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Human population density within 100 km of the sea is approximately three times higher 
than the global average. People in this zone are concentrated in coastal cities that are hubs 
for transport and trade – which transform the marine environment. Here, we review the 
impacts of three interacting drivers of marine urbanization (resource exploitation, pol-
lution pathways and ocean sprawl) and discuss key characteristics that are symptomatic 
of urban marine ecosystems. Current evidence suggests these systems comprise spatially 
heterogeneous mosaics with respect to artificial structures, pollutants and community 
composition, while also undergoing biotic homogenization over time. Urban marine 
ecosystem dynamics are often influenced by several commonly observed patterns and 
processes, including the loss of foundation species, changes in biodiversity and produc-
tivity, and the establishment of ruderal species, synanthropes and novel assemblages. We 
discuss potential urban acclimatization and adaptation among marine taxa, interactive 
effects of climate change and marine urbanization, and ecological engineering strategies 
for enhancing urban marine ecosystems. By assimilating research findings across disparate 
disciplines, we aim to build the groundwork for urban marine ecology – a nascent field; 
we also discuss research challenges and future directions for this new field as it advances 
and matures. Ultimately, all sides of coastal city design: architecture, urban planning and 
civil and municipal engineering, will need to prioritize the marine environment if negative 
effects of urbanization are to be minimized. In particular, planning strategies that account 
for the interactive effects of urban drivers and accommodate complex system dynamics 
could enhance the ecological and human functions of future urban marine ecosystems.

Keywords: climate change, ecological engineering, ocean sprawl, pollution pathways, 
resource exploitation
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Forum

Urban ecology has advanced rapidly in recent decades, yet has focused primarily on terrestrial 
and freshwater systems. By comparison, urban marine ecology is a field in its infancy and 
lacks the theoretical and empirical foundations underpinning urban ecosystem science on 
land. This Forum-article aims to help build such a foundation, by presenting a conceptual 
framework of the interacting drivers of marine urbanization, identifying key characteristics 
of urban marine ecosystems based on research from disparate disciplines, and highlighting 
research priorities that can advance urban marine ecology as a discipline.
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Introduction

The world’s population is urbanizing rapidly (Bloom 2011, 
Seto  et  al. 2011, UN 2017) with mass migration towards 
coastlines (Creel 2003, McGranahan  et  al. 2007) and pol-
icy reforms that favour densification (Dallimer  et  al. 2011, 
Kyttä et al. 2013). Population density at the coast (≤100 km 
from the sea and ≤100 m above sea level) is approximately three 
times higher than the global average and is increasing (Small 
and Nicholls 2003). Most people are concentrated in coastal 
cities that, as hubs for trade and/or due to a fertile delta, are 
frequently situated where river and sea meet (Konishi 2000). 
Many of these conurbations have expanded into megacities 
of more than ten million people (Nicholls 1995, Li 2003).  
For ecologists, coastal cities are of particular interest and con-
cern, not only from a terrestrial perspective, but also in terms 
of consequences for, and interactions with, the marine envi-
ronment (Dafforn et al. 2015, Firth et al. 2016).

Understanding of the effects of urbanization on marine 
ecosystems and ecological processes is growing (Burt 2014, 
Mayer-Pinto  et  al. 2015, Firth  et  al. 2016). Human den-
sity is strongly related to resource exploitation, and one of 
the early effects of marine urbanization is the depletion of 
nearby fishery resources (Li 2003, Kirby 2004). Coastal cit-
ies create marine pollution, including the harmful chemicals, 
bacteria and sediments associated sewage and urban runoff 
(Hoffman et al. 1983, Nixon 1995, Cornelissen et al. 2008). 
They also lead to nearshore development, usually starting 
with a harbour, but also including hard coastal defences to 
reduce erosion of valuable land, whether it be pre-existing or 
reclaimed (Charlier et al. 2005, Lotze et al. 2005, Tian et al. 
2016). These artificial structures have significant effects on 
the ecology of shorelines, especially when entire habitats are 
replaced with novel materials such as concrete and gran-
ite (Firth et  al. 2014, Dyson and Yocom 2015, Loke et  al. 
2019a).

Several recent reviews have separately highlighted urban-
related pollution and physical modifications of urban shore-
lines as critical components of urban marine ecosystem 
dynamics (Dafforn et al. 2015, Firth et al. 2016, Heery et al. 
2018a), but exploitation of marine resources is rarely dis-
cussed in an urban context (though see Li 2003, Baum et al. 
2016). The overarching characteristics of urban marine eco-
systems that result from each of these factors and their poten-
tial combined effects have yet to be thoroughly considered. 
There is considerable need to integrate findings relating to 
marine urbanization across subdisciplines of ecology; this 
effort would be aided by conceptual frameworks that inte-
grate multiple variables, identify potential interactions and 
feedbacks, incorporate historical trajectories, and facilitate the 
development of testable hypotheses regarding the response of 
urban marine ecosystems to further environmental change. 
Frameworks meeting this need would not only broadly 
support marine research in the Anthropocene, as nearly all 
coastal zones are now strongly impacted by anthropogenic 
stressors, but would also help build a foundation for urban 
marine ecology – a field in its nascence. Inevitably, urban 

marine ecosystems are coupled social–ecological systems 
and are heavily influenced by what is happening ‘upstream’ 
in the urban fabric, by physical modifications nearshore and 
offshore, and by current and future consequences of climate 
change, such as sea-level rise and punctuated extreme weather 
events. As such, the dynamics and prevailing ecological para-
digms for these systems have yet to be tested experimentally, 
and it is only through expanded field manipulations that it 
will be possible to understand the core properties of urban 
marine ecosystems: how they are structured, how they func-
tion and the key parameters that drive the ecosystem services 
they provide.

In this paper, we outline the primary drivers of marine 
urbanization and identify the known patterns exhibited by 
marine ecosystems in urban areas. Empirical testing of the 
underlying processes that create these patterns and further 
research in areas we highlight in this paper can help build a 
framework for understanding multifaceted impacts of marine 
urbanization, and future trajectories of urban marine ecosys-
tems in the face of climate change.

Three main drivers of marine urbanization

The process of marine urbanization comprises three primary 
drivers (Fig. 1). The first is exploitation of both living and 
non-living resources (see ‘Resource exploitation (both liv-
ing and non-living)’) and includes recreational, subsistence 
and commercial fishing, as well as dredging and mining for 
minerals (Table 1). In post-industrialized nations, this may 
largely be historical, but with long lasting effects that are still 

Figure 1. Activities, installations, processes and issues that represent 
instances of overlap and interaction among the three major drivers 
of marine urbanization: resources exploitation, ocean sprawl and 
pollution pathways.
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relevant today. The second is pollution (see ‘Pollution path-
ways (both industrial and domestic)’), including sediments, 
industrial and municipal waste, domestic wastewater a, ani-
mal/slaughterhouse waste, fecal matter, street dust, oil from 
automobiles and other contaminant sources, pharmaceuti-
cals, light pollution, and noise pollution (Table 2). The third 
is the wholesale conversion of natural habitats into a different 
state (see ‘Ocean sprawl (both coastal and offshore)’), such 
as reclaimed land, seawalls, jetties, piers, marinas, groynes, 
breakwaters, port and harbor infrastructure, and bridges 
(collectively termed as ‘ocean sprawl’, Table 3). These three 
drivers are presented in the chronological order in which 
they often begin to occur, though their timing and relative 
scope can vary substantially among cities (Fig. 2). Further, 
the three drivers can have interactive effects, with potential 
additional consequences for marine ecosystems (see ‘Overlap, 
interactions and feedbacks’). Other factors relating to urban-
ization, such as elevated propagule pressure and invasion 
risk, can also be particularly intense in coastal cities (Carlton 
1996, Ruiz  et  al. 1999, 2000, Mineur  et  al. 2012, but see 
Tan et al. 2018 and Wells et al. 2019), however, we discuss 

these primarily as they relate to one or more of the three driv-
ers presented below.

Resource exploitation (both living and non-living)

It is increasingly well documented that the overexploitation 
of living coastal and marine resources is one of the earliest 
observable forms of human disturbance within coastal eco-
systems (Jackson et al. 2001, Pandolfi et al. 2003, Lotze et al. 
2006). Moreover, coastal systems that have endured the lon-
gest period of intense human impacts and that contain the 
highest human populations are among the most degraded 
(Lotze et al. 2006). Yet, awareness of the magnitude of changes 
that previously occurred as a result of the exploitation of liv-
ing and non-living marine resources is generally poor. This 
is due to exploitation usually commencing prior to regular 
monitoring of these systems, coupled with the pervasiveness 
of the shifting baseline syndrome, where a lack of knowledge 
of past ecological conditions facilitates a gradual ratcheting 
down of expectations as to what constitutes a healthy ecosys-
tem (Pauly 1995, Sheppard 1995).

Table 1. Types of marine exploitation and their scope, scale and potential effects.

Exploitation type Scope and scale Potential effects on marine life and habitats

Recreational fishing Estuarine, inshore, offshore;  
scale can range from hundreds  
to tens of thousands of 
participants in a region.

Removal of target fish and shellfish, potentially leading to population- 
and/or ecosystem-wide impacts. Delayed mortality from catch and 
release practices; mortality of bycatch species; mortality or injury 
from boat collisions. Damage or degradation of sensitive habitats 
from contact fishing gear or the launching/recovery of boats. Lost 
and abandoned fishing gear issues (Table 2). 

Subsistence fishing and 
gleaning

Estuarine, intertidal, inshore; 
numbers unknown but likely  
to vary greatly by region.

Removal of target fish and shellfish, potentially leading to population- 
and/or ecosystem-wide impacts; mortality of bycatch species; 
mortality or injury from boat collisions. Damage or degradation of 
sensitive habitats from contact fishing gear and the launching/
recovery of boats. Impacts from practices such as cyanide or 
dynamite fishing. Lost and abandoned fishing gear issues (Table 2).

Commercial fisheries Estuarine, inshore, offshore;  
scale variable by fishery and 
region but can range from  
tens to thousands of  
participants.

Removal of large numbers of target species, potentially leading to major 
population- and/or ecosystem-wide impacts; mortality of bycatch 
species; mortality or injury from boat collisions; damage or degradation 
of sensitive habitats from contact fishing gear and the launching/
recovery of boats. Lost and abandoned fishing gear issues (Table 2).

Mariculture Estuarine, inshore (offshore  
in the future); scale varies  
widely and depends upon the 
species being farmed.

Transmission of disease and parasites between farmed and native 
species; eutrophication due to addition of nutrients (although 
shellfish farms may remove nutrients from water column); smothering 
of benthic fauna due to build-up of organic material (also leading to 
changes to sediment type/chemistry).

Dredging for minerals/
aggregates

Inshore and offshore; scale variable 
but can range  
from tens to hundreds of km2.

Physical disturbance and removal of the substrate and associated 
benthic biota; changes to the composition of the sediment/substrate; 
changing bathymetry and sediment transport patterns; smothering of 
biota; reduced light and enhanced turbidity due to sediment 
suspension, toxicant release (Table 2).

Beach mining Inshore; usually conducted at the 
local scale but with possible 
regional-scale effects.

Direct removal of species and substrate; loss of soft-sediment habitat; 
lowering/loss of beach leading to erosion, changing sediment 
transport patterns, increased turbidity, changing conditions for fauna/
flora and/or saline water intrusion.

Oil and gas extraction Inshore and offshore (mostly 
offshore in recent years);  
local to regional-scale effects.

Direct removal of species and substrate; smothering/physical alterations 
to habitat/substrate type (i.e. replacement of soft with hard substrate); 
chronic and acute toxic pollution events; noise pollution (Table 2).

Water extraction for  
cooling and  
desalination

Inshore, generally  
localized effects. 

Fish and plankton killed during intake and processing (impingement 
and entrainment). Brine and heated water (thermal pollution) 
can impact communities near outflows, changing behavior and 
physiology. Toxicants can also be released with the effluent.
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Coastal population growth and development has 
impacted a wide variety of living marine resources (Table 1). 
For instance, oyster reefs and maerl beds have dramatically 
declined or been extirpated in coastal ecosystems around the 
world due to destructive fishing methods aimed at provid-
ing food and/or building material for increasingly urbanized 
populations (Airoldi and Beck 2007, Claudet and Fraschetti 
2010). Human population growth facilitated the establish-
ment and expansion of industrialized commercial harvesting 
for marine mammals, turtles and fin-fish species, ultimately 
resulting in the decline or loss of marine megafauna, and of 
diadromous and large demersal fish species (Lotze et al. 2005, 
Thurstan  et  al. 2010, Van Houtan and Kittinger 2014). 
Targeted fin-fish assemblages, although constrained by envi-
ronmental factors (e.g. availability of suitable habitat), have 
been shown to decline in abundance and richness along 
increasing gradients of human pressure or proximity to urban 
centres in a range of habitats (e.g. coral reefs: Williams et al. 
2008, Brewer  et  al. 2009, Aswani and Sabetian 2010; surf 
zones of exposed sandy beaches: Vargas-Fonseca et al. 2016). 
Fishing effort also impacts intertidal species abundance, for 
example, the majority of known sandy beach invertebrate 
fishery stocks are fully exploited, overexploited or depleted 
due to commercial, subsistence or recreational harvesting 
(Defeo and de Alava 1995, Defeo 2003).

Overexploitation often follows a predictable spatio–tem-
poral pattern that is tied to urban growth. This is particularly 
evident among exploited sessile species. On the east coast of 
the United States, historical oyster fishery collapses demon-
strated sequential depletion beginning in urbanized estuar-
ies and spreading along the coast away from urban centres 
(Kirby 2004). Many European native oyster reefs adjacent 
to urban conurbations became ecologically extinct prior to 
the mid-20th century (Korringa 1946, Airoldi and Beck 
2007, Thurstan  et  al. 2013). Oyster Ostrea angasi reefs in 
South Australia disappeared less than 200 years after the first 
records of commercial oyster landings from this region by 
early Europeans (Alleway and Connell 2015). A total of five 
species of giant clam were historically recorded in the coastal 
seas around Singapore, but now only two remain, and these 
only exist in very low abundances (Neo and Todd 2012). 
The intensification of giant clam exploitation in the 19th 
century, followed by extensive coastal development from the 
1960s onwards, are considered to be the main drivers in the 
decline and extirpation of these charismatic invertebrates 
(Guest et al. 2008, Neo and Todd 2012).

The historical legacy effects of overexploitation, combined 
with pollution and coastal development, means that the pres-
ent day commercial exploitation of living marine resources 
adjacent to urbanized regions, at least in more economically 

Table 2. Pathways and potential effects of pollution on marine life.

Pollutant type Main urban pathways Potential effects on marine life

Sediments Construction sites (on the coast  
and within inland urban areas), 
dredging, land reclamation.

Turbidity resulting in less light for photosynthesis and visual 
predators/prey. Down welling sediments smother benthic 
organisms and create a substrate unsuitable for settling larvae. 

Nitrogen and phosphorus Industrial discharge, human and 
animal waste, detergents, 
mariculture.

Eutrophication leading to both micro and macro algal blooms, 
reduced water clarity (see ‘sediments’), shifts toward noxious 
cyanobacteria and reduced fertilization success in corals.

Plastics (macro and micro),  
lost and abandoned  
fishing gear

Resin pellets and discarded  
end-user products. Fishing 
activities. 

Ingestion and/or entanglement, leading to internal blockages/
injuries, toxic poisoning, starvation due to false ‘stomach filling’, 
suffocation, lacerations, infections, reduced ability to swim.

Compounds from oil Motor vehicles, shipping,  
industry.

Impairment of growth and developmental rates, reduced 
reproductive output and recruitment rates, increased 
susceptibility to disease. Carcinogenic. 

Heavy/trace metals Industrial and vehicle emissions, 
leaching from landfills, urban 
runoff, sewage.

Can inhibit fertilization, recruitment, development, growth in 
marine microorganisms, invertebrates and vertebrates. 
Carcinogenic. Prone to undergo food chain magnification.

Tributyltin Antifouling paint used in the 
maritime industry.

Causes imposex, and reduces growth and larval success, in 
various crustaceans and molluscs. Biomagnifies, leading to 
endocrine disruption in fishes, marine mammals and humans.

PCBs and PBDEs Discharge from industry, especially 
electronics. Used in plastics,  
fire retardants and lubricants.

Prone to biomaginification. Interferes with neurological and 
hormonal systems of marine organisms and humans. Can lead 
to decreases in reproductive capabilities and pose immunotoxic 
risk in marine mammals. 

Pharmaceuticals Industrial, hospital and domestic 
waste.

Interferes with reproduction and development in both animals and 
plants. Perturbs fish physiology.

Bacteria and viruses Sewage (from land and boats/ships), 
aquaculture.

Diseases, especially acute gastrointestinal illnesses, e.g. 
salmonellosis. Viruses can cause hepatitis and respiratory 
infections.

Light Streets, private and commercial 
buildings, vehicle headlights, 
airports.

Encourages unwanted fouling, affects migration and predator–prey 
behavior. Disrupts larval settlement. De-synchronization of 
broadcast spawning from lunar phase (e.g. corals). 

Noise Boat traffic, construction,  
machine operation.

Disrupts behavior (e.g. ability to find food, mates or avoid 
predators), reduces growth and fecundity. 
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developed countries (MEDCs), is often far lower than its his-
torical peak (Lotze et al. 2005, 2006). The search for resources 
has thus moved further offshore and into less exploited regions 
(Swartz et al. 2010, Anderson et al. 2011). Recreational fish-
ing participation rates in MEDCs have also seen a decline in 
the last two decades as a result of factors related to urbaniza-
tion, such as increased urban sprawl, demographic change, 
and a reduction in fishable water resources (Poudyal  et  al. 
2011). In contrast, within less economically developed 
countries (LEDCs), small-scale and subsistence fishing 
often remains a significant source of livelihood for coastal 

communities in or near urban areas (Smit et al. 2017). The 
maintenance of these traditional activities is, however, under 
pressure from factors such as declining water quality and 
coastal development (Smit et al. 2017), as well as enhanced 
access to education and alternative employment opportuni-
ties for children of fishing families (Teixeira et al. 2016). In 
some cases, urbanization may enhance economic opportuni-
ties for small-scale fishing communities. In southern Brazil, 
for example, the proximity of small-scale fishers to urban 
centres has expanded opportunities for subsistence fishers to 
access additional markets, as the presence of high numbers 

Table 3. Types of human-made structures comprising ocean-sprawl, their functions and potential impacts. Note: All of these structures 
require some alteration and/or loss of natural habitat.

Structure type Function Potential effects on marine habitats

Reclaimed land and 
artificial islands

Alleviation of coastal squeeze and 
expansion of land for industry and 
development.

Directly results in habitat loss, and fragmentation. Sedimentation 
during construction, altered hydrodynamics interferes with 
connectivity at landscape and local scales.

Artificial coastal 
defenses

Engineered to protect shorelines from 
shoreline erosion, flooding and impacts 
from waves.

Reduced intertidal extent resulting in steeper slopes. Footprint of the 
structure removes existing natural habitat but effects may extend 
beyond structure (halo effect). Change in substrate material and 
altered hydrodynamics could result in different colonizing 
assemblages. 

Commercial ports, 
docks and marinas

Industry, services and recreation. Elevated risk of species invasions, contaminants (oil, antifouling 
coatings, noise, light), disturbances associated with shipping 
(sediment resuspension, propeller injuries, etc.). 

Oil shipping and 
refinery infrastructure

Non-renewable resource mining for 
energy.

Footprint of the structure removes existing natural habitat but effects 
may extend beyond structure (halo effect). Contaminants, risk of 
oil spills, noise and light pollution.

Tidal and wind energy 
infrastructure

Energy production. Footprint of the structure removes existing natural habitat but effects 
may extend beyond structure (halo effect). Noise and light 
pollution, electromagnetic fields.

Submarine cables and 
pipelines

Telecommunications, power, water, oil. Concrete mattresses are often used to stabilize and position cables 
on seafloor. Fragmentation of soft-sediment habitats due to 
introduction of hard substrates. Noise and light pollution during 
construction phase. Electromagnetic fields.

Figure 2. Trajectories of the three key drivers of marine urbanization over time are difficult to hindcast (or forecast) and are likely to be city-
specific. However, they will almost certainly overlap, potentially creating non-linear interactions that are even more challenging to predict 
(and are not represented here). For illustration purposes only: (a) the exploitation of living resources could accelerate rapidly during the early 
development of many coastal cities, yet decrease in intensity as the resource is overexploited or inaccessible due to other factors, such as 
contaminants. Conversely, ocean sprawl may be more likely to follow an asymptotic trajectory, which reaches saturation as an increasingly 
large percentage of natural habitats are converted by the installation of artificial structures. (b) A possible alternative configuration of driver 
trajectories in a younger city with a shorter but equally intense history of marine urbanization.



1220

of fishers enables them to supply enough fish to meet supply 
chain demand (Hellebrandt 2008).

Urbanization also coincides with increases in the exploi-
tation of non-living resources, including the extraction of 
marine aggregates (sand, gravel, rocks) for use in construc-
tion and beach renourishment, mineral resources for indus-
trial applications, and the extraction of energy resources (oil 
and natural gas, and wave and tidal resources). Nearshore 
aggregate dredging may occur for mud, rock, shells, corals or 
sand for construction purposes, or for the heavy or precious 
minerals they contain (Charlier and Charlier 1992). Potential 
negative effects arising from the extraction of coastal marine 
aggregates include an increased risk of flood events and coastal 
erosion. For example, aggregate extraction from the coasts of 
Kiribati in the South Pacific resulted in beach structure being 
degraded, exposing coastal conurbations to enhanced risk 
of flood events (Webb 2005, Holland and Woodruff 2006). 
Similarly, beach mining, nearshore dredging and quarry-
ing have contributed significantly to coastal erosion in the 
Marshall Islands (Holland and Woodruff 2006), France, and 
Bali (Charlier and Charlier 1992). The extraction of sand for 
the renourishment of urban beaches is commonly undertaken 
for aesthetic and erosion control purposes (Fletemeyer et al. 
2018). Knowledge of the direct and indirect effects of this 
activity on the local biota and ecological processes remains 
incomplete (Peterson and Bishop 2005), but beach renour-
ishment has been shown to negatively impact nearshore 
coral reefs (Hernández-Delgado and Rosado-Matías 2017), 
marine invertebrate prey availability and nesting behavior in 
sea turtles (Peterson and Bishop 2005). Coastal urbanization 
also facilitates the expansion of maritime port operations, 
which often dredge nearshore channels to maintain deep-
water access for commodity and passenger transport (Lemay 
1998). Dredging and mining represent a major area of over-
lap between exploitation and pollution (Fig. 1) due to the 
release of toxicants and sediments that occurs during these 
operations.

The establishment of oil and natural gas rigs can be bro-
ken down into four stages: seismic exploration, exploratory 
drilling and installation, operation and decommissioning 
(Khan and Islam 2008). Each of these stages involves some 
form of extractive activity, although the consequences for 
marine life are particularly strong during the installation and 
decommissioning stages. The installation and decommission 
of rig infrastructure may also degrade or destroy the seabed 
(Macreadie et al. 2011). However, their establishment intro-
duces a source of hard substrate, potentially increasing local 
biodiversity, as well as non-native species, which can alter 
community dynamics at local or regional levels (Burt et al. 
2009, Feary et al. 2011, Macreadie et al. 2011). The estab-
lishment of renewable energy infrastructure presents many of 
the same ecological issues and opportunities as oil and gas, yet 
the installation of some structures, such as tidal barrages, has 
the potential for generating significant physical and ecologi-
cal impacts at the local scale, including the loss of intertidal 
habitats, modification of water flow and sediment resuspen-
sion (Gao et al. 2013, Hooper and Austen 2013).

Pollution pathways (both industrial and domestic)

Urbanization and pollution are tightly linked; whereas as air 
and soil pollution are major concerns for terrestrial conur-
bations, contaminated water and sediments are additional 
and often critical pollution issues for coastal cities (Table 2). 
Originating from both point (e.g. wastewater discharge) and 
non-point (e.g. wind-blown debris and dust) sources, pol-
lution impacts marine life at individual, population and 
ecosystem levels, frequently bioaccumulating and then bio-
magnifying up the trophic pyramid (Erftemeijer et al. 2012, 
Johnston et al. 2015, Langston 2017). Chronic marine pol-
lution effects tend to be sub-lethal (Browne et al. 2015), but 
they can interact with other stressors in ways that ultimately 
cause mortality (Yaakub et al. 2014a, Bårdsen et al. 2018).

Urban sediment pollution, commonly the result of runoff 
from construction work and disturbance via dredging (Rogers 
1990, Eggleton and Thomas 2004, Erftemeijer et al. 2012), 
as well as other sources such as beach nourishment and land-
use changes that alter catchment runoff (Colosio et al. 2007, 
Zhang et al. 2010), affects marine life in multiple ways. The 
resulting increase in turbidity reduces light penetration, pho-
tosynthesis (Falkowski et al. 1990), and the maximum depth 
at which photosynthetic organisms can grow (Heery  et  al. 
2018a). Suspended sediments also reduce fish hatching suc-
cess and larval survival (Auld and Schubel 1978), impede 
zooplankton feeding (Sew et al. 2018), affect mobile fauna 
that rely on visual cues (Weiffen et al. 2006), and alter a wide 
range of benthic ecosystem processes and patterns (Airoldi 
2003), including the settlement and successful recruitment of 
organisms, the diversity of species, and competitive interac-
tions – such as those between foundation macrophyte species 
and low-lying algal turfs (Gorgula and Connell 2004, Russell 
and Connell 2005, Gorman and Connell 2009, Knott et al. 
2009, Bauman et al. 2015). Smothering by sediment further 
reduces light and physically interferes with the functioning 
of benthic organisms like corals (Rogers 1990, Junjie et al. 
2014), seagrasses (Erftemeijer and Lewis 2006), and certain 
life stages of kelps (Devinny and Volse 1978, Geange et al. 
2014).

High nutrient concentrations are frequently attendant 
with sediments but, in urban settings, inputs come also from 
wastewater treatment plants, industrial discharges, storm-
water runoff, dust from land, domestic detergent use and 
human sewage (McClelland et  al. 1997, Braga et  al. 2000, 
Atkinson et al. 2003, Cole et al. 2004, Gaw et al. 2014, Vikas 
and Dwarakish 2015) and are particularly hazardous in bays 
and harbors with limited circulation (Gomez  et  al. 1990). 
Resultant eutrophication can have positive feedbacks on nutri-
ent loads and localized acidification (Howarth  et  al. 2011) 
and leads to many undesirable ecological effects (Bell 1991, 
Orth et al. 2017), for example phytoplankton blooms and/
or shifts toward noxious cyanobacteria, macroalgal blooms 
that can outcompete foundation species such as corals, and 
increases in the occurrence and severity of marine diseases 
(Bowen and Valiela 2001, Balestri et al. 2004, Lapointe et al. 
2005, Reopanichkul  et  al. 2009, Haapkylä  et  al. 2011, 
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Redding  et  al. 2013). Human sewage and wastewater cre-
ates additional problems due to the release of fecal coliforms, 
antibiotics and other pharmaceuticals (Jiang  et  al. 2001a, 
Shibata et al. 2004, Watkinson et al. 2007, Rose et al. 2009, 
Jia et al. 2011, Rizzo et al. 2013, Gaw et al. 2014).

Toxic pollutants, including organochlorine compounds 
(e.g. PCBs and HCH), heavy metals, tributyltin (TBT), 
polybrominated diphenyl ethers (PBDEs) and compounds 
from oil (e.g. petrogenic PAHs, plastics and microplastics), 
are strongly associated with industrial activities and urban 
run-off (Kennish 1997, Shazili et al. 2006, Todd et al. 2010, 
Cole  et  al. 2011, Tayeb  et  al. 2015), as well as from ship-
ping and other sea-based sources (Tornero and Hanke 2016). 
Many of these substances bioaccumulate in animals (Tanabe 
1988, Wolff et al. 1993, Bayen et al. 2003) interfering with 
cellular and biochemical functions and disrupting hormonal, 
reproductive, neurological and nervous systems (Portmann 
1975, Wolff et al. 1993, Frigo et al. 2002, Bosch et al. 2016). 
Lead, cadmium, copper, tin, nickel and iron are among the 
metals commonly found in sediments near industrial areas 
(Williamson and Morrisey 2000, Buggy and Tobin 2008, 
Amin  et  al. 2009). Copper is especially toxic to marine 
invertebrates, including poriferans, cnidarians, molluscs and 
arthropods (Reichelt-Brushett and Harrison 1999, 2000, 
Johnston and Keough 2000, Brown  et  al. 2004, Rainbow 
2017). The impacts of lead and cadmium on economically 
important invertebrates such as oysters and crabs are also 
well established in the literature (Ramachandran et al. 1997), 
however, recent studies suggest deleterious effects from a 
wide range of metals (Langston 2017), particularly when 
combined with other anthropogenic stressors (Burton and 
Johnston 2010). Other industrial discharges that are known 
to have negative effects, albeit usually localized, include brine 
from desalination plants and heat from industrial cooling. 
Often the most deleterious impacts from these discharges are 
toxicants (especially metals, hydrocarbons and anti-fouling 
compounds) that enter the sea with the effluent (Lattemann 
and Höpner 2008, Roberts et al. 2010).

Urban noise pollution usually originates from boat traf-
fic and in-water construction (Middel and Verones 2017) 
while urban light pollution comes from street lights, build-
ings, shipping, airports and vehicle headlights (Hölker et al. 
2010). For some fish and marine mammals, noise pollu-
tion inhibits communication, affects predator–prey interac-
tions, and has negative effects on growth and reproduction 
(Slabbekoorn  et  al. 2010, Houghton  et  al. 2015). It may 
also impact various other taxa that are sensitive to sound, 
such as oysters (Charifi  et  al. 2017), clams (Mosher 1972, 
Peng  et  al. 2016), mussels (Roberts  et  al. 2015), cepha-
lopods (André  et  al. 2011, Fewtrell and McCauley 2012), 
shrimp and other invertebrates (Solan  et  al. 2016). Night 
lighting comprises both direct glare and overall increased 
illumination, and can disrupt marine ecosystems in a num-
ber of ways (Hölker  et  al. 2010). Organisms that use light 
to navigate, such as birds and sea turtles, may become dis-
orientated (Davies et al. 2014), as may fish and fish larvae. 

Artificial lighting has also been reproted to affect predator 
and prey behavior, disrupt larvae settlement, alter distribu-
tion patterns and de-synchronize broadcast spawning species 
from normal lunar phases (Becker et al. 2013, de Soto et al. 
2013, Wale et al. 2013, Navarro-Barranco and Hughes 2015, 
Bolton et al. 2017).

A gradient of decreasing levels of various pollutants 
with increasing distance from urban sources has been 
described multiple times, particularly for: heavy metals 
(Qiao  et  al. 2013), sediments (Todd  et  al. 2004), marine 
debris (Evans et al. 1995, Andrades et al. 2016), and PAHs 
(Assunção et al. 2017). Whereas the effects of urban (land-
based) light and noise pollution and some contaminants are 
limited to a few decimeters to kilometers from the source 
(Zaghden et al. 2005, Burton and Johnston 2010), other pol-
lutants have impacts that extend much further (Heery et al. 
2017). For example, PCBs have been found in Arctic waters 
far from any urban or industrial centres, albeit at very low 
levels (Gioia  et  al. 2008). An important example of urban 
pollution being transported huge distances but still having a 
substantial negative impact is marine debris, especially plas-
tics. Like other forms of marine debris, plastics have a very 
high dispersal potential (Carlton et al. 2017), mainly because 
they can take decades to biodegrade (Moore 2008) and are 
often buoyant. They can maintain their structural integrity 
for many years, resulting in negative effects, via ingestion or 
entanglement, to animals ranging from seabirds, turtles and 
marine mammals to crustaceans and cnidrians (Azzarello and 
Van Vleet 1987, Moser and Lee 1992, Bjorndal et al. 1994, 
Jones 1995, Laist 1997, Lamb et al. 2018, Mecali et al. 2018) 
far from their point of origin. Due to ultraviolet rays, mechan-
ical and microbial degradation, plastics eventually fragment 
into microplastics (Thompson et al. 2004, Barnes et al. 2009) 
that are bioavailable to suspension feeding marine organisms, 
including zooplankton (Browne  et  al. 2008, Wright  et  al. 
2013, Barboza et al. 2018, Botterell et al. 2018).

Ocean sprawl (both coastal and offshore)

‘Ocean sprawl’ is a term used to describe the proliferation 
of human-made hard structures in the marine environment 
(Duarte et al. 2013, Firth et al. 2016, Table 3). This encom-
passes offshore infrastructure (e.g. wind farms, oil and gas 
platforms, aquaculture facilities, submarine cables/pipes) and 
coastal infrastructure such as artificial shore defences (e.g. sea-
walls, breakwaters, groynes), as well as facilities associated with 
ports, docks and marinas. Ocean sprawl is a fundamental and 
dominant feature of urbanized marine environments (Bulleri 
and Chapman 2010, Duarte et al. 2013, Dafforn et al. 2015, 
Firth  et  al. 2016) with artificial structures comprising the 
bulk of shorelines in many coastal cities (Bulleri et al. 2005, 
Todd and Chou 2005, Dafforn et al. 2015, Lai et al. 2015) 
and modifying habitats well into the subtidal zone (Airoldi 
and Beck 2007, Heery et al. 2017, Heery and Sebens 2018, 
Macura et al. 2019).

As a habitat, artificial shorelines are quite distinct 
from natural rocky shores (Connell and Glasby 1999,  
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Rilov and Benayahu 2000, Perkol-Finkel and Benayahu 
2004, Bulleri et al. 2005, Moschella et al. 2005, Clynick et al. 
2008, Lam et al. 2009, Bulleri and Chapman 2010, Lai et al. 
2018). One of the most obvious differences is the slope of 
hard substrates; while shoreline armoring structures such as 
seawalls are generally very steep, natural rocky shores tend to 
be more gently sloping with longer and wider intertidal areas 
(Gabriele  et  al. 1999, Knott  et  al. 2004, Andersson  et  al. 
2009, Chapman and Underwood 2011, Firth et  al. 2015). 
The smaller area of intertidal zone typical of seawalls is prob-
ably an important contributor to species loss (Chapman 
and Underwood 2011, Perkins et al. 2015) as it can lead to 
greater overlap in the distribution of individuals (Klein et al. 
2011) or to superimposed distributions of species that would 
not normally occur (Lam  et  al. 2009, Loke  et  al. 2019b). 
Wave impact is also more intense on steep shores (Gaylord 
1999, Cuomo et al. 2010), potentially dislodging intertidal 
organisms and/or impeding their settlement (Blockley and 
Chapman 2008, Iveša  et  al. 2010). Compared to natural 
hard-bottom habitats, seawalls are topographically ‘sim-
ple’ (Loke et al. 2014) – having few microhabitats, such as 
pits, rock-pools, overhangs and crevices (Chapman 2003, 
Chapman and Bulleri 2003, Moreira et al. 2007), which are 
important for the persistence of many intertidal and benthic 
species (Chapman and Underwood 2011, Loke and Todd 
2016, Loke  et  al. 2017). When considering these multiple 
effects in combination, it is unsurprising that many direct 
comparisons between rocky shores and seawalls often reveal 
the latter host lower species richness, reduced functional and 
genetic diversity, and different community compositions 
(Chapman 2003, Bulleri et al. 2005, Moschella et al. 2005, 
Fauvelot et al. 2009, Lai et al. 2018).

The consequences of ocean sprawl at large spatial scales 
are not yet well understood, but they are likely to be con-
siderable given its prominence and extent (Lotze et al. 2006, 
Airoldi and Beck 2007). In some heavily urbanized regions, 
entire habitats have been lost as artificial structures prolifer-
ate over vast distances (Dong et al. 2016). Even where coastal 
transformation is not ubiquitous, clusters of artificial struc-
tures can serve as corridors that facilitate species invasions 
(Airoldi  et  al. 2015) and alter ecological connectivity, with 
significant effects on marine assemblages (Bishop et al. 2017). 
The spatial scale of impacts from artificial structures depends 
on the type of structure, local hydrodynamic conditions, and 
a variety of other parameters (summarized by Heery  et  al. 
2017). For instance, fluxes of exogenous detritus from arti-
ficial structures typically affect marine communities within 
meters to tens of meters only (Heery and Sebens 2018), while 
infrastructure that creates major impediments to circulation 
and sediment transport tends to impact marine assemblages 
across a much larger area (Bishop et al. 2017).

Overlap, interactions and feedbacks

The three key drivers described above are not limited to 
urban areas, yet their relative magnitude and spatial and tem-
poral overlap is often augmented near high-density coastal 

development (Jiang et al. 2001b, Kennish 2002, Finkl and 
Charlier 2003, Mayer-Pinto  et  al. 2015). This overlap can 
have important consequences for marine organisms and 
communities, as effects from multiple anthropogenic stress-
ors are often cumulative and non-linear in the marine envi-
ronment (Adams 2005, Crain  et  al. 2008, 2009), leading 
to complex changes in ecosystem condition (Conversi et al. 
2015, Halpern  et  al. 2015, Möllmann  et  al. 2015). It can 
also feedback to influence the key drivers themselves, which 
are each the result of dynamic, interacting socio-economic 
and biophysical forces (sensu Alberti et al. 2003), and closely 
interrelated in the coupled social-ecological systems that 
characterize coastal cities (Liu  et  al. 2007, Alberti 2008, 
Grimm et al. 2008a, Pickett et al. 2011). Such feedbacks and 
interactions are widely recognized as shaping urban ecosystem 
function (Wu 2014, McPhearson et al. 2016), and are cen-
tral in nearly all current models of urban ecosystem dynamics 
(Pickett et al. 2001, Alberti et al. 2003, Grimm et al. 2013). 
In this section, we highlight some known and likely inter-
actions among the three drivers (exploitation, pollution and 
ocean sprawl) of marine urbanization. Each interaction fits 
conceptually within the overlapping regions of the Venn dia-
gram in Fig. 1.

One of the best examples of complex interactions and 
feedbacks among the drivers of marine urbanization and 
ecosystems is the relationship between habitat conversion, 
contaminants and invasion risk. Artificial structures associ-
ated with port infrastructure and shoreline protection tend 
to both concentrate environmental contaminants by alter-
ing hydrodynamic patterns and reducing water movement 
(Waltham et al. 2011, Rivero et al. 2013), and by facilitat-
ing increased contaminant influx, for instance from antifoul-
ing paints (Schiff  et  al. 2004, 2007, Warnken  et  al. 2004, 
Sim et al. 2015). Copper emissions from antifouling paints 
then have both direct and indirect consequences for marine 
organisms (Rygg 1985, Perrett et al. 2006). The toxin enters 
the food web by accumulating in algal tissues (Johnston et al. 
2011) or being consumed directly by non-selectively feed-
ing animals, which can additionally accelerate the leaching 
and burial process in adjacent sediments (Turner 2010). 
While toxic effects from copper negatively impact many 
marine organisms and reduce diversity (Rygg 1985), differ-
ential responses to copper contamination among inverte-
brates (Piola and Johnston 2006) combined with the novel 
colonization habitat that is provided by floating docks and 
other marina structures can disproportionately favor non-
indigenous taxa, thus facilitating marine invasions (Piola 
and Johnston 2008, Dafforn et al. 2009, Piola et al. 2009, 
Airoldi and Bulleri 2011, Edwards and Stachowicz 2011, 
Cordell et al. 2013, McKenzie et al. 2012).

The trajectory of marine resource exploitation in urban 
areas is also closely tied to that of pollution pathways and 
ocean sprawl (Inglis and Kross 2000, Jiang  et  al. 2001b, 
Cundy et al. 2003) (Fig. 2). In the early developmental stages 
of many cities, shoreline habitats were converted by artificial 
structures to facilitate resource exploitation industries and 
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the economic growth they fueled (Squires 1992). Overwater 
structures that housed cannery facilities and seafood markets 
were prominent drivers of early waterfronts in San Francisco 
(Walker 2001), Singapore (Chang and Huang 2011), and 
many other coastal cities globally (West 1989, Portman et al. 
2011). Various shoreline armoring structures were also part 
of facilities for resource exploitation industries, such as oil 
and gas (Minca 1995), and remain important drivers in adap-
tation plans for protecting these industries from future sea 
level rise (French  et  al. 1995, Ng and Mendelsohn 2005). 
Pollution associated with resource exploitation and habi-
tat conversion continues to be problematic in many urban 
and suburban areas, for instance surrounding shellfish 
aquaculture farms, oil refineries, port infrastructure and 
dredged waterways that harbor contaminants (Board 1997, 
Pereira  et  al. 1999, Jones  et  al. 2001, Strand and Asmund 
2003, Tolosa  et  al. 2004, Medeiros  et  al. 2005, Casado-
Martínez et al. 2006, Paissé et al. 2008, Knott et al. 2009), 
and alters system dynamics via multiple biogeophysical path-
ways, trophic levels and functional groups (Paissé et al. 2008, 
Weis et al. 2017).

As coastal cities grow, and effects from various aspects of 
marine urbanization increasingly overlap (Fig. 2), the system’s 
potential for feedbacks appears to intensify (Fernando 2008, 
Grimm  et  al. 2008b). For instance, as impervious surfaces 
proliferate on land, increased delivery of stormwater can 
accelerate the accumulation of contaminants in receiving 
waterbodies (Lee et al. 2006, Jartun et al. 2008, 2009, Jartun 
and Pettersen 2010, Walsh et al. 2012). Similarly, as resource 
exploitation and shoreline alteration expand, so too does the 
spatial extent and magnitude of marine debris and contami-
nants (Garcia-Sanda et al. 2003, Wake 2005, Ng and Song 
2010, Märkl et al. 2017), which can in turn impact exploit-
able marine resources (Islam and Tanaka 2004). Additional 
biogeochemical and ecological feedbacks have also been 
important historically, in some cases leading to losses in a 
system’s capacity to absorb urban impacts over time (Cloern 
2001, Nyström et al. 2012). For instance, the loss of oyster 
reefs due to overharvesting and eutrophication is thought to 
have reduced the filtration capacity of urban estuaries in the 
United States (Zimmerman and Canuel 2000, Kemp et al. 
2005, Wilberg et al. 2011, zu Ermgassen et al. 2013), poten-
tially inhibiting their ability to accommodate further pollu-
tion influx. Similar feedbacks surrounding challenges such as 
harmful algal blooms and marine diseases may be increas-
ingly likely as ecosystems are further altered by marine urban-
ization (Prins  et  al. 1997, Sunda  et  al. 2006, Heisler  et  al. 
2008, Crain  et  al. 2009). However, such feedbacks can be 
difficult to predict and may obfuscate efforts to effectively 
anticipate ecosystem response to further environmental 
change (Elmqvist et al. 2003).

Key ecological patterns

The convergence of exploitation, pollution and ocean sprawl 
that typifies urban marine environments may lead to shifts in 

ecosystem characteristics and several key ecological patterns, 
which are just beginning to emerge in the literature.

Homogenized systems, comprising heterogeneous 
mosaics

A common theme in the terrestrial urban ecology literature 
is the spatial heterogeneity that occurs across landscapes as 
a result of urbanization (Pickett  et  al. 1997, Dow 2000, 
Cadenasso  et  al. 2007, Pickett and Cadenasso 2008). The 
resulting ‘mosaics’ of habitat types, biophysical charac-
teristics, and land use are temporally dynamic and influ-
enced by multiple interacting social and ecological drivers 
(Pickett et al. 2017). At the same time, there are consider-
able similarities across cities in the underlying processes and 
trajectory of urbanization, leading to an overall homogeniza-
tion among urban ecosystems regionally and globally (Alberti 
2005, McKinney 2006). Even though research supporting 
these concepts is far more comprehensive in terrestrial envi-
ronments, there are several indications of comparable pat-
terns among urban marine ecosystems based on the current 
literature (Dafforn et al. 2015).

Most coastal cities are positioned in estuaries and bays that 
were historically dominated by soft sediments. As artificial 
structures are added to these sedimentary environments, a 
checkerboard of hard and soft habitats is created, with each 
supporting distinct biotic assemblages (Connell and Glasby 
1999, Glasby 2000, Connell 2001, Barros  et  al. 2001). 
This can alter ecosystem dynamics in several ways. In some 
regions, artificial structures support a larger standing stock 
of benthic macroalgae and other hard-bottom organisms, 
which then enter adjacent sediments as detritus and may 
alter sedimentary community dynamics (Boehlert and Gill 
2010, Heery 2018, Heery and Sebens 2018). Artificial struc-
tures has been shown to o act as ‘stepping stones’ for disper-
sal, particularly of non-indigenous taxa (Bulleri and Airoldi 
2005, Glasby et al. 2007, Vaselli et al. 2008, Sheehy and Vik 
2010, Airoldi et al. 2015, Foster et al. 2016) and alter genetic 
population structure of marine fauna (Fauvelot et al. 2012). 
Marine species vary in dispersal potential, and many taxa 
encounter barriers to dispersal at relatively small spatial scales 
(Darling et al. 2009, Costantini et al. 2013, Maas et al. 2018, 
Sefbom et al. 2018). Dispersal limitation can therefore also 
interact with local stressors and abiotic conditions to result in 
compositionally very different assemblages across patches of 
hard substrata (Bulleri and Chapman 2004, Munari 2013). 
This may be accentuated where urban habitat conversion has 
significantly altered hydrodynamic patterns, created other 
additional barriers to dispersal and subsequent settlement 
(Bishop et al. 2017) or changed the configuration of habitats 
at the landscape scale (Loke et al. 2019c).

Spatially heterogeneous mosaics also form in urbanized 
seascapes as a result of fine-scale gradients in nutrient enrich-
ment and sediment pollution (Airoldi 2003, Baum  et  al. 
2015, Ling  et  al. 2018), particularly in low flow environ-
ments and enclosed estuaries and embayments (Balls 1994, 
Dauer et al. 2000). For instance, physical disturbance from 
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swing moorings, which are ubiquitous in shallow sedimen-
tary environments in Sydney Harbor, leads to depressed con-
centrations of metal contaminants within a highly localized 
area (Hedge et al. 2017). This may result in complex, fine-
scale spatial patterns in microbial, meiofaunal and macrofau-
nal taxa that are sensitive to metal contamination (Coull and 
Chandler 1992, Stark 1998, Lindegarth and Hoskin 2001, 
Mucha et al. 2003, Gillan et al. 2005, Sun et al. 2012). It 
is likely this is complicated further by localized gradients in 
other abiotic conditions, such as granularity, that commonly 
occur in the vicinity of artificial structures (Martin et al. 2005, 
Seitz  et  al. 2006). While swing moorings and other struc-
tures that increase physical disturbance and scour increase 
sediment grain size (Hedge  et  al. 2017), structures such as 
pilings that reduce flow speeds and increase deposition tend 
to reduce the grain size of nearby sediments (Heery  et  al. 
2018b). Grain size, contaminant concentrations, and a vari-
ety of other flow-related metrics are known to have strong 
effects on sedimentary composition and diversity (Mannino 
and Montagna 1997, Hewitt et al. 2005), which likely varies 
considerably in urban seascapes over small spatial scales.

Studies of marine diversity and connectivity relative to 
urbanization remain relatively limited, and there is need for 
expanded work in this area. In particular, study designs that 
allow for the assessment of alpha, beta and gamma diver-
sity could be helpful for beginning to distinguish between 
the ecological processes that shape marine assemblages in 
spatially heterogeneous urban seascapes. In their eDNA 
study on seagrass beds, Kelly  et  al. (2016) found decreases 
in beta diversity even while species richness increased with 
the intensity of urbanization. Landscape-scale homogeniza-
tion in urban assemblages has some precedents in freshwa-
ter and terrestrial systems (McKinney and Lockwood 1999, 
Holway and Suarez 2006, Urban et al. 2006, Groffman et al. 
2017), but less so in the marine literature (Balata et al. 2007). 
For instance, by creating urban freshwater reservoirs/dams 
many cities have inadvertently fragmented their catchments 
and resulted in biotic homogenization (Olden and Rooney 
2006, Olden et al. 2008). The straightening or ‘linearization’ 
of shorelines through armoring (Dyl 2009) could homog-
enize intertidal communities at certain scales, though this 
has not been demonstrated empirically. Sedimentation may 
also cause marine communities to become more homogenous 
under certain conditions (Balata et al. 2007). However, more 
thorough characterization of diversity measures relative to 
resource exploitation, pollution and ocean sprawl should 
advance understanding of ecological processes in urban 
marine environments.

Loss of foundation species

Urban stressors can be particularly detrimental for sensitive 
foundation species such as oysters, reef-building corals, sea-
grasses, mangroves and canopy-forming kelps, which structure 
marine ecosystems via the provisioning of biogenic habitat 
(Dayton 1972, Bertness and Callaway 1994). Even though 
the dynamics of decline vary among taxa and across locations 

(Terrados  et  al. 1998, Waycott  et  al. 2009, Polidoro  et  al. 
2010, Heery et al. 2018a), loss in foundation species is gen-
erally tied to one or more of the three major drivers of marine 
urbanization (Rogers 1990, Hastings  et  al. 1995, Airoldi 
2003, Balestri et al. 2004, Kirby 2004, Connell et al. 2008, 
Strain et al. 2014, Yaakub et al. 2014a, Alleway and Connell 
2015). In temperate areas, nutrient-rich, high sedimentation 
conditions can limit the recruitment and survival of canopy-
forming kelps while supporting opportunistic, turf-forming 
algal species that can act as kelp competitors (Airoldi 1998, 
Benedetti-Cecchi  et  al. 2001, Gorgula and Connell 2004, 
Russell and Connell 2005, Coleman  et  al. 2008, Gorman 
and Connell 2009). Similarly, in the tropics, sediment pol-
lution has multiple negative effects on corals. These decrease 
coral cover and disproportionately impact competitive, 
branching coral genera such as Acropora, which ultimately 
lowers reef complexity in urban areas (Heery et al. 2018a). 
Ocean sprawl can also be an important driver of foundation 
species loss. For instance, despite the numerous ecosystem 
services they provide to urban communities (Benzeev et al. 
2017), mangrove forests are cleared in many coastal areas 
to make way for urban development (Harper  et  al. 2007, 
Martinuzzi et al. 2009, Lai et al. 2015, Richards and Friess 
2016). Where urban mangroves are left intact, they are 
vulnerable to deleterious effects from artificial structures con-
structed nearby; mangrove forests adjacent to seawalls tend to 
be narrower, with less leaf litter and fewer saplings than those 
without seawalls (Heatherington and Bishop 2012). Coral 
reefs and seagrass beds are also frequently built over (Chou 
2006, Burt et al. 2013, Yaakub et al. 2014b). Furthermore, 
urban losses in foundation species often involve feedbacks 
that prevent subsequent population recovery (Altieri and 
Witman 2006, de Boer 2007, Moore  et  al. 2014). For 
instance, seagrass loss can be tied to sediment pollution and 
eutrophication (Waycott et al. 2009, Orth et al. 2017) and 
deforestation and altered hydrodynamic regimes from coastal 
construction (da Silva et al. 2004), as well as possible indirect 
effects from top to down reductions in grazers that control 
seagrass epiphyte loads (Duffy et al. 2005, Myers et al. 2007). 
The reduction of seagrass bed cover can lead to destabilization 
of sedimentary substrata, which then further increases tur-
bidity (de Boer 2007) and potentially inhibits recolonization 
(Moore et al. 2014).

There is increasing evidence that multiple, often interact-
ing, urban-related drivers affect both foundation species and 
ecological response to foundation species loss (Lenihan and 
Peterson 1998, Jackson 2008, Claudet and Fraschetti 2010, 
Nyström et al. 2012, Strain et al. 2014, Ferrario et al. 2016, 
Orth et al. 2017), although studies evaluating multiple urban 
stressors simultaneously are rare (O’Brien et al. 2019). The 
abundance of kelps and other important habitat-forming mac-
roalgae is negatively correlated with human population den-
sity in several regions, including temperate coasts in Australia 
and North America (Connell  et  al. 2008, Scherner  et  al. 
2013, Feist and Levin 2016), and this is likely linked to gra-
dients in sedimentation and nutrients (Fowles et al. 2018). 
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Yet, ocean sprawl may also be an important factor in mac-
roalgal community dynamics. Reduced topographic com-
plexity, changes in substrate type, and altered substrate 
profiles are all factors that can limit kelp abundance (Toohey 
2007, Schroeter et al. 2015) and correlate with urban habi-
tat conversion. Artificial structures not only support distinct 
macroalgal assemblages compared with natural rocky shores 
(Glasby 1999) – the kelps that inhabit them also support dis-
tinct epifaunal and microbial communities and erode at dif-
ferent rates (Marzinelli et al. 2009, 2018, Mayer-Pinto et al. 
2018). Habitat conversion thus likely influences ecological 
processes in urban areas where canopy-forming kelps persist. 
The interaction of resource extraction, pollution and ocean 
sprawl as drivers of foundation species loss, and the ecological 
responses to this loss, are important future areas of research. 
Importantly, these processes are highly dynamic, with ecolog-
ical legacies from past impacts, and future scenarios linked to 
rising temperatures and pCO2, that are challenging to ascer-
tain (Ramalho and Hobbs 2012, Davis et al. 2017, Gao et al. 
2017, Heldt et al. 2018, Fig. 2).

Changes in biodiversity and productivity

Patterns of biodiversity in urban marine environments are 
complex. Resource extraction, sediment pollution and habi-
tat modification are important drivers of marine biodiversity 
declines globally (Sala and Knowlton 2006), and there are 
many examples from the literature of reduced species rich-
ness and altered community composition at heavily urban-
ized sites (Pearson and Rosenberg 1978, Long  et  al. 1995, 
Lindegarth and Hoskin 2001, Lotze et al. 2006, Airoldi and 
Beck 2007, Poquita-Du 2019). Even though the diversity 
of marine assemblages in some regions is negatively corre-
lated with human population density (Scherner et al. 2013, 
Neo et al. 2017), this pattern is not universal, and varies con-
siderably between regions, cities, the taxa and type of diver-
sity considered, and the methods used. For instance, using 
eDNA from water samples, Kelly  et  al. (2016) found that 
species richness was positively correlated with land-based 
urbanization in intertidal seagrass beds. Similarly, while some 
studies have reported higher species diversity on artificial 
shorelines than on their natural counterparts (Chou and Lim 
1986, Connell and Glasby 1999, Munsch et al. 2015), others 
have found artificial shorelines to be relatively depauperate 
(Firth et al. 2013, Aguilera et al. 2014, Lai et al. 2018).

There are similar complexities surrounding productivity in 
urban marine environments. In nutrient-rich marine estuar-
ies, like those in most coastal cities, climate variables, such 
as major precipitation events and interannual fluctuations in 
weather patterns, tend to be particularly important drivers of 
temporal patterns in primary production (Mallin et al. 1993, 
Rodrigues and Pardal 2015), as these events deliver land-
based sources of nitrogen to coastal waters. However, the 
relationship between nutrient load and primary production is 
highly variable (Borum and Sand-Jensen 1996), and urban-
related increases in nutrient loads can have different effects 
depending on tidal regimes, the system’s trophic structure, 

as well as other factors (Alpine and Cloern 1992, Monbet 
1992). Nutrient loading therefore does not manifest com-
parable, elevated marine production across cities. Moreover, 
broader ecosystem responses to primary production also vary 
across urban marine ecosystems. In some locations, nutri-
ent enrichment can trigger micro- and macroalgal blooms 
that are highly detrimental to important foundation species 
(McGlathery 2001) while, in other places, the same process 
may increase secondary production (Leslie et al. 2005) and 
species richness (Whittaker and Heegaard 2003).

Novel assemblages

Novel assemblage structure tends to emerge as species move 
and change in abundance and dynamics in response to envi-
ronmental change (Hobbs  et  al. 2018). The most obvious 
manifestation of this phenomenon in urban marine environ-
ments is among sessile assemblages on artificial shorelines. 
Conversion from natural shores to hard artificial struc-
tures creates new habitats for colonization and supports 
novel assemblages of hard-bottom organisms (Chou and 
Lim 1986, Connell and Glasby 1999, Bulleri  et  al. 2005, 
Moschella et al. 2005, Clynick et al. 2008, Lam et al. 2009, 
Airoldi et al. 2015, Munsch et al. 2015). These assemblages 
differ from nearby rocky shores with respect to composition 
(Chapman 2003, Bulleri and Chapman 2010, Airoldi et al. 
2015, Lai et al. 2018) and genetic diversity (Fauvelot et al. 
2009). Differences in species abundance between artificial 
and natural rocky shores may be biased towards some func-
tional groups, such as motile primary consumers (Chapman 
2003, Pister 2009). However, human-made habitats in urban 
areas also provide a foothold for a variety of non-indigenous 
species, many of which are non-motile (Glasby et al. 2007, 
Vaselli et al. 2008, Ruiz et al. 2009, Sheehy and Vik 2010, 
Simkanin et al. 2012, Airoldi et al. 2015, Foster et al. 2016).

Ruderal species and potential synanthropes

On land, urbanization is strongly associated with the pro-
liferation of ruderal and synanthropic species (McKinney 
2006). Ruderal species, those that grow in contaminated 
soils or human wastes, typically include a variety of weedy 
plant species (Haigh 1980), while ‘synanthropes’ is a term 
typically applied to mid-level consumers, such as raccoons 
and coyotes, that have higher densities and abundances in cit-
ies than in adjacent rural areas (McKinney 2002). Although 
not well studied, there is evidence of analogue taxa exploit-
ing urban marine environments. Polluted sediments in urban 
areas appear to generate opportunities for certain marine 
microbes (Córdova-Kreylos  et  al. 2006, Cetecioğlu  et  al. 
2009, Nogueira et al. 2015). For instance, Alteromonadales, 
Burkholderiales, Pseudomonadales, Rhodobacterales and 
Rhodocyclales bacteria that are involved in the degradation 
of hydrocarbons, were found to be more abundant in pol-
luted urban mangrove forests in Brazil (Marcial Gomes et al. 
2008). Some macroalgae also respond opportunistically to 
polluted urban waters (Valiela et al. 1990, Raven and Taylor 
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2003). For instance, transplant experiments have demon-
strated that the photosynthetic capacity of sea lettuce Ulva 
lactuca increases while that of canopy-forming brown sea-
weed Sargassum stenophyllum decreases in response to urban 
waters (Scherner  et  al. 2012). Differential photosynthetic 
responses to copper contaminants among different species of 
Ulva may connote a competitive advantage in contaminated 
urban areas (Han et al. 2008). Similarly, the combination of 
elevated sediment and nutrient loads increases the cover of 
filamentous turf-forming macroalgae in field manipulations 
(Gorgula and Connell 2004) and is thought to be central 
to turf proliferation in metropolitan areas (Airoldi 1998, 
Connell et al. 2008, Strain et al. 2014).

Evidence for synanthropic marine consumer species is 
more limited. Most of the studies on fish distribution patterns 
in urban areas and relative to coastal population density sug-
gest primarily negative impacts of urbanization on major fish 
groups (Toft et al. 2007, Williams et al. 2011, Kornis et al. 
2017, Munsch  et  al. 2017, Cinner  et  al. 2018). Although 
several well-recognized terrestrial synanthropes, including 
raccoons and rats, are known to forage in intertidal habitats 
(Carlton and Hodder 2003), degraded intertidal resources 
in urban areas are unlikely to be a major driver of synan-
thropic distribution patterns for these species. There is at least 
one record, however, of rats occurring in higher densities on 
artificial breakwaters than on natural shorelines (Aguilera 
2018). Heery et al. (2018c) found that deep-dwelling giant 
Pacific octopus were more common in urban than in rural 
areas of Puget Sound (northeast Pacific), and suggested this 
may be a function of the amount of marine debris in the 
urban benthos, which octopus utilize as shelter (Katsanevakis 
and Verriopoulos 2004, Katsanevakis et al. 2007). Artificial 
structures, such as docks and buoys, are widely used as haul 
out sites by pinnipeds (Heath and Perrin 2009) and could 
similarly influence localized pinniped distribution patterns 
in urban areas (DeAngelis et al. 2008). Duarte et al. (2013) 
noted that floating structures associated with coastal develop-
ment could play a key role in facilitating jellyfish blooms, by 
expanding the available habitat for polyp recruitment. These 
lines of evidence suggest that, where synanthropic distribu-
tion patterns do exist among marine consumers, ocean sprawl 
may be an important underlying mechanism (Heery  et  al. 
2018c).

In addition to ruderal macrophytes and synathropic con-
sumers, the interacting drivers of marine urbanization appear 
to facilitate the establishment of opportunistic sessile inver-
tebrates, many of which are non-indigenous. Opportunistic 
responses to multiple urban drivers may provide a particular 
advantage. For instance, the bryozoans, Bugula neritina and 
Watersipora subtorquata, and the ascidian, Botrylloides vio-
laceus, have particularly high tolerances for copper toxicity 
(Piola and Johnston 2006), which could partially explain their 
successful invasion of urban marine environments beyond 
their endemic range (Piola et al. 2009, McKenzie et al. 2011, 
Osborne et al. 2018). In addition, larval dispersal for these 
taxa is aided by shipping activities between coastal cities, and 

they readily utilize artificial structures, such as floating docks, 
as habitat for settlement (Lambert and Lambert 1998, 2003, 
Piola and Johnston 2008, Dafforn  et  al. 2009, Piola  et  al. 
2009, Airoldi and Bulleri 2011, Edwards and Stachowicz 
2011, Gittenberger and van der Stelt 2011, McKenzie et al. 
2012, Simkanin et al. 2012, Cordell et al. 2013, Zhan et al. 
2015). In this way, simultaneous positive responses to mul-
tiple urban drivers may help to facilitate invasion success 
in urban areas, although the strength of these responses 
likely vary between cities, taxonomic groups, and latitudes 
(Canning-Clode et al. 2011).

Acclimatization and adaptation

Urbanization is considered a major selective pressure 
(Alberti 2015, Donihue and Lambert 2015) leading to phe-
notypic changes at both the organismal and species levels 
(Alberti et al. 2017a). These changes are either phenotypically 
plastic (i.e. within-lifetime) responses such as acclimatization, 
or (population-level) adaptation via genetic change over mul-
tiple generations (Alberti et al. 2017b, Johnson and Munshi-
South 2017). Recent advances in understanding evolutionary 
responses to urbanization have been driven largely by work 
in terrestrial systems (Partecke  et  al. 2006, Miranda  et  al. 
2013, Johnson and Munshi-South 2017). However, there is 
ample precedent for rapid evolutionary change and pheno-
typic plasticity in response to anthropogenic stressors in the 
marine environment (Todd 2008, Sanford and Kelly 2011).

All three of the key drivers of marine urbanization are 
known to structure population genetics among a variety of 
marine taxa (examples – resource exploitation: Smith et  al. 
1991, Hauser  et  al. 2002; pollution: Suchanek 1993, 
López-Barea and Pueyo 1998, Nacci  et  al. 1999, Ma et  al. 
2000, Virgilio  et  al. 2003, Virgilio and Abbiati 2004, 
McMillan  et  al. 2006, Galletly  et  al. 2007, Moraga and 
Tanguy 2009; ocean sprawl: Street and Montagna 1996, 
Fauvelot et al. 2012). In many cases, resource exploitation, 
pollution and ocean sprawl lead to population bottlenecks 
and reduced genetic diversity (Nevo et al. 1986, Maltagliati 
2002, Fauvelot et al. 2009, Ungherese et al. 2010, Neo and 
Todd 2012, Pinsky and Palumbi 2014). Yet evidence of 
micro-evolution in urban marine environments has been lim-
ited. Some of the best examples come from the ecotoxicology 
literature (Medina et al. 2007). For instance, McKenzie et al. 
(2011) showed heritable copper tolerance in the bryozoan 
Watersipora subtorquata. Similarly, Galletly  et  al. (2007) 
found a significant geneotype × environment interaction in 
hatching success of the ascidian, Styela plicata, under dif-
ferent copper concentrations, yet hatching success at high 
concentrations had a different genetic basis than that at low 
concentrations, suggesting different genetic mechanisms for 
adaptation depending on pollution levels.

Trait plasticity in response to marine urbanization has 
been much more widely documented. Many marine organ-
isms exhibit substantial capacity for acclimatization that 
may provide a fitness advantage; this could include changes 
in morphology, physiology, behavior and/or life history 
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(West-Eberhard 1989, Foo and Byrne 2016). Goiran et  al. 
(2017) observed melanism in sea snakes inhabiting urban 
sites that they proposed facilitates the excretion of trace pol-
lutants. Phenotypically plastic responses to light in corals are 
well documented and can benefit colonies where sediment 
pollution and associated turbidity is prevalent (Todd  et  al. 
2003, Hoogenboom et al. 2008, Ow and Todd 2010). Some 
marine invertebrates also exhibit transgenerational plasticity, 
wherein parents alter the phenotypes of gametes in response 
to factors such as copper and salinity to maximize gamete per-
formance (Marshall 2008, Jensen et al. 2014). Several other 
examples of trait plasticity from natural rocky shores may be 
additionally relevant in the abiotically stressful environments 
created by seawalls and other artificial structures (Strain et al. 
2018). For example, dog whelks Nucella lapillus and other 
gastropods have larger feet in high wave energy environments 
so they can adhere better to the substrate (Etter 1988, Trussell 
1997), potentially an advantage on steep seawalls that inten-
sify wave shock. Similarly, local adaptation for thermal tol-
erance in acorn barnacles Semibalanus balanoides (Bertness 
and Gaines 1993) and acclimatization to high temperatures 
in various intertidal gastropods (Williams and Morritt 1995, 
Marshall et al. 2010) may facilitate survival in novel thermal 
environments associated with ocean sprawl.

Urbanization-driven trait changes can have important 
effects on community interactions (Palkovacs  et  al. 2012, 
Alberti et al. 2017a), yet much work remains to understand 
the nature of these effects in the marine environment, as well as 
their ultimate consequences for functioning in urban marine 
ecosystems. This work needs to be conducted across multi-
ple organismal scales to account for potential urban-related 
acclimatization at the level of holobionts – host–microbial 
assemblages that function as an ecological unit (Ziegler et al. 
2016, Evans et al. 2017). Further, the heritability of urban-
driven adaptation should be considered through both genetic 
and epigenetic approaches, as acclimatization responses can 
be inherited via transgenerational maternal effects and meth-
ylation patterns (Sun et al. 2014, Suarez-Ulloa et al. 2015).

Climate change and marine urbanization

The effects of climate change interacting with marine urban-
ization range from reasonably established to complex and 
speculative possibilities. Atmospheric warming from green-
house gases leads to the thermal expansion of the oceans and 
melting of glacial and polar ice, and is well-documented as the 
cause of current and predicted sea-level rise (Neumann et al. 
2015). Increases in the severity, and possibly occurrence, 
of major storms have also been attributed to global warm-
ing (Walsh et al. 2016). This combination of rising seas and 
extreme weather pose direct flooding and erosion threats to 
coastlines and, together with coastal development, represent 
the main drivers of the current proliferation of sea defenses 
(Dafforn et al. 2015). Elevated temperatures, altered rainfall 
patterns, and other changes associated with climate change 
(Duffy  et  al. 2015, Donat  et  al. 2016) pose challenges for 

marine organisms that inhabit coastal defense structures 
(Ng et al. 2017), as well as for marine communities that pro-
vide sources of food and natural defenses for coastal cities, 
such as coral reefs and mangrove forests (Ward et al. 2016, 
Hoegh-Guldberg  et  al. 2017). Of course, coastal cities are 
also part of the problem as they contribute to climate change 
via high levels of greenhouse gas emissions, energy consump-
tion and changes in land use, hydrology and biodiversity 
(Grimm et al. 2008a), but these additional impacts of marine 
urbanization are beyond the scope of the current review.

One of the better studied interactions between urbaniza-
tion and climate change is ‘coastal squeeze’, first reported 
by Doody (2004), but later refined and defined by Pontee 
(2013, p. 206) as: ‘one form of coastal habitat loss, where 
intertidal habitat is lost due to the high water mark being 
fixed by a defence or structure (i.e. the high water mark resid-
ing against a hard structure such as a sea wall) and the low 
water mark migrating landwards in response to SLR’ (sea 
level rise). Loss and/or fragmentation of tidal wetlands means 
a concomitant reduction in ecosystem services, including 
flood and erosion abatement, biodiversity support, water 
quality, carbon sequestration and benefits to coastal fisher-
ies (Torio and Chmura 2013). Managed retreat (or realign-
ment), where infrastructure is relocated inland to escape the 
effects of erosion and flooding (Alexandrea et al. 2012), can 
alleviate coastal squeeze by moving back or removing hard 
artificial defences, thereby elimitaing the fixed high water 
mark back-stop. However, the distances required for coasal 
habitats to successfully move inland can be considerable – 
potentially being meters per year depending on rate of sea 
level rise (Pethick 2001).

Temperature is a critical stressor on rocky shores (Helmuth 
and Hofmann 2001) but little is known regarding the ther-
mal landscape of artificial coast defenses (Zhao et al. 2019). 
The homogeneity of artificial structures may create thermal 
barrens that challenge intertidal organisms (Perkins  et  al. 
2015) or, alternatively, provide refugia from thermally-lim-
ited predators. Helmuth et al. (2006), based on a compren-
sive study of the spatial and temporal patterns in the body 
temperature of the mussel Mytilus californianus on natural 
rocky shores, concluded that interacting factors such as tidal 
regime and wave splash can create complex thermal mosaics 
of temperature that are potentially more important locally 
than those of large-scale (e.g. latitudinal) climate effects. 
Hence, it will be difficult to predict or measure the broader 
impacts of global warming on the intertidal area of seawalls 
and similar structures. Climate associated shifts in patterns 
of rainfall and runoff, e.g. heavier rainfall and/or more pro-
longed rainfall (Wallace et al. 2014), could overwhelm drain-
age systems leading to peaks in the influx of pollutants. These 
unusual pollution spikes would likely be concurrent with 
increased sedimentation, eutrophication and low salinity, all 
of which could moderate species and community response 
and the toxicity of pollutants (Pearson and Rosenberg 1978, 
Šolić and Krstulović 1992, Verslycke et al. 2003).

Climate change is also likely to impact natural coastal 
defenses. Healthy coral reefs and mangrove forests are effective 
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at protecting coastlines from wave impact and associated ero-
sion in tropical and subtropical regions, but both are vul-
nerable to climate change. Extended periods of warmer than 
average sea temperatures causes coral bleaching that, when 
severe, kills colonies (Hoegh-Guldberg 1999) resulting in the 
loss of wave-absorbing reef complexity (Alvarez-Filip  et  al. 
2009, Graham and Nash 2013). As mangroves live within 
a narrow band of suitable habitat determined by local tidal 
regimes, they are susceptible to sea level rise if it exceeds 
the rate of soil accumulation, leading to shoreline retreat 
(Lovelock et al. 2015). Many tropical and subtropical towns 
and cities benefit from the protection that coral reefs and 
mangroves provide (Ferrario et al. 2014), and their loss can 
lead directly to the installation of alternative coastal defense 
measures, of which hard amour such as seawall, rip-rap and 
gabion are frequently chosen. There is also strong potential 
for additive or synergistic effects as coral reefs and mangroves 
near urban areas are likely to be heavily exploited as well as 
impacted by pollution (Wells and Ravilious 2006). In addi-
tion to these rather more predictable consequences of climate 
change, urban marine environments – as part of urban eco-
systems – are shaped by a multitude of interacting social and 
ecological drivers (Alberti et al. 2003) and are likely to exhibit 
non-linear dynamics characteristic of complex adaptive sys-
tems (Scheffer  et  al. 2001, Alberti 2008). The three major 
drivers of marine urbanization have gradually altered urban 
marine ecosystems in ways that may have reduced their capac-
ity to absorb disturbance; for instance to a 100-year storm 
event, a sudden change in socio-economic variables such as a 
rapid loss in food security, a major marine disease epidemic, 
or various other pulse perturbations. Without considerably 
more research, it is unclear how urban marine ecosystems 
will respond to such disturbances, whether they are suscep-
tible to future phase shifts, and what such shifts might mean 
for ecosystem functions and ecosystem services. While these 
should be focal points of future research (discussed below), 
approaches such as scenario planning (Peterson et al. 2003) 
that integrate and accommodate uncertainties directly into 
management of urban marine environments would be highly 
beneficial (Alberti et al. 2003).

Ecological engineering

It is predicted that by the next decade approximately three 
quarters of the world’s population will reside in coastal 
zones (Small and Nicholls 2003, Bulleri and Chapman 
2015). Coastal land is therefore in high demand and devel-
opment and reclamation are occurring at unprecedented 
scales (Yeung 2001, Duarte  et  al. 2008, Duan  et  al. 2016, 
Chee  et  al. 2017, Sengupta  et  al. 2018). In addition, the 
risks of climate change, as outlined in the previous section, 
have resulted in an urgent need for greater shoreline protec-
tion, especially in low-elevation coastal zones (LECZ) (sensu 
Neumann  et  al. 2015). For instance, in China, Japan and 
Korea alone, 28% of the global population are currently liv-
ing in LECZ and it is predicted that by 2070, 37 million 

people and assets worth $13 trillion are going to be exposed 
to coastal hazards such as storms, flooding and climate vari-
ability (Nicholls et al. 2013). Strategies that mitigate risk and 
help coastal cities adapt to sea level rise and climate change 
are already being implemented in many parts of the world 
(Zimmerman and Faris 2010, Hayes  et  al. 2018) and are 
predicted to increase in the coming decades (Neumann et al. 
2015, Dangendorf et al. 2017). Such strategies, though mul-
tifaceted, include expanded coastal armoring (French and 
Spencer 2001, Hinkel  et  al. 2014), the integration of new 
stormwater capture and treatment systems, and a wide vari-
ety of other modifications to increase the resilience of urban 
infrastructure (Zimmerman and Faris 2010).

If the past is any indication, future proliferation of marine 
urbanization will further facilitate the formation of novel 
assemblages of marine organisms on an unprecedented scale. 
Currently, there is considerable debate in ecology regard-
ing the concept of ‘novel ecosystems’ (Hobbs  et  al. 2014, 
Murcia et al. 2014), i.e. ecosystems shaped by human inter-
vention that are distinct from their historical state, and that 
cannot be returned to their historical trajectory (Hallett et al. 
2013). It is presently unclear whether urban marine ecosys-
tems meet all criteria of ‘novel ecosystems’ (Morse et al. 2014), 
but their trajectory is undeniably shaped by the way in which 
coastal cities develop and modify the marine environment 
(Dafforn et al. 2015). Given the potential of marine assem-
blages to provide ecosystem services to urban populations, 
as well as recent success in the realm of eco-shoreline design 
(Toft et al. 2013, Morris et al. 2019), it may be more helpful 
to consider urban marine ecosystems and their future trajec-
tory within the framework of ‘designed ecosystems’ (Higgs 
2017) or ‘reconciliation ecology’ (Rosenzweig 2003a). While 
both of these frameworks arose with the realization that some 
systems have been so severely altered and/or degraded it is 
practically impossible to apply conventional restoration prac-
tices (or expect the system to shift back towards a ‘historic’ 
or ‘pre-disturbed’ state), conceptually they are fundamen-
tally different in their intent, starting point and develop-
mental trajectory (Hunter and Gibbs 2007, Higgs 2017). 
For instance, ‘designed ecosystems’ often involve large-scale 
intervention efforts to create and sustain the system whereas 
‘reconciliation ecology’ is less reliant on long-term interven-
tion and more based on the idea that ‘if you build it, they will 
come’ (Rosenzweig 2003b, p. 6). ‘Ecological engineering’, i.e. 
the design and engineering of urban infrastructure congru-
ent with ecological principles, can be viewed as straddling 
between these frameworks, as it often requires huge initial 
intervention but with less emphasis on subsequent man-
agement and maintenance (see recent review by Loke et al. 
2019a).

Ecological engineering is currently being trialed, or 
attempted in earnest, in many locations around the world 
(Chapman and Blockley 2009, Mitsch 2012, Strain  et  al. 
2018). Nature-based or soft-engineering approaches using 
‘green infrastructure’ for coastal defense are preferred over 
hard engineering approaches in many coastal cities as they 
have been shown to be more cost-effective in the longer term 
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and can serve multiple functions in addition to flood risk 
reduction (Temmerman  et  al. 2013, Spalding  et  al. 2014, 
Reguero et al. 2018). However, these solutions are often not 
adopted due to feasibility (e.g. mangrove planting at sites 
with high wave energy or flow) or socio-economic reasons 
(e.g. lack of political will, support or resources). In addition, 
hard artificial coastal defenses have frequently already been 
constructed and cannot realistically be removed. Given that 
more human-made shorelines are expected to be built in 
the foreseeable future, it is critical to find ways to increase 
their ecological and social value while maintaining their 
engineering function (Borsje et al. 2011, Loke et al. 2019a). 
The ecological engineering of human-made shoreline struc-
tures is a new but dynamic field, and there is often a tradeoff 
between taking time to understand these habitats as a system, 
and the urgency or desire to implement practical solutions 
(Morris et al. 2019). Knowledge of urban shoreline ecosys-
tems and of strategies that effectively enhance ecosystem 
functioning and services should improve over time, as eco-
logical enhancement and blue/green infrastructure projects 
become more common and are applied in a broader variety of 
urban marine environments (Pontee et al. 2016). Developing 
and maintaining research collaborations with industry will be 
essential to ensure that lessons from each of these projects are 
shared and translated into subsequent designs and engineer-
ing solutions (Mayer-Pinto et al. 2017). Further, partnerships 
with city governments and planners will be needed if eco-
logical enhancement projects are to be applied concurrently 
with broader improvements in water quality and at a suffi-
cient scale to have long-standing benefits, and then carefully 
monitored over time.

Critical challenges and research directions

Awareness of the impacts of exploitation, marine pollu-
tion and ocean sprawl, as well as of eco-engineering coun-
termeasures, is growing (Chapman and Underwood 2011, 
Morris  et  al. 2016, Lotze  et  al. 2018, Strain  et  al. 2019). 
However, there remain many emerging issues, knowledge 
gaps and research needs at numerous scales for understand-
ing the dynamics of urban marine ecosystems (Airoldi et al. 
2005, Kueffer and Kaiser-Bunbury 2014) and building urban 
marine ecology as a discipline. Here, we offer some critical 
research questions and areas for investigation that have yet to 
be fully addressed.

1. What are the interactive effects of multiple stressors in 
urbanized coastal areas, including feedbacks and changes 
over time?

2. Stronger characterization of spatial and temporal patterns 
of biodiversity in urbanized marine environments.

3. What are the mechanisms driving marine synanthropy?
4. Key marine urban ecosystem functions, their most essen-

tial drivers, and likely future trajectories – including 
implications for current and future provisioning of eco-
system services.

5. Assessment of the evidence for urban-driven trait selection 
in the marine environment.

6. What ecological enhancement approaches (ecological 
engineering, green- and blue-infrastructure, etc.) are most 
effective in urban settings?

There are also numerous questions related to the key ecolog-
ical processes discussed in the section ‘Key ecological patterns’ 
that need to be elucidated, especially disentangling co-varying 
stressors and determining the long-term responses of organ-
isms and populations to marine urbanization. Ultimately, all 
aspects of coastal city design: architecture, urban planning 
and civil and municipal engineering, will need to prioritize 
the marine environment if the negative effects of urbanization 
are to be minimized. In particular, planning strategies that 
account for the interactive effects of drivers and accommo-
date complex system dynamics should enhance the ecological 
and human functions of future urban marine ecosystems.
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