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A B S T R A C T

Increased storm-water runoff and flooding and poor ecosystem health have brought increasing attention to
catchment-wide implementation of green infrastructure (e.g., bioswales, rain gardens, permeable pavements,
tree box filters, urban wetlands and forests, stream buffers, and green roofs) to replace or supplement con-
ventional storm water management practices and create more sustainable urban water systems. Current green
infrastructure (GI) practice aims at mitigating the negative effects of urbanization by restoring pre-development
hydrology and ultimately addressing water quality issues at an urban catchment scale. However, the benefits of
GI extend well beyond local storm water management, as urban green spaces are also major contributors to
human health. Considerable research in the psychological sciences have shown significant human health benefits
from appropriately designed green spaces, yet impacts on human wellbeing have not yet been formally con-
sidered in GI design frameworks. This work develops a novel computational green infrastructure (GI) design
framework that integrates storm water management requirements with criteria for human wellbeing. A su-
pervised machine-learning model is created to identify specific patterns in urban green spaces that promote
human wellbeing; the model is linked to RHESSYS hydrological model to evaluate GI designs in terms of both
water resource and human health benefits. An application of the framework to tree-based GI design in Dead Run
Watershed, Baltimore, MD, shows that image-mining methods are able to capture key elements of human pre-
ferences that could improve GI design. The results also show that hydrologic benefits associated with tree-based
features are substantial, indicating that increased urban tree coverage and a more integrated GI design approach
can significantly increase both human and hydrologic benefits.

1. Introduction

The rapid growth of urbanization interferes with natural water and
nutrient cycling by increasing impervious surfaces, which in turn in-
creases flashiness of urban drainage systems and reduces water quality,
causing human health and ecosystem problems downstream (NRC,
2008; Wendel et al., 2011). This problem has increased interest in using
green infrastructure in urban areas (e.g., bioswales, rain gardens,
permeable pavements, tree box filters, cisterns, urban wetlands, and
green roofs). LeRoy Poff (1997) suggested that implementation of these
practices at the watershed scale could restore the riverine ecosystem
along with addressing water quality issues. Roy et al. (2008) considered
watershed-wide implementation of these approaches as a prerequisite
for sustainable urban water systems.

Currently, green infrastructure design guidelines provide site-

specific (patch) design criteria with only qualitative discussion of
catchment-scale impacts of GI installations (e.g, CalTrans (2010); City
of Portland (2008); Harper and Baker (2008); NCDWQ (2007). Catch-
ment-scale lumped-parameter stormwater models (e.g., MARC (2008);
Tsihrintzis and Hamid (1998); and tools such as HSPF, SWMM and
HEC–HMS) do not represent site-specific hydrology or GI processes. In
these catchment-scale models, both traditional (“grey”) and green in-
frastructure have typically been modeled as “edge-of-field” or “in-line”
filters and sinks for storm-water runoff received from source catchment
areas. Attenuation of storm-water volumes and pollutants are often
included as fixed reduction percentages or first-order decay reactions
based on limited input and output water quality measurements (e.g.,
Lee and Riverson (2012), in the SUSTAIN modeling framework, and
Wong et al. (2002), in the MUSIC framework).

Research over the past decade as part of the Baltimore Ecosystem
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Study suggests that significant carbon sequestration and nitrogen re-
tention can occur in a range of urban ecosystem features, including
lawns, gardens, and stormwater detention structures, but that these
processes are sensitive to specific characteristics of the integrated
drainage system, including contributing areas, flow regimes, soils, and
structure design (e.g. Raciti et al. (2011); Bettez and Groffman (2012)).
Living components of green infrastructure will grow and adjust to
prevailing water, climate, and nutrient conditions, and there may be a
long, transient development of ecosystem cycling and retention capa-
city following development. Design of sustainable green infrastructure
as either edge-of-field or at-source treatment should incorporate tran-
sient development as the ecosystem develops in response to local cli-
mate, soil, and drainage position (e.g. location within a flow field). It is
critical that GI modeling extend to encompass the full catchment as a
continuum beyond the discrete GI sites, including runoff source areas in
addition to edge-of-field or in-line treatment systems.

Most of the current research on green infrastructure designs con-
siders only hydrologic benefits (Macro et al. (2018); Massoudieh et al.
(2017); Glenis et al. (2018)). However, the benefits of green infra-
structure extend well beyond local storm water control, as urban green
spaces (e.g., lakes, parks, and community gardens) are also major
contributors to human health. Forty years of research has established
the powerful and consistent effects of the presence of particular natural
elements in increasing human preferences for urban landscapes (Kaplan
and Kaplan (1989)). These high-preference elements, in turn, are as-
sociated with faster recovery from stressful experiences, reduced phy-
siological symptoms of stress (Thompson et al. (2012); Chang and Chen
(2005)), and increased life expectancy after controlling for a host of
features associated with mortality (Mitchell and Popham (2008);
Takano et al. (2002)).

Furthermore, human preferences are also important to address
major barriers to GI implementation that were identified in our work
with advisors from five U.S. cities as part of a national GI working
group at the National Socio-Environmental Synthesis Center (SESYNC).
Community attitudes and perceptions about GI installations can lead to
resistance and even active vandalism (e.g., throwing trash into a bios-
wale or mowing “weedy” plants) of GI. Maintenance of distributed GI is
also a major challenge for cities. If GI can be designed to better meet
human perceptions, then community acceptance and adoption of GI
maintenance would likely improve.

Researchers in both the field of psychology and computer science
have been working together for more than two decades to solve the
problem of capturing human perception by means of human computer
interactions. Significant efforts have been made to build machine-
learning models that replicate and predict human perception to im-
prove social acceptability of designs, strategies, policies, and marketing
approaches, among others. Machine perception cannot perform effec-
tively without a wealth of experimental data about human perception.
In this work, we explore how physiological preferences for GI can be
captured with machine learning.

Despite the extensive research showing the benefits of green spaces
on human health, GI design has not yet considered criteria for human
wellbeing in any formal design frameworks. In this research we propose
a new GI design framework that considers both human and hydrologic
benefits at patch and catchment scales. To aid in rapid initial evaluation
of potential GI designs, we have developed a human preference model
that predicts increasing human benefits using supervised machine
learning algorithms and computer vision techniques.

The training data for this work has been collected using social
surveys conducted at Galesburg, IL and the model is validated using
data from Amazon Mechanical Turk. The resulting algorithm is then
coupled with a hydrologic model called RHESSYS to estimate human
benefits for a GI design case study in Baltimore, MD. To our knowledge,
this is the first study that quantifies the significance of urban green
infrastructure design for both human wellbeing and hydrologic bene-
fits.

In the subsequent sections, we introduce the methodologies for
quantifying human preference with an image-based machine learning
approach and assessing hydrologic benefits, followed by a case study
and results that explore the implications of this approach in Baltimore,
MD. The final section provides conclusions and suggestions for future
research on this topic.

2. Methodology

This section presents the fundamental concepts and technologies
used to create a GI design framework that integrates human preferences
for green spaces, which are correlated with improved human health
(Sullivan et al., 2004), and hydrologic benefits.

An overview of the green infrastructure design framework is given
in Fig. 1. In order to predict GI human benefits, data acquisition (Sec-
tion 2.1) and an image-based machine learning approach (Section 2.2)
are used to visually identify landscape features in design images that
humans prefer, and are therefore linked with improved human health,
and provide a quantitative ranking of the design. To link these human
preference criteria with storm water requirements, RHESSYS (Tague
and Band, 2004) is used to predict hydrologic benefits of the design's
landscape features, as described in Section 2.3 (Table 2).

2.1. Data acquisition

Previous research has shown that preferences of stakeholders can be
predicted using digital images that visually represent potential GI de-
signs (Sullivan, 2004). For example, Fig. 1 shows GI design images from
Galesburg, Illinois, and their human preference rankings.

Both images in Fig. 2 are from the same setting, with the addition of
trees to both sides of the street in (b) resulting in higher preference
ratings.

Similar images of streetscapes with varying tree cover and density
from Galeburg, IL, were shown to 30 participants in a survey conducted

Fig. 1. Green infrastructure design framework. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the Web version
of this article.)

Fig. 2. Sample GI design settings in Galeburg, IL (Yuan, 2010).
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by co-author Sullivan at the University of Illinois (Yuan, 2010). The
participants were asked how much they like/dislike each of 360 images,
which were presented in random order. Below is a sample question
from the survey.

Fig. 3 is illustrative of the inputs to the human preference model,
which are the raw RGB images from Sullivan's study with labels span-
ning five categories.

2.2. Human preference modeling approach

An image-based supervised machine learning technique is trained to
predict human preferences, or relative human health benefits, of tree-
based GI as shown in Fig. 4 The approach automates the prediction of
human preferences from GI design images by identifying (extracting)

specific landscape features that correlate with high human preferences
(Kaplan and Kaplan, 1989) using computer vision techniques (e.g.,
Fig. 2). A supervised machine-learning model is then trained to predict
a human preference rating for the image based on the extracted fea-
tures. Details on this approach are provided in the following sub-sec-
tions.

2.2.1. Feature extraction
To identify which image features to include in the model, Table 1

maps available image segmentation algorithms to a human preference
matrix developed by Kaplan and Kaplan (1989) for urban green spaces,
which gives GI characteristics that are most linked to human wellbeing.
The column on the left gives landscape features that attract people and
engage them longer by promoting understanding, while the column on
the right are features that encourage exploration of the landscape.
These features and algorithms are defined in more detail below.

2.2.2. Color histogram
Color histogram quantifies colors distribution of pixel intensities in

an image (Anami et al., 2010). Since the color green plays an important
role in GI design, we implemented RGB 256 bin color histogram
(Chapelle et al, 1999). In this approach, color is represented by a three-
dimensional vector for each color channel, i.e. RGB and it corre-
sponding to a pixel point in color space. Cha Chapelle et. al, 1999
showed that for image classification the use of color space (i.e RGB (Red
Green Blue) vs. HSV (Hue Saturation Value)) has very minimal effect on

Fig. 3. Sample question from survey.

Fig. 4. Stages in the image-based human preference model for GI designs.

Table 1
Preference matrix.

Understanding Exploration

2D (Immediate/Present) Coherence:
How clear and orderly the green setting appears.
Color histogram identifies green shapes and their layouts.

Complexity: richness & variety in visual components of the setting. GIST descriptor identifies
openness.

3D (Future/Promised) Legibility: distinctiveness of the setting
EOH identifies distinctive shapes of trees and pathways.

Mystery: extent of features partially hidden from view (e.g., via curving pathways)
GIST descriptor identifies their openness.

Table 2
Results for both the training and validation image sets
from Galesburg.

Sample Set Prediction Accuracy

Training 0.96
Validation 0.81
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classification accuracy. Therefore, we used RGB color space in this
work. Fig. 5 shows the color histogram for the sample survey image
shown in Fig. 3.

2.2.3. Histogram of oriented gradient
The histogram of oriented gradient (HOG) is used to extract the

distribution of edges of objects in an image (Dalal and Triggs (2005)).
HOG finds distinctive shapes of objects present in a design image (e.g.,
the shapes of trees shown in Fig. 3), which are needed to determine the
legibility feature in Table 1 that affects human understanding of the
scene. We implemented the HOG feature based on the approach of Dalal
and Triggs (2005), which gives a 31-dimensional descriptor. HOG fea-
tures are computed over rectangular regions represented by a grid of
3x3 blocks with an overlap of 8 pixels. Each block contains 16x16 pixels
and HOGs are computed for each block with 9 unsigned orientations.
Orientations are the gradient vectors at each pixel (for 16x16 pixel
cells) that are categorized into a 9-bin histogram. The histogram ranges
from 0 to 180° (because the orientations are unsigned), so there are 20°
per bin.

2.2.4. Gist descriptors
The previous two image features identify specific objects from the

images. Oliva and Torralba (2001) proposed a technique to estimate the
structure or shape of a scene using spatial properties of the scene, called
Gist descriptors (e.g., degree of naturalness, openness, roughness, or
expansion). Fig. 6 shows the Gist descriptor for a sample input green
space image. The results show the local energy spectrum, which mea-
sures the quantity of radiation passing through or emitted from the

surface of an object, for all objects in the image. The image is divided
into a 4x4 cell matrix for spatially grouping objects.

Each sub-image of the matrix corresponds to the amount of radia-
tion (with multiple wavelengths) emitted or passed through objects
placed in the corresponding spatial location. Dark regions in the gist
descriptor matrix (e.g., the upper right and lower left sub-images in
Fig. 10) thus identify openness in the image. Objects such as the tree in
the middle of the input image on the left in Fig. 7 emit higher radiation
and thus have more energy spectrum captured by the Gist descriptors in
the corresponding sub-image. This spatial distribution of local energy
spectrum provides a more holistic representation of a scene.

Once the GI design image features are extracted using the methods
described above, a supervised machine learning approach is used as a
regression model to predict human preferences for each design. Since
we average ratings from all survey participants, the preference scores
range continuously between 1 and 5 (i.e., real numbers). We con-
catenate the above three features into a combined {Color hist, HOG,
Gist} feature set and use these features for training the model.

For the supervised machine learning, the adaptive boosting algo-
rithm (AdaBoost) is used, which is an ensemble-learning algorithm that
combines a weak classifier [e.g., decision trees or k-nearest neighbors
(KNN)] to output a strong regressor (Freund and Schapire, 1999).
AdaBoost gives high accuracy and prevents over-fitting of parameters to

Fig. 5. Color histogram. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Histogram of oriented gradient.

Fig. 7. Gist descriptor for sample image.
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the training dataset by using an iterative learning model, which im-
proves accuracy by learning from mistakes made in an earlier training
step. We use decision trees as the weak classifier in this work.

2.2.5. Model validation & evaluation
We split the training data, which consisted of 360 images, into

training (70%) and validation (30%) sets, tuning the model for optimal
performance using the training set. The accuracy of the model is com-
puted using the coefficient of r2.

Fig. 8 shows examples from the validation set. The predicted ratings
for each of these images were identical to the actual human ratings.

The results indicate that the machine-learning model predicts
human preferences reasonably well, particularly since human ratings
can have considerable uncertainty (James et al., 2009).

The training set is predominantly tree-based green infrastructure,
and generally human preferences increase with more trees in images, as
shown in Fig. 8. However, merely adding more trees, bushes, plants,
etc. are not sufficient to obtain high human preferences. The image
features extracted from the training set (color histogram, EOH, spatial
histogram, GIST descriptor), and their corresponding landscape fea-
tures from Kaplan & Kaplan's preference matrix (1998), also play an
important role.

For example, recall that color histogram measures the green col-
oring and coherence in the design. Fig. 7 (c) and (d) show that the
rating changes from 1 to 3 just by adding trees, which provides more
green richness, and also by arranging the trees in an orderly manner
along the sidewalks (e.g., Fig. 8(d) is more coherent than Fig. 8(c)). This
added coherence can be seen in the color histogram results for these
images in Fig. 9.

Complexity, legibility, and mystery parameters of the preference
matrix also change human preferences. These parameters are captured
by the Gist and HOG descriptors as shown in Fig. 10.

2.2.6. Evaluation using Amazon Mechanical Turk
Finally, to further evaluate the models with more diverse human

preference scores (Buhrmester et al, 2011), we also conducted an online
survey with additional participants using Amazon Mechanical Turk.
The nature of the questionnaire was the same as shown in Fig. 2. We
posted 30 different images of GI and asked 20 turkers to rate the
images. After we obtained the turkers' ratings, we ran our human pre-
ference model to see how well it performs on the same 30 images using
Pearson correlation coefficient (ρ). We obtained ρ=0.83 for the tur-
kers’ ratings and model predictions, which shows that the model can
identify key features of GI spaces affecting human preference from

Fig. 8. Examples of validation results for Galesburg image data using the model.

Fig. 9. Color histogram indicating differences in coherence. (For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)
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visual scenes, despite the inherent variability in human preference
ratings.

2.3. Evaluating the hydrologic benefits of GI design

In order to evaluate the hydrologic benefits of candidate GI designs,
RHESSYS distributed parameter hydrologic model (Tague and Band,
2004) is used. RHESSYS is designed to simulate integrated water,
carbon, and nutrient cycling and transport over spatially variable ter-
rain at small to medium scales (i.e. from 1st to 3rd order watersheds).
Its spatially distributed framework enables the modeling of spatio-
temporal interactions between different eco-hydrological processes
from patch to watershed scales (Hwang et al., 2012).

Fig. 11 gives an overview of the steps involved in preparing the
required input for GI simulation using RHESSYS and integrating it with
the human preference model for social ranking. Google street view

images are first extracted from the Google Maps application-program-
ming interface (API) (http://maps.google.com) for the neighborhood
where GI design is planned. The coordinates (latitude/longitude) are
identified using Google Maps for the front yard of every house in the
neighborhood where GI installation is under consideration. These co-
ordinates are used to generate patch identifications (ids) that are used
as inputs for GI parameters in RHESSYS. Patch ids are unique numbers

Fig. 10. GIST and HOG image descriptors for Fig. 8(a),(b) reveal differences in complexity and legibility.

Fig. 11. Framework of the steps involved in estimating GI hydrologic benefits
using RHESSYS.

Fig. 12. Map of Baltimore neighborhood examined for GI design.

A. Rai, et al. Environmental Modelling and Software 118 (2019) 252–261

257

http://maps.google.com


associated with particular ecosystem patches, which are the smallest-
resolution spatial units that define areas of similar soil moisture and
land-cover characteristics. In landscapes modified by humans, patches
can also be defined to contain stream channels, road segments, storm
sewers, etc. Human sources of water and nutrients are also defined at
this level (Tague and Band, 2004).

Therefore, adding trees to the existing patches requires reflecting
the presence of trees in the existing lawn by generating patch ids from
their respective coordinate values. Patch id numbers are generated
using GRASS GIS (http://grass.osgeo.org), which queries the existing
raster map layers to output labels associated with input coordinate
values using the ‘r.what’ command. These labels are patch id numbers
that represent the current vegetation type present in the raster map.

The next step in executing RHESSYS is to prepare additional non-
spatial files, called worldfiles, which represent landscapes patterns such
as land use, tree canopy, etc. within RHESSYS. Worldfiles are generated
with a GRASS interface program that references input raster maps and a
text document defining initial state variables (e.g., saturation deficit
within the patch level, which is a measure of the degree of saturation).
Within the worldfile, each spatial layer is associated with the following
identifiers: an assigned ID based on the map used and state variable
values for stores and fluxes at each spatial level that are initialized at
the start of the simulation. The Grass2World (g2w) program is used to
generate the worldfiles automatically from spatial data layers within
GRASS GIS. Next, in order to incorporate new trees into the existing
worldfile based on the newly generated patch id numbers, an Awk

Fig. 13. Results of human preference modeling for different scenarios in Baltimore.
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script is used. Awk script is an interpreted programming language ty-
pically used for data extraction in UNIX operating systems (Aho et al.,
1978).

Finally, the modified worldfile is used to execute the RHESSYS
model and forecast the effects of the GI design on annual mean stream
flow and base flow (Ritcher et al., 1996) at the outlet of the urban
catchment where the neighborhood is located. These statistics have
previously been identified as important indicators for measuring the
alteration in hydrology of an urban catchment due to changes in land
use and land cover. By simulating the impacts of GI designs on mean
flows using RHESSYS and comparing flows with current and pre-de-
velopment values, we can observe the efficiency of the GI designs in
moving towards restoration of pre-development urban watershed hy-
drology. This provides an initial environmental rating for the GI de-
signs, which can be supplemented with nutrient impacts in the future.

3. Case study: implication for GI design in Dead Run Watershed,
Baltimore, MD

The GI design methodology described in Section 2 is applied in the
Dead Run Watershed in Baltimore, MD, which is part of the Baltimore
Ecosystem Study (BES). As the available human preference training set
contains predominantly tree-based green infrastructure, the case study
application focuses on the addition of trees to a neighborhood within
Dead Run Watershed, shown in Fig. 12, and observing how the human
and hydrologic benefits change with different designs. Six scenarios are
examined: 1) Existing scenario, 2) Adding a single tree in the neigh-
borhood, 3) Adding multiple trees in open vs. clustered arrangements,
4) Adding small vs. large trees, 5) Adding trees on one vs. both sides of
the street, and 6) Adding single vs. mixed species of trees.

Google Street-view images of the entire neighborhood are extracted

Fig. 14. GIST descriptors reflect the increased complexity of clustered trees in Fig. 13(d).

Fig. 15. GIST descriptors for GI setting with a larger and smaller tree.
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and used as a base case for human preferences. The coordinate values
(latitude & longitude) of the front yard of every house in the region are
chosen as potential locations to add trees. Google Street-view overlay
API JavaScript is used to overlay trees in the Google image for esti-
mating human preferences using the machine learning model trained
and validated in Galesburg (Section 3). The results are given in the
following sections.

Once the human preference ratings are obtained, RHESSYS is used
to evaluate the hydrologic benefits of the added green infrastructure to
the larger Dead Run Watershed using the methodology described in
Section 2.2. The hydrologic data used in the simulations were collected
by the Baltimore Ecosystem Study, as outlined by Band et al. (2012).
The hydrologic impacts of the green infrastructure scenarios are com-
pared with the existing scenario, using 2007 hydrologic and model data
from Band et al. (2012), and a pre-development scenario. The earliest
hydrologic data available for the pre-development scenario is 1960,
which was before the design neighborhood was built. The hydrologic
results are presented in Section 3.2, along with a discussion of the in-
teractions between human preferences and hydrologic benefits.

3.1. Results of human preference modeling

The human preference results for the six scenarios in Baltimore are
shown below for a sample street view image –

Settings that include trees, plants, bushes, etc. have been shown to
reduce symptoms of both mental fatigue and stress (Coley et al., 1997;
Sullivan, 2004). The existing scenario (Fig. 13(a)) lacks such a setting,
and therefore the human preference model predicts a low rating.
Simply by adding a single tree to the existing scenario (Fig. 13(b)), the
model predicts a higher preference rating based on shifts in the trained
image features for HOG and color histogram.

The spatial arrangement of trees in GI settings is also an important
design factor that affects the level of complexity in the scene (Kaplan
and Kaplan, 1989), which is captured in the model by the GIST de-
scriptor feature. Highly complex settings are generally less preferable
and thus the clustered arrangement of trees in Fig. 13 (d) gets a much

lower human preference rating than the open arrangement of trees in
Fig. 13(c). Fig. 14 shows how shifting energy spectrums in the GIST
descriptors captures this change.

The legibility and mystery factors of human preference require
three-dimensional inference, allowing people to imagine themselves in
the scene (Kaplan and Kaplan, 1989). The mystery parameter involves
exploration, and therefore the view of angle plays a very important role
in human perceptions. The arrangement of trees on both sides of the
street in Fig. 13 (d) and (f) create a more three-dimensional view where
people can imagine more exploration and thus prefer such settings. The
spatial arrangement of trees on both sides of a street is well captured by
the GIST feature and color histogram and HOG identify tree shape and
color. The features have captured the visual change in GI setting, which
encourages human beings to explore the setting.

Further, it is important to note that larger trees are more preferable
than smaller trees and therefore have higher ratings (compare
Fig. 13(e) vs. (f), as well as 13(c) vs. (g)). The reason for this result is
the higher degree of richness and complexity in the setting, which are
captured by GIST descriptors. The degree of richness and complexity for
a large versus small tree is shown in Fig. 15. The setting with a large
tree has fewer dark regions in the GIST matrix than the setting with a
small tree.

3.2. Results of hydrologic modeling using RHESSYS

Fig. 16, which shows the hydrologic impact of the GI design sce-
narios, compares the modeled change in annual mean stream flow and
base (groundwater) flow for the following scenarios: 1) Existing con-
dition (for the year 2007), 2), Pre-development conditions in 1960, 3)
Adding a single tree to every yard in the neighborhood, and 4) Adding
two trees to every yard in the neighborhood. Because hydrologic im-
pacts are measured at the watershed outlet, the physical arrangement of
the trees, which are important for the human preference results in
Section 3.1, do not change the estimated hydrologic impacts.

As shown in Fig. 16, the tree scenarios significantly reduce the
impacts of development on the urban watershed, shifting both the mean
stream and base flows much closer to the pre-development scenario.
The extent of the shift is particularly impressive given that the neigh-
borhood of the GI design is only 1.2 percent of the land area in the
overall Dead Run Watershed. The Dead Run Watershed has 36% of its
land as impervious (Gwynn Falls water quality management plan,
2004), and thus adding more trees in front of every house in the
neighborhood has significant beneficial impacts. Table 3 shows a
quantitative comparison of the two different GI scenarios, as well as a
third scenario adding three trees to every yard.

From Table 3, it is clear that green infrastructure can play an im-
portant role in restoring the urban watershed to predevelopment hy-
drology. Adding two trees to every front yard in the neighborhood gives
better results than one tree, but the incremental improvement declines
as additional trees are added. In fact, adding three trees to every yard
does not cause any additional changes to flow at the outlet of wa-
tershed. Moreover, the results in Section 1 indicate that the second and
third trees in each yard do not cause significant differences in human
preferences (compare Fig. 13(b) and (d)), although their arrangements
across the neighborhood are important.

Fig. 16. Hydrologic impacts of GI (trees) on annual mean stream and base flow
in Dead Run Watershed.

Table 3
Quantitative comparison of GI impacts for different scenarios.

GI Design Scenario Stream Flow Comparison Base Flow Comparison

% reduction from existing
scenario

% difference from pre-development
scenario

% reduction from existing
scenario

% difference from pre-development
scenario

One tree (every yard) 26 32 15 23
Two trees (every yard) 36 46 23 17
Three trees (every yard) 36 46 23 17
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The hydrologic benefits of adding more green components to urban
watersheds helps in restoration of pre-development flows (US EPA,
2009), but our results show that the human preference model can
identify specific patterns for installing these green components that are
more beneficial for human wellbeing.

4. Conclusions

This work develops a novel computational green infrastructure (GI)
design framework that couples storm-water management requirements
with criteria for human wellbeing. Current approaches to designing
green storm water features tend to emphasize rapid removal of storm
water runoff to reduce impacts of downstream flows and pollutant
loads. The approach presented in this paper is a first step towards in-
corporating the benefits of human health associated with these urban
green spaces into the design process. In order to map landscape features
that are correlated with human wellbeing to features that can be used to
train a supervised machine-learning model, a suite of computer vision
algorithms and techniques have been used. The result is the first GI
design model capable of predicting human preferences, with validation
accuracy of 81%, which is quite high given the variability in human
perceptions.
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