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Abstract— Unsupervised feature extractors are known to per-1

form an efficient and discriminative representation of data.2

Insight into the mappings they perform and human ability to3

understand them, however, remain very limited. This is especially4

prominent when multilayer deep learning architectures are used.5

This paper demonstrates how to remove these bottlenecks within6

the architecture of non-negativity constrained autoencoder. It is7

shown that using both L1 and L2 regularizations that induce8

non-negativity of weights, most of the weights in the network9

become constrained to be non-negative, thereby resulting into10

a more understandable structure with minute deterioration in11

classification accuracy. Also, this proposed approach extracts12

features that are more sparse and produces additional output13

layer sparsification. The method is analyzed for accuracy and14

feature interpretation on the MNIST data, the NORB normalized15

uniform object data, and the Reuters text categorization data set.16

Index Terms— Deep learning (DL), part-based representation,17

receptive field, sparse autoencoder (SAE), white-box model.18

I. INTRODUCTION19

DEEP learning (DL) networks take the form of heuristic20

and rich architectures that develop unique intermedi-21

ate data representation. The complexity of architectures is22

reflected by both the sizes of layers and, for a large number23

of data sets reported in the literature, also by the process-24

ing. In fact, the architectural complexity and the excessive25

number of weights and units are often built into the DL data26

representation by design and are deliberate [1]–[5]. Although27

deep architectures are capable of learning highly complex28

mappings, they are difficult to train, and it is usually hard29

to interpret what each layer has learned. Moreover, gradient-30

based optimization with random initialization used in training31

is susceptible to converging to local minima [6], [7].32

In addition, it is generally believed that humans analyze33

complex interactions by breaking them into isolated and34

understandable hierarchical concepts. The emergence of part-35

based representation in human cognition can be conceptu-36

ally tied to the non-negativity constraints [8]. One way to37

enable easier human understandability of concepts in neural38
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networks is to constrain the network’s weights to be non- 39

negative. Note that such representation through non-negative 40

weights of a multilayer network perceptron can implement any 41

shattering of points provided suitable negative bias values are 42

used [9]. 43

Drawing inspiration from the idea of non-negative matrix 44

factorization (NMF) and sparse coding [8], [10], the hidden AQ:145

structure of data can be unfolded by learning features that have 46

capabilities to model the data in parts. Although NMF enforces 47

the encoding of both the data and features to be non-negative 48

thereby resulting in additive data representation, however, 49

incorporating sparse coding within NMF for the purpose of 50

encoding data is computationally expensive, while with AEs, 51

this incorporation is learning-based and fast. In addition, the 52

performance of a deep network can be enhanced using non- 53

negativity constrained sparse autoencoder (NCSAE)with part- AQ:254

based data representation capability [11], [12]. 55

It is remarked that weight regularization is a concept that 56

has been employed both in the understandability and general- 57

ization context. It is used to suppress the magnitudes of the 58

weights by reducing the sum of their squares. Enhancement 59

in sparsity can also be achieved by penalizing the sum of 60

absolute values of the weights rather than the sum of their 61

squares [13]–[17]. In this paper, the work proposed in [11] 62

is extended by modifying the cost function to extract more 63

sparse features, encouraging the non-negativity of the network 64

weights, and enhancing the understandability of the data. 65

Other related model is the non-negative sparse autoencoder 66

(NNSAE) trained with an online algorithm with tied weights 67

and linear output activation function to mitigate the training 68

hassle [18]. While Lemme et al. [18] uses a piecewise linear 69

decay function to enforce non-negativity and focuses on shal- 70

low architecture, the proposed uses a composite norm with 71

focus on deep architectures. Dropout is another recently intro- 72

duced and widely used heuristic to sparsify AEs and prevent 73

overfitting by randomly dropping units and their connections 74

from the neural network during training [19], [20]. 75

More recently, different paradigms of AEs that constrain 76

the output of encoder to follow a chosen prior distribution 77

have been proposed [21]–[23]. In variational autoencoding, 78

the decoder is trained to reconstruct the input from samples 79

that follow chosen prior using variational inference [21]. 80

Realistic data points can be reconstructed in the original 81

data space by feeding the decoder with samples from chosen 82

prior distribution. On the other hand, adversarial AE matches 83

the encoder’s output distribution to an arbitrary prior distri- 84

bution using adversarial training with discriminator and the 85
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generator [22]. Upon adversarial training, encoder learns to86

map data distribution to the prior distribution.87

The problem addressed here is threefold.88

1) The interpretability of AE-based deep layer architecture89

fostered by enforcing high degree of weight’s non-90

negativity in the network. This improves on NCSAEs91

that show negative weights despite imposing non-92

negativity constraints on the network’s weights [11].93

2) It is demonstrated how the proposed architecture can94

be utilized to extract meaningful representations that95

unearth the hidden structure of a high-dimensional data.96

3) It is shown that the resulting non-negative AEs do not97

deteriorate their classification performance.98

This paper considerably expands the scope of the AE model99

first introduced in [24] by: 1) introducing smoothing func-100

tion for L1 regularization for numerical stability; 2) illus-101

trating the connection between the proposed regularization102

and weights’ non-negativity; 3) drawing more insight into a103

variety of data set; 4) comparing the proposed with recent104

AE architectures; and 5) supporting the interpretability claim105

with new experiments on text categorization data. This paper106

is structured as follows. Section II introduces the network107

configuration and the notation for non-negative sparse feature108

extraction. Section III discusses the experimental designs and109

Section IV presents the results. Finally, conclusions are drawn110

in Section V.111

II. NON-NEGATIVE SPARSE FEATURE EXTRACTION USING112

CONSTRAINED AUTOENCODERS113

As shown in [8], one way of representing data is by114

shattering it into various distinct pieces in a manner that115

additive merging of these pieces can reconstruct the orig-116

inal data. Mapping this intuition to AEs, the idea is to117

sparsely disintegrate data into parts in the encoding layer118

and subsequently additively process the parts to recombine119

the original data in the decoding layer. This disintegration120

can be achieved by imposing non-negativity constraint on the121

network’s weights [11], [25], [26].122

A. L1/L2-Non-Negativity Constrained Sparse Autoencoder123

(L1/L2-NCSAE)124

In order to encourage higher degree of non-negativity in125

network’s weights, a composite penalty term (1) is added to126

the objective function, resulting in the cost function expression127

for L1/L2-NCSAE128

JL1/L2-NCSAE(W, b)129

= JAE + β

n′∑

r=1

DKL

(
p

∥∥∥∥∥
1

m

m∑

k=1

hr (x(k))

)
130

+
2∑

l=1

sl∑

i=1

sl+1∑

j=1

fL1/L2

(
w

(l)
i j

)
(1)131

where W = {W(1), W(2)} and b = {bx , bh} represent the132

weights and biases of encoding and decoding layers, respec-133

tively; sl is the number of neurons in layer l; and w
(l)
i j134

represents the connection between j th neuron in layer l − 1 135

and i th neuron in layer l and for given input x 136

JAE = 1

m

m∑

k=1

∥∥∥σ(W(2)σ (W(1)x(k) + bx) + bh) − x(k)
∥∥∥

2

2
137

(2) 138

where m is the number of training examples, || � ||2 is the 139

Euclidean norm, DKL(�) is the Kullback–Leibler (KL) diver- 140

gence for sparsity control [27] with p denoting the desired 141

activation and the average activations of hidden units, n′ is 142

the number of hidden units, h j (x(k)) = σ(W(1)
j x(k) + bx, j ) 143

denotes the activation of hidden unit j due to input x(k), and 144

σ(�) is the element-wise application of the logistic sigmoid, 145

σ(x) = 1/(1 + ex p(−x)), β controls the sparsity penalty term, 146

and 147

fL1/L2(wi j ) =
{

α1�(wi j , κ) + α2

2
||wi j ||2 wi j < 0

0 wi j ≥ 0
(3) 148

where α1 and α2 are L1 and L2 non-negativity-constraint 149

weight penalty factors, respectively. p, β, α1, and α2 are 150

experimentally set to 0.05, 3, 0.0003, and 0.003, respectively, 151

using 9000 randomly sampled images from the training set as 152

a held-out validation set for hyperparameter tuning, and the 153

network is retrained on the entire data set. The weights are 154

updated as below using the error backpropagation 155

w
(l)
i j = w

(l)
i j − ξ

∂

∂w
(l)
i j

JL1/L2-NCSAE(W, b) (4) 156

b(l)
i = b(l)

i − ξ
∂

∂b(l)
i

JL1/L2-NCSAE(W, b) (5) 157

where ξ > 0 is the learning rate and the gradient of 158

L1/L2-NCSAE loss function is computed as 159

∂

∂w
(l)
i j

JL1/L2-NCSAE(W, b) 160

= ∂

∂w
(l)
i j

JAE(W, b) 161

+ β
∂

∂w
(l)
i j

DK L

(
p

∥∥∥∥∥
1

m

m∑

k=1

h j (x(k))

)
+ g

(
w

(l)
i j

)
(6) 162

where g(wi j ) is a composite function denoting the derivative 163

of fL1/L2(wi j ) (3) with respect to wi j as 164

g(wi j ) =
{

α1∇w
∥∥wi j

∥∥ + α2wi j wi j < 0

0 wi j ≥ 0.
(7) 165

Although the penalty function in (1) is an extension of 166

NCSAE (obtained by setting α1 to zero), a close scrutiny of the 167

weight distribution of both the encoding and decoding layer in 168

NCSAE reveals that many weights are still not non-negative 169

despite imposing non-negativity constraints. The reason for 170

this is that the original L2 norm used in NCSAE penalizes 171

the negative weights with bigger magnitudes stronger than 172

those with smaller magnitudes. This forces a good number 173

of the weights to take on small negative values. This paper 174

uses additional L1 to even out this occurrence, that is, the 175
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Fig. 1. (a) Symmetric (G3) and skewed (G1 and G2) weight distributions. Decay function with three values of α1 and α2 for weight distribution. (b) G3.
(c) G1. (d) G2.

L1 penalty forces most of the negative weights to become176

non-negative.177

B. Implication of Imposing Non-Negative Parameters With178

Composite Decay Function179

The graphical illustration of the relation between the weight180

distribution and the composite decay function is shown in181

Fig. 1. Ideally, addition of Frobenius norm of the weight182

matrix (α||W||2F ) to the reconstruction error in (2) imposes183

a Gaussian prior on the weight distribution as shown in184

curve G3 in Fig. 1(a). However, using the composite function185

in (3) results in imposition of positively skewed deformed186

Gaussian distribution as in curves G1 and G2. The degree of187

non-negativity can be adjusted using parameters α1 and α2.188

Both parameters have to be carefully chosen to enforce189

non-negativity while simultaneously ensuring good supervised190

learning outcomes. The effect of L1 (α2 = 0), L2 (α1 = 0),191

and L1/L2 (α1 �= 0 and α2 �= 0), non-negativity penalty terms,192

on weight updates for weight distributions G1, G2, and G3 are,193

respectively, shown in Fig. 1(b)–(d). It can be observed for194

all the three distributions that L1/L2 regularization enforces195

stronger weight decay than individual L1 and L2 regulariza-196

tions. Other observation from Fig. 1 is that the more positively197

skewed the weight distribution becomes, the lesser the weight198

decay function.199

The consequences of minimizing (1) are that: 1) the average200

reconstruction error is reduced; 2) the sparsity of the hidden201

layer activations is increased because more negative weights202

are forced to zero, thereby leading to sparsity enhancement;203

and 3) the number of non-negative weights is also increased.204

The resultant effect of penalizing the weights simultaneously205

with L1 and L2 norms is that large positive connections are206

preserved while their magnitudes are shrunk. However, the207

L1 norm in (3) is non-differentiable at the origin, and this can208

lead to numerical instability during simulations. To circumvent209

this drawback, one of the well-known smoothing function that210

approximates L1 norm as in (3) is utilized. Given any finite211

dimensional vector z and positive constant κ , the following212

smoothing function approximates L1 norm:213

�(z, κ) =

⎧
⎪⎪⎨

⎪⎪⎩

||z|| ||z|| > κ

||z||2
2κ

+ κ

2
||z|| ≤ κ

(8)214

with gradient 215

∇z�(z, κ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z
||z|| ||z|| > κ

z
κ

||z|| ≤ κ.

(9) 216

For convenience, we adopt (8) to smoothen the L1 penalty 217

function and κ is experimentally set to 0.1. 218

III. EXPERIMENTS 219

In the experiments, three data sets are used, namely, 220

MNIST [28], NORB normalized-uniform [29], and 221

Reuters-21578 text categorization data set. The Reuters- 222

21578 text categorization data set comprises documents that 223

featured in 1987 Reuters newswire. The ModApte split was 224

employed to limit the data set to 10 most frequent classes. 225

The ModApte split was utilized to limit the categories to 226

10 most frequent categories. The bag-of-words format that 227

has been stemmed and stop-word removed was used (see 228

http://people.kyb.tuebingen.mpg.de/pgehler/rap/ for further 229

clarification). The data set contains 11 413 documents with 230

12 317 dimensions. Two techniques were used to reduce the 231

dimensionality of each document in order to preserve the 232

most informative and less correlated words [30]. To reduce 233

the dimensionality of each document to contain the most 234

informative and less correlated words, words were first sorted 235

based on their frequency of occurrence in the data set. Words 236

with frequency below 4 and above 70 were then eliminated. 237

The most informative words that do not occur in every 238

topic were selected based on information gain with the class 239

attribute. The remaining words (or features) in the data set 240

were sorted using this method, and the less important features 241

were removed based on the desired dimension of documents. 242

In this paper, the length of the feature vector for each of the 243

documents was reduced to 200. 244

In the preliminary experiment, the subsets 1, 2, and 6 245

from the MNIST handwritten digits are extracted for the 246

purpose of understanding how the deep network constructed 247

using L1/L2-NCSAE processes and classify their input. For 248

easy interpretation, a small deep network was constructed 249

and trained by stacking two AEs with 10 hidden neurons 250

each and 3 softmax neurons. The number of hidden neurons 251

was chosen to obtain reasonably good classification accuracy 252
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Fig. 2. Filtering the signal through the L1/L2-NCSAE trained using the reduced MNIST data set with class labels 1, 2, and 6. The test image is a
28 × 28 pixels image unrolled into a vector of 784 values. Both the input test sample and the receptive fields of the first autoencoding layer are presented as
images. The weights of the output layer are plotted as a diagram with one row for each output neuron and one column for every hidden neuron in (L − 1)th
layer. The architecture is 784-10-10-3. The range of weights is scaled to [−1, 1] and mapped to the graycolor map. w = −1 is assigned to black, w = 0 to
gray, and w = 1 is assigned to white color. That is, black pixels indicate negative, gray pixels indicate zero-valued weights, and white pixels indicate positive
weights.

while keeping the network reasonably small. The network is253

intentionally kept small because the full MNIST data would254

require larger hidden layer size and this may limit network255

interpretability. An image of digit 2 is then filtered through the256

network, and it can be observed in Fig. 2 that sparsification257

of the weights in all the layers is one of the aftermath of258

non-negativity constraints imposed on the network. Another259

observation is that most of the weights in the network have260

been confined to non-negative domain, which removes the261

opaqueness of the DL process. It can be seen that the fourth262

and seventh receptive fields of the first AE layer have dominant263

activations (with activation values 0.12 and 0.13, respectively)264

and they capture most information about the test input. Also,265

they are able to filter distinct part of input digit. The outputs266

of the first layer sigmoid constitute higher level features267

extracted from test image with emphasis on the fourth and268

seventh features. Subsequently, in the second layer, the second,269

sixth, eight, and tenth neurons have dominant activations270

(with activation values 0.0914, 0.0691, 0.0607, and 0.0606,271

respectively) because they have stronger connections with the272

dominant neurons in the first layer than the rest. Last, in273

the softmax layer, the second neuron was 99.62% activated274

because it has the strongest connections with the dominant275

neurons in the second layer, thereby classifying the test image276

as “2.”277

The fostering of interpretability is also demonstrated using278

a subset of NORB normalized-uniform data set [29] with279

class labels “four-legged animals,” “human figures,” and280

“airplanes.” The 1024-10-5-3 network configuration was281

trained on the subset of the NORB data using two stacked282

L1/L2-NCSAEs and a Softmax layer. Fig. 3(b) shows the ran-283

domly sampled test patterns, and the weights and activations of284

the first and second AE layers are shown in Fig. 3(a). The bar285

charts indicate the activations of hidden units for the sample286

input patterns. The features learned by units in each layer are 287

localized, sparse, and allow easy interpretation of isolated data 288

parts. The features mostly show non-negative weights making 289

it easier to visualize to what input object patterns they respond. 290

It can be seen that units in the network discriminate among 291

objects in the images and react differently to input patterns. 292

Third, sixth, eight, and ninth hidden units of layer 1 capture 293

features that are common to objects in class “2” and react 294

mainly to them as shown in the first layer activations. Also, 295

the features captured by the second layer activations reveal 296

that the second and fifth hidden units are mainly stimulated 297

by objects in class “2.” 298

The outputs of Softmax layer represent the a posteriori 299

class probabilities for a given sample and are denoted as 300

Softmax scores. An important observation from Fig. 3(a)–(c) 301

is that hidden units in both layers did not capture significant 302

representative features for class “1” white color-coded test 303

sample. This is one of the reasons why it is misclassified into 304

class “3” with a probability of 0.57. The argument also goes 305

for class “1” dark-gray color-coded test sample misclassified 306

into class “3” with a probability of 0.60. In contrast, hidden 307

units in both layers capture significant representative features 308

for class “2” test samples of all color codes. This is why 309

all class “2” test samples are classified correctly with high 310

probabilities as shown in Fig. 3(d). Last, the network contains 311

a good number of representative features for class “3” test 312

samples and was able to classify 4 out of 5 correctly as given 313

in Fig. 3(e). 314

IV. RESULTS AND DISCUSSION 315

A. Unsupervised Feature Learning of Image Data 316

In the first set of experiments, three-layer L1/L2-NCSAE, 317

NCSAE [11], DpAE [19], and conventional SAE network 318

with 196 hidden neurons were trained using MNIST data set 319
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Fig. 3. Weights were trained using two stacked L1/L2-NCSAEs. RFs learned from the reduced NORB data set are plotted as images at the bottom part
of (a). The intensity of each pixel is proportional to the magnitude of the weight connected to that pixel in the input image with negative value indicating
black, positive values white, and the value 0 corresponding to gray. The biases are not shown. The activations of first layer hidden units for the NORB objects
presented in (b) are depicted on the bar chart on top of the RFs. The weights of the second layer AE are plotted as a diagram at the topmost part of (a).
Each row of the plot corresponds to the weight of each hidden unit of second AE and each column for weight of every hidden unit of the first layer AE.
The magnitude of the weight corresponds to the area of each square; white indicates positive, gray indicates zero, and black negative sign. The activations of
second layer hidden units are shown as bar chart in the right-hand side of the second layer weight diagram. Each column shows the activations of each hidden
unit for five color-coded examples of the same object. The outputs of Softmax layer for color-coded test objects with class labels (c) “fourlegged animals”
tagged as class 1, (d) “human figures” as class 2, and (e) “airplanes” as class 3.

Fig. 4. 196 receptive fields (W(1)) with weight histograms learned from MNIST digit data set using (a) SAE, (b) DpAE, (c) NCSAE, and (d) L1/L2-NCSAE.
Black pixels indicate negative, and white pixels indicate positive weights. The range of weights are scaled to [−1,1] and mapped to the graycolor map. w = −1
is assigned to black, w = 0 to gray, and w = 1 is assigned to white color.

of handwritten digits and their ability to discover patterns320

in high dimensional data are compared. These experiments321

were run one time and recorded. The encoding weights W(1),322

also known as receptive fields or filters as in the case of323

image data, are reshaped, scaled, centered in a 28 × 28 pixel324

box, and visualized. The filters learned by L1/L2-NCSAE are325

compared with that learned by its counterparts, NCSAE and326

SAE. It can be easily observed from the results in Fig. 4 that327

L1/L2-NCSAE learned receptive fields that are more sparse328

and localized than those of SAE, DpAE, and NCSAE. It is329

remarked that the black pixels in both SAE and DpAE features330

are results of the negative weights whose values and numbers 331

are reduced in NCSAE with non-negativity constraints, which 332

are further reduced by imposing an additional L1 penalty term 333

in L1/L2-NCSAE as shown in the histograms located on the 334

right side of the figure. In the case of L1/L2-NCSAE, tiny 335

strokes and dots that constitute the basic part of handwritten 336

digits are unearthed compared to SAE, DpAE, and NCSAE. 337

Most of the features learned by SAE are major parts of the 338

digits or the blurred version of the digits, which are obviously 339

not as sparse as those learned by L1/L2-NCSAE. Also, the 340

features learned by DpAE are fuzzy compared to those of 341
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Fig. 5. (a) Reconstruction error and (b) sparsity of hidden units measured by KL-divergence using MNIST train data set with p = 0.05.

Fig. 6. t-SNE projection [31] of 196D representations of MNIST handwritten digits using (a) DpAE, (b) NCSAE, and (c) L1/L2-NCSAE.

L1/L2-NCSAE that are sparse and distinct. Therefore, the342

achieved sparsity in the encoding can be traced to the ability of343

L1 and L2 regularizations in enforcing high degree of weights’344

non-negativity in the network.345

Likewise in Fig. 5(a), L1/L2-NCSAE with other AEs are346

compared in terms of reconstruction error, while varying the347

number of hidden nodes. As expected, it can be observed that348

L1/L2-NCSAE yields a reasonably lower reconstruction error349

on the MNIST training set compared to SAE, DpAE, and350

NCSAE. Although, a close scrutiny of the result also reveals351

that the reconstruction error of L1/L2-NCSAE deteriorates352

compared to NCSAE when the hidden size grows beyond 400.353

However, on the average, L1/L2-NCSAE reconstructs better354

than other AEs considered. It can also be observed that355

DpAE with 50% dropout has high reconstruction error when356

the hidden layer size is relatively small (100 or less). This357

is because the few neurons left are unable to capture the358

dynamics in the data, which subsequently results in under-359

fitting the data. However, the reconstruction error improves360

as the hidden layer size is increased. Lower reconstruction361

error in the case of L1/L2-NCSAE and NCSAE is an indi-362

cation that non-negativity constraint facilitates the learning of363

parts of digits that are essential for reconstructing the digits.364

In addition, the KL-divergence sparsity measure reveals that 365

L1/L2-NCSAE has more sparse hidden activations than SAE, 366

DpAE, and NCSAE for different hidden layer size, as shown 367

in Fig. 5(b). Again, averaging over all the training examples, 368

L1/L2-NCSAE yields less activated hidden neurons compared 369

to its counterparts. Also, using t-distributed stochastic neigh- 370

bor embedding (t-SNE) to project the 196-D representation 371

of MNIST handwritten digits to 2-D space, the distribu- 372

tion of features encoded by 196 encoding filters of DpAE, 373

NCSAE, and L1/L2-NCSAE are, respectively, visualized 374

in Fig. 6(a)–(c). A careful look at Fig. 6(a) reveals that digits 375

“4” and “9” are overlapping in DpAE, and this will inevitably 376

increase the chance of misclassifying these two digits. It can 377

also be observed in Fig. 6(b) corresponding to NCSAE that 378

digit “2” is projected with two different landmarks. In sum, the 379

manifolds of digits with L1/L2-NCSAE are more separable 380

than its counterpart as shown in Fig. 6(c), aiding the classifier 381

to map out the separating boundaries among the digits more 382

easily. 383

In the second experiment, SAE, NCSAE, L1/L2-NCSAE, 384

and DpAE with 200 hidden nodes were trained using the 385

NORB normalized-uniform data set. The NORB normalized- 386

uniform data set, which is the second data set, contains 387
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Fig. 7. Weights of randomly selected 90 out of 200 receptive filters of (a) SAE, (b) DpAE, (c) NCSAE, and (d) L1/L2-NCSAE using NORB data set. The
range of weights are scaled to [−1,1] and mapped to the graycolor map. w <= −1 is assigned to black, w = 0 to gray, and w >= 1 is assigned to white
color.

Fig. 8. Distribution of 200 encoding (W(1)) and decoding filters (W(2)) weights learned from NORB data set using (a) DpAE, (b) NCSAE,
and (c) L1/L2-NCSAE.

24 300 training images and 24 300 test images of 50 toys388

from five generic categories: four-legged animals, human389

figures, airplanes, trucks, and cars. The training and testing390

sets consist of five instances of each category. Each image391

consists of two channels, each of size 96 × 96 pixels. The392

inner 64 × 64 pixels of one of the channels cropped out and393

resized using bicubic interpolation to 32 ×32 pixels that form394

a vector with 1024 entries as the input. Randomly selected395

weights of 90 out of 200 neurons are plotted in Fig. 7.396

It can be seen that L1/L2-NCSAE learned more sparse fea-397

tures compared to features learned by all other AEs consid-398

ered. The receptive fields learned by L1/L2-NCSAE captured399

the real actual edges of the toys while the edges captured by400

NCSAE are fuzzy, and those learned by DpAE and SAE are401

holistic. As shown in the weight distribution depicted in Fig. 8,402

L1/L2-NCSAE has both its encoding and decoding weights403

centered around zero with most of its weights positive when404

compared with those of DpAE and NCSAE that have weights405

distributed almost even on both sides of the origin.406

B. Unsupervised Semantic Feature Learning From Text Data 407

In this experiment, DpAE, NCSAE, and L1/L2-NCSAE 408

are evaluated and compared based on their ability to extract 409

semantic features from text data, and how they are able to dis- 410

cover the underlined structure in text data. For this purpose, the 411

Reuters-21578 text categorization data set with 200 features 412

is utilized to train all the three types of AEs with 20 hidden 413

nodes. A subset of 500 examples belonging to categories 414

“grain,” “crude,” and “money-fx” was extracted from the test 415

set. The experiments were run three times, averaged, and 416

recorded. In Fig. 9, the 20-dimensional representations of the 417

Reuters data subset using DpAE, NCSAE, and L1/L2-NCSAE 418

are visualized. It can be observed that L1/L2-NCSAE is able 419

to disentangle the documents into three distinct categories 420

with more linear manifolds than NCSAE. In addition, 421

L1/L2-NCSAE is able to group documents that are closer 422

in the semantic space into the same categories than DpAE 423

that finds it difficult to group the documents into any distinct 424

categories with less overlap. 425
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Fig. 9. Visualizing 20D representations of a subset of Reuters documents data using (a) DpAE, (b) NCSAE, and (c) L1/L2-NCSAE.

TABLE I

CLASSIFICATION ACCURACY ON MNIST AND NORB DATA SET

C. Supervised Learning426

In the last set of experiments, a deep network was con-427

structed using two stacked L1/L2-NCSAE and a softmax428

layer for classification to test if the enhanced ability of the429

network to shatter data into parts and lead to improved clas-430

sification. Eventually, the entire deep network is fine-tuned to431

improve the accuracy of the classification. In this set of exper-432

iments, the performance of pretraining a deep network with433

L1/L2-NCSAE is compared with those pretrained with recent434

AE architectures. The MNIST and NORB data sets were435

utilized, and every run of the experiments is repeated ten times436

and averaged to combat the effect of random initialization. The437

classification accuracy of the deep network pretrained with438

NNSAE [18], DpAE [19], DAE [32], AAE [22], NCSAE,439

and L1/L2-NCSAE using MNIST and NORB data, respec-440

tively, are detailed in Table I. The network architectures are441

784-196-20-10 and 1024-200-20-5 for MNIST and NORB442

data set, respectively. It is remarked that for training of AAE443

with two layers of 196 hidden units in the encoder, decoder,444

discriminator, and other hyperparameters tuned as described445

in [22], the accuracy was 83.67%. The AAE reported in446

Table I used encoder, decoder, and discriminator each with447

two layers of 1000 hidden units and trained for 1000 epochs.448

The classification accuracy and speed of convergence are449

the figures of merit used to benchmark L1/L2-NCSAE with 450

other AEs. 451

It is observed from the result that L1/L2-NCSAE-based 452

deep network gives an improved accuracy before fine-tuning 453

compared to methods such as NNSAE, NCSAE, and DpAE. 454

However, the performance in terms of classification accuracy 455

after fine-tuning is very competitive. In fact, it can be inferred 456

from the p-value of the experiments conducted on MNIST 457

and NORB in Table I that there is no significant differ- 458

ence in the accuracy after fine-tuning between NCSAE and 459

L1/L2-NCSAE even though most of the weights in 460

L1/L2-NCSAE are non-negativity constrained. Therefore, it 461

is remarked that even though the interpretability of the deep 462

network has been fostered by constraining most of the weights 463

to be non-negative and sparse, nothing significant has been 464

lost in terms of accuracy. In addition, network trained with 465

L1/L2-NCSAE was also observed to converge faster than 466

its counterparts. On the other hand, NNSAE also has non- 467

negative weights but with deterioration in accuracy, which 468

is more conspicuous especially before the fine-tuning stage. 469

The improved accuracy before fine-tuning in L1/L2-NCSAE- 470

based network can be traced to its ability to decompose data 471

more into distinguishable parts. Although the performance of 472

L1/L2-NCSAE after fine-tuning is similar to those of DAE 473
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Fig. 10. Deep network trained on Reuters-21578 data using (a) DpAE and (b) L1/L2-NCSAE. The area of each square is proportional to the weight’s
magnitude. The range of weights is scaled to [−1,1] and mapped to the graycolor map. w = −1 is assigned to black, w = 0 to gray, and w = 1 is assigned
to white color.

and NCSAE but better than NNSAE, DpAE, and AAE,474

L1/L2-NCSAE constrains most of the weights to be non-475

negative and sparse to foster transparency than for other AEs.476

However, DpAE and NCSAE performed slightly more accu-477

rate than L1/L2-NCSAE on NORB after network fine-tuning.478

In light of constructing an interpretable deep network,479

an L1/L2-NCSAE pretrained deep network with 10 hidden480

neurons in the first AE layer, 5 hidden neurons in the second481

AE, and 10 output neurons (one for each category) in the482

softmax layer was constructed. It was trained on Reuters483

data and compared with that pretrained using DpAE. The484

interpretation of the encoding layer of the first AE is provided485

by listing words associated with 10 strongest weights, and486

the interpretation of the encoding layer of the second AE is487

portrayed as images characterized by both the magnitude and488

sign of the weights. Compared to the AE with weights of both489

signs shown in Fig. 10(a), Fig. 10(b) allows for much better490

insight into the categorization of the topics.491

Topic earn in the output weight matrix resonates with the492

fifth hidden neuron most, lesser with the third, and somewhat493

with the fourth. This resonance can happen only when the fifth494

hidden neuron reacts to input by words of columns 1 and 4,495

and in addition, to a lesser degree, when the third hidden496

neuron reacts to input by words of the third column of words.497

So, in tandem, the dominant columns 1 and 4 and then also 3498

are sets of words that trigger the category earn.499

Analysis of the term words for the topic acq leads to a500

similar conclusion. This topic also resonates with the two501

dominant hidden neurons 5 and 3 and somewhat with neuron 2. 502

These neurons 5 and 3 are driven again by the columns of 503

words 1, 4, and 3. The difference between the categories is now 504

that to a lesser degree, the category acq is influenced by the 505

sixth column of words. An interesting point is in contribution 506

of the third column of words. The column connects only to 507

the fourth hidden neuron but weights from this neuron in the 508

output layer are smaller and hence less significant than for 509

any other of the five neurons (or rows) of the output weight 510

matrix. Hence, this column is of least relevance in the topical 511

categorization. 512

D. Experiment Running Times 513

The training time for networks with and without the non- 514

negativity constraints was compared. The constrained network 515

converges faster and requires a lesser number of training 516

epochs. In addition, the unconstrained network requires more 517

time per epoch than the constrained one. The running time 518

experiments were performed using full MNIST benchmark 519

data set on Intel(r) Core i7-6700 CPU at 3.40 Ghz and a 64 GB 520

of RAM running a 64-b Windows 10 Enterprise edition. The 521

software implementation has been with MATLAB 2015b with 522

batch gradient descent method, and LBFGS in minFunc [33] 523

is used to minimize the objective function. The usage times for 524

constrained and unconstrained networks were also compared. 525

We consider the usage time in milliseconds (ms), and as the 526

time elapsed in ms, a fully trained deep network requires to 527
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classify all the test samples. The unconstrained network took528

48 ms per epoch in the training phase, while the constrained529

counterpart took 46 ms. Also, the unconstrained network530

required 59.9-ms usage time, whereas the network with non-531

negative weights took 55 ms. From the above observations,532

it is remarked that the non-negativity constraint simplifies the533

resulting network.534

V. CONCLUSION535

This paper addresses the concept and properties of special536

regularization of DL AE that takes advantage of non-negative537

encodings and at the same time of special regularization.538

It has been shown that using both L1 and L2 to penalize539

the negative weights, most of them are forced to be non-540

negative and sparse, and hence, the network interpretability541

is enhanced. In fact, it is also observed that most of the542

weights in the Softmax layer become non-negative and sparse.543

In sum, it has been observed that encouraging non-negativity544

in NCSAE-based deep architecture forces the layers to learn545

part-based representation of their input and leads to a com-546

parable classification accuracy before fine-tuning the entire547

deep network and not-so-significant accuracy deterioration548

after fine-tuning. It has also been shown on select examples549

that concurrent L1 and L2 regularizations improve the network550

interpretability. The performance of the proposed method was551

compared in terms of sparsity, reconstruction error, and clas-552

sification accuracy with the conventional SAE and NCSAE,553

and we utilized MNIST handwritten digits, Reuters docu-554

ments, and the NORB data set to illustrate the proposed555

concepts.556
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Deep Learning of Constrained Autoencoders for
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Babajide O. Ayinde, Student Member, IEEE, and Jacek M. Zurada, Life Fellow, IEEE

Abstract— Unsupervised feature extractors are known to per-1

form an efficient and discriminative representation of data.2

Insight into the mappings they perform and human ability to3

understand them, however, remain very limited. This is especially4

prominent when multilayer deep learning architectures are used.5

This paper demonstrates how to remove these bottlenecks within6

the architecture of non-negativity constrained autoencoder. It is7

shown that using both L1 and L2 regularizations that induce8

non-negativity of weights, most of the weights in the network9

become constrained to be non-negative, thereby resulting into10

a more understandable structure with minute deterioration in11

classification accuracy. Also, this proposed approach extracts12

features that are more sparse and produces additional output13

layer sparsification. The method is analyzed for accuracy and14

feature interpretation on the MNIST data, the NORB normalized15

uniform object data, and the Reuters text categorization data set.16

Index Terms— Deep learning (DL), part-based representation,17

receptive field, sparse autoencoder (SAE), white-box model.18

I. INTRODUCTION19

DEEP learning (DL) networks take the form of heuristic20

and rich architectures that develop unique intermedi-21

ate data representation. The complexity of architectures is22

reflected by both the sizes of layers and, for a large number23

of data sets reported in the literature, also by the process-24

ing. In fact, the architectural complexity and the excessive25

number of weights and units are often built into the DL data26

representation by design and are deliberate [1]–[5]. Although27

deep architectures are capable of learning highly complex28

mappings, they are difficult to train, and it is usually hard29

to interpret what each layer has learned. Moreover, gradient-30

based optimization with random initialization used in training31

is susceptible to converging to local minima [6], [7].32

In addition, it is generally believed that humans analyze33

complex interactions by breaking them into isolated and34

understandable hierarchical concepts. The emergence of part-35

based representation in human cognition can be conceptu-36

ally tied to the non-negativity constraints [8]. One way to37

enable easier human understandability of concepts in neural38
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networks is to constrain the network’s weights to be non- 39

negative. Note that such representation through non-negative 40

weights of a multilayer network perceptron can implement any 41

shattering of points provided suitable negative bias values are 42

used [9]. 43

Drawing inspiration from the idea of non-negative matrix 44

factorization (NMF) and sparse coding [8], [10], the hidden AQ:145

structure of data can be unfolded by learning features that have 46

capabilities to model the data in parts. Although NMF enforces 47

the encoding of both the data and features to be non-negative 48

thereby resulting in additive data representation, however, 49

incorporating sparse coding within NMF for the purpose of 50

encoding data is computationally expensive, while with AEs, 51

this incorporation is learning-based and fast. In addition, the 52

performance of a deep network can be enhanced using non- 53

negativity constrained sparse autoencoder (NCSAE)with part- AQ:254

based data representation capability [11], [12]. 55

It is remarked that weight regularization is a concept that 56

has been employed both in the understandability and general- 57

ization context. It is used to suppress the magnitudes of the 58

weights by reducing the sum of their squares. Enhancement 59

in sparsity can also be achieved by penalizing the sum of 60

absolute values of the weights rather than the sum of their 61

squares [13]–[17]. In this paper, the work proposed in [11] 62

is extended by modifying the cost function to extract more 63

sparse features, encouraging the non-negativity of the network 64

weights, and enhancing the understandability of the data. 65

Other related model is the non-negative sparse autoencoder 66

(NNSAE) trained with an online algorithm with tied weights 67

and linear output activation function to mitigate the training 68

hassle [18]. While Lemme et al. [18] uses a piecewise linear 69

decay function to enforce non-negativity and focuses on shal- 70

low architecture, the proposed uses a composite norm with 71

focus on deep architectures. Dropout is another recently intro- 72

duced and widely used heuristic to sparsify AEs and prevent 73

overfitting by randomly dropping units and their connections 74

from the neural network during training [19], [20]. 75

More recently, different paradigms of AEs that constrain 76

the output of encoder to follow a chosen prior distribution 77

have been proposed [21]–[23]. In variational autoencoding, 78

the decoder is trained to reconstruct the input from samples 79

that follow chosen prior using variational inference [21]. 80

Realistic data points can be reconstructed in the original 81

data space by feeding the decoder with samples from chosen 82

prior distribution. On the other hand, adversarial AE matches 83

the encoder’s output distribution to an arbitrary prior distri- 84

bution using adversarial training with discriminator and the 85

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IEE
E P

ro
of

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

generator [22]. Upon adversarial training, encoder learns to86

map data distribution to the prior distribution.87

The problem addressed here is threefold.88

1) The interpretability of AE-based deep layer architecture89

fostered by enforcing high degree of weight’s non-90

negativity in the network. This improves on NCSAEs91

that show negative weights despite imposing non-92

negativity constraints on the network’s weights [11].93

2) It is demonstrated how the proposed architecture can94

be utilized to extract meaningful representations that95

unearth the hidden structure of a high-dimensional data.96

3) It is shown that the resulting non-negative AEs do not97

deteriorate their classification performance.98

This paper considerably expands the scope of the AE model99

first introduced in [24] by: 1) introducing smoothing func-100

tion for L1 regularization for numerical stability; 2) illus-101

trating the connection between the proposed regularization102

and weights’ non-negativity; 3) drawing more insight into a103

variety of data set; 4) comparing the proposed with recent104

AE architectures; and 5) supporting the interpretability claim105

with new experiments on text categorization data. This paper106

is structured as follows. Section II introduces the network107

configuration and the notation for non-negative sparse feature108

extraction. Section III discusses the experimental designs and109

Section IV presents the results. Finally, conclusions are drawn110

in Section V.111

II. NON-NEGATIVE SPARSE FEATURE EXTRACTION USING112

CONSTRAINED AUTOENCODERS113

As shown in [8], one way of representing data is by114

shattering it into various distinct pieces in a manner that115

additive merging of these pieces can reconstruct the orig-116

inal data. Mapping this intuition to AEs, the idea is to117

sparsely disintegrate data into parts in the encoding layer118

and subsequently additively process the parts to recombine119

the original data in the decoding layer. This disintegration120

can be achieved by imposing non-negativity constraint on the121

network’s weights [11], [25], [26].122

A. L1/L2-Non-Negativity Constrained Sparse Autoencoder123

(L1/L2-NCSAE)124

In order to encourage higher degree of non-negativity in125

network’s weights, a composite penalty term (1) is added to126

the objective function, resulting in the cost function expression127

for L1/L2-NCSAE128

JL1/L2-NCSAE(W, b)129

= JAE + β

n′∑

r=1

DKL

(
p

∥∥∥∥∥
1

m

m∑

k=1

hr (x(k))

)
130

+
2∑

l=1

sl∑

i=1

sl+1∑

j=1

fL1/L2

(
w

(l)
i j

)
(1)131

where W = {W(1), W(2)} and b = {bx , bh} represent the132

weights and biases of encoding and decoding layers, respec-133

tively; sl is the number of neurons in layer l; and w
(l)
i j134

represents the connection between j th neuron in layer l − 1 135

and i th neuron in layer l and for given input x 136

JAE = 1

m

m∑

k=1

∥∥∥σ(W(2)σ (W(1)x(k) + bx) + bh) − x(k)
∥∥∥

2

2
137

(2) 138

where m is the number of training examples, || � ||2 is the 139

Euclidean norm, DKL(�) is the Kullback–Leibler (KL) diver- 140

gence for sparsity control [27] with p denoting the desired 141

activation and the average activations of hidden units, n′ is 142

the number of hidden units, h j (x(k)) = σ(W(1)
j x(k) + bx, j ) 143

denotes the activation of hidden unit j due to input x(k), and 144

σ(�) is the element-wise application of the logistic sigmoid, 145

σ(x) = 1/(1 + ex p(−x)), β controls the sparsity penalty term, 146

and 147

fL1/L2(wi j ) =
{

α1�(wi j , κ) + α2

2
||wi j ||2 wi j < 0

0 wi j ≥ 0
(3) 148

where α1 and α2 are L1 and L2 non-negativity-constraint 149

weight penalty factors, respectively. p, β, α1, and α2 are 150

experimentally set to 0.05, 3, 0.0003, and 0.003, respectively, 151

using 9000 randomly sampled images from the training set as 152

a held-out validation set for hyperparameter tuning, and the 153

network is retrained on the entire data set. The weights are 154

updated as below using the error backpropagation 155

w
(l)
i j = w

(l)
i j − ξ

∂

∂w
(l)
i j

JL1/L2-NCSAE(W, b) (4) 156

b(l)
i = b(l)

i − ξ
∂

∂b(l)
i

JL1/L2-NCSAE(W, b) (5) 157

where ξ > 0 is the learning rate and the gradient of 158

L1/L2-NCSAE loss function is computed as 159

∂

∂w
(l)
i j

JL1/L2-NCSAE(W, b) 160

= ∂

∂w
(l)
i j

JAE(W, b) 161

+ β
∂

∂w
(l)
i j

DK L

(
p

∥∥∥∥∥
1

m

m∑

k=1

h j (x(k))

)
+ g

(
w

(l)
i j

)
(6) 162

where g(wi j ) is a composite function denoting the derivative 163

of fL1/L2(wi j ) (3) with respect to wi j as 164

g(wi j ) =
{

α1∇w
∥∥wi j

∥∥ + α2wi j wi j < 0

0 wi j ≥ 0.
(7) 165

Although the penalty function in (1) is an extension of 166

NCSAE (obtained by setting α1 to zero), a close scrutiny of the 167

weight distribution of both the encoding and decoding layer in 168

NCSAE reveals that many weights are still not non-negative 169

despite imposing non-negativity constraints. The reason for 170

this is that the original L2 norm used in NCSAE penalizes 171

the negative weights with bigger magnitudes stronger than 172

those with smaller magnitudes. This forces a good number 173

of the weights to take on small negative values. This paper 174

uses additional L1 to even out this occurrence, that is, the 175
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Fig. 1. (a) Symmetric (G3) and skewed (G1 and G2) weight distributions. Decay function with three values of α1 and α2 for weight distribution. (b) G3.
(c) G1. (d) G2.

L1 penalty forces most of the negative weights to become176

non-negative.177

B. Implication of Imposing Non-Negative Parameters With178

Composite Decay Function179

The graphical illustration of the relation between the weight180

distribution and the composite decay function is shown in181

Fig. 1. Ideally, addition of Frobenius norm of the weight182

matrix (α||W||2F ) to the reconstruction error in (2) imposes183

a Gaussian prior on the weight distribution as shown in184

curve G3 in Fig. 1(a). However, using the composite function185

in (3) results in imposition of positively skewed deformed186

Gaussian distribution as in curves G1 and G2. The degree of187

non-negativity can be adjusted using parameters α1 and α2.188

Both parameters have to be carefully chosen to enforce189

non-negativity while simultaneously ensuring good supervised190

learning outcomes. The effect of L1 (α2 = 0), L2 (α1 = 0),191

and L1/L2 (α1 �= 0 and α2 �= 0), non-negativity penalty terms,192

on weight updates for weight distributions G1, G2, and G3 are,193

respectively, shown in Fig. 1(b)–(d). It can be observed for194

all the three distributions that L1/L2 regularization enforces195

stronger weight decay than individual L1 and L2 regulariza-196

tions. Other observation from Fig. 1 is that the more positively197

skewed the weight distribution becomes, the lesser the weight198

decay function.199

The consequences of minimizing (1) are that: 1) the average200

reconstruction error is reduced; 2) the sparsity of the hidden201

layer activations is increased because more negative weights202

are forced to zero, thereby leading to sparsity enhancement;203

and 3) the number of non-negative weights is also increased.204

The resultant effect of penalizing the weights simultaneously205

with L1 and L2 norms is that large positive connections are206

preserved while their magnitudes are shrunk. However, the207

L1 norm in (3) is non-differentiable at the origin, and this can208

lead to numerical instability during simulations. To circumvent209

this drawback, one of the well-known smoothing function that210

approximates L1 norm as in (3) is utilized. Given any finite211

dimensional vector z and positive constant κ , the following212

smoothing function approximates L1 norm:213

�(z, κ) =

⎧
⎪⎪⎨

⎪⎪⎩

||z|| ||z|| > κ

||z||2
2κ

+ κ

2
||z|| ≤ κ

(8)214

with gradient 215

∇z�(z, κ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z
||z|| ||z|| > κ

z
κ

||z|| ≤ κ.

(9) 216

For convenience, we adopt (8) to smoothen the L1 penalty 217

function and κ is experimentally set to 0.1. 218

III. EXPERIMENTS 219

In the experiments, three data sets are used, namely, 220

MNIST [28], NORB normalized-uniform [29], and 221

Reuters-21578 text categorization data set. The Reuters- 222

21578 text categorization data set comprises documents that 223

featured in 1987 Reuters newswire. The ModApte split was 224

employed to limit the data set to 10 most frequent classes. 225

The ModApte split was utilized to limit the categories to 226

10 most frequent categories. The bag-of-words format that 227

has been stemmed and stop-word removed was used (see 228

http://people.kyb.tuebingen.mpg.de/pgehler/rap/ for further 229

clarification). The data set contains 11 413 documents with 230

12 317 dimensions. Two techniques were used to reduce the 231

dimensionality of each document in order to preserve the 232

most informative and less correlated words [30]. To reduce 233

the dimensionality of each document to contain the most 234

informative and less correlated words, words were first sorted 235

based on their frequency of occurrence in the data set. Words 236

with frequency below 4 and above 70 were then eliminated. 237

The most informative words that do not occur in every 238

topic were selected based on information gain with the class 239

attribute. The remaining words (or features) in the data set 240

were sorted using this method, and the less important features 241

were removed based on the desired dimension of documents. 242

In this paper, the length of the feature vector for each of the 243

documents was reduced to 200. 244

In the preliminary experiment, the subsets 1, 2, and 6 245

from the MNIST handwritten digits are extracted for the 246

purpose of understanding how the deep network constructed 247

using L1/L2-NCSAE processes and classify their input. For 248

easy interpretation, a small deep network was constructed 249

and trained by stacking two AEs with 10 hidden neurons 250

each and 3 softmax neurons. The number of hidden neurons 251

was chosen to obtain reasonably good classification accuracy 252
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Fig. 2. Filtering the signal through the L1/L2-NCSAE trained using the reduced MNIST data set with class labels 1, 2, and 6. The test image is a
28 × 28 pixels image unrolled into a vector of 784 values. Both the input test sample and the receptive fields of the first autoencoding layer are presented as
images. The weights of the output layer are plotted as a diagram with one row for each output neuron and one column for every hidden neuron in (L − 1)th
layer. The architecture is 784-10-10-3. The range of weights is scaled to [−1, 1] and mapped to the graycolor map. w = −1 is assigned to black, w = 0 to
gray, and w = 1 is assigned to white color. That is, black pixels indicate negative, gray pixels indicate zero-valued weights, and white pixels indicate positive
weights.

while keeping the network reasonably small. The network is253

intentionally kept small because the full MNIST data would254

require larger hidden layer size and this may limit network255

interpretability. An image of digit 2 is then filtered through the256

network, and it can be observed in Fig. 2 that sparsification257

of the weights in all the layers is one of the aftermath of258

non-negativity constraints imposed on the network. Another259

observation is that most of the weights in the network have260

been confined to non-negative domain, which removes the261

opaqueness of the DL process. It can be seen that the fourth262

and seventh receptive fields of the first AE layer have dominant263

activations (with activation values 0.12 and 0.13, respectively)264

and they capture most information about the test input. Also,265

they are able to filter distinct part of input digit. The outputs266

of the first layer sigmoid constitute higher level features267

extracted from test image with emphasis on the fourth and268

seventh features. Subsequently, in the second layer, the second,269

sixth, eight, and tenth neurons have dominant activations270

(with activation values 0.0914, 0.0691, 0.0607, and 0.0606,271

respectively) because they have stronger connections with the272

dominant neurons in the first layer than the rest. Last, in273

the softmax layer, the second neuron was 99.62% activated274

because it has the strongest connections with the dominant275

neurons in the second layer, thereby classifying the test image276

as “2.”277

The fostering of interpretability is also demonstrated using278

a subset of NORB normalized-uniform data set [29] with279

class labels “four-legged animals,” “human figures,” and280

“airplanes.” The 1024-10-5-3 network configuration was281

trained on the subset of the NORB data using two stacked282

L1/L2-NCSAEs and a Softmax layer. Fig. 3(b) shows the ran-283

domly sampled test patterns, and the weights and activations of284

the first and second AE layers are shown in Fig. 3(a). The bar285

charts indicate the activations of hidden units for the sample286

input patterns. The features learned by units in each layer are 287

localized, sparse, and allow easy interpretation of isolated data 288

parts. The features mostly show non-negative weights making 289

it easier to visualize to what input object patterns they respond. 290

It can be seen that units in the network discriminate among 291

objects in the images and react differently to input patterns. 292

Third, sixth, eight, and ninth hidden units of layer 1 capture 293

features that are common to objects in class “2” and react 294

mainly to them as shown in the first layer activations. Also, 295

the features captured by the second layer activations reveal 296

that the second and fifth hidden units are mainly stimulated 297

by objects in class “2.” 298

The outputs of Softmax layer represent the a posteriori 299

class probabilities for a given sample and are denoted as 300

Softmax scores. An important observation from Fig. 3(a)–(c) 301

is that hidden units in both layers did not capture significant 302

representative features for class “1” white color-coded test 303

sample. This is one of the reasons why it is misclassified into 304

class “3” with a probability of 0.57. The argument also goes 305

for class “1” dark-gray color-coded test sample misclassified 306

into class “3” with a probability of 0.60. In contrast, hidden 307

units in both layers capture significant representative features 308

for class “2” test samples of all color codes. This is why 309

all class “2” test samples are classified correctly with high 310

probabilities as shown in Fig. 3(d). Last, the network contains 311

a good number of representative features for class “3” test 312

samples and was able to classify 4 out of 5 correctly as given 313

in Fig. 3(e). 314

IV. RESULTS AND DISCUSSION 315

A. Unsupervised Feature Learning of Image Data 316

In the first set of experiments, three-layer L1/L2-NCSAE, 317

NCSAE [11], DpAE [19], and conventional SAE network 318

with 196 hidden neurons were trained using MNIST data set 319
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Fig. 3. Weights were trained using two stacked L1/L2-NCSAEs. RFs learned from the reduced NORB data set are plotted as images at the bottom part
of (a). The intensity of each pixel is proportional to the magnitude of the weight connected to that pixel in the input image with negative value indicating
black, positive values white, and the value 0 corresponding to gray. The biases are not shown. The activations of first layer hidden units for the NORB objects
presented in (b) are depicted on the bar chart on top of the RFs. The weights of the second layer AE are plotted as a diagram at the topmost part of (a).
Each row of the plot corresponds to the weight of each hidden unit of second AE and each column for weight of every hidden unit of the first layer AE.
The magnitude of the weight corresponds to the area of each square; white indicates positive, gray indicates zero, and black negative sign. The activations of
second layer hidden units are shown as bar chart in the right-hand side of the second layer weight diagram. Each column shows the activations of each hidden
unit for five color-coded examples of the same object. The outputs of Softmax layer for color-coded test objects with class labels (c) “fourlegged animals”
tagged as class 1, (d) “human figures” as class 2, and (e) “airplanes” as class 3.

Fig. 4. 196 receptive fields (W(1)) with weight histograms learned from MNIST digit data set using (a) SAE, (b) DpAE, (c) NCSAE, and (d) L1/L2-NCSAE.
Black pixels indicate negative, and white pixels indicate positive weights. The range of weights are scaled to [−1,1] and mapped to the graycolor map. w = −1
is assigned to black, w = 0 to gray, and w = 1 is assigned to white color.

of handwritten digits and their ability to discover patterns320

in high dimensional data are compared. These experiments321

were run one time and recorded. The encoding weights W(1),322

also known as receptive fields or filters as in the case of323

image data, are reshaped, scaled, centered in a 28 × 28 pixel324

box, and visualized. The filters learned by L1/L2-NCSAE are325

compared with that learned by its counterparts, NCSAE and326

SAE. It can be easily observed from the results in Fig. 4 that327

L1/L2-NCSAE learned receptive fields that are more sparse328

and localized than those of SAE, DpAE, and NCSAE. It is329

remarked that the black pixels in both SAE and DpAE features330

are results of the negative weights whose values and numbers 331

are reduced in NCSAE with non-negativity constraints, which 332

are further reduced by imposing an additional L1 penalty term 333

in L1/L2-NCSAE as shown in the histograms located on the 334

right side of the figure. In the case of L1/L2-NCSAE, tiny 335

strokes and dots that constitute the basic part of handwritten 336

digits are unearthed compared to SAE, DpAE, and NCSAE. 337

Most of the features learned by SAE are major parts of the 338

digits or the blurred version of the digits, which are obviously 339

not as sparse as those learned by L1/L2-NCSAE. Also, the 340

features learned by DpAE are fuzzy compared to those of 341
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Fig. 5. (a) Reconstruction error and (b) sparsity of hidden units measured by KL-divergence using MNIST train data set with p = 0.05.

Fig. 6. t-SNE projection [31] of 196D representations of MNIST handwritten digits using (a) DpAE, (b) NCSAE, and (c) L1/L2-NCSAE.

L1/L2-NCSAE that are sparse and distinct. Therefore, the342

achieved sparsity in the encoding can be traced to the ability of343

L1 and L2 regularizations in enforcing high degree of weights’344

non-negativity in the network.345

Likewise in Fig. 5(a), L1/L2-NCSAE with other AEs are346

compared in terms of reconstruction error, while varying the347

number of hidden nodes. As expected, it can be observed that348

L1/L2-NCSAE yields a reasonably lower reconstruction error349

on the MNIST training set compared to SAE, DpAE, and350

NCSAE. Although, a close scrutiny of the result also reveals351

that the reconstruction error of L1/L2-NCSAE deteriorates352

compared to NCSAE when the hidden size grows beyond 400.353

However, on the average, L1/L2-NCSAE reconstructs better354

than other AEs considered. It can also be observed that355

DpAE with 50% dropout has high reconstruction error when356

the hidden layer size is relatively small (100 or less). This357

is because the few neurons left are unable to capture the358

dynamics in the data, which subsequently results in under-359

fitting the data. However, the reconstruction error improves360

as the hidden layer size is increased. Lower reconstruction361

error in the case of L1/L2-NCSAE and NCSAE is an indi-362

cation that non-negativity constraint facilitates the learning of363

parts of digits that are essential for reconstructing the digits.364

In addition, the KL-divergence sparsity measure reveals that 365

L1/L2-NCSAE has more sparse hidden activations than SAE, 366

DpAE, and NCSAE for different hidden layer size, as shown 367

in Fig. 5(b). Again, averaging over all the training examples, 368

L1/L2-NCSAE yields less activated hidden neurons compared 369

to its counterparts. Also, using t-distributed stochastic neigh- 370

bor embedding (t-SNE) to project the 196-D representation 371

of MNIST handwritten digits to 2-D space, the distribu- 372

tion of features encoded by 196 encoding filters of DpAE, 373

NCSAE, and L1/L2-NCSAE are, respectively, visualized 374

in Fig. 6(a)–(c). A careful look at Fig. 6(a) reveals that digits 375

“4” and “9” are overlapping in DpAE, and this will inevitably 376

increase the chance of misclassifying these two digits. It can 377

also be observed in Fig. 6(b) corresponding to NCSAE that 378

digit “2” is projected with two different landmarks. In sum, the 379

manifolds of digits with L1/L2-NCSAE are more separable 380

than its counterpart as shown in Fig. 6(c), aiding the classifier 381

to map out the separating boundaries among the digits more 382

easily. 383

In the second experiment, SAE, NCSAE, L1/L2-NCSAE, 384

and DpAE with 200 hidden nodes were trained using the 385

NORB normalized-uniform data set. The NORB normalized- 386

uniform data set, which is the second data set, contains 387
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Fig. 7. Weights of randomly selected 90 out of 200 receptive filters of (a) SAE, (b) DpAE, (c) NCSAE, and (d) L1/L2-NCSAE using NORB data set. The
range of weights are scaled to [−1,1] and mapped to the graycolor map. w <= −1 is assigned to black, w = 0 to gray, and w >= 1 is assigned to white
color.

Fig. 8. Distribution of 200 encoding (W(1)) and decoding filters (W(2)) weights learned from NORB data set using (a) DpAE, (b) NCSAE,
and (c) L1/L2-NCSAE.

24 300 training images and 24 300 test images of 50 toys388

from five generic categories: four-legged animals, human389

figures, airplanes, trucks, and cars. The training and testing390

sets consist of five instances of each category. Each image391

consists of two channels, each of size 96 × 96 pixels. The392

inner 64 × 64 pixels of one of the channels cropped out and393

resized using bicubic interpolation to 32 ×32 pixels that form394

a vector with 1024 entries as the input. Randomly selected395

weights of 90 out of 200 neurons are plotted in Fig. 7.396

It can be seen that L1/L2-NCSAE learned more sparse fea-397

tures compared to features learned by all other AEs consid-398

ered. The receptive fields learned by L1/L2-NCSAE captured399

the real actual edges of the toys while the edges captured by400

NCSAE are fuzzy, and those learned by DpAE and SAE are401

holistic. As shown in the weight distribution depicted in Fig. 8,402

L1/L2-NCSAE has both its encoding and decoding weights403

centered around zero with most of its weights positive when404

compared with those of DpAE and NCSAE that have weights405

distributed almost even on both sides of the origin.406

B. Unsupervised Semantic Feature Learning From Text Data 407

In this experiment, DpAE, NCSAE, and L1/L2-NCSAE 408

are evaluated and compared based on their ability to extract 409

semantic features from text data, and how they are able to dis- 410

cover the underlined structure in text data. For this purpose, the 411

Reuters-21578 text categorization data set with 200 features 412

is utilized to train all the three types of AEs with 20 hidden 413

nodes. A subset of 500 examples belonging to categories 414

“grain,” “crude,” and “money-fx” was extracted from the test 415

set. The experiments were run three times, averaged, and 416

recorded. In Fig. 9, the 20-dimensional representations of the 417

Reuters data subset using DpAE, NCSAE, and L1/L2-NCSAE 418

are visualized. It can be observed that L1/L2-NCSAE is able 419

to disentangle the documents into three distinct categories 420

with more linear manifolds than NCSAE. In addition, 421

L1/L2-NCSAE is able to group documents that are closer 422

in the semantic space into the same categories than DpAE 423

that finds it difficult to group the documents into any distinct 424

categories with less overlap. 425
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Fig. 9. Visualizing 20D representations of a subset of Reuters documents data using (a) DpAE, (b) NCSAE, and (c) L1/L2-NCSAE.

TABLE I

CLASSIFICATION ACCURACY ON MNIST AND NORB DATA SET

C. Supervised Learning426

In the last set of experiments, a deep network was con-427

structed using two stacked L1/L2-NCSAE and a softmax428

layer for classification to test if the enhanced ability of the429

network to shatter data into parts and lead to improved clas-430

sification. Eventually, the entire deep network is fine-tuned to431

improve the accuracy of the classification. In this set of exper-432

iments, the performance of pretraining a deep network with433

L1/L2-NCSAE is compared with those pretrained with recent434

AE architectures. The MNIST and NORB data sets were435

utilized, and every run of the experiments is repeated ten times436

and averaged to combat the effect of random initialization. The437

classification accuracy of the deep network pretrained with438

NNSAE [18], DpAE [19], DAE [32], AAE [22], NCSAE,439

and L1/L2-NCSAE using MNIST and NORB data, respec-440

tively, are detailed in Table I. The network architectures are441

784-196-20-10 and 1024-200-20-5 for MNIST and NORB442

data set, respectively. It is remarked that for training of AAE443

with two layers of 196 hidden units in the encoder, decoder,444

discriminator, and other hyperparameters tuned as described445

in [22], the accuracy was 83.67%. The AAE reported in446

Table I used encoder, decoder, and discriminator each with447

two layers of 1000 hidden units and trained for 1000 epochs.448

The classification accuracy and speed of convergence are449

the figures of merit used to benchmark L1/L2-NCSAE with 450

other AEs. 451

It is observed from the result that L1/L2-NCSAE-based 452

deep network gives an improved accuracy before fine-tuning 453

compared to methods such as NNSAE, NCSAE, and DpAE. 454

However, the performance in terms of classification accuracy 455

after fine-tuning is very competitive. In fact, it can be inferred 456

from the p-value of the experiments conducted on MNIST 457

and NORB in Table I that there is no significant differ- 458

ence in the accuracy after fine-tuning between NCSAE and 459

L1/L2-NCSAE even though most of the weights in 460

L1/L2-NCSAE are non-negativity constrained. Therefore, it 461

is remarked that even though the interpretability of the deep 462

network has been fostered by constraining most of the weights 463

to be non-negative and sparse, nothing significant has been 464

lost in terms of accuracy. In addition, network trained with 465

L1/L2-NCSAE was also observed to converge faster than 466

its counterparts. On the other hand, NNSAE also has non- 467

negative weights but with deterioration in accuracy, which 468

is more conspicuous especially before the fine-tuning stage. 469

The improved accuracy before fine-tuning in L1/L2-NCSAE- 470

based network can be traced to its ability to decompose data 471

more into distinguishable parts. Although the performance of 472

L1/L2-NCSAE after fine-tuning is similar to those of DAE 473
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Fig. 10. Deep network trained on Reuters-21578 data using (a) DpAE and (b) L1/L2-NCSAE. The area of each square is proportional to the weight’s
magnitude. The range of weights is scaled to [−1,1] and mapped to the graycolor map. w = −1 is assigned to black, w = 0 to gray, and w = 1 is assigned
to white color.

and NCSAE but better than NNSAE, DpAE, and AAE,474

L1/L2-NCSAE constrains most of the weights to be non-475

negative and sparse to foster transparency than for other AEs.476

However, DpAE and NCSAE performed slightly more accu-477

rate than L1/L2-NCSAE on NORB after network fine-tuning.478

In light of constructing an interpretable deep network,479

an L1/L2-NCSAE pretrained deep network with 10 hidden480

neurons in the first AE layer, 5 hidden neurons in the second481

AE, and 10 output neurons (one for each category) in the482

softmax layer was constructed. It was trained on Reuters483

data and compared with that pretrained using DpAE. The484

interpretation of the encoding layer of the first AE is provided485

by listing words associated with 10 strongest weights, and486

the interpretation of the encoding layer of the second AE is487

portrayed as images characterized by both the magnitude and488

sign of the weights. Compared to the AE with weights of both489

signs shown in Fig. 10(a), Fig. 10(b) allows for much better490

insight into the categorization of the topics.491

Topic earn in the output weight matrix resonates with the492

fifth hidden neuron most, lesser with the third, and somewhat493

with the fourth. This resonance can happen only when the fifth494

hidden neuron reacts to input by words of columns 1 and 4,495

and in addition, to a lesser degree, when the third hidden496

neuron reacts to input by words of the third column of words.497

So, in tandem, the dominant columns 1 and 4 and then also 3498

are sets of words that trigger the category earn.499

Analysis of the term words for the topic acq leads to a500

similar conclusion. This topic also resonates with the two501

dominant hidden neurons 5 and 3 and somewhat with neuron 2. 502

These neurons 5 and 3 are driven again by the columns of 503

words 1, 4, and 3. The difference between the categories is now 504

that to a lesser degree, the category acq is influenced by the 505

sixth column of words. An interesting point is in contribution 506

of the third column of words. The column connects only to 507

the fourth hidden neuron but weights from this neuron in the 508

output layer are smaller and hence less significant than for 509

any other of the five neurons (or rows) of the output weight 510

matrix. Hence, this column is of least relevance in the topical 511

categorization. 512

D. Experiment Running Times 513

The training time for networks with and without the non- 514

negativity constraints was compared. The constrained network 515

converges faster and requires a lesser number of training 516

epochs. In addition, the unconstrained network requires more 517

time per epoch than the constrained one. The running time 518

experiments were performed using full MNIST benchmark 519

data set on Intel(r) Core i7-6700 CPU at 3.40 Ghz and a 64 GB 520

of RAM running a 64-b Windows 10 Enterprise edition. The 521

software implementation has been with MATLAB 2015b with 522

batch gradient descent method, and LBFGS in minFunc [33] 523

is used to minimize the objective function. The usage times for 524

constrained and unconstrained networks were also compared. 525

We consider the usage time in milliseconds (ms), and as the 526

time elapsed in ms, a fully trained deep network requires to 527
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classify all the test samples. The unconstrained network took528

48 ms per epoch in the training phase, while the constrained529

counterpart took 46 ms. Also, the unconstrained network530

required 59.9-ms usage time, whereas the network with non-531

negative weights took 55 ms. From the above observations,532

it is remarked that the non-negativity constraint simplifies the533

resulting network.534

V. CONCLUSION535

This paper addresses the concept and properties of special536

regularization of DL AE that takes advantage of non-negative537

encodings and at the same time of special regularization.538

It has been shown that using both L1 and L2 to penalize539

the negative weights, most of them are forced to be non-540

negative and sparse, and hence, the network interpretability541

is enhanced. In fact, it is also observed that most of the542

weights in the Softmax layer become non-negative and sparse.543

In sum, it has been observed that encouraging non-negativity544

in NCSAE-based deep architecture forces the layers to learn545

part-based representation of their input and leads to a com-546

parable classification accuracy before fine-tuning the entire547

deep network and not-so-significant accuracy deterioration548

after fine-tuning. It has also been shown on select examples549

that concurrent L1 and L2 regularizations improve the network550

interpretability. The performance of the proposed method was551

compared in terms of sparsity, reconstruction error, and clas-552

sification accuracy with the conventional SAE and NCSAE,553

and we utilized MNIST handwritten digits, Reuters docu-554

ments, and the NORB data set to illustrate the proposed555

concepts.556
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