
InvisiPage: Oblivious Demand Paging for Secure Enclaves

Shaizeen Aga∗

University of Michigan, Ann Arbor
shaizeen@umich.edu

Satish Narayanasamy
University of Michigan, Ann Arbor

nsatish@umich.edu

ABSTRACT

State-of-art secure processors like Intel SGX remain susceptible
to leaking page-level address trace of an application via the page
fault channel in which a malicious OS induces spurious page faults
and deduces application’s secrets from it. Prior works which fix
this vulnerability do not provision for OS demand paging to be
oblivious. In this work, we present InvisiPage which obfuscates
page fault channel while simultaneously making OS demand pag-
ing oblivious. To do so, InvisiPage first carefully distributes page
management actions between the application and the OS. Second,
InvisiPage secures application’s page management interactions
with the OS using a novel construct which is derived from Oblivi-
ous RAM (ORAM) but is customized for page management. Finally,
we lower overheads of our approach by reducing page management
interactions with the OS via a novel memory partition. For a suite
of cloud applications which process sensitive data we show that
page fault channel can be tackled while enabling oblivious demand
paging at low overheads.

CCS CONCEPTS

· Security and privacy → Hardware-based security proto-

cols.

KEYWORDS

Intel SGX, ORAM, Page Fault Channel

ACM Reference Format:

Shaizeen Aga and Satish Narayanasamy. 2019. InvisiPage: Oblivious De-
mand Paging for Secure Enclaves. In The 46th Annual International Sympo-

sium on Computer Architecture (ISCA ’19), June 22ś26, 2019, Phoenix, AZ, USA.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3307650.3322265

1 INTRODUCTION

Our reliance on cloud computing only increases with time for it has
myriad benefits to offer. Consequently, more and more sensitive
data is being pushed to the cloud, thus bringing forth the security
concerns users feel for their data. Preserving privacy of client’s data
in a cloud computing setup continues to be an open challenge for
such a setup necessitates the assumption of a powerful adversary
who could have full control over the system software and be even

∗The author is currently at AMD Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322265

capable of launching physical attacks on machines in the data
center.

EPC-liteEPC Non-EPC EPC Non-EPC

ORAM access
SGX baseline(a) InvisiPage(b)

CFIcache + Isolation CFIpageCFIpage + Isolation

OS page management
Secure page

management
OS page

management
InvisiPage

runtime

Figure 1: Memory organization under SGX (a) and under In-

visiPage (b). CFI: Confidentiality, Freshness, Integrity

Intel Software Guard Extensions (SGX) [8, 26] is the latest com-
mercially available offering which aims to answer this demand
for privacy preserving remote computations. With SGX, a cloud
user can designate parts of his application as private or sensitive
(termed enclave) and the SGX-enabled processor will protect code
and data of the enclave from the rest of the system, including the
application’s public functions, system software, and hardware pe-
ripherals. To provide this protection, SGX provisions checks which
ensure that any sensitive code/data pages of an enclave are kept
confidential and are only read/written by the owning enclave.

Memory under SGX is partitioned into two regions EPC (Enclave
Page Cache) memory and non-EPC memory (Figure 1). Sensitive
pages of an enclave are allocated in EPC, they can be spilled to
non-EPC memory and then fetched back in EPC on an access by the
enclave. SGX provides the core guarantees of Confidentiality
(hide information in data - encryption), Freshness (read returns
latest written value - nonces) and Integrity (prevent data cor-
ruption - MAC tag) for enclave’s sensitive data both in EPC and
non-EPCmemory albeit at cache and page granularities respectively.
In fact, provisioning these guarantees at finer granularity (cache
block) is what limits EPC size (128MB in current SGX processors)
for the performance and space overheads of these security guaran-
tees increase as the memory size increases. Additionally, for data in
EPC, SGX also provides Isolation (only owning enclave can issue
reads/writes) by tracking ownership metadata for each EPC page.

While the security guarantees provided by SGX for sensitive
pages of an enclave are strong, SGX leaves page management en-
tirely to the OS. The OS can allocate pages in EPC to enclaves,
de-allocate them at will and spill them to non-EPCmemory. Further-
more, address translations (virtual to physical address mappings)
are also under OS’s purview. As such, OS handles page faults, ac-
cesses and updates page tables for enclaves.

As SGX leaves page management to the OS, a malicious OS can
simply revoke page permissions to induce spurious page faults
during an enclave’s execution. Under SGX, the OS can also induce

372

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA S. Aga et al.

spurious page movements between EPC and non-EPC memory. Us-
ing either of these mechanisms, the OS can learn the address trace
of an enclave. This vulnerability, termed page fault channel [46],
can be used to recover sensitive inputs of an application [46]. Specif-
ically, prior work [46] showed how the sensitive input image to an
enclave can be completely recovered. This can have catastrophic
consequences say for a medical image processing cloud application.

Current solutions to fix page fault channel either propose de-
terminizing page access patterns [37] or require that an enclave’s
memory requirement be pre-determined and reserved [16, 36]. Both
of these techniques are hard to realize for general programs without
severely constraining them (no dynamic memory allocations, no
recursion etc.). Further, reserving large swathes of memory for a
single enclave precludes other enclaves from using the same ma-
chine and also disallows the OS from flexibly managing memory
as a shared resource. Additionally, these proposals do not support
oblivious demand paging: any access to a page de-allocated by the
OS will leak the accessed address to the OS [16].

In this paper, we propose InvisiPage, a page fault channel de-
fense in which unlike prior solutions we allow the OS to perform
demand paging (allocate/deallocate pages) during an enclave’s exe-
cution while preventing it from learning the address trace of the
enclave. To do so, InvisiPage first provisions for collaborative page
management wherein it carefully distributes page management
actions between the enclave and the OS. Second, InvisiPage secures
enclave’s page management transactions with the OS via a novel
construct we term Oblivious Page Management (OPAM). OPAM is
based on Oblivious RAM (ORAM) [20], but is customized for page
management context. As OPAM transactions are costly, we reduce
their number by creating a new memory partition termed EPC-lite

(Figure 1) which has similar guarantees to EPC but does not incur
the overheads of actually increasing EPC size.

Collaborative page management: Unlike baseline SGX, un-
der InvisiPage the OS does not handle all page management actions
but shares them with the enclave. InvisiPage decouples memory
resource management from its associated metadata management
(page tables). While it leaves the former to the OS, the enclave
securely manages/updates page table data for it’s sensitive pages.
Further, while OS still retains complete control over page allocations
to both EPC and non-EPC memory, under InvisiPage, EPC deallo-
cations and page movements between EPC and non-EPC memory
are performed by the enclave in collaboration with the OS. Overall,
this completely hides any EPC accesses by the enclave from the OS.

OPAM for securing interactions with OS: Under both base-
line SGX and InvisiPage, the OS retains the ability to deallocate
non-EPC memory pages and swap them to a backing store. A mali-
cious OS can use this to revoke permissions on non-EPC memory
pages and learn the address trace of an enclave. To prevent this,
InvisiPage obfuscates addresses of pages moved between EPC and
non-EPC memory via ORAM construct.

ORAM [20] is a cryptographic primitive which makes a memory
access pattern computationally indistinguishable from a random
access pattern of same length. We customize the traditional ORAM
implementation for page management context and term the resul-
tant implementation oblivious page management (OPAM). Invisi-
Page addresses several challenges that arise in using ORAM for
page management. Unlike traditional ORAM implementations for

secure processors, the memory size covered by the ORAM dynami-
cally changes for our context. InvisiPage addresses this challenge
efficiently while also avoiding frequent metadata updates as mem-
ory size grows. Further, InvisiPage exploits opportunities unique
to using ORAM for page management. InvisiPage encodes meta-
data needed to support the ORAM algorithm inside existing page
tables and saves performance and space overheads. It also decou-
ples metadata and data updates to reduce the overheads of ORAM
algorithm.

EPC-lite to reduce OPAM transactions: While OPAM consid-
erably reduces baseline ORAM algorithm overheads, each OPAM
transaction is still costly. As these transactions are required only
while accessing non-EPC memory, we could reduce their number
by increasing EPC. Increasing EPC size, however, is challenging
as SGX provides security guarantees for EPC pages at cache block
granularity. As such, any increase in EPC size will incur additional
performance and space overheads for maintaining and accessing
the metadata needed for providing these guarantees. Instead, In-
visiPage extends EPC without incurring metadata overheads by
devising a memory partition which has all the security properties
of EPC except at page-level. We term this novel memory partition
as EPC-lite. InvisiPage can move pages between EPC-lite and EPC

without needing OPAM transactions. We identify challenges in
supporting EPC-lite region and propose simple solutions to address
these challenges.

We model a suite of cloud applications: genome processing, vi-
sion applications, graph processing, and in-memory key value store
which frequently process sensitive data including but not limited to
medical images, genome sequences and social graphs. We demon-
strate how page fault channel can be fixed for these applications at
low overheads while enabling oblivious demand paging.

This paper makes the following contributions:

• We propose a novel page fault channel defense InvisiPage
which unlike prior works provisions for oblivious demand
paging by the OS.

• InvisiPage carefully distributes page management actions
between the enclave and the OS to allow the OS flexibility
in managing memory as a resource yet hides application’s
address trace from it.

• To secure its page management transactions with the OS, In-
visiPage uses a novel construct, Oblivious Page Management
(OPAM) which is derived from ORAM but is customized for
addressing challenges and exploiting opportunities that arise
in the context of page management.

• We also propose a novel memory partition EPC-lite which
reduces the OPAM transactions needed and brings down the
overheads of our proposed solution further.

• For a suite of cloud applications we show that page fault
channel can be mitigated while enabling oblivious demand
paging at low overheads.

2 MOTIVATION AND BACKGROUND

2.1 Threat Model

We assume a secure processor with support for isolated execution
like Intel SGX. Our attack model assumes a powerful adversary
with full control over the operating system. We assume that the

373

InvisiPage: Oblivious Demand Paging for Secure Enclaves ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Z = 2

0 1 2 3

leaf-ids

a b d ɸ

e f

ɸɸc ɸ

ɸɸ ɸ ɸ

Block-id leaf

a 0

b 0

c 0

d 1

position-map

e 2

f 3

stash
a

1

b c e f

2

3

3
4

0 1 2 3

c b d ɸ

e f

ɸɸɸɸ

ɸɸ ɸ ɸ

Block-id leaf

a 3

b 0

c 0

d 1

position-map

e 2

f 3

stash
a

5

(a) (b)

Figure 2: Accessing block a involves read and write of path

to leaf to which the block is mapped. (a) Depicts stash after

end of path read. (b) Depicts stash after end of path write.

Block with dummy data is represented as ϕ.

entire application is bundled as an enclave (along with necessary
libraries) and its interactions with external world are made secure
i.e. the enclave is protected against attacks like Iago attacks [13].

An Intel SGX like system that we assume is susceptible to leaking
the address trace of an application via varied side channels like
cache [47], memory bus [6] and page faults [46]. While both cache
and memory bus side channel attacks are important vulnerabilities,
in this work, we focus on designing an efficient solution to address
the page fault channel. We believe that there are orthogonal solu-
tions [6, 16] which can be combined with our proposed solution to
address these other vulnerabilities.

We consider side channels like power [23], thermal [29], pro-
gram execution time [48] outside the scope of our work. They can
be mitigated by using prior techniques [48] in tandem with our
approach.

2.2 Dual Page Table Support

In this section, we discuss dual page table support presented in
Sanctum [16] that we also assume and augment in this work. The
key benefit of this support is to ensure that page faults (and TLB
misses) to public or non-sensitive regions of an application do not
incur any additional overheads in a system which obfuscates page
fault side channel as compared to an unsecure baseline. This is
realized by harnessing the fact that under SGX and other secure de-
signs [19], the programmer explicitly demarcates a range of virtual
addresses of an application as being private or sensitive and the
rest as public or non-sensitive. Such demarcation aids in reducing
overheads of SGX security guarantees. An example of data that
could be placed in public partition is an array which is read serially
at the beginning of program execution. Page faults to such data
does not leak any sensitive information and hence could be left
under the purview of the OS.

So as avoid incurring overheads for public pages, Sanctum [16]
provisions for dual page tables: page table data for private pages is
stored securely (in EPC in SGX parlance) and is only manipulated
by the enclave, while a second, conventional page table is used for
public pages which is under the control of OS. In such a system,
TLB misses need to be appropriately directed to the right page
table which is realized via a dual page table walk mechanism. This
requires an additional page table base register which points to the

physical address of enclave’s private page table. Such support has
been extensively studied by prior work [16] and can be adopted in
our system. While Sanctum employs a security monitor which sets
the page table base register appropriately, we assume that SGX is
augmented to perform this function.

Note that such dual page table support alone is not enough to
mitigate page fault channel attacks while not robbing the OS of
its flexibility in managing memory. This is so as Sanctum does
not support oblivious on-demand paging. While Sanctum does not
allow the OS to forcibly reclaim a page from the enclave, once
reclaimed, the OS can learn of any further accesses to this page
by the enclave. InvisiPage on the other hand allows an enclave to
access pages reclaimed by the OS without leaking information.

2.3 Path Oblivious RAM

Oblivious RAM (ORAM) [20] is a cryptographic construct which
makes a memory access trace computationally indistinguishable
from a random access trace of same length. Our work employs
path-ORAM [38] which is the most practical implementation of
this construct. In this section we explain the workings of path-
ORAM algorithm (henceforth referred to simply as ORAM).

ORAM organizes memory as a binary tree and each node in the
tree has fixed number of slots (z) each capable of storing a single
data block. The tree also has associated utilization factor which
indicates percentage of real blocks that can be stored in the tree;
remaining blocks hold dummy data. The algorithm maps each real
block to a leaf in the tree and these mappings are maintained in
the position-map structure. All the blocks (real and dummy) are
stored in encrypted form in memory. The tree also stores metadata
for every block which includes its block-id (null for dummy blocks),
its leaf and encryption related counter.

Figure 2 depicts steps involved while reading block a. The
algorithm first looks up the position-map to find the leaf the block
is mapped to (1). The ORAM invariant is that block a will either
be in the stash structure the algorithm maintains or in some slot
along the path to its mapped leaf (path-0). Next, it accesses path-0
and decrypts all blocks along the path (2), storing only real blocks
in the stash structure (3). At this point, block a is read and
remapped to a random leaf (4). Next, as many blocks as possible
are encrypted and written back to path-0 and rest of the slots are
filled with dummy blocks (5). During path write, data blocks are
pushed as close to leaf nodes as possible (block c moves to leaf
node). Notice that block a is left behind in the stash for it is now
mapped to leaf 3 and the only common node between path-0 and
path-3 is the root which is currently full. Write operations proceed
similarly except that blocks are also updated.

ORAM’s security relies on two actions. First, mapping of blocks
to random leafs on each access causes new set of blocks to be
read each time a block is accessed. Second, each access causes
re-encryption of all blocks accessed which makes it hard for an
adversary to differentiate between real and dummy blocks and
deduce which block was actually accessed.

Note that ORAM is susceptible to failures. Most secure processor
implementations provision stash as an on-chip structure and a
stash overflow due accumulation of blocks causes ORAM failure.
So as to reduce this probability, on every ORAM access, data blocks

374

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA S. Aga et al.

are pushed as close to leaf nodes as possible to free up higher level
nodes which can store blocks mapped to larger set of leaves.

3 INVISIPAGE DESIGN

private

enclave

public

virtual address range

InvisiPage Runtime

private page table

tree level

leafmetadata

31 bits 5 bits

metadata physical page#
EPC page

non-EPC page

public page table

metadata physical page#

OS

OPAM tree pages table

physical page#

vpn vpn

o-vpn

Figure 3: Page tables in InvisiPage.

3.1 InvisiPage Overview

We present an overview of InvisiPage in this section. The key de-
sign goal of InvisiPage is to prevent the OS from using page faults
to learn an enclave’s memory access trace while preserving the
control the OS currently enjoys in allocating/deallocating memory
to applications. To realize this goal, we observe that it suffices to
carefully distribute page management actions between the enclave
and the OS. InvisiPage provisions a careful division of page man-
agement which ensures that while the OS can control the number

of pages allocated to a given enclave, it is unaware of which pages
the enclave accesses or what virtual address a given physical page
is mapped to. InvisiPage augments SGX’s trusted runtime [45] to
collaboratively perform page management actions with the OS
(Section 3.2).

To ensure that the OS enjoys flexibility in managing memory as a
resource, under InvisiPage, OS retains the ability to reclaim an EPC

page from an enclave in collaboration with InvisiPage runtime. Fur-
ther, the OS can also deallocate non-EPC memory pages and swap
them to a backing store at will. To prevent the OS from learning of
an enclave’s address trace via its accesses to reclaimed EPC pages,
InvisiPage obfuscates addresses of pages moved between EPC and
non-EPC memory via ORAM construct. We adapt the ORAM con-
struct for page management, identify and address challenges and
exploit unique opportunities in doing so. We term this customized
ORAM implementation (Section 3.3) as oblivious page management
(OPAM).

While OPAM considerably reduces baseline ORAM algorithm
overheads, each OPAM transaction is still costly. To further reduce
the overheads of our proposed approach, we design a novel memory
partition, EPC-lite (Section 3.4) which reduces the number of OPAM
transactions necessary. We identify challenges in realizing EPC-lite

and address them efficiently.

3.2 InvisiPage Runtime

We extend the trusted runtime system [45] of an enclave to take
over some page management actions from the OS and term this
augmented runtime as InvisiPage runtime. To this end, under In-
visiPage, we first decouple resource management (allocation, deal-
location of pages) from its associated metadata (virtual to physical
address translations in page table). To realize this, enclave’s sen-
sitive pages are tracked in a private page table by the InvisiPage
runtime and this table is isolated from the OS (Figure 3). A TLB
miss to a sensitive page is directed to this private page table. Note
that, non-sensitive pages are still managed by the OS (public page
table in Figure 3) as is the case with prior dual page table designs
(Section 3.3).

Function Operation

OS Interface

a. get_epc_page() Allocate a free EPC page.
b. get_non-epc_pages (n) Allocate n free non-EPC memory pages.
c. opam_access (o-vpn[]) Keep non-EPC memory pages correspond-

ing to list of o-vpns provided memory res-
ident.

d. get_epc-lite_page() Allocate a free EPC-lite page.

InvisiPage Runtime Interface

e. free_epc_page() Free an EPC page.
f. free_epc-lite_page() Free an EPC-lite page.

Table 1: Interface between InvisiPage runtime and the OS

The interface of InvisiPage runtime with the OS is depicted in
Table 1. The runtime interacts with the OS each time a sensitive page
is allocated in EPC (Table 1, a). Unlike in the baseline SGX where
the OS picks a victim EPC page while freeing EPC memory, under
InvisiPage the runtime is responsible for picking a victim EPC page.
As such, the OS interfaces with the runtime in order to deallocate
an EPC page (Table 1, e). As EPC is limited, an enclave’s sensitive
pages can be spilled to non-EPC memory and such pages can later
be re-accessed by the enclave and consequently fetched back into
EPC. The runtime interfaces with the OS on such spills and fetches
(Table 1, c) and further uses our OPAM construct (Section 3.3) to
secure such transactions and hide the page address from the OS.
Finally, the runtime also interfaces with the OS when it needs more
non-EPC memory pages (Table 1, b).

Enclave’s sensitive pages which are spilled to non-EPC memory
are managed by the runtime via our OPAM construct. Recall from
Section 2.3 that the underlying ORAM construct arranges such
pages as a logical tree. The OS tracks such non-EPC memory pages
separately in a new structure as depicted in Figure 3. Unlike the
private page table and the public page table of an enclave, which
are indexed by the virtual page number (vpn), this new structure is
indexed by a novel number we construct and term oblivious virtual
page number (o-vpn). The o-vpn is a unique-id which is statically
assigned to each slot in the underlying ORAM tree (Section 2.3).
For each spill to non-EPCmemory and fetch from non-EPCmemory,
the runtime specifies to the OS a list of o-vpns to be accessed
(corresponding to a path in the tree) and the OS ensures that all non-
EPCmemory pages corresponding to the provided list of o-vpns are
memory resident for the duration of the spill/fetch. We provision

375

InvisiPage: Oblivious Demand Paging for Secure Enclaves ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

mechanisms for the runtime to ensure this is the case (Section 4.1.1).
Note that beside this, the OS has complete control over these non-
EPC memory pages and it can swap them to backing store at will.

Under InvisiPage as in unsecure baseline, memory management
(allocation, deallocation of pages) is transparent to the enclave
and as such the enclave does not need to be modified. InvisiPage
runtime interfaces with the OS to ensure memory management
flexibility is maintained while not leaking memory access pattern
of the enclave.

3.3 Oblivious Page Management

The limited amount of EPC space causes enclave’s sensitive data to
be spilled to non-EPC memory. InvisiPage runtime converts each
access by an enclave to a non-EPC memory page into an ORAM
access so as to hide the page address from the OS (Table 1, c). Recall
from Section 2.3, that ORAM organizes memory as a binary tree
and each ORAM access involves reading and writing all the blocks
(pages) belonging to a certain path in the tree. Similarly, under
InvisiPage, each ORAM access involves reading and writing non-
EPC memory pages which belong to a given tree path. Section 3.3.1
discusses how these pages are identified. Next, we discuss how we
customize the traditional ORAM construct (Section 2.3) to be more
suitable for page management context. We term our customized
construct Oblivious Page Management (OPAM).

3.3.1 Page table as Position Map. As in ORAM algorithm, Invisi-
Page organizes non-EPCmemory pages as a binary tree. The ORAM
algorithm provisions a position map which stores page address-
leaf mappings which helps locate a page in the tree. This structure
is both consulted and updated on each ORAM access and is one of
the chief contributors to ORAM’s performance and space overhead.
InvisiPage does away with this overhead by encoding position

map inside the page table. Page tables are already consulted on a
TLB miss and by placing position map in page table entries, we
do away with the performance and space overheads of position
map. Figure 3 depicts this encoding in an enclave’s private page
table; an enclave’s sensitive page could either be mapped to EPC

or be mapped to non-EPC memory in which case the PTE holds
its associated leaf. Assuming x86-based architecture, close to 36
bits are available of which we use 31 bits to store leaf information.
The InvisiPage runtime uses the leaf number to identify the path
in the tree to be accessed which in turn allows it to generate the
oblivious virtual page numbers (o-vpn, Section 3.2) that need to be
accessed. The o-vpns are then conveyed to the OS to perform the
ORAM access.

3.3.2 Dynamic ORAM. In traditional ORAM, address obfuscation
is provided for accesses to fixed size memory. This is undesirable in
our context as predetermining number of non-EPC memory pages
(and hence application memory footprint) is hard without severely
constraining the program. Further, allocating large non-EPC mem-
ory space apriori is unwise as ORAMaccess overhead increases with
larger memory size. As such, we choose to grow the ORAM tree
gradually. While such dynamic ORAMs have been studied theoreti-
cally [27], we offer the first practical implementation by providing
efficient solutions to identified challenges. Note that, OPAM tree
can also be shrunk as enclave frees memory. However, we leave
this to future work and focus on growing the tree efficiently in this
work.

Add page x

at leaf 7

0 1 2 3

leaf-ids

Node w/ data

Node w/ dummy data

0 1 2 3 4 5 6 7

page x

Figure 4: Smart growth. Spilling a page to a full tree (50%

utilization). Naive growth adds (two) nodes gradually from

left to right which will cause the page spill to fail as path to

leaf 7 is full. Smart growth prioritizes adding nodes to path

which is accessed. As a consequence, the spill succeeds.

Growth size: An interesting decision for dynamic ORAMs is
when and by how much to grow the tree. Recall that ORAM has
an associated utilization factor (Section 2.3) which dictates the
fraction of pages in the tree that hold real data. We use this param-
eter to guide tree growth. At each spill to non-EPC memory, we
add nodes (non-EPC memory pages, Table 1, b) such that the spill
does not cause utilization factor to exceed (e.g. With utilization
factor 50%, when adding a new page to a full tree, we will add two
new pages to the tree).

Smart growth: While prior works [27] discuss gradual node
addition to an ORAM tree, our work observes that where nodes
get added can help reduce spill failures to ORAM. Figure 4 depicts
a scenario wherein addition of page x to a full tree fails as naive
growth (left to right node addition in the new level) fails to address
the fact that path to leaf 7 is full (3 pages are already mapped to it).
Instead, we take a different approach termed smart growth. Therein,
whenever ORAM tree is grown, we first try to grow the path we are
accessing. In the above example, this will cause nodes to be added
to path to leaf 7 and addition of page x will succeed. If the path we
are accessing is already grown, we fall back on naive growth. Our
evaluation shows that prioritizing node addition to accessed path
helps reduce spill failures considerably.

Security of smart growth: Our smart growth optimization
does not leak any more information than the naive growth as it
is independent of the current contents of ORAM tree. This is so,
as smart growth deterministically grows either the accessed path
(if not already grown) or falls back on naive growth. Hence, the
adversary only learns which path is being accessed and that the
tree is growing like in naive growth.

Avoiding frequent position map updates: A challenge in re-
alizing dynamic ORAM is the overhead of updating position map

caused by changes to the leaf a page maps to as the tree grows. The
change in mapping is due to two reasons. First, as Figure 4 shows,
path to leaf 3 is quite different in trees with three and four levels.
Second, on each access to the tree, real pages on the accessed path
are pushed as close to leaf as possible causing pages to be shuffled
along the tree path. When the tree grows, two leafs (two paths)
are created where one existed. As it is desirable to spread pages on
both the new paths, the leaf a page maps to changes. In the extreme

376

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA S. Aga et al.

[3]

0 1 2 3
leaf-ids

Node w/ data

Node w/ dummy data

Failed Spill List
(sorted by leaf id)

Page x -> leaf 0

Page y -> leaf 1

Leaf range [0, 1]

[2,3]

[0,1,2,3]

leaf ranges

Figure 6: Fast failed spills processing. We store failed spills

in sorted order (by leaf id). Figure highlights the path be-

ing accessed which has one empty node (striped) to which

we can potentially spill a data block. We also show the

leaf ranges that can be spilled to each node. Simple range

checks of these ranges (e.g. range[2-3]) against available

failed spills (range[0-1]) can help process past failed spills

quickly.

Tree grows

0 1 2 3

page-10

leaf-ids

6 7

page-10

Tree w/ 3 levels Tree w/ 4 levels

At old leaf

pick rightmost leaf

Figure 5: Finding page 10 in new tree which was mapped

to leaf 3 in old tree. We employ deterministic remapping;

even addresses get remapped to rightmost paths and odd ad-

dresses to leftmost paths. We also remember tree level with

the mapping. To find the page, we find leaf in tree with #old

levels and traverse the tree in relevant direction based on

address.

case, one could update all affected entries in the position map on
each access to the tree. As position map data is stored in the page
table, this can lead to severe overheads for it will lead to random
page table walks.

InvisiPage uses two strategies to avoid frequent updates to
position map. First, while inserting an entry in position map,
we store current #levels in the tree (private page table, Figure 3)
along with leaf. Second, we use deterministic remapping during
page shuffling: we remap even (odd) addresses to rightmost (left-
most) paths. Together these strategies help us locate a page in the
(new) grown tree using its old mapping based off the (old) smaller
tree obviating the need to update the position map when the tree
grows.

Figure 5 depicts an example. In the older tree (left) with 3 levels,
page 10 is mapped to leaf 3. Note that, this path in the grown tree
(right) corresponds to two leafs: 6 and 7. Our deterministic page
shuffling will only place page 10 (even address) along path to leaf
7 (rightmost leaf). Consequently, to find page 10 when only its
mapping in the old tree is available (leaf = 3, levels = 3), we first
find the node which would have mapped to leaf 3 in the tree with 3
levels. From this node, to find page 10, we pick the right-most path
as 10 is an even address.

3.3.3 Decoupling ORAM Metadata and Data to Reduce Page Copies

between EPC and non-EPC memory. Traditional ORAM implementa-
tions employ a stash structure in secure space wherein pages read
on each ORAM access are decrypted and stored. To complete the
access, as many pages from the stash as possible are re-encrypted
and written back to the tree. Implementing this as is in our system
will lead to severe overheads as it will require allocation of stash
in EPC memory and increase by several times the number of pages
copied between EPC and non-EPC memory.

We use two observations to overcome this challenge. First, the
net effect of an ORAM access is that one page is moved between
EPC and non-EPCmemory and rest of the pages are merely shuffled
in non-EPC memory. Second, only ORAM metadata needs to be
inspected to deduce page shuffle decisions. Recall that every page
in ORAM tree has associated metadata (virtual address of page,
leaf, level). To harness these observations, we decouple ORAM
metadata and store it in a separate mirrored tree structure in non-

EPC memory. InvisiPage runtime first accesses this metadata tree
to deduce page shuffling needed. Post that, the runtime performs
page shuffles in non-EPC memory and only moves a single page
across EPC and non-EPC memory.

This decoupling requires the OS to ensure that the non-EPC

memory pages needed for an ORAM access are resident in memory
during the ORAM access. We provision mechanisms for the runtime
to check that it is reading (writing) the right non-EPCmemory pages
(Section 4.1.1).

Security of Page Copy Reduction: Moving a single page be-
tween EPC and non-EPCmemory and shuffling the remaining pages
in non-EPC memory is secure as the OS does not learn the address
of the moved page. Unlike in baseline SGX, the InvisiPage runtime
performs page movements via OPAM construct wherein entire ac-
cessed path is written and one page is moved between EPC and
non-EPC memory. The OS can merely scan non-EPC memory pages
to only learn that the entire path was written by the runtime.

3.3.4 Dataless Stash. With traditional ORAM, the stash structure
holds memory pages which could not be spilled to the tree. Tradi-
tional hardware implementation stores this structure on-chip for
security purposes. As such, its size limits the number of failed spills
the ORAM implementation can bear. To avoid ORAM failure (Sec-
tion 2.3), dummy accesses (read/write of a random ORAM path) are
employed with the hope that they might spill some stash pages to
the tree which further worsen ORAM overheads.

Under InvisiPage, we utilize the fact that secure space (EPC) is
fully associative allowing us to simply pick another victim EPC

page which can be evicted to non-EPC memory on a spill failure.
This allows InvisiPage to employ a dataless stash which only
holds metadata associated with failed spill (virtual address of page,
leaf, level). This stash is stored securely (in EPC) and is maintained
by InvisiPage runtime. Dataless (lower footprint) and in-memory
nature (stored in EPC) of our stash allows us to track larger number
of spill failures.

On every ORAM access, attempt is made to spill data in stash to
the tree (background spill processing). So as to push data as close
to leaf nodes as possible, entries in stash are sorted based on the
leaf currently being accessed. Tracking large number of entries in

377

InvisiPage: Oblivious Demand Paging for Secure Enclaves ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

stash can cause high overheads for this sorting. In our design, we
avoid this sorting. Instead we maintain a sorted list (by leaf-id) of
available entries in stash which reduces stash processing to simple
range checks. If an accessed path has a free slot, we compare the
leaf range that can be spilled to this slot against leaf range available
in stash. Only on an overlap, do we check the stash and do so for
overlapped range only. Figure 6 shows an example.

3.3.5 Realizing Thin Nodes. As the tree node width (z) of ORAM
tree decreases, the number of pages on the path decrease, reducing
page shuffling and overhead per access. However, as z decreases,
the probability of spill failures also increases as the #options avail-
able to spill a page reduces (slots available on a path). Recall from
Section 3.3.4 that such spill failures are tracked in stash and tra-
ditional implementations rely on dummy accesses to keep stash
occupancy low. In fact, for tree node width 1, an order of magnitude
of dummy accesses could be required making this configuration
infeasible [30].

However, in InvisiPage, a confluence of optimizations makes thin
nodes feasible. First, our stash is in-memory and is dataless making
stash footprint very low. As such, we can track large number of
spill failures. Second, as discussed in Section 3.3.4 we also have
an efficient mechanism to process stash. Finally, smart growth
optimization (Section 3.3.2) keeps spill failures low. Together these
help us realize thin nodes and reduce ORAM access overheads.

3.4 EPC-lite to reduce OPAM reliance

While our OPAM construct reduces ORAM algorithm overheads
considerably, each OPAM access causes several pages to be shuffled
in non-EPC memory and incurs high overheads. Increasing EPC

size can reduce such OPAM transactions required. However, as
some of the EPC security guarantees are at cache block granularity,
increasing EPC size increases overheads per cache block access to
EPC to update and lookup metadata (upto four metadata memory
accesses for 128MB EPC, upto five memory accesses for 256MB).
To overcome this challenge, we make the key observation that in
addition to securing the page table entries belonging to sensitive
pages we simply need the isolation guarantee of EPC to prevent the
OS from learning about enclave’s accesses to EPC pages. To this
end, we design a separate memory partition which we term EPC-

lite, which has the same page-level isolation guarantees as EPC but
provides other security guarantees (confidentiality, freshness and
integrity) at page-level and not cache-block level (as is the case for
non-EPCmemory pages in baseline SGX). As such, EPC-lite does not
incur the increase in metadata that larger EPC incurs. Finally, page
movements between EPC-lite and EPC are done by the InvisiPage
runtime and do not require use of the OPAM construct.

When needing a physical page for sensitive data, InvisiPage
runtime first tries to get an EPC page from OS (Table 1, a). If that
fails, it then tries to get an EPC-lite page (Table 1, d). Only when both
of these fail, the runtime spills an EPC page to non-EPC memory
and incurs an OPAM access (Table 1, c).

Supporting EPC-lite requires extending baseline SGX’s isolation
mechanism to also cover some non-EPC memory pages. To support
isolation for EPC pages, baseline SGX maintains a map structure
(Enclave Page Cache Map, EPCM) which tracks metadata per EPC
page (page permissions, the virtual address of page, owner enclave

id). SGX hardware uses this metadata to ensure that only owning
enclave reads/writes to a given EPC page. To support isolation for
pages in EPC-lite, we propose to track them similarly in EPCM. Also,
just like baseline SGX, which marks EPC as no-DMA at memory
controller, we also need similar support for EPC-lite.

Unlike EPC which is fixed at boot time, we propose that the EPC-
lite be dynamic; the number of pages in EPC-lite grow and shrink
over time. To realize this, we augment baseline SGX to periodically
collaborate with the OS (based on EPC usage and EPC to non-EPC

memory page movements seen) to extend/shrink EPC-lite. This,
however, raises the question as to which non-EPC memory pages
can be added to EPC-lite. If we provision support for any non-EPC

memory page to be added to EPC-lite, every memory access needs
to check EPCM which will add overheads while accessing non-
sensitive pages. Under SGX, EPC is a contiguous chunk of physical
memory. As such, checking if an address falls in EPC is a simple
range check. Similarly, we constrain the EPC-lite region to be a
contiguous memory chunk following the EPC. This preserves the
single range check currently supported in baseline SGX.

While EPC-lite is interesting from a security standpoint, it does
have associated limitations. Similar to EPC, deallocation of an EPC-

lite page requires the request to be routed via InvisiPage runtime
(Table 1, f). As such, a larger EPC-lite region implies that the OS
has lower control in moving pages to the backing store and has
to rely on an owning enclave to give up an EPC-lite page. Also,
constraining the EPC-lite to be a contiguous memory chunk as we
do can lead to memory fragmentation as enclaves give up EPC-

lite pages. Further, enforcing contiguity can also force hot pages
in EPC-lite to be freed while shrinking EPC-lite size. Techniques
which address these limitations (memory compaction to reduce
fragmentation, InvisiPage runtime controlled swapping of EPC and
EPC-lite pages) are possible. We leave investigating them to future
work.

3.5 InvisiPage Security Analysis

Page fault side channel comprises of addresses accessed by the pro-
gram, the access type (read, write), number of page faults and their
timing. InvisiPage hides addresses accessed along with their access
type from a malicious OS. By isolating the page translations of sen-
sitive EPC pages from the OS, the OS has no visibility in which EPC

pages are accessed. Further, by using the OPAM construct, Invisi-
Page’s runtime hides the addresses of pages moved between EPC

and non-EPC memory. Consequently, for a fixed non-EPC memory
size, InvisiPage’s security guarantees are similar to prior ORAM
proposals [30].

Further, like these prior proposals, InvisiPage does not hide tim-
ing of page faults (specifically timing of page moves between non-

EPC memory and EPC) and their number. To the best of our knowl-
edge, no attack exploits page fault trace length and timing only to
deduce application secrets. Further, without the address and access
type, the amount of information that the trace length or timing can
expose is quite limited. Finally, well known prior timing channel
solutions employed for other side channels like having a static page
move rate [6] or a more dynamic scheme with bounded leakage [48]
can be easily adapted in our system to address this leak.

One aspect wherein InvisiPage differs from prior ORAM propos-
als is that non-EPCmemory can grow dynamically. This, introduces

378

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA S. Aga et al.

a new form of leak - memory footprint size. To the best of our
knowledge, no attack exploits this leak. Additional mechanisms
like static rate of memory allocation can be used to plug this leak.

4 INVISIPAGE IMPLEMENTATION

4.1 InvisiPage Metadata

We discuss in this section the changes we need to the metadata that
SGX already provisions, additional metadata needed for InvisiPage
and how we update/access them independently.

4.1.1 Changes to SGX Metadata. For every EPC page that is spilled
to non-EPC memory, SGX guarantees confidentiality (encryption),
integrity (MAC tag) and freshness (8-byte nonce). It also creates
metadata per spilled page which includes among other things vir-
tual address of the page and ID of the owner enclave. The MAC tag
SGX generates is over both page data and metadata. As all of this
metadata is stored in non-EPC memory, a malicious OS can easily
read it to learn pages being accessed by the enclave. As such, under
InvisiPage, this metadata is encrypted.

Recall that the ORAM tree in non-EPC memory has real and
dummy pages which need to be indistinguishable to the adversary.
Consequently, we create SGX metadata (dummy) for dummy pages
in ORAM tree and similarly encrypt it.

A malicious OS can swap two nodes (non-EPC memory pages)
in the ORAM tree and we need mechanisms to thwart this. To this
end, we create the MAC tag part of SGX metadata over not only
page data and metadata but also over the page’s oblivious virtual
page number o-vpn (Section 3.2). With this, InvisiPage runtime can
easily detect malicious node swaps.

4.1.2 OPAM Metadata. We add metadata per non-EPC memory
page (real and dummy) to support OPAM construct, termed OPAM
metadata. This metadata comprises of page’s virtual address (VA),
its leaf and level of OPAM tree. Storing VA helps us identify the
page that needs to be moved from non-EPCmemory to EPC. Storing
leaf and level aid in page shuffling (push real data close to leaf) on
each access without accessing position map. As OPAM metadata
is inspected independent of SGX metadata (Section 3.3.3), we not
only encrypt it but also store a separate MAC tag (also calculated
considering o-vpn) for it.

Like baseline SGX, we also need to ensure freshness for Invisi-
Page metadata. Simply adding an additional nonce will double space
overheads for nonces. Instead, we observe that both InvisiPage and
SGX metadata are updated at each page access albeit sequentially.
To harness this, we use the same nonce for both metadata: while
InvisiPage metadata uses available SGX nonce, page data and SGX
metadata use nonce+1.

4.2 OPAM Implementation

In this section we discuss our OPAM implementation, hardware
support we need and an optimization we employ.

We implement an OPAM tree with 50% utilization factor and
evaluate different node widths(z). Each slot in our tree stores a
non-EPC memory page of size 4KB. We support three tree opera-
tions: spill (EPC to non-EPCmemory page move), fetch (non-EPC
memory to EPC page move) and increase (add non-EPC memory
pages to the tree). Our OPAM tree is exclusive; a given page is either

in the OPAM tree or in EPC. Finally, our implementation does not
hide OPAM operation type (spill, fetch etc.).

4.2.1 Additional Paging Primitives. So as to decouple metadata
access from page access (Section 3.3.3) we rely on new paging
primitives. We describe these primitives and the hardware support
needed for them.

Baseline SGX performs page moves between EPC and non-EPC

memory while guaranteeing confidentiality, integrity and freshness.
Similarly, we need a primitive which copies a non-EPC memory
page to another while ensuring these guarantees in order to shuffle
non-EPC memory pages without having to copy them first in EPC.

Further, we also need a primitive which moves data between EPC

and non-EPCmemory at granularities smaller than a page while also
performing integrity and freshness checks. We use this primitive
to read and write OPAM metadata. Prior works like Eleos [28] also
propose having such primitives (sub-page access) so as to avoid
moving page worth of data between EPC and non-EPC memory
when locality is lacking.

4.2.2 Page Copy Unit. During an OPAM access non-EPC memory
pages thatmerely get shuffled are never accessed by the enclave post
the access and bringing such pages in caches can only pollute caches.
Instead, we perform these copies at memory controller via a copy
unit in hardware. The page copy unit helps copy a non-EPCmemory
page to another while ensuring integrity and confidentiality. Our
threat model assumes that execution of enclave and its data in the
processor (caches, on-chip structures etc.) is secure and isolated
from other computation. Several prior studies [35] have discussed
solutions for ensuring this property in a multi-core processor with
shared hardware structures such as our copy unit.

4.2.3 Spill-ahead Optimization. A free EPC page is needed each
time an enclave needs a new stack/heap page or wants to access
a previously spilled page. Unless the enclave maintains free EPC
pages, each such demand will add a page spill to the critical path
to create a free EPC page. Instead, InvisiPage runtime spills an EPC

page eagerly to maintain one free EPC page at all times. Such eager
spills can be done in a parallel thread. We term this as spill-ahead
optimization and also evaluate it. Note that this does not (directly)
help with reducing read/write overheads of an OPAM event.

5 APPLICATIONS AND SECURITY CONTEXT

This section discusses the cloud applications we study and outlines
scenarios where they manipulate sensitive data.

• Genome Processing:We study PRIMEX [24] which creates
metadata to aid fast searches over a genome sequence.
Security Context: Genome data is highly sensitive as it can
be used to identify a person, ancestry information and more.
Given genome processing deals with large scale of data, cloud
computing is often employed.

• Graph Processing: We study the following kernels from
GraphMat [40].
PageRank: PageRank orders web pages based on some met-
ric like popularity.
Breadth First Search (BFS): BFS takes a graph and an ini-
tial vertex and computes the distance (number of edges) to
all reachable vertices from the initial vertex.

379

InvisiPage: Oblivious Demand Paging for Secure Enclaves ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Benchmark Instructions CPI Benchmark Instructions CPI

primex pagerank

yeast 6.2 1.42 amazon 32.6 0.67
worm 13.6 1.39 flickr 72.2 0.77
gorilla 24.8 1.41 wiki 178.1 0.75

redis bfs

4k1800s 4.8 1.67 amazon 12.6 0.86
4k3600s 7.8 1.68 flickr 32.7 0.93
4k7200s 12.1 1.68 wiki 71.9 0.92

sgd sssp

netflix_1 11.0 1.92 amazon 12.6 0.85
netflix_2 10.8 1.92 flickr 32.6 0.93
netflix_5 10.9 1.93 wiki 71.6 0.92

mser sift

hd 3.2 0.61 hd 20.1 0.41
sun 6.7 0.77 saturn 24.8 0.42
dog 18.2 1.39 sun_1 38.9 0.42
kme 26.8 1.26 sun_2 71.9 0.43

Table 2: Instructions (in billions) and CPI for unsecure base-

line (native execution).

Single Source Shortest Path (SSSP): SSSP takes a
weighted graph and computes the minimum distance of all
vertices from a given vertex.
Collaborative Filtering (SGD): SGD is used by recom-
mender systems [31] to deduce an user’s rating for an item
based on incomplete set of (user, item) ratings.
Security Context:Wide range of sensitive data is expressed
as graphs. Social network analysis [22] manipulates social
graphs (containing sensitive information like political or
personal views of people). Graphs are also used in bioinfor-
matics to capture functional relationships between entities
like genes and proteins.

• Image Processing: We study the following kernels from
the San Diego Vision Benchmark Suite [43]:
ś Scale Invariant Feature Transform (SIFT): SIFT ex-
tracts features from images which are robust to scaling,
rotation and noise.
Security context: SIFT is widely used in medical image
analysis; an important step in diagnosis and subsequent
treatment of diseases [32, 34].

ś Maximally Stable Extremal Regions (MSER): MSER
is a method to detect blobs in images.
Security Context: MSER is widely employed in visual
surveillance [33], traffic analysis, vehicular tracking and
medical image segmentation [49].

• Redis: Redis [4] is an open source in-memory key-value data
structure store which is widely used (Amazon’s SimpleDB,
Google’s AppEngine).
Security Context: Key-value stores are often employed as
caches for frequent computations like complex SQL queries
over traditional databases. As such, they also manipulate
a breadth of sensitive data from commercial (stock quotes,
people location services) to military sectors.

6 EVALUATION

In this section we demonstrate the efficacy of our proposed design
and implementation. To do so, we answer several questions:

• What performance overheads does InvisiPage incur to guard
against page fault channel (Section 6.3.1)?

• How successful is EPC-lite optimization in reducing perfor-
mance overheads of InvisiPage (Section 6.3.2)?

• How does Smart Tree Growth help (Section 6.4)?
• What are the benefits of realizing Thin Nodes (Section 6.5)?

6.1 Methodology

Application Inputs: For genome processing application primex,
we use genome sequences from the Ensembl genome database [1]
with varying sequence lengths. For graph applications, we run
real-world graph datasets (Amazon, Flickr and Wikipedia) from
the University of Florida Sparse Matrix collection [17] and Netflix
challenge for collaborative filtering [10]. For image processing ap-
plications (mser, sift) we use the largest dataset (full hd) from
the San Diego Vision Benchmark Suite [43] and also use images
from MIT-Adobe fivek dataset [3] to get larger memory footprints.
We run redis using Memtier [5], a traffic pattern generator for key
value stores with 4096 bytes objects and vary the length of runs.

Note that we chose the application inputs (e.g. object size and
increasing run lengths for redis) with the aim to exercise memory
footprints which increasingly exceed available EPC size (Figure 7a,
left to right per application). We do so to show how overheads
change as working set size increases. Table 2 lists the instruction
counts and CPI for unsecure baseline [2] for the applications and
the different input sizes.

ExecutionModel:We generate instruction level memory traces
using PIN tool [25] and infer instruction and data TLB misses from
the trace. We model a 128 entry 4-way instruction TLB and a 64
entry 4-way data TLB. We use this TLB miss trace to infer EPC hits
and misses. For EPCmisses we infer the OPAM events incurred. We
model 96MB of EPC 1 based on current Intel SGX processors [21]
and employ clock algorithm [11] for page replacement.

Performance Model: We use the OPAM events from the exe-
cution model to infer performance overheads. Our analytical model
assumes the application is stalled to tackle OPAM event and as such
available memory bandwidth can be used to process the OPAM
event (read, decrypt, encrypt pages etc.). Both page movements and
OPAM algorithm contribute to performance overhead. We set the
page movement (copy) cost assuming a standard memory system
with 12.8 GB/s/channel and four channels. The OPAM algorithm
cost involves reading metadata blocks and making page movement
decisions. This cost is low at program start (short tree, small non-
EPC memory size) and increases slowly with tree height (non-EPC
memory increases). Our model for this cost assumes the worst case
for number of metadata blocks (tallest OPAM tree we observe) be-
ing read and inspected. We assume that OPAM algorithm cost is
two times page movement cost. A small portion of this cost is for
read/updates of metadata blocks and rest is assumed for making
page movement decisions. Note that the algorithm cost is dwarfed
by the cost of page movements per OPAM event. Finally, we also
assume that a parallel thread executes the OPAM events. This helps

1While actual EPC size is 128MB, only 96MB is usable and rest is for metadata.

380

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA S. Aga et al.

 0

 300

 600

 900

 1200

 1500

y
e

a
s
t

w
o

rm
g

o
ri
lla

a
m

a
z
o

n
fl
ic

k
r

w
ik

i

a
m

a
z
o

n
fl
ic

k
r

w
ik

i

a
m

a
z
o

n
fl
ic

k
r

w
ik

i

n
e

tf
lix

_
1

n
e

tf
lix

_
2

n
e

tf
lix

_
5

h
d

s
u

n
d

o
g

k
m

e

h
d

s
a

tu
rn

s
u

n
_

1
s
u

n
_

2

4
k
1

8
0

0
s

4
k
3

6
0

0
s

4
k
7

2
0

0
s

Current EPC size

fo
o

tp
ri
n

t(
M

B
)

heap
code
data
stack

redissiftmsersgdssspbfspagerankprimex

(a)

 0

 0.5

 1

 1.5

 2

 2.5

y
e

a
s
t

w
o

rm
g

o
ri
lla

a
m

a
z
o

n
fl
ic

k
r

w
ik

i

a
m

a
z
o

n
fl
ic

k
r

w
ik

i

a
m

a
z
o

n
fl
ic

k
r

w
ik

i

n
e

tf
lix

_
1

n
e

tf
lix

_
2

n
e

tf
lix

_
5

h
d

s
u

n
d

o
g

k
m

e

h
d

s
a

tu
rn

s
u

n
_

1
s
u

n
_

2

4
k
1

8
0

0
s

4
k
3

6
0

0
s

4
k
7

2
0

0
s

m
is

s
e

s
_

p
k
i

redissiftmsersgdssspbfspagerankprimex

(b)

Figure 7: (a) Memory footprint (accessed) of applications. (b) EPC misses per kilo instructions.

us exploit the spill-ahead optimization (Section 4.2.3) which takes
EPC spills off the critical path when possible.

6.2 Memory Footprint of Applications

We depict in Figure 7a the memory footprint of various applications
we model for different input sizes. We track unique pages accessed
by the application to deduce this footprint and also break it down
into code, data, stack and heap buckets. The memory footprint of
applications we model is dominated by heap pages. Per application,
we pick inputs with varying memory footprints to evaluate how
the overhead of mitigating page fault channel changes as memory
footprint increasingly exceeds EPC size. As an example, the foot-
print for pagerank varies from 3X for amazon to 17X for wiki with
respect to available EPC size. For sgd we do observe that changing
the number of input movie files does not change memory footprint.

Larger memory footprints are more likely to cause page move-
ments across EPC and non-EPC memory boundary and as such
could cause larger overheads. As our optimizations (OPAM and
EPC-lite memory) reduce both the number of the page movements
and cost of making them secure, the benefits of our optimizations
will be more pronounced for larger memory footprints. The mem-
ory footprints we study in this work are largely limited by the
simulation time needed to get traces for the entire application and
the enormous storage needed for the resultant traces.

6.3 InvisiPage Performance

6.3.1 InvisiPage without Enclave-lite. Figure 8 depicts performance
overheads of InvisiPage. With existing EPC size (96MB) and no
EPC-lite optimization, the average overhead of InvisiPage is 3.54X.
First, note that our current performance model conservatively as-
sumes the application is stalled to process OPAM events. More
sophisticated models which use page access prediction to process
OPAM events a priori can further lower these overheads. Next, as
expected, we observe that the larger the delta between EPC size and
the memory footprint of the application, more are the OPAM events
incurred leading to increased overhead. However, the increase in
overhead is not commensurate to memory footprint of the appli-
cation. As an example, sgd has the highest memory footprint of
all applications but not the highest performance overhead. This is
also true for several other interesting workloads (sift, graph work-
loads) whose working sets far exceed combined capacity of EPC
and EPC-lite but they end up with low overheads under InvisiPage.

We observe that the OPAM events incurred by an application are
more a property of its memory access behavior than its footprint.
Figure 7b depicts the EPC miss rates observed per kilo instruc-
tions for applications under study. Some of the applications (e.g.
primex, mser) exhibit very high miss rates which in turn cause
high performance overheads as depicted in Figure 8.

We depict in Figure 9c that in absence of the workloads with
high EPC miss rates (worm, gorilla, dog, kme), the average
overhead is much lower. Specifically for z = 1, overhead drops from
3.54X (all) to a mere 1.7X (subset) with existing EPC size (96MB).

6.3.2 InvisiPage with Enclave-lite. We discussed in Section 3.4 how
EPC-lite optimization helps us reduce the number of OPAM transac-
tions needed. Figure 8 depicts performance overheads of InvisiPage
as we increase EPC-lite memory size for a four channels memory
system. As expected, the performance overheads drop as EPC-lite
memory size increases as the number of OPAM events drop and also
as some of the workload’s memory footprint fits within available
memory. At 768MB memory, we see a performance overhead of
mere 16% to fix page fault channel with memory footprint of fifteen
of the available twenty-six workloads fits inside available memory.

6.4 Evaluation of Smart Tree Growth

Figure 9a depicts the comparison of smart tree growth and its naive
counterpart. We show the maximum spill failures (pending spill
failures averaged across all applications) for different tree node
widths (z). On a page eviction from EPC we randomly pick a path
in the OPAM tree to spill this page. The lower the value of z, lower
the options available along the chosen path and hence higher the
chances of spill failures as is seen in Figure 9a. While smart growth
also depicts this behavior there is several orders of magnitude
of reduction in the number of pending spill failures as compared
to naive growth for higher values of z and close to an order of
magnitude of reduction for z = 1. By prioritizing accessed paths,
smart tree growth adds space to the OPAM tree where it is most
needed and as a consequence far less failures need to be tracked
and considered on each OPAM access.

6.5 Benefits of Thin Nodes

Thin nodes are interesting in that they help reduce performance
cost of each OPAM event. As (z) decreases, while the performance
cost of each OPAM event reduces (reduction in page moves needed),
the spill failures also increase (Section 6.4) needing ability to track
these failures. In order to deal with increased spill failures prior

381

InvisiPage: Oblivious Demand Paging for Secure Enclaves ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

 0

 1

 2

 3

 4

yeast
worm

gorilla
amazon

flickr
wiki

amazon

flickr
wiki

amazon

flickr
wiki

netflix_1

netflix_2

netflix_5

hd sun
dog

kme
hd saturn

sun_1
sun_2

4k1800s

4k3600s

4k7200s

average

P
e

rf
o

rm
a

n
c
e

 o
v
e

rh
e

a
d

 (
X

)

redissiftmsersgdssspbfspagerankprimex

 12
 14
 16
 18 96MB

192MB
384MB
768MB

Figure 8: Performance overhead with increasing enclave-lite memory size (total isolated memory (usable) is depicted).

0

1K

2K

3K

4K

5K

6K

z4 z3 z2 z1

M
a

x
 s

p
ill

 f
a

ilu
re

s
 (

a
v
e

ra
g

e
)

Tree node width

naive_growth
smart_growth

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z4 z3 z2 z1
 5

 10

 15

 20

 25

 30

o
p

a
m

_
p

k
i

p
a

g
e

_
m

o
v
e

s
_

p
k
i

Tree node width

opam_pki
page_moves_pki

(b)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

z4 z3 z2 z1

P
e

rf
o

rm
a

n
c
e

 o
v
e

rh
e

a
d

 (

X
,
a

v
e

ra
g

e
)

Tree node width

all
subset

(c)

Figure 9: (a) Smart tree growth considerably reduces spill failures by prioritizing accessed paths while adding space. (b) Benefit

of thin nodes: page moves reduce while OPAM events do not increase. (c) Performance overhead for existing EPC size (96MB).

works [30] incur an order of magnitude increase in OPAM events
at lower values of (z) making such configurations infeasible. As
discussed in Section 3, while smart growth helps us keep spill
failures in check, dataless stash helps us keep the overhead of
tracking spill failures low. Together they help us realize thin nodes.

Figure 9b depicts both the OPAM events and page moves per kilo
instructions for different values of z averaged across all benchmarks.
As we reduce z, the page moves needed per OPAM access reduces
which will cause commensurate reduction in performance cost of
each OPAM event. At the same time, the OPAM events needed do
not increase as (z) decreases. Together, this leads to lower over-
heads at lower values of z as depicted in Figure 9c. Therein, we
see decreasing average performance overhead for InvisiPage with
decreasing node widths as compared to an unsecure baseline.

7 RELATEDWORK

Note that we describe InvisiPage in the context of SGX owing to
its commercial availability and the fact that it is already hardened
against several attacks. Other secure hardware proposals beside
Intel SGX do exist [12, 39, 42]. Such prior proposals are susceptible
to page fault channel attack and could benefit from InvisiPage.

7.1 Prior Page Fault Channel Mitigations

Like InvisiPage, Sanctum [16] secures address translations of en-
clave’s sensitive pages but requires that an enclave’s memory re-
quirements are known a priori which is unrealistic. Further, ac-
cesses to sensitive pages reclaimed by OS also leak information.

T-SGX [36] relies on Intel Transactional Synchronization Exten-
sions (Intel TSX) to get notified on a page fault and assumes any
page fault is a potential attack. This necessitates that enclave’s en-
tire memory footprint fit inside EPC. Given the small size of EPC on
current SGX processors, this is also unrealistic. Also, this leaves no
provision for the OS to reclaim sensitive pages. Deja Vu [14] detects
a privileged attack when enclave’s execution differs widely from a
reference clock it constructs. While a formidable technique to de-
tect anomalous executions, this does not prevent information leak
via page faults present in benign executions. In [37], the authors
propose two approaches: determinizing page access pattern and
reliance on the processor to ensure no page faults occur to a set of
pre-declared pages. While deterministic page access patterns have
high overheads, pre-declaring pages that a section of program will
access is hard for general programs. More recently, Apparition [18]
prevents the OS from manipulating page table entries belonging to
sensitive pages but requires all sensitive pages to be swapped in
on an access to any swapped out sensitive page by the application.
This limits the memory size available for sensitive data severely
(EPC size in SGX parlance).

7.2 Extending SGX

Proposals which extend SGX capabilities [19, 41] do exist. However,
they are susceptible to page fault channel and as such could ben-
efit from InvisiPage. VAULT [41] extends EPC to cover (possibly)
entire physical memory space using a variable arity integrity tree.
Similar to EPC-lite optimization, VAULT’s extension will help re-
duce page movements across EPC and non-EPC memory boundary.

382

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA S. Aga et al.

However, VAULT provides security guarantees at finer granularity
(cache block instead of page like in InvisiPage) albeit at the cost
of metadata checks even for non-sensitive pages. Further, while
VAULT mechanisms do increase EPC, not only is it hard to predeter-
mine an enclave’s memory footprint, but also, reserving large EPC
for a single enclave precludes sharing memory amongst different
enclaves. This necessitates on-demand paging which is unsecure
under VAULT.

Unlike SGX, Iso-X [19] enables on-demand isolation of memory
pages which, however, takes away ability of OS to manage memory
as a resource as more pages get isolated. To tackle the latter problem,
Iso-X proposes OS managed page swapping using which the OS
can learn the page access pattern. InvisiPage secures such OS page
management actions using OPAM construct thus restoring OS’s
ability to serve as a resource arbiter of memory pages. Obliviate [7]
obfuscates the file system access patterns of an enclave but does
not address the page fault channel for the enclave’s execution.

7.3 Optimizing SGX Performance

Prior works which optimize SGX performance exist and can be
adapted in our system. Hotcalls [44] and Eleos [28] offload system
call processing to a separate thread to reduce their overheads. In ad-
dition, Eleos uses Intel Cache Allocation Technology [15] to reduce
LLC pollution due to system calls. SCONE [9] uses asynchronous
system calls to enable secure containers with low overheads.

8 CONCLUSION

This paper presents InvisiPage, a page fault channel defense that
enables oblivious OS demand paging: the OS preserves its flexibil-
ity to manage memory pages yet does not learn an application’s
address trace via page fault channel. To do so, InvisiPage carefully
distributes page management actions between the application and
the OS. Further, InvisiPage uses a novel Oblivious Page Manage-
ment (OPAM) construct to make an application’s page management
transactions with the OS secure. Finally, InvisiPage employs a novel
memory partition to lower interactions with the OS and further
reduce overheads. Our results demonstrate that InvisiPage fixes
page fault channel while enabling oblivious demand paging at low
overheads for a suite of cloud applications.

9 ACKNOWLEDGMENTS

We thank anonymous reviewers for helping improve this paper.
This work was supported by the NSF under the CAREER-1149773,
SHF-1527301 and SHF-1703931 awards and by C-FAR, one of the
six SRC STARnet Centers, sponsored by MARCO and DARPA.

REFERENCES
[1] 2017. Ensembl genome browser. "http://www.ensembl.org/index.html". (2017).
[2] 2017. IntelÂő CoreâĎć2 Quad Processor Q6600. "https://ark.intel.com/

content/www/us/en/ark/products/29765/intel-core-2-quad-processor-q6600-
8m-cache-2-40-ghz-1066-mhz-fsb.html". (2017).

[3] 2017. MIT-Adobe fivek dataset. "http://groups.csail.mit.edu/graphics/fivek_
dataset/". (2017).

[4] 2017. Redis. "http://redis.io/". (2017).
[5] 2017. Redis Labs. Memtier Benchmark. "https://github.com/RedisLabs/

memtierbenchmark". (2017).
[6] Shaizeen Aga and Satish Narayanasamy. 2017. InvisiMem: Smart Memory De-

fenses for Memory Bus Side Channel. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’17).

[7] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung
Lee. 2018. OBLIVIATE: A Data Oblivious Filesystem for Intel SGX. In 25th
Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018.

[8] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. 2013. Inno-
vative technology for cpu based attestation and sealing. In Proceedings of the 2Nd
International Workshop on Hardware and Architectural Support for Security and
Privacy (HASP ’13).

[9] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, David Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’16).

[10] J Bennett and S Lanning. 2007. The Netflix Prize. In KDD Cup and Workshop at
ACM SIGKDD, 2007. (2007).

[11] Richard W. Carr and John L. Hennessy. 1981. WSCLOCK&Mdash;a Simple and
Effective Algorithm for Virtual MemoryManagement. In Proceedings of the Eighth
ACM Symposium on Operating Systems Principles (SOSP ’81).

[12] D. Champagne and R. B. Lee. 2010. Scalable architectural support for trusted
software. In High Performance Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on.

[13] Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks: Why the System
Call API is a Bad Untrusted RPC Interface. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’13).

[14] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.
Detecting Privileged Side-Channel Attacks in Shielded Executionwith DéJà Vu. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security (ASIA CCS ’17).

[15] Intel corp. 2015. Improving Real-Time Performance by Utilizing Cache Allocation
Technology. Intel White paper. (2015).

[16] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In Proceedings of the 25th
USENIX Conference on Security Symposium (SEC’16).

[17] T Davis. 2017. The University of Florida Sparse Matrix Collection. "http://www.
cise.ufl.edu/research/sparse/matrices". (2017).

[18] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L. Cox, and Sandhya
Dwarkadas. 2018. Shielding Software From Privileged Side-Channel Attacks. In
27th USENIX Security Symposium (USENIX Security 18).

[19] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and R. Riley.
2018. Flexible Hardware-Managed Isolated Execution: Architecture, Software
Support and Applications. IEEE Transactions on Dependable and Secure Computing
(2018).

[20] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM (1996).

[21] S. Gueron. 2016. Memory Encryption for General-Purpose Processors. IEEE
Security Privacy (2016).

[22] Mohsen Jamali and Hassan Abolhassani. 2006. Different Aspects of Social Net-
work Analysis. In Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI ’06).

[23] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011. Introduction
to differential power analysis. Journal of Cryptographic Engineering (2011), 5ś27.
https://doi.org/10.1007/s13389-011-0006-y

[24] Matej Lexa and Giorgio Valle. 2003. PRIMEX: rapid identification of oligonu-
cleotide matches in whole genomes. Bioinformatics (2003).

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05).

[26] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In Proceedings of the 2Nd International
Workshop on Hardware and Architectural Support for Security and Privacy (HASP
’13).

[27] Tarik Moataz, Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. 2014. Re-
sizable Tree-Based Oblivious RAM. Cryptology ePrint Archive, Report 2014/732.
(2014). http://eprint.iacr.org/2014/732.

[28] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. 2017. Eleos:
ExitLess OS Services for SGX Enclaves. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys ’17).

[29] Jean-Jacques Quisquater and David Samyde. 2002. Side Channel Cryptanalysis.
In Workshop on the Security of Communications on the Internet (SECI).

[30] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas
Devadas. 2013. Design Space Exploration and Optimization of Path Oblivious
RAM in Secure Processors. In Proceedings of the 40th Annual International Sym-
posium on Computer Architecture (ISCA ’13).

383

InvisiPage: Oblivious Demand Paging for Secure Enclaves ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

[31] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to Recom-
mender Systems Handbook. Springer US.

[32] Y. Sa. 2015. Medical Image Registration Algorithm Based on Compressive Sensing
and Scale-Invariant Feature Transform. In 2015 8th International Conference on
Intelligent Computation Technology and Automation (ICICTA).

[33] E. Salahat, H. Saleh, A. S. Sluzek, B. Mohammad, M. Al-Qutayri, and M. Ismail.
[n. d.]. Novel MSER-guided street extraction from satellite images. In 2015 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS).

[34] L. A. Salazar-Licea, C. Mendoza, M. A. Aceves, J. C. Pedraza, and A. Pastrana-
Palma. 2014. Automatic segmentation of mammograms using a Scale-Invariant
Feature Transform and K-means clustering algorithm. In 2014 11th International
Conference on Electrical Engineering, Computing Science and Automatic Control
(CCE).

[35] Ali Shafiee, Akhila Gundu, Manjunath Shevgoor, Rajeev Balasubramonian, and
Mohit Tiwari. 2015. Avoiding Information Leakage in the Memory Controller
with Fixed Service Policies. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO-48).

[36] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs. In 24th An-
nual Network and Distributed System Security Symposium, NDSS 2017, San Diego,
California, USA, February 26-March 1, 2017.

[37] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
2016. Preventing Page Faults from Telling Your Secrets. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security (ASIA CCS
’16).

[38] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: An Extremely Simple
Oblivious RAM Protocol. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (CCS ’13).

[39] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. 2003. AEGIS: Architecture for Tamper-evident and Tamper-resistant
Processing. In Proceedings of the 17th Annual International Conference on Super-
computing (ICS ’03).

[40] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R.
Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar Das, and

Pradeep Dubey. 2015. GraphMat: High Performance Graph Analytics Made
Productive. Proc. VLDB Endow. (2015).

[41] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018. VAULT: Reduc-
ing Paging Overheads in SGX with Efficient Integrity Verification Structures. In
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’18).

[42] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural Support for Copy and
Tamper Resistant Software. In Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
IX).

[43] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and
M. B. Taylor. 2009. SD-VBS: The San Diego Vision Benchmark Suite. In 2009 IEEE
International Symposium on Workload Characterization (IISWC).

[44] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. In Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA ’17).

[45] Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-Hurd. 2016. Intel&Reg; Soft-
ware Guard Extensions (Intel&Reg; SGX) Software Support for Dynamic Memory
Allocation Inside an Enclave. In Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016 (HASP 2016).

[46] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In 2015
IEEE Symposium on Security and Privacy.

[47] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Attack. In Proceedings of the 23rd USENIX
Conference on Security Symposium (SEC’14).

[48] Danfeng Zhang, AslanAskarov, andAndrewC.Myers. 2011. PredictiveMitigation
of Timing Channels in Interactive Systems. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS ’11).

[49] Haijiang Zhu, Junhui Sheng, Fan Zhang, Jinglin Zhou, and Jing Wang. 2016.
ImprovedMaximally Stable Extremal Regions BasedMethod for the Segmentation
of Ultrasonic Liver Images. Multimedia Tools Appl. (2016).

384

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Threat Model
	2.2 Dual Page Table Support
	2.3 Path Oblivious RAM

	3 InvisiPage Design
	3.1 InvisiPage Overview
	3.2 InvisiPage Runtime
	3.3 Oblivious Page Management
	3.4 EPC-lite to reduce OPAM reliance
	3.5 InvisiPage Security Analysis

	4 InvisiPage Implementation
	4.1 InvisiPage Metadata
	4.2 OPAM Implementation

	5 Applications and Security Context
	6 Evaluation
	6.1 Methodology
	6.2 Memory Footprint of Applications
	6.3 InvisiPage Performance
	6.4 Evaluation of Smart Tree Growth
	6.5 Benefits of Thin Nodes

	7 Related Work
	7.1 Prior Page Fault Channel Mitigations
	7.2 Extending SGX
	7.3 Optimizing SGX Performance

	8 Conclusion
	9 Acknowledgments
	References

