel software on
3D tensors and efficient parallel scaling of up to 1771x
on 4096 cores.

II. PRELIMINARIES
A. Notation

Tensors will be denoted using Euler script (e.g., J), matrices
will be denoted with uppercase boldface (e.g., M), vectors will
be denoted with lowercase boldface (e.g., v), and scalars will
not be boldface (e.g., s). We use Matlab style notation to index
into tensors, matrices, and vectors, and we use 1-indexing. For
example, M(:, ¢) gives the cth column of the matrix M.

We use o to denote the outer product of two or more vectors.
The Hadamard product is the element-wise matrix product and
will be denoted using *. The Khatri-Rao product, abbreviated
KRP, will be denoted with ®. Given matrices A and B that are
IpsxRand Igx R,the KRPK = A®Bis [4Ig x R. It can
be thought of as a row-wise Hadamard product, where K(j +
Ip(i—1),:) = A(i,:) * B(j,:), or a column-wise Kronecker
product, where K(:,c¢) = A(:;,¢) ® B(;, ¢).

The CP decomposition of a tensor (also referred to as the
CANDECOMP/PARAFAC or canonical polyadic decompo-
sition) is a low-rank approximation of a tensor, where the
approximation is a sum of rank-one tensors and each rank-
one tensor is the outer product of vectors. We use the notation
A~[HY, . HM] = Zf‘:l HY (¢ r) o o HV ()
to represent a rank-R CP model, where H™ is called a
factor matrix and collects the mode-n vectors of the rank-
one tensors as columns. The columns of the factor matrices
are often normalized, with weights collected into an auxiliary
vector A of length R; in this case we use the notation
AHY . H®] = Zfil MNHY G )y oo HV (G ).

A Nonnegative CP decomposition (NNCP) constrains the
factor matrices to have nonnegative values. In this work,
we are interested in NNCP models that are good approxi-
mations to A in the least squares sense. That is, we seek
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minggei »q [[A—[A; HWY, ... H™]]||, where the tensor norm
is a generalization of the matrix Frobenius or vector 2-norm,
the square root of the sum of squares of the entries.

The nth mode matricized tensor denoted by A, is a I, X
I/1,, matrix formed by organizing the nth mode fibers of a
tensor X with dimensions I1 x...x Iy (and I = ] I,,) into the
columns of a matrix. The Matricized-Tensor Times Khatri-Rao
Product or MTTKRP will be central to this work and takes
the form M) —= A(n)K("), where K™ is the Khatri-Rao
product of the all the factor matrices except H™ defined as
K®—HMg...o "D o gD ... o HD,

B. Block Coordinate Descent for NNCP

While there are multiple optimization methods to compute
NNCP, we will focus on a class of methods that use Block
Coordinate Descent (BCD), which is also known as the
nonlinear Gauss-Seidel method. In BCD, the variables are
partitioned into blocks, and each variable block is cyclically
updated to optimality with all other blocks fixed. For details on
the convergence properties and comparisons of BCD methods
for nonnegative matrix and tensor decomposition problems,
see [8]. We consider BCD methods for NNCP that choose the
entire factor matrices as the blocks, which is also often referred
to as Alternating Least Squares. In this case, every subproblem
is a linear nonnegative least squares problem. Formally, the
following problem is solved iteratively forn =1-.- N:

[sermr - e
F

H™ « argmin
H>0

where S = K(")TK("), the Gram matrix of the Khatri-
Rao product of the fixed factor matrices. The number of outer
iterations to convergence is problem dependent but typically
ranges from 10s to 1000s.

Algorithm 1 shows the pseudocode for BCD applied to
NNCP. Lines 11, 12 and 14 compute matrices involved in the
gradients of the subproblem objective functions, and line 13
uses those matrices to update the current factor matrix.

The NLS-Update in line 13 can be implemented in different
ways. In a faithful BCD algorithm, the subproblems are solved
exactly; in this case, the subproblem is a nonnegative linear
least squares problem, which is convex. We use the Block
Principal Pivoting (BPP) method [8], [9], which is an active-
set-like method, to solve the subproblem exactly.

However, as discussed in [10] for the matrix case, there
are other reasonable alternatives to updating the factor matrix
without solving the subproblem exactly. For example, we
can more efficiently update individual columns of the factor
matrix as is done in the Hierarchical Alternating Least Squares
(HALS) method [11]. In this case, the update rule is

HO)(,r) - [HO)(s,r) + MO G, r) = (HOSO) )|

+
which involves the same matrices M and S as BPP.
Other possible BCD methods include Alternating Optimization
and Alternating Direction Method of Multipliers (AO-ADMM)
[12], [13] and Nestrov-based algorithms [14]. The parallel



algorithm presented in this paper is generally agnostic to
the approach used to solve the nonnegative least squares
subproblems, as all these methods are bottlenecked by the
subroutine they have in common, the MTTKRP.

Algorithm 1 [HY ... H®™] = NNCP(A, R)
Require: A is I; x --- X Iy tensor, R is approximation rank

1: % Initialize data

2: forn=2to N do

3 Initialize H(™

4 g = gTH®
5: end for
6
7
8

: % Compute NNCP approximation
: while not converged do
% Perform outer iteration of BCD
9: for n=1to N do

10: % Compute new factor matrix in nth mode

11: M = MTTKRP(A, {H®},n)

12: S =GW x...x GO Y GUHY 4. GV
13: H®™ = NLS-Update(S™, M ™)

14: G(") = H(")TH(")

15: end for

16: end while
Ensure: A ~ [HY ... HM)]

C. Parallel Computation Model

To analyze our algorithms we use the MPI model of
distributed-memory parallel computation, where we assume
a fully connected network. Sending a message of W words
from one processor to another costs o + SW, where « is
the latency and (3 to be the per word or bandwidth cost. In
particular, we will use collective communication over groups
of P processors, and we will assume the use of efficient
algorithms [15], [16]. An All-Reduce sums data initially
distributed across processors and stores the result of size W
redundantly on every processor. An All-Gather collects data
initially distributed across processors and stores the union
of size W redundantly on all processors. A Reduce-Scatter
sums data initially distributed across processors and partitions
the result across processors. The communication cost of each
of these collectives is a - O(log P) + 3 - O(W(P-1)/P).
Reduction operations also include a flop cost but we will omit
it because it is usually dominated by communication.

III. RELATED WORK

The formulation of NNCP with least squares error and
algorithms for computing it go back to [17], [18], developed
in part as a generalization of nonnegative matrix factorization
algorithms [19] to tensors. Sidiropoulos et al. [20] provide
a more detailed and complete survey that includes basic
tensor factorization models with and without constraints, broad
coverage of algorithms, and recent driving applications. The
tensor operations discussed and the notation used in this paper
follow Kolda and Bader’s survey [21].

Recently, there has been growing interest in scaling ten-
sor operations to bigger data and more processors in both
the data mining/machine learning and the high performance
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computing communities. For sparse tensors, there have been
parallelization efforts to compute CP decompositions both on
shared-memory platforms [22], [23] as well as distributed-
memory platforms [24]-[26], and these approaches can be
generalized to constrained problems [13]. The focus of this
work is on dense tensors, but many of the ideas for sparse
tensors are applicable to the dense case, including parallel data
distributions, communication pattern, and techniques to avoid
recomputation across modes.

In particular, Liavas et al. [6] extend a parallel algorithm
designed for sparse tensors [25] to the 3D dense case. They
use the “medium-grained” dense tensor distribution and row-
wise factor matrix distribution, which is exactly the same
as our distribution strategy (see section IV-C2), and they
use a Nesterov-based algorithm to enforce the nonnegativity
constraints. Their code is publicly available, and we compare
our performance with theirs in section V. A similar data
distribution and parallel algorithm for computing a single
dense MTTKRP computation is proposed by Ballard, Knight,
and Rouse [?]. They prove that the algorithm is communi-
cation optimal, but they do not provide an implementation.
Another approach to parallelizing NNCP decomposition of
dense tensors is presented by Phan and Cichocki [27], but they
use a dynamic tensor factorization, which performs different,
more independent computations across processors.

The idea of using dimension trees (discussed in sec-
tion IV-A) to avoid recomputation within MTTKRPs across
modes is introduced in [4] for computing the CP decompo-
sition of dense tensors. It has also been used for sparse CP
[23], [26] and other tensor computations [24].

IV. ALGORITHM
A. Dimension Trees

An important optimization of the CP-ALS algorithm is
to re-use temporary values across inner iterations [4], [23],
[28], [29]. To illustrate the idea, consider a 3-way tensor X
approximated by [U,V, W] and the two MTTKRP compu-
tations MY = X1)(W @ V) and M® = X (W © U)
used to update factor matrices U and V, respectively. The
underlined parts of the expressions correspond to the shared
dependence of the outputs on the tensor X and the third factor
matrix W. Indeed, a temporary quantity, which we refer to
as a partial MTTKRP, can be computed and re-used across
the two MTTKRP expressions. We refer to the computation
that combines the temporary quantity with the other factor
matrix to complete the MTTKRP computation as a multi-
tensor-times-vector or multi-TTV, as it consists of multiple
operations that multiply a tensor times a set of vectors, each
corresponding to a different mode.

To understand the steps of the partial MTTKRP and multi-
TTV operations in more detail, we consider X to be I x J x K
and U, V, and W to have R columns. Then mii)
Zj,k LTijkVjrWer = Z] Vjr Zk TijkWkr Z] UjTt’ijT7 where
J is an I x J x R tensor that is the result of a partial
MTTKRP between tensor X and the single factor matrix W.
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Fig. 1. Dimension tree example for N = 5. The data associated with the
root node is the original tensor, the data associated with the leaf nodes are
MTTKRP results, and the data associated with internal nodes are temporary
tensors. Edges labeled with PM correspond to partial MTTKRP computations,
and edges labeled with mTTV correspond to multi-TTV computations.

Likewise, mﬁ) = sz TijhUirWhr = Y Wir O f, TijkWhr =
Zi Uirtijr, and we see that the temporary tensor J can be
re-used. From these expressions, we can also see that com-
puting J (a partial MTTKRP) corresponds to a matrix-matrix
multiplication, and computing each of M® and M® from
T (a multi-TTV) corresponds to R independent matrix-vector
multiplications. We compute M® using a full MTTKRP.

For a larger number of modes, a more general approach
can organize the temporary quantities to be used over a
maximal number of MTTKRPs. The general approach can
yield significant benefit, decreasing the computation by a
factor of approximately N/2 for dense N-way tensors. The
idea is introduced in [4], but we adopt the terminology and
notation of dimension trees used for sparse tensors in [28],
[29]. In this notation, the root node is labeled {1,..., N} and
corresponds to the original tensor, a leaf is labeled {n} and
corresponds to the nth MTTKRP result, and an internal node
is labeled by a set of modes {%,...,7} and corresponds to
a temporary tensor whose values contribute to the MTTKRP
results of modes 1, ..., J.

Figure 1 illustrates a dimension tree for the case N = 5.
Various shapes of binary trees are possible [4], [29]. For dense
tensors, the computational cost is dominated by the root’s
branches, which correspond to partial MTTKRP computations.
We perform the splitting of modes at the root so that modes are
chosen contiguously with the respect to the layout of the tensor
entries in memory. In this way, each partial MTTKRP can be
performed via BLAS’s GEMM interface without reordering
tensor entries in memory. All other edges in a tree correspond
to multi-TTVs and are typically much cheaper. By organizing
the memory layout of temporary quantities, the multi-TTV
operations can be performed via a sequence of calls using
BLAS’s GEMYV interface. With BLAS, we are able to obtain
high performance and on-node parallelism.

Figure 2 shows the data layout and dimensions of a partial
MTTKRP and a multi-TTV taken from the example dimension
tree in Figure 1. Figure 2a shows a partial MTTKRP between
the input tensor X and the Khatri-Rao product of the factor
matrices in modes 1 and 2, which produces a temporary
tensor I corresponding to the {3,4,5} node in the dimension
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(a) Partial MTTKRP to compute node {3,4,5} from
root node {1,2,3,4,5}, executed via one GEMM call.
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(b) Multi-TTV to compute node {3} from node
{3,4,5}, executed via R GEMV calls. Here T(1)[r]
refers to the rth contiguous block of T'(y).

Fig. 2. Data layout and dimensions for two example computations in
dimension tree shown in Figure 1. In this notation, X ;.9 is the matricization
of input tensor X with respect to modes 3 through 5, Ki.2 = H® oHO,
T is the temporary I3 X I4 X Is X R tensor corresponding to node {3,4,5}
in the dimension tree, K4.5 = H®) @ H®, and M®) is the MTTKRP
result for mode 3.

tree. The key to efficiency in this computation is that the
matricization of X that assigns modes 1 through 2 to rows
and modes 3 through 5 to columns is already column-major in
memory. Thus, we can use the GEMM interface and compute
the temporary tensor J without reordering any tensor entries.
Figure 2b depicts a multi-TTV that computes the results M®
from T and the factor matrices in modes 4 and 5. Here, the
tensor J is matricized with respect to only its first mode (of
dimension [3), but this matricization is also column-major in
memory. We choose the ordering of the modes of J such
that each of R contiguous blocks is used to compute one
column of the output matrix via a matrix-vector operation with
a corresponding column of the Khatri-Rao product of the other
factor matrices.

No matter how the dimension tree is designed, the com-
putational cost of each partial MTTKRP is O(IR), where
I is the number of tensor entries and R is the rank of the
CP decomposition. This is the same operation count as a
full MTTKRP. The computational cost of a multi-TTV is the
number of entries in the temporary tensor, which is the product
of a subset of the original tensor dimensions multiplied by R.
Thus, it is computationally cheaper than the partial MTTKRPs,
but it is also memory bandwidth bound.

The other subroutine necessary for implementing the di-
mension tree approach is the Khatri-Rao product of sets of
factor matrices. We implement the operation as a row-wise
Hadamard product of a set of factor matrix rows, and we use
OpenMP parallelization to obtain on-node parallelism. The
computational cost of this operation is also typically lower
order, but the running time in practice suffers from also being



memory bandwidth bound.

B. Relative Error Computation

Given a model M = [H®Y ... H™)], we compute the
relative error ||A — M||/|.A|| efficiently by using the identity
A — M2 A — 2(A, M) + || M]||>. The quantity
|lA|| is fixed, and the other two terms can be computed
cheaply given the temporary matrices computed during the
course of the BCD algorithm. The second term can be com-
puted using the identity (A, M) = <M(N),H(N)>, where
M) = A(N)(H<N_1) ®---®HW) is the MTTKRP result
in the Nth mode. The third term can be computed using the
identity | M2 = 1T7(S™) « HMTHW))1 where SV =
HOTHD s ..« HV-UTHW =D Both matrices M) and
S™) are computed during the course of the BCD algorithm
for updating the factor matrix H™). The extra computation
involved in computing the relative error is negligible. These
identities have been used previously [14], [21], [25], [30].

C. Parallel Algorithm

Algorithm 2 [HY, ... H®)] = Par-NNCP(A, R)

Require: A is an [; X ---x Ix tensor distributed across a P X - - - X
Py grid of P processors, so that Ap is (I1/P1)x---x(In/Pn)
and is owned by processor p = (p1,...,pn), R is rank of
approximation

1: forn=2to N do
2: Initialize HY" of dimensions (I,,/P) x R
3 G = Local-SYRK(H{")
4 G™ = All-Reduce(G, ALL-PROCS)
5. HYY = All-Gather(HS”, PROC-SLICE(n, p,,))
6: end for
7: % Compute NNCP approximation
8: while not converged do
9: % Perform outer iteration of BCD
10: for n=1to N do
11: % Compute new factor matrix in nth mode
12: M = Local- MTTKRP(A,, ..., , {HS }, )
13: Mg,") = Reduce-Scatter(M, PROC-SLICE(n, p,,))
14: S — @M 4 ... s @D y @t 4 ... G
15: H{" = Local-NLS-Update(S™, M{")
16: % Organize data for later modes
17: G=u"H
18: G™ = All-Reduce(G, ALL-PROCS)
19: H{" = All-Gather(H\", PROC-SLICE(n, p»))
20: end for
21: end while

Ensure: A~ [HY, ... HM)]

Ensure: Local matrices: H;") is (In/P) x R and owned by proces-
sor p = (p1,...,pn), for 1 <n < N, X stored redundantly on
every processor

1) Algorithm Overview: The basic sequential algorithm is
given in Algorithm 1, and the parallel version is given in
Algorithm 2. We will refer to both the inner iteration, in
which one factor matrix is updated (line 10 to line 20), and
the outer iteration, in which all factor matrices are updated
(line 8 to line 21). In the parallel algorithm, the processors are
organized into a logical multidimensional grid with as many
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modes as the data tensor. The communication patterns used
in the algorithm are the MPI collectives All-Reduce, Reduce-
Scatter, and All-Gather. The processor communicators (across
which collectives are performed) include all processors and the
sets of processors within the same processor slice. Processors
within a mode-n slice all have the same nth coordinate.

The method of enforcing the nonnegativity constraints of the
linear least squares solve (or update) generally affects only
local computation because each row of a factor matrix can
be updated independently. In our algorithm, each processor
solves the linear problem or computes the update for its
subset of rows (see line 15). The most expensive (and most
complicated) part of the parallel algorithm is the computation
of the MTTKRP, which corresponds to lines 12, 13 and 19.

The details that are omitted from this presentation of the
algorithm include the normalization of each computed factor
matrix and the computation of the residual error at the end of
an outer iteration. The computations involve both local com-
putation and communication, but their costs are negligible.

2) Data Distribution: Given a logical processor grid of
processors Py x --- x Py, we distribute the tensor A in
a block or Cartesian partition. Each processor owns a local
tensor of dimensions (I3/P;1) x -+ x (In/Pp), and only
one copy of the tensor is stored. Locally, the tensor is stored
linearly, with entries ordered in a natural mode-descending
way that generalizes column-major layout of matrices. Given
a processor p = (p1,...,pn), we denote its local tensor Ap.

Each factor matrix is distributed across processors in a
block row partition, so that each processor owns a subset of
the rows. We use the notation Hg"), which has dimensions
I,,/P x R to denote the local part of the nth factor matrix
stored on processor p. However, we also make use a redundant
distribution of the factor matrices across processors, because
all processors in a mode-n processor slice need access to
the same entries of H™ to perform their computations. The
notation H;,”) denotes the I,,/P,, x R submatrix of H™ that
is redundantly stored on all processors whose nth coordinate
is p,, (there are P/P,, such processors).

Other matrices involved in the algorithm include Mé"),
which is the result of the MTTKRP computation and has the
same distribution scheme as ng)’ and G, which is the
R x R Gram matrix of the factor matrix H" and is stored
redundantly on all processors.

3) Inner Iteration: The inner iteration is displayed graph-
ically in Figure 3 for a 3-way example and an update of the
2nd factor matrix. The main idea is that at the start of the
nth inner iteration (Figure 3a), all of the data is in place
for each processor to perform a local MTTKRP computation.
This means that all processors in a slice redundantly own
the same rows of the corresponding factor matrix (for all
modes except n). After the local MTTKRP is computed
(Figure 3b), each processor has computed a contribution to
a subset of the rows of the global MTTKRP M("), but its
contribution must be summed up with the contributions of
all other processors in its mode-n slice. This summation is
performed with a Reduce-Scatter collective across the mode-n



M®

(b) Compute local MT-
TKRP for contribution to
output matrix M®),

(a) Start nth iteration with
redundant subset of rows of
each input matrix. M®

Fig. 3.

M®

(c) Reduce-Scatter to com-
pute and distribute rows of

u®
(d) Compute local NLS up-
date to obtain Hg) from
M (and S@)).

u®

(e) All-Gather to collect rows
of H® needed for later in-
ner iterations.

Ilustration of 2nd inner iteration of Par-NNCP algorithm for 3-way tensor on a 3 x 3 X 3 processor grid, showing data distribution, communication, and

computation across steps. Highlighted areas correspond to processor (1,3,1) and its processor slice with which it communicates. The column normalization
and computation of G<2), which involve communication across all processors, is not shown here.

processor slice that achieves a row-wise partition of the result
(in Figure 3c, the light gray shading corresponds to the rows
of M® to which processor (1,3,1) contributes and the dark
gray shading corresponds to the rows it receives as output).
The output distribution of the Reduce-Scatter is designed so
that afterwards, the update of the factor matrix in that mode
can be performed row-wise in parallel. Along with s,
which can be computed locally, each processor updates its
own rows of the factor matrix given its rows of the MTTKRP
result (Figure 3d). The remainder of the inner iteration is
preparing and distributing the new factor matrix data for future
inner iterations, which includes an All-Gather of the newly
computed factor matrix H™ across mode-n processor slices
(Figure 3e) and recomputing G™ = H(”)TH(”).

4) Analysis: We will analyze the cost of a single outer
iteration. While the number of outer iterations is sensitive to
the NLS method used, the outer iteration time is generally
comparable across NLS methods.

a) Computation: The local computation occurs at
lines 12, 14, 15 and 17. The cost of line 14 is O(NR?),
the cost of line 15 is O(R®I,/P), which is a loose upper
bound for BPP and other methods [31], and the cost of line 17
is O(R(I,/P)?). The sum of these three costs across all
inner iterations is O(R?N? + (R3/P) Y I, + (R/P?) Y I2),
which is dominated by the cost of the MTTKRP. When
using dimension trees to perform the MTTKRP (line 12),
we compute the cost amortized over all inner iterations. In
this case, the cost is dominated by the two partial MTTKRP
computations (from the root of the tree), which together are
O((R/P)]]1.) = O(IR/P) and dominate the costs of the
multi-TTVs. We note that this cost involves the product of all
the tensor dimensions, which is why it dominates, and we note
that it scales linearly with P.

b) Communication: The communication within the inner
iteration occurs at lines 13, 18 and 19. Line 18 involves O(R?)
data and a collective across all processors. Lines 13 and 19
involve O(I,,R/P,,) data across a subset of P/P,, processors.
Thus, the All-Reduce dominates the latency cost and the
Reduce-Scatter/All-Gather dominate the bandwidth cost, for
a total outer iteration communication cost of O(RY_ I,/ Py,)
words and O(N log P) messages. If the optimal processor grid
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can be chosen to minimize communication (assuming P is
sufficiently factorable), then the bandwidth cost can achieve a
value of O(NRI'/N /P'/N) by making the local tensors as
cubical as possible. We note that this cost scales with PUN,
which is far from linear scaling. However, it is proportional
to the geometric mean of the tensor dimensions (on the
order of one tensor dimension), which is much less than the
computation dependence on the product of all dimensions.

c) Memory: The algorithm requires extra local memory
to run. Aside from the memory required to store the local
tensor of O(I/P) words and factor matrices of cumulative
size O((R/P)>_ I,), each processor must be able to store
a redundant subset of the rows of the factor matrices it
needs to perform MTTKRP computations. This corresponds to
storing P/ P,, redundant copies of every factor matrix, which
results in a local memory requirement of O(R Y I,/ P,) for
a general processor grid. The processor grid that minimizes
communication also minimizes local memory, and the extra
memory requirement can be as low as O(NRIYN/PY/N),
which is typically dominated by O(I/P).

The dimension tree algorithm also requires extra temporary
memory space, but the space required tends to be much smaller
than what is required to store the local tensor. If the tensor
dimensions can be partitioned into two parts with approxi-
mately equal geometric means, the extra memory requirement
for running a dimension tree is as small as O(R+/I/P), which
is also typically dominated by O(I/P).

V. PERFORMANCE RESULTS
A. Datasets

1) Hyperspectral Images (HSI): For comparison with previ-
ous work [6], we consider the same 3D hyperspectral imaging
dataset called “Souto_wood_pile” [2]. NNCP is often used on
HSI data sets for classification and blind source separation of
materials with differing spectral signatures. The hyperspectral
datacube has dimensions 1024 x 1344 x 33 and represents a set
of 33 grayscale images of size 1344 x 1024 pixels sampled
at wavelengths 400, 410, ..., 720 nm, with each pixel value
representing spectral radiance in Wm™2sr~nm~!. We also
consider the Nogueird scene dataset, which is a sequence of 9
time-lapse HSI images of the same scene acquired at about



1-hour intervals. In each scene, hyperspectral images were
acquired at about 1-hour intervals. Each Nogueiré scene HSI
image has the same properties as the Souto_wood_pile data
set, yielding a 1024 x 1344 x 33 x 9 tensor.

2) Dynamic Functional Connectivity (dFC): We also con-
sider dynamic functional connectivity datasets that are gener-
ated from fMRI images of human brains. Given a 4D fMRI
data set of voxel measurements across multiple timesteps, vox-
els containing brain data are partitioned into a set of regions
of interest (specified using domain-specific knowledge), and
a single time-series signal is aggregated for each region of
interest. Then, an instantaneous correlation is computed for
each time point and pair of regions, and this process is repeated
for a number of subjects. Computing a CP decomposition of
this data helps to discover patterns of brain connectivity among
different regions and also differentiate among individuals. For
our representative dFC data set, we consider 246 brain regions,
which yields 30,012 unique pairs of regions, 1200 times steps,
and 500 subjects, a 30,012 x 1200 x 500 tensor [3], [32].

3) Synthetic: Our synthetic data sets are constructed from a
CP model with an exact low rank with no added noise. In this
case we can confirm that the residual error of our algorithm
with a random start converges to zero. For the purposes of
benchmarking, we run a fixed number of iterations of the BCD
algorithm rather than using a convergence check.

B. Machine Details

The entire experimentation was performed on Eos, a super-
computer at the Oak Ridge Leadership Computing Facility.
Eos is a 736-node Cray XC30 cluster of Intel Xeon E5-2670
processors with a total of 47.104TB of memory. Its compute
nodes are organized in blades where each blade contains 4
nodes, and every node has 2 sockets with 8 physical cores
and 64GB memory. In total, Eos contains 11,776 traditional
processor cores and our experiments used up to 4,096 cores
(35% of the machine).

Our objective of the implementation is using open source
software as much as possible to promote reproducibility and
reuse of our code. We use Armadillo [33] for matrix represen-
tation and operations. In Armadillo, the elements of the dense
matrix are stored in column major order. For dense BLAS and
LAPACK operations, we linked Armadillo with the default
LAPACK/BLAS wrappers from Cray. We use multithreaded
LAPACK/BLAS except as noted in Section V-C. We use GNU
C++ Compiler (g++ (GCC) 6.3.0) and Cray’s MPI library.

C. Comparison Implementations

The implementation proposed by Liavas et al. [6] is the only
publicly available distributed-memory software (of which we
are aware) for computing the CP decomposition of dense ten-
sors, with or without constraints. We use the acronym NbAO-
NTF for Nesterov-based Alternating Optimization Nonnega-
tive Tensor Factorization to refer to their code.

It is based on the same parallel algorithm as our imple-
mentation, though it is limited to 3D tensors. The code uses
MPI collectives for communication and Eigen [34] as an
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interface to BLAS and LAPACK. We compiled the code linked
to BLAS/LAPACK wrappers from Cray (the same BLAS
implementation used by our code) but we were unable to run
multithreaded BLAS with their code. For fair comparison, we
use a flat MPI configuration (one MPI process per core) on
all comparisons between the two implementations (Figures 4,
5 and 10). For all other experiments, we use hybrid MPI (one
MPI process per node) and OpenMP and multithreaded BLAS
for on-node parallelism.

We also point out a difference between the Nesterov-based
algorithm and the BPP algorithm for solving the NLS subprob-
lems. The Nesterov-based algorithm attempts an acceleration
step using a linear combination of the current and proposed
future step; however, it re-computes the residual error before
deciding whether or not to accept or reject the accelera-
tion step. This residual error cannot always be computed
cheaply, using the technique described in section IV-B, and
it contributes significantly (approximately 25%) to the overall
run time. Because the BPP algorithm does not require this
extra computation, and studying convergence behavior of the
different NLS algorithms is beyond the scope of this work, we
remove the time spent in the acceleration step of NbAO-NTF
in all our comparisons.

Our proposed algorithm uses dimension trees, but we also
benchmark our implementation without that optimization to
highlight its importance. We use an existing implementation
to perform the individual MTTKRPs [35] with this approach.

D. Strong Scaling

We perform two strong scaling experiments on 3D tensors
to compare performance with NbAO-NTF. The experiments
use a cubical synthetic tensor and the HSI image used in [6].

The performance on the cubical synthetic tensor is shown
in Figure 4. We can observe from the figure that all the
three algorithms scale nearly linearly as the problem remains
compute bound. Our algorithm (with the dimension tree
optimization) achieves a speedup of 1771x on 4096 cores
over the same implementation running on 1 core. Recall
from that the computation scales linearly with 1/P while the
communication scales with 1/P'/N = 1/P/3. As is evident
from the figure, the communication cost does not degrade
performance even for thousands of cores. Our proposed al-
gorithm with dimension trees is 35% faster than NbAO-NTF
at 512 cores (with similar relative difference for other core
counts). This performance improvement is due in large part to
the 50% reduction in arithmetic provided by the dimension tree
optimization. There is little difference in performance between
our implementation without dimension trees and NbAO-NTF.

Figure 5 shows the strong scaling on the HSI data. In this
case, our proposed algorithm with dimension trees is over 2x
faster than NbAO-NTF, but part of this speedup is due to
differences in the NLS update algorithms. For the low core
count, the dimension tree provides a 60% speedup compared
to the MTTKRP time in NbAO-NTF. At the high core counts,
the local MTTKRP is no longer the dominating cost.
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Fig. 5. Strong scaling of 3D HSI real world data with dimension 1024 x
1344 %33 and rank 32 on processor grids of kxkx 1 fork € 1,2,4, 8,16, 32.

In Figure 6, we benchmark performance for a 5D cubical
tensor with each dimension set to 64. Because the tensor is
5D, we can no longer compare against NbAO-NTF. We see
a 13—16x speed up using a dimension tree over not using
one. As predicted, the dimension tree optimization saves rela-
tively more arithmetic for higher-order tensors. However, the
reduction in leading order flop cost is only 2.5x for N = 5;
the rest of the speedup comes from more efficient DGEMM
performance and avoiding memory-bound KRP computation.
That is, although the flop count of KRP computation is lower
order, it still contributes to the run time because it is inefficient.
Also, for tensors with balanced dimensions, the dimension tree
approach yields more favorable shapes for DGEMM.

E. Weak Scaling Time Breakdown

We also perform a weak scaling experiment to understand
the time it takes to solve bigger problems with more pro-
cessors. In this experiment, we use a synthetic 4D tensor
and keep the amount of tensor data assigned to each pro-
cessor constant, with tensor and processor grid of dimensions
128k x 128k x 128k x 128k and kx kx kx k for k € {1,2, 3,4}
and the rank fixed at 32. The results of the breakdown plot
is shown in Figure 7. In this case, the algorithm is compute
bound with and without the use of the dimension tree, so the
total time of the weak scaling remains fixed for both cases.

29

T T

—A— DimTree

—— NoDimTree
24 |- B
—~ 22 - Bl

z

g 20 )
9-2 |- B
274 I I I I I [

20 2! 22 23 24 25

Nodes

Fig. 6. Strong scaling of 5D synthetic tensor with dimension 64 x 64 X
64 x 64 x 64 and rank 32 on processor grids 1xX1x1x1x1, 2x1x1x1x1,
L., 2X2X2X2X2.

1 Error ZINLS M Factor Comm M KRP MMTTKRP

Time (s)

D1 NI

D2 N2 D3 N3 D4 N4
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the use of dimension trees. The tensor and processor grid dimensions are
128k x 128k x 128k x 128k and k X k X k x k for k € {1,2,3,4}, and
the rank is fixed at 32. The reported times are per iteration.

Using a dimension tree, the time is completely dominated by
the MTTKRP computation. Without using a dimension tree,
we observe that the KRP is expensive and yields a 2.5 slower
total run time even in the 4D case.

F. Varying Processor Grid

In order to illustrate the effect of processor grid choice
on running time, we show in Figure 8 a time breakdown
over various processor grid choices for a 4D problem on
81 processors. Because the tensor is cubical and 81 has a
restricted factorization into 4 numbers, there are 5 distinct
processor grids. The overall takeaway is that the processor
grid has very little effect on running time; in this experiment
there is less than 10% variation in overall time. While the
optimal processor grid reduced the communication time by
approximately 3x compared to the other processor grids, the
running time is dominated by local computation, so it had little
effect on overall time. Furthermore, adjusting the processor
grid affects the local tensor dimensions and the performance
of the local computations, and the optimal processor grid led
to slower local performance. For R = 10, all of the local
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Fig. 8. Time breakdown for 243 X 243 x 243 x 243 tensor and rank R = 10
on 81 processors for varying processor grids.

computation is memory bandwidth bound, and we believe the
variations in running times to be effects of some temporary
quantities fitting into smaller levels of cache.

G. Varying Approximation Rank

One of the challenges of the CP (and NNCP) decomposition
in practice is the choice of decomposition rank. The most
common technique is to compute multiple CP decompositions
for various ranks. As the rank R increases, the approximation
error ||A—M]|| decreases with the better approximation power
of more parameters. However, the benefit of increasing R
eventually diminishes if the data is truly low rank. Towards
this end, we experiment with various values of R to observe
the relative increase in time for two real-world data sets.

Figure 9 shows the time breakdown of our implemen-
tation using a dimension tree on the 4D HSI dataset for
R = {10,...,50}. We observe an overall time increase with
increased R, but each part of the computation scales slightly
differently. The multi-TTV computation (mTTV) scales lin-
early with the increasing R, whereas the partial MTTKRP
(PM) is scaling super-linearly. This is because mTTV is cast
as matrix-vector products (DGEMV) and PM is cast as matrix-
matrix products (DGEMM). As R increases from 10 to 50,
DGEMM performance improves but DGEMV performance is
constant. The local NLS time is increasing with O(R3) as
expected and the All-Reduce required for the Gram matrices
scales with O(R?), becoming a significant cost for larger R.

In Figure 10 we compare performance for various ranks R
across all 3 algorithms, again used flat MPI. Starting at R = 10
we see the largest speed up of 2x for our implementation
with a dimension tree over NbAO-NTF. This is due to a
combination of the dimension tree performing fewer flops in
the MTTKRPs and KRPs. However, as the rank increases this
speed up diminishes to 1.6x. The loss of speed up is a result
of the fact that, as we observed in Figure 9, the multi-TTV
operations do not scale as well as the partial-MTTKRPs for
increasing R. Again, the performance of our implementation
without using dimension trees is comparable to NbAO-NTF.
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Fig. 9. Per-iteration time breakdown of our implementation (using dimension
trees) over various ranks for a time-lapse HSI dataset with dimensions 1344 x
1024 x 33 x 9 on 64 processors arranged in a 8 X 8 x 1 x 1 grid.
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Fig. 10. Overall running time for dFC dataset with dimensions 30,012 X
1200 x 500 on 1440 cores arranged in a 2 X 6 X 120 processor grid and
varying choices of rank R.

VI. CONCLUSION

In this work, we present a new implementation for
distributed-memory NNCP. The algorithm is general enough
to handle any number of modes in the data tensor and can
be adapted to use any NLS algorithm within the context of
BCD (ALS). We use a dimension tree optimization to avoid
unnecessary recomputation within the bottleneck local MT-
TKRP computation, and we use an efficient parallelization that
minimizes communication cost. Our performance results show
the ability to scale well, and we show favorable performance
in comparison to state-of-the-art software for 3D tensors.

In particular, the performance results demonstrate that com-
puting NNCP for dense tensors involves heavy computation
relative to the sizes of the computed factor matrices. By
avoiding the communication of tensor entries and commu-
nicating only the factor matrices, the parallel algorithm is
nearly always compute bound. This observation is supported
by the theoretical analysis: although the communication does
not scale as well with P, the total amount of data depends
on a sum of dimensions rather the product of the dimensions,
which determines the total amount of computation.

We can also conclude from the performance results that
the dimension tree optimization is the key to performance



improvement over the state-of-the-art approaches. For 3D
tensors, we observe a benefit larger than the theoretical 50%
reduction in computation, and for larger numbers of modes,
the improvement is only magnified. Besides the reduction in
flops, the dimension tree approach enjoys better DGEMM
performance and avoids memory-bound KRP computations.
Furthermore, we see that tuning the processor grid had much
less effect on overall performance. Not only do reductions
in communication not matter as much as computation, but
different local tensor sizes can also cause variations in local
performance that outweigh the savings in communication.
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