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ABSTRACT

Structural vibration-based human sensing provides an alternative
approach for device-free human monitoring, which is used for
healthcare, space and energy usage management, etc. Prior work
on this approach mainly focused on one person walking scenarios,
which limits their widespread application. The challenge with mul-
tiple walkers is that the observed vibration response is a mixture
of each walker’s footstep-induced response, and it is difficult to
identify 1) how many concurrent walkers are present, and 2) the
timing of their footstep impacts on the floor. As a result, the extrac-
tion of detailed location information for each walker is erroneous.
To address this challenge, we propose a structure-informed vibra-
tion signal characterization method to enable the detection and
localization of overlapping vibration signals induced by multiple
concurrent walkers. The intuition is that, due to the randomness in
people’s behavior, their footsteps do not impact the floor exactly at
the same time and overlap partially. We decompose the signal to a
non-fundamental frequency band which contains the heel strike on-
set information. With this decomposed signal, we can identify the
number of walkers and use the initial peak information to localize
each person independently. We conducted real-world experiments
with up to three concurrent walkers and our system achieved a
detection rate of up to 90% and an average localization error of
0.65m (2.9X baseline improvement).
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1 INTRODUCTION

Indoor occupants localization enables various smart building appli-
cations such as building energy management and elderly/child mon-
itoring. Various approaches have been explored for device-free local-
ization, including vision [1, 3, 10], pressure [22], infrared [8, 14], and
radio [2, 21]. These methods often rely on dense deployment or par-
ticular sensing requirements (e.g., line-of-sight). Researchers have
been explored an alternative sensing modality through footstep-
induced floor vibrations [5, 12, 13, 16, 18, 19]. They demonstrate
sub-meter level localization when a single person walks through
the sensing area, or when at most two people walks in a small scope
without considering the situation vibration signals overlap severely
[16]. However, these works do not handle the situation when mul-
tiple people walk simultaneously and their footstep-induced floor
vibration signals overlap and are difficult to detect and distinguish.
Furthermore, the physical characteristics (e.g., structural natural
frequency) of the propagation medium (i.e., the floor) make the
structural vibration signal structure-dependent [7], thus making
separating overlapping signals by traditional methods such as blind
source separation (BSS) inapplicable [11]. Since we are focusing
on the detection and localization with overlapping signals instead
of localization refinement through sequential information, we will
not discuss this aspect owing to space limitation.

In this paper, we present a system to enable multiple people
localization using the following intuition: 1) the randomness of peo-
ple’s behavior will make their footstep-induced vibrations partially
overlap even when they walk simultaneously, and 2) the footstep-
induced signal onset shows high SNR and high damping rates in
non-fundamental frequency bands (target scale band), which mini-
mizes interference between multiple people’s signals. Within this
target scale band, our system conducts multiple footstep-induced
signal onset detection and applies multi-dimensional scaling (MDS)
on the extracted onsets to estimate footstep locations by minimizing
a loss function. The major contributions of this work include:
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Figure 1: The first row shows the raw signal of ambi-
ent structural vibration signal (a.1), one person walking
footstep-induced vibration signal (b.1) and three persons
walking footstep-induced vibration signals that are partially
overlapping (c.1). The second row shows their correspond-
ing wavelet transforms.In (c.2), scales between 50 and 125
demonstrate three distinguishable footstep signal onsets,
while the scales beyond 600 lose such time resolution.

e We present a device-free system to localize multiple people
through floor vibrations.

o We utilize the intuition and domain knowledge on human be-
havior and structural response properties to detect the onsets
of the partially overlapping footstep signals for localization.

e We evaluate the system through a series of real-world exper-
iments and compare to baseline methods.

2 PHYSICAL KNOWLEDGE

We discuss the two intuitions — human behavior randomness and
onset signal response in non-fundamental frequency band.

2.1 Human Behavior Analysis

The randomness of human behavior dictates that people walking
in the same area are usually do not walking in perfect synchrony,
(i-e., unlike military marching). As a result, their footstep-induced
vibration signals may be partially overlapping instead of completely
overlapping all the time [17]. Therefore, extraction signal onsets of
partially overlapping signal is usually applicable.

In addition to the inference above, we also note that different
people walk at different stepping frequencies [15] and with vary-
ing walking patterns [9]. Therefore, we infer that the heel strike
timing for multiple pedestrians may not be completely overlapping,
which enables us to identify a signal onset corresponding to each
individual walker in the sensing area.

2.2 Structural Response Characteristics

To achieve multiple people detection and localization in overlapping
vibration signals, we require an appropriate spectral subspace (tar-
get scale band) which provides high time resolution and SNR. Thus,
the spectral properties of the instrumented floor are in demand.
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To characterize the structural properties of the instrumented
floor and identify an appropriate spectral subspace, we use a varia-
tion of a common structural identification approach, known as the
Basic Frequency Domain (BFD) or “peak-picking” technique [4].
In our work, we use the continuous wavelet transform (CWT) to
decompose the spectral components of the vibration responses
in place of the traditional Fourier transform or Power Spectral
Density estimation due to the fact that wavelet decomposition pro-
vides high time resolution in addition to frequency resolution. This
high time-frequency resolution is advantageous over traditional
frequency-only approaches because footstep-induced responses are
time-varying (i.e., their spectral content may vary with time).

We placed a sensing node on the floor to record the ambient
structural vibrations as well as the footstep-induced structural vi-
brations and compare their time and frequency components in
Figure 1. Figure 1 shows the raw signal for structure vibrations in
different scenarios and their corresponding wavelet decomposition.
The wavelet decomposition is illustrated in the second row of Fig-
ure 1, where the x-axis is time, the y-axis is the wavelet scale, and
the colors represent the wavelet coefficient magnitude.

We observe in Figure 1 (b.2) that the footstep induced vibration
signals have a concentration of energy between scales 700 to 1000
with a duration of 0.2s and another energy concentration with a
significantly shorter duration between scales 200 and 400. These
two spectral bands of energy concentration correspond to natural
frequencies of the structure. Due to the concentrated energy and
high SNR of the signals on the natural frequencies, prior work on
human sensing utilized it for one person walking footstep detection.

However, when there are multiple impulsive signals overlapping,
such selection criteria is inapplicable. Since the damped free vibra-
tion of natural frequency (usually < 30Hz) decays slowly, multiple
peoples’ signals at these frequencies have a high probability of
overlapping. For instance, the three impulses from (c.1) and (c.2)
overlap significantly on the scales corresponding to the structural
natural frequency (i.e., beyond 600), making the detection on that
scale difficult, if not impossible. Therefore, we select the scale
range between 50 and 125 as our target scale band through
the observation. For the three persons walking signal shown in
Figure 1 (c.1) and (c.2), the three footstep-induced signal onsets
have distinguishable time resolution between scales 50 and 125, as
marked out with the orange dash-line box in Figure 1 (c.2).

3 SYSTEM ARCHITECTURE

Our structural vibration localization system consists of three mod-
ules as shown in Figure 2: vibration sensing, footstep event de-
tection and onsets extraction, and multiple pedestrian step-level
localization. In this section we describe each module in detail.

Structural Vibration Sensing: The vibration sensing module
obtains floor vibration through multiple vibration sensing nodes
placed at different locations. The system mainly consists of three
parts: 1) a geophone sensor (which converts the surface vibration
velocity into voltage signals); 2) an amplification board (to amplify
the sensor output voltage signal so that the digitized signals will
have sufficient resolution for analysis); and 3) analog-to-digital
converter (ADC) and data collection module.
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Figure 2: System Overview.

Footstep Event Detection and Onset Extraction: To localize
multiple people’s footstep through structural vibrations, our system
first detects footstep events with the raw signal from a group of
sensors. Then within a detected event, our system applies the CWT
using Morlet wavelet as the mother wavelet. The selected wavelet
has high waveform similarity with our target signal [12], which
reduces dispersion effects and signal distortion. Lastly, with the
target scale band, our system extracts footstep signal onsets from the
partially overlapping signals and transmits the onset information
to the localization module.

Multiple Occupant Step-Level Localization: Once the foot-
step onsets within a detected event are extracted, our system utilizes
the wavelet decomposition of the extracted onsets signal for TDoA
estimation. We conduct a rule-based peak detection to detect the
first peak of the onset signals and estimate the TDoA between all
pairwise sensors. Then, we utilize the TDoA values for the selected
scales (target scale band on a range of wavelet scales) to further
conduct adaptive multi-dimensional scaling (MDS) [6, 20] on these
scales to estimate the localization of the footsteps.

4 EXPERIMENTAL EVALUATION

To evaluate our system, we conducted experiments in a school
building hallway as shown in Figure 3.

Experimental Settings: We deployed our system with a group
of four sensing nodes in a hallway to conduct experiments for
evaluating our system. The experimental structure is a concrete
slab on grade with a first observed natural frequency of 23.83 Hz.
Figure 3 shows the sensor deployment. Light blue circles indicate
the sensor locations and the solid dash lines are the trajectories
that pedestrian will step on during the real-world experiments. The
target sensing area is approximately 3 X 4m, where a pedestrian
usually crosses through with six to seven steps. We use a camera
placed in the hallway as the ground truth and marked the step
location to guide occupants.

Metrics for System Performance: The evaluation metrics to
measure the system performance are twofold: localization rate and
localization accuracy. We calculate the Euclidean distance between
the detected locations and the corresponding ground truth loca-
tions to measure the localization accuracy. When multiple footsteps
occur simultaneously and the system fails to detect all of them,
we compare the estimated locations to their closest ground truth
location and calculate the error. We further evaluate the localization
performance with the localization rate calculated as:

#onsets localized in the sensing area

Localization_Rate =
#onsets detected

Pedestrian Walking Scenarios: We designed different pedes-
trian walking scenarios to demonstrate the robustness of the system.
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Figure 3: Experimental settings. Top left figure shows the
sensor placement. Top right figure shows the walking sce-
narios investigated when multiple people walk through the
sensing area simultaneously. The bottom figure shows a
photo taken during the experiments.

Each scenario is evaluated with five repetitions. We investigate dif-
ferent walking direction combinations (Figure 3), including:
o Cross: people walk towards each other from two sides of the
area at the same time
e Side by Side: people walk through the area side by side
e Follow: one person walks through the sensing area while
another follows him/her three steps away.

4.1 Baseline Methods

To evaluate how well our algorithm that takes into account the vi-
bration physical properties, we compare our localization algorithm
to two baseline methods as follows:

o NoFilter: applying the MDS on the TDoA estimated from the
raw signal without adapting the scales;

o NoAdaptive: using the MDS on TDoAs estimated from a
randomly selected wavelet scale signal.

5 RESULTS AND ANALYSIS

The goals of the experiments include 1) understanding system
performance under different signal overlapping conditions, and 2)
evaluating system’s ability to handle different number of occupants
and different walking scenarios.
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Figure 4: Example signals detected by two sensors when
overlap conditions vary.

5.1 Overlapping Status Analysis

We evaluate the system in three categories of signal overlap. Figure
4 demonstrates examples of these possible signal overlaps: 1) clear
separation, where the offset between signals is no less than 1/4
of the interval of two consecutive footsteps from the same person
(e.g., Figure 4 (b.1)); 2) visually separable, where we can visually
separate the signal onsets, but the offset is less than 1/4 interval
of two consecutive footsteps from the same person (e.g., Figure 4
(c.1)); 3) visually non-separable (e.g., Figure 4 (d.1)).

In figure 4 we observe that the filtered signal is clearer and con-
tains less noise than the unfiltered signal, making footstep detection
in overlapping signals easier. Figure 4(x.1) shows the raw footstep-
induced vibration signals when people walk by the sensing area,
captured by two sensors. The corresponding filtered signals are
shown in Figure 4(x.2).

5.2 System Characterization

Figure 5 shows the distribution! of the localization error when
two people walk through the sensing area with varying levels of
footstep overlap. When multiple pedestrians are walking in the
target sensing area, we calculate the localization rate and localiza-
tion error to evaluate our system. For all the investigated walking
scenarios with different numbers of pedestrians, Figure 6 shows
the localization rate (6(a)) and localization error (6(b)). Our system
achieved 100% localization rate for all the cases, which demon-
strates the localization robustness. Our system achieves an average
localization error of just 0.65m, which represents 2.9x and 2.4X

!Note that in this paper, the boxplot presents the mean as the circle marker and the
median as the center line, the box upper and lower edges indicate the 75 percentile
and 25 percentile respectively.
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Figure 6: Footstep localization error when different num-
bers of people walk in the sensing area at the same time.

improvement over baseline approaches NoFilter (1.91m) and NoAd-
aptive (1.56m). From these results, we conclude that our approach
accurately localizes multiple concurrent walkers with submeter
accuracy, which enables robust indoor occupant monitoring in a
variety of real-world walking scenarios.

6 CONCLUSION

In this paper, we present a device-free system that localizes multi-
ple occupants through footstep-induced structural vibrations. Our
system utilizes physical knowledge on structural frequency excita-
tion response to select non-fundamental frequency bands that have
high SNR and high damping rate for heel strikes induced vibration
signal. The signal filtering on these selected frequency band enables
separation of footstep onsets from the partially overlapping signals
for detection and localization. We evaluate our system and achieve
sub-meter level localization accuracy through a series of real-world
experiments, which enables various indoor application scenarios.
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