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Abstract

The sustainability of dynamic natural systems often depends on their capac-
ity to adapt to uncertain climate-related changes, where different management
options may be combined to facilitate this adaptation. Salt marshes exemplify
such a system. Marsh sustainability under rapid sea level rise requires the preser-
vation of transgression zones - undeveloped uplands onto which marshes migrate.
Whether these uplands eventually become marsh depends on uncertain sea level
rise and natural dynamics that determine migration onto different land types.
Under conditions such as these, systematically diversified management actions
generally outperform ad hoc or non-diversified alternatives. This paper devel-
ops the first adaptation portfolio model designed to optimize the benefits of a
migrating coastal system. Results are illustrated using a case study of marsh
conservation in Virginia, USA. Results suggest that models of this type can en-
hance adaptation benefits beyond those available through current approaches.
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1 Introduction

The sustainability of dynamic natural systems often depends on their capacity to adapt

to climate-related changes. The uncertainties associated with such changes and the

effect of management responses pose challenges for economic analysis and decision-

making (Ando and Mallory 2012; Heal and Millner 2014; LaRiviere et al. 2018; New-

bold and Marten 2014; Pindyck 2007). Migrating coastal systems such as salt marshes

exemplify the type of dynamics for which climate-related uncertainty is relevant for

management. Salt marshes are regularly flooded intertidal habitats that provide mul-

tiple ecological functions (Vernberg 1993). The value of these systems is well established

and has been recognized as an important motivation for coastal management (Barbier

et al. 2011, 2013; Gopalakrishnan et al. 2018; Interis and Petrolia 2016; Johnston et

al. 2002a,b, 2005; Milon and Scrogin 2006; Petrolia et al. 2014). Until recently salt

marshes have been largely resilient to changes in sea level due to natural adjustments in

elevation via vegetation growth and sediment accretion, and by migrating landward as

sea levels rise (Kirwan et al. 2010, 2016a). However, there is now widespread concern

about the loss of marsh benefits given the accelerated and uncertain rise in sea level,

with regional and global analyses forecasting a 20− 45% marsh loss by 2100 (Craft et

al. 2009; McFadden et al. 2007).

Efforts to sustain salt marshes typically emphasize the preservation of transgres-

sion zones - undeveloped uplands onto which marshes can migrate landward as sea

levels rise. Given limits in the extent to which marshes can build elevation natu-

rally, the preservation of these zones– often via fee-simple purchase by conservation

organizations– is necessary to ensure marsh persistence in many areas (Enwright et al.

2016; Field et al. 2017; Kirwan and Megonigal 2013; Kirwan et al. 2016b; Torio and

Chmura 2013). The extent to which preserved transgression zones eventually become

marsh, however, depends on uncertain future sea level rise (SLR) and natural dynamics

that determine when and where marshes migrate (Enwright et al. 2016; Feagin et al.
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2010; Kirwan et al. 2016b; Smith 2013). Different types of transgression zones, e.g.,

different land types at different elevations and/or locations, will hence differ in their

expected productivity of future marsh “supply,”where this dynamic productivity is

subject to uncertainty. For example, preserving low-elevation land at marsh edges may

allow marsh migration at low SLR, but will be ineffective at high SLR, which causes

these low-lying areas to submerge or drown. Preserving higher-elevation land will be

ineffective at low SLR (because these areas remain above the marsh edge), but can

enable migration at high SLR.

Because the tendency of marshes to migrate onto different types of preserved upland

depends on uncertain SLR, systematic diversification of this preservation offers a po-

tential means to enhance management benefits. This reflects the capacity of diversified

approaches to hedge against risk (Ando and Mallory 2012). Insuffi ciently diversified

preservation increases the risk that marshes and their benefits will decline or even

vanish, despite efforts to ensure marsh migration. Optimal diversification can mini-

mize such risks, much as it does in financial portfolios (Markowitz 1952; Merton 1969,

1971). The potential benefits of diversification are further evident if one recognizes

that decision-makers are often risk averse (Berrens 2001; Holt and Laury 2002).

Despite recognition of concepts related to asset diversification within economics and

the relevance of uncertainty for decision-making, optimal portfolio models are relatively

sparse within environmental economics. Nonetheless, this literature demonstrates that

often substantial gains are available through systematic treatment of diversification.

For example, Ando and Mallory (2012) demonstrate the benefits of optimal portfolio

design for habitat conservation subject to climate-related uncertainty (cf. Mallory and

Ando 2014; Shah and Ando 2015). Sanchirico et al. (2008) find similar benefits within

ecosystem-based fishery management. Leroux and Martin (2016) and Leroux et al.

(2018) demonstrate the advantages of optimal water supply portfolios. Related work

by Van ’t Veld and Plantinga (2005) finds that optimal portfolios of greenhouse-gas
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mitigation depend on carbon-price paths.1 Yet while the capacity to reduce risk via

hedging can have first-order implications for management (LaRiviere et al. 2018),

economic analyses of conservation decisions rarely capitalize on the insights available

from portfolio theory. Moreover, we are aware of no economic model able to inform

management diversification of this type for dynamic, migrating coastal systems such

as salt marshes.2

This paper develops the first portfolio model designed to optimize the benefits of

a migrating coastal system. The model focuses on the diversification of transgression

zone investments to maximize marsh conservation benefits, while hedging risk across

transgression zone types. The model also provides insight into how diversification

can be adapted to address factors such as differing SLR expectations and preserva-

tion additionality, among other features. Unlike most diversification models in the

environmental literature that derive empirical solutions using modern portfolio theory

(Markowitz 1952; e.g., Ando and Mallory 2012; Mallory and Ando 2014; Sanchirico

et al. 2008), here we develop a dynamic model following Merton (1969, 1971) that

provides closed-form analytical solutions (Bretschger and Vinogradova 2017; Leroux

and Martin 2016, Leroux et al. 2018).3 An empirical illustration is provided using

an application to the Virginia Coast Reserve Long Term Ecological Research (LTER)

site on the Eastern Shore of Virginia, USA, focusing on portfolios that preserve agri-

1Portfolio analyses in ecology and engineering address such topics as species biodiversity and flood
management (Aerts et al. 2008; Crowe and Parker 2008; Figge 2004; Koellner and Schmitz 2006;
Moore et al. 2010; Schindler et al. 2010; Yemshanov et al. 2014; Zhou et al. 2012). Additional
work in economics considers diversification in environmental and resource management, but does not
develop optimal portfolios (e.g., Gourguet et al. 2014; Jardine and Sanchirico 2015; Kasperski and
Holland 2013; Sethi et al. 2014).

2Even analyses proposed as a means to inform salt marsh conservation under uncertainty fail to
consider the role of diversification (e.g., Propato et al. 2018).

3Bretschger and Vinogradova (2017) derive analytical solutions for the optimal consumption profile
and aggregate income share allocated to national emission abatement with uncertain benefits. In the
context of water, closed-form solutions for the optimal water consumption path and composition of an
urban water supply are derived by Leroux and Martin (2016) and augmented in Leroux et al. (2018)
to allow for stochastic habit formation in water consumption. Our theoretical specification is adapted
to represent dynamic coastal resource, and unlike previous dynamic portfolio models allows for the
portfolio to be comprised of only risky assets.
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cultural land, forest land and intertidal land with established marsh. Our empirical

results point to the benefits of emphasizing a particular land type for marsh transgres-

sion (higher-elevation agricultural land) that currently represents only a small portion

of coastal conservation portfolios. The underlying biophysical model accounts for the

dynamic nature of salt marsh geomorphology via a spatial, dynamic, process-based

approach. Although we develop the model for marshes, it may be adapted to other

systems whose sustainability depends on migration, including beaches, dunes and man-

groves (Barbier et al. 2011; Gopalakrishnan et al. 2018; Millar et al. 2007; Parsons et

al. 2013).

2 A Portfolio Model for Salt Marsh Migration

The goal of portfolio design is to identify the combination of land types for preservation

that exploits risk hedging opportunities to maximize expected marsh benefits, subject

to decision-makers’risk aversion and budget. A number of financial portfolio models,

including Markowitz (1952) and Merton (1971), could provide a basic foundation for

a model of this type. Common to all of these is the premise that in an uncertain

world the optimal portfolio effi ciently trades off expected portfolio returns against

the variance of those returns. Markowitz’framework enables the identification of an

effi cient portfolio frontier within a static variance-return space, while Merton’s model

yields the effi cient portfolio that maximizes the flow of benefits over time for a given

set of risk preferences. The former is predominantly empirical; results are typically

obtained via numerical methods given an assumed model structure. The present model

is based on the latter approach, which generates closed-form analytical solutions from

which general economic intuition can be derived, as well as empirical results from a

case study.

Like all models of this type in finance or elsewhere, some aspects of the problem

are simplified to promote tractability and to enable a focus on issues that are most
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relevant to the decision context. The model is also designed around parameters for

which empirical estimates are commonly available. The goal is a readily applicable

model that provides practical insights for marsh conservation. At the same time, we

acknowledge key assumptions and identify mechanisms through which they might be

relaxed as part of model extensions.

2.1 Salt Marsh Dynamics Under Sea-Level Rise

Development of the model requires an understanding of biophysical marsh dynamics.

The dynamics of salt marsh evolution depend on interactions among hydrology, plant

growth, and sediment transport (Fagherazzi et al. 2012; Kirwan and Megonigal 2013;

Reed 1995). The change in marsh area over time depends on the ability of marshes

to build elevation vertically (or accrete) at rates greater than relative SLR, and/or to

migrate onto upland areas at rates faster than erosion at their seaward edge (Kirwan

et al. 2016b). The ability of marshes to build elevation naturally is limited by factors

such as sediment supply and vegetation growth, and hence vertical accretion can only

sustain marshes up to a certain threshold rate of SLR (Kirwan et al. 2010).4 When the

vertical elevation of marsh at any given point cannot keep up with SLR, it eventually

“drowns”and becomes open water.

When this occurs, the only way that marsh can be sustained is if it migrates onto

adjacent uplands (Feagin et al. 2010; Kirwan et al. 2016b; Kirwan and Megonigal

2013; Torio and Chmura 2013). That is, as seas rise, upland areas adjacent to marshes

obtain the ecological conditions (e.g., degree and frequency of inundation, soil salinity)

that enable them to become marsh (Anisfeld et al. 2017; Brinson et al. 1995; Raabe

and Stumpf 2015; Schieder et al. 2018). The ability of marshes to “migrate”in this way

depends on an array of biophysical factors, and on the absence of coastal development
4These thresholds differ across marshes as a function of spatially varying factors that determine

marsh accretion. Kirwan et al. (2016a, p. 256) estimate these thresholds for marshes on the Gulf
and Atlantic coasts of North America and Europe. Their results indicate that “marshes will generally
survive relative SLR rates of 10—50 mm yr−1 during the twenty-first century, depending on tidal range
and suspended sediment availability.”
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or armoring. If adjacent upland areas are armored (e.g., using sea walls), developed,

or topographically altered (via artificial sediment deposition), marshes can no longer

migrate and will be progressively drowned as they are “squeezed”between hardened

uplands and rising seas (Enwright et al. 2016; Torio and Chmura 2013). Hence,

preservation of undeveloped and unarmored uplands for marsh migration, typically

called preserved marsh transgression zones, is necessary for marsh sustainability, and

particularly in areas with rapid coastal development (Kirwan et al. 2016b; Kirwan and

Megonigal 2013).

The speed of SLR and coastal development has motivated calls for “urgent atten-

tion”and “pre-emptive planning to set aside key coastal areas for wetland migration”

(Runting et al. 2017, p. 49). This urgency, also seen in marsh conservation strategies

(e.g., The Nature Conservancy in Virginia 2011), informs the economic model that is

developed. If marsh conservation actions were seen as less urgent, other model types

might be more salient. For example, in some cases the question of optimal preser-

vation might be viewed as a real options problem (Arrow and Fisher 1974) wherein

the optimal timing and allocation of land purchases for marsh preservation depend on

the speed with which new SLR information becomes available. Models of this general

type have been developed to inform conservation under climate change (Leroux and

Whitten 2014). However, two properties of the marsh conservation context imply that

an optimal portfolio approach is better suited to provide relevant information. First,

coastal development pressures in many areas are such that conservation agencies do

not have the luxury to “wait and see” for SLR uncertainty to resolve before mak-

ing decisions. Second, conservation decisions are not irreversible as portfolios can be

rebalanced at any time to account for updated information as it becomes available. Re-

flecting this situation, marsh conservation decisions are typically viewed in terms that

are consistent with an optimal portfolio perspective (i.e., how to allocate conservation

investments now, based on available information). Hence, we proceed with a portfolio
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model, while acknowledging that other adaptation contexts may be conducive to real

options or other approaches that account for decision time paths.

2.2 Defining Portfolio Assets

To examine natural resource conservation from a portfolio perspective requires that all

relevant management options are identified and grouped into classes pertinent for the

decision context. These options define the assets over which the portfolio is optimized.

Among the choices to be made are (1) how many assets to include, and (2) whether

assets are defined in explicit spatial terms. Closed-form models of this type generally

include a small number of assets to maintain tractability. Assets are further chosen to

match the primary conservation choices under consideration (e.g., Ando and Mallory

2012; Leroux and Martin 2016). In the case of salt marsh conservation these choices

include different types of land preservation that provide areas on which marsh may

exist now or in the future. These land types are defined as mutually exclusive com-

binations of land cover or use, elevation, location, and other land characteristics that

determine marsh dynamics. Preserving a particular land type yields specific marsh

benefits subject to uncertainty. In this sense, land types may be viewed as equivalent

to financial assets in an investment portfolio, where each asset is characterized by a

mean return and standard deviation.

Here, asset classes are defined based on marsh dynamics and the primary land cate-

gorizations used within conservation decision-making. Biophysical models of salt marsh

evolution– including the one used for our illustration below– are spatial and designed

to reproduce the natural migration of marshes (Fargherazzi et al. 2012). Models of

this type spatially implement equations that characterize marsh migration processes

over a gridded topography representing conditions at each study site (Appendix B).

For example, marsh accretion rates depend on local elevation relative to mean sea level

and on the distance to the closest channel, both of which are spatially variable and
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change with time. The spatial nature of these forecasts is implied by the patchy nature

of marsh changes forecast over time (e.g., see case study below, Figure 2).

General patterns emerge from these spatial models that can provide insights into

the characteristics of the portfolio assets. Low-elevation uplands (largely forest in our

case study area)– if preserved– can enable effective marsh migration at low rates of

SLR. At higher SLR these low-elevation areas transition from marsh to open water

(i.e., drown). Hence, when higher SLR is expected, higher-elevation transgression

zones (largely agricultural land in our case study) are better able to support marsh

migration and retain marsh properties. The varying slopes of higher versus lower

elevation uplands also determine how much land is inundated by any given SLR. For

example, lower and flatter areas tend to yield relatively more marsh on average as seas

rise, ceteris paribus, but the variance of marsh migration due to changes in sea level

is also greater– leading to a mean versus variance trade-off. In addition to preserving

uplands for marsh migration, one can preserve intertidal land on which marsh is already

established. This preserves current marsh independent of upland migration, and is an

effective way to retain marsh at very low SLR, where there is minimal risk of marsh

drowning.

These patterns are used to define assets within the model. Most marsh conservation

sites include intertidal land and adjacent uplands. In our case study, upland areas are

characterized by high correlation in elevation and land use: agricultural land is found

at higher elevations and at a greater distance from the Atlantic Ocean than lower-

elevation forested land. Conservation decision-making emphasizes these three land

types (agricultural land, forest and intertidal salt marsh) in areas suitable for marsh

migration (The Nature Conservancy 2011; The Nature Conservancy in Virginia 2011;

Bruce and Crichton 2014). Reflecting this situation, the model is designed around

these three preservation land types.

Although we illustrate the model using this land classification, the model structure
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is general and can accommodate any classification for which marsh migration can be

modeled. It is conceptually straightforward to extend the model to more than three

land types or to other classifications.5 For example, if explicitly spatial categorizations

are desired, the model can be adapted accordingly. In general, however, practical limits

on asset numbers and data availability constrain the use of portfolio models for high-

resolution spatial planning. As noted by Mallory and Ando (2014, p. 4), these models

are “most useful for coarse-scale conservation targeting exercises and less well-suited

to function as a parcel-level targeting tool.”However, portfolios emerging from these

models can be combined with supplementary analyses that support spatial targeting

within each portfolio class; an example is provided in Section 4.4 below.

2.3 Model Structure and Objective Function

To develop the portfolio model based on these asset classes, let Ni be the total area

of conserved land of type i in the portfolio, of which proportion Si is currently marsh.

Subscript i = a, f,m, references the three land types (or asset classes) in the portfolio,

where a denotes agricultural land, f is forest andm is intertidal marsh. Commensurate

with financial portfolio theory (Merton 1969, 1971), we define the total size of the marsh

portfolio in monetary terms as M, where

M =
n∑
i=1

ciNiSi. (1)

The costs of preserving units of land type i for the purpose of marsh preservation

are explicit in the form of marginal land costs ci (Si). These costs are sensitive to

marsh intrusion, or the proportion of each land type that is marsh at any given time.

Marsh intrusion is expected to reduce the productivity of transgression zone land for its

current land use (e.g., for agriculture), resulting in reduced land costs λi ≡ dci/dSi < 0,

5Although these land classes are not defined based on explicit spatial attributes (e.g., proximity to
channels), the spatial attributes of these land types are implicit in the underlying biophysical model.
Hence, spatial influences are captured within the portfolio model, even though our current selection
of land types does not include explicit spatial designations.
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i = a, f .6 Marsh drowning on intertidal land on the other hand, implies that land mass

is lost and with it all marsh and alternative land use benefits, hence λm ≡ dcm/dSm > 0.

Following standard nomenclature for models of this type (Leroux and Martin 2016),

we refer to M as the “marsh budget.”7

Asset or portfolio shares θi, are defined as the proportion of the marsh budget

allocated to marsh conservation on land type i at time t, such that

θi ≡
ciNiSi
M

, {i = a, f,m}. (2)

We refer to these as marsh shares, which satisfy the normalization θa + θf + θm = 1.

Marsh shares may be further translated into shares of physical land type i in the

portfolio, as shown in Section 2.4.

From this foundation, the purpose of portfolio optimization is to maximize the

expected discounted utility from salt marsh ecosystem benefits, x (t) , over time t. The

inter-temporal utility function is maximized with respect to x (t) and asset shares θi

according to

max
x,θi

E0

∫ ∞
0

e−δtU (x (t)) dt, {i = a, f,m}. (3)

We assume a standard expected utility specification, where utility, U (x), is strictly

concave in x (t) and is given by U(x) = x (t)(1−γ) / (1− γ) . The parameter γ is a

constant relative risk aversion parameter that characterizes the conservation planner’s

risk attitude associated with the flow of marsh benefits. Given this specification, the

conservation planner has logarithmic preferences for γ = 1 and is risk averse when

γ > 0. The parameter δ denotes the discount rate.

6To the extent that marsh intrusion is correlated with saltwater intrusion, this may also capture
effects related to the latter. Although the biophysical effects of saltwater intrusion on agricultural land
have been studied (Tully et al. 2019), we are aware of no research that models the effect of saltwater
intrusion (or anticipated SLR itself) on the cost of different types of land preservation. Hence, we
leave related extensions of the model for future work.

7This terminology does not imply a traditional budget constraint of the type encountered in static
utility maximization; the formal dynamic constraints for this model are derived below.
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2.4 Dynamic Constraints

Equation (3) is maximized subject to two dynamic constraints. The first governs how

marsh migrates from a biophysical perspective. The second governs how the size of

the marsh porfolio (or the marsh budget) changes over time. These two dynamic

constraints are formalized below.

2.4.1 Biophysical Migration Constraint

The dynamic constraint on biophysical marsh migration is given by

dSi = µidt+ σidzi, {i = a, f,m}. (4)

This describes the change in marsh area on each preserved land type, with Sa, Sf ,

Sm representing respectively the proportion of a unit (km2) of agricultural, forest and

intertidal land that is marsh at a given point in time, where the subscript t has been

dropped for expositional convenience. At time zero we expect a large proportion of

intertidal land to be marsh, Sm 4 1, owing to very limited localized marsh drowning.

In contrast, we expect most transgression zone land to be actively used as agricultural

or forest land, with only marginal marsh intrusion at the current time, Sa, Sf ' 0.

Marsh migration, dSi, is a purely biophysical process, depending on elevation, location,

vegetation cover and SLR, all of which are modelled separately (Section 4.1). Here we

use the biophysical model’s aggregated dynamics by land class, describing the change

in marsh proportion on land class i as a Brownian motion. The mean proportional

change of marsh on land type i is denoted µi and the uncertainty associated with

marsh dynamics on this land type is described by the variance σ2i . The Brownian

motion zi is normally distributed with mean zero and variance dt, zi ∼ N (0, dt). We

allow for marsh risk to be correlated across the different land types, dzadzf = ρafdt,

dzadzm = ρamdt and dzfdzm = ρfmdt.We expect migration onto agricultural and forest

land to be positively correlated, 0 < ρaf < 1, as both are driven by SLR. In contrast,

SLR is likely to cause existing marsh on intertidal land to drown, so that the correlation
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between marsh dynamics on transgression zone and intertidal land are expected to be

negative, −1 < ρam, ρfm < 0.

We initially assume that marshes can only migrate onto land that has been pre-

served as part of the portfolio. This assumption implies that private landowners will

take actions to prevent unpreserved land from becoming marsh (e.g., armoring). Simi-

larly, it is assumed that existing marsh on unpreserved intertidal land will be developed

and converted into some other land use. Hence, the only way that managers can ensure

the future persistence of marsh is to preserve land.8

2.4.2 Dynamic Marsh Budget Constraint

To derive the dynamic constraint on the size of the marsh portfolio, denoted as the

dynamic (marsh) budget constraint, we begin with the marsh budget as described

above and defined by (1). Applying Ito’s lemma to equation (1) yields the change in

M over time

dM =
n∑
i=1

dciNiSi +
n∑
i=1

cidNiSi +
n∑
i=1

ciNidSi +
n∑
i=1

dciNidSi + o (dt) , (5)

where the last term arises as ci is stochastic, being a function of Si, and the term o (dt)

groups higher order terms in dt.

Models in financial portfolio theory (Merton 1969, 1971) acknowledge a consumption-

investment trade-off (cf. Kamien and Schwartz 1981, p. 248), whereby expansion of

marsh in the portfolio via new land purchases, represented by dNi, requires a consump-

tion sacrifice (Leroux and Martin 2016). Here it is the consumption of marsh ecosystem

benefits, xdt, valued at v at the margin, that is sacrificed (i.e., sold) to finance these

purchases, where v reflects the marginal willingness to pay for these benefits (or ser-

vices). We initially assume a simple case in which each unit area of marsh provides

identical benefits regardless of its location and the land type from which it originated.

8A more general approach is adopted in Section 2.5 by allowing for a non-zero probability that
marsh can persist and migrate onto different types of unpreserved land.
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This assumption is relaxed in Section 2.5.9 Unlike the returns from a financial port-

folio, salt marsh benefits have quasi-public good characteristics, meaning that only a

proportion φ of these benefits can be assigned tradeable property rights in markets for

ecosystem services, such as recreational, hunting or fishing access, or salt marsh hay

harvesting (Bromberg Gedan et al. 2009).10 The associated consumption-investment

trade-offbetween consuming all marsh benefits and privatizing some in order to finance

additional marsh preservation is hence given by
∑n

i=1 cidNiSi = −φvxdt.

Using the above expression in (5) yields

dM =
n∑
i=1

dciNiSi +

n∑
i=1

ciNidSi +
n∑
i=1

dciNidSi − φvxdt+ o (dt) . (6)

Substituting (4) for dSi in (6) and using the definition of marsh shares θi, in (2) gives

dM =
n∑
i=1

θi
λi
ci
µiMdt+

n∑
i=1

θi
λi
ci
σiMdzi +

n∑
i=1

θiµi
M

Si
dt+

n∑
i=1

θiσi
M

Si
dzi

+
n∑
i=1

θi
λi
ci
σ2i
M

Si
dt− φvxdt+ o (dt) . (7)

Imposing the normalization restriction, the resulting dynamic budget constraint may

be rewritten as

dM = θaµ̃aMdt+ θf µ̃fMdt+ µ̃mMdt+ θa (σ̃adza − σ̃mdzm)M

+θf (σ̃fdzf − σ̃mdzm)M + σ̃mMdzm − φvxdt+ o (dt) , (8)

where

µ̃m =
µm
Sm

+
λm
cm
µm +

λm
cm

σ2m
Sm

, (9)

µ̃a =
µa
Sa

+
λa
ca
µa +

λa
ca

σ2a
Sa
− µ̃m, (10)

µ̃f =
µf
Sf

+
λf
cf
µf +

λf
cf

σ2f
Sf
− µ̃m. (11)

9There is no conclusive evidence suggesting that the long run economic value of marsh area is
affected by land use prior to marsh transition. This is consistent with the wetland valuation literature,
none of which identifies a systematic effect of marsh provenance on value. Hence, average marsh value
is initially assumed to be independent of its provenance (i.e., the original land type), and hence
optimizing over marsh area is formally equivalent to optimizing over marsh value, if one considers a
typical area and type of marsh. However, this need not always be the case.
10As the parameters v and φ are model scalars and independent of land class i, they have no effect

on the optimal portfolio composition.
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The term µ̃m represents the risk-adjusted return from existing marsh on intertidal

land, and µ̃a and µ̃f are respectively the risk-adjusted excess returns of agricultural

and forest land relative to µ̃m. Marsh migration per proportion of salt marsh on the

relevant land type is captured by the first term in equations (9) to (11), while the

second term represents mean migration adjusted for the change in land costs due to

marsh drowning on intertidal land, λm, and salt marsh intrusion on transgression zone

land, λa, λf . The third term adjusts land type’s i mean return by type i’s migration

risk and land cost. Finally, σ̃i in equation (8) is the cost-adjusted standard deviation

given by

σ̃i = σi

(
1

Si
+
λi
ci

)
, {i = a, f,m}. (12)

2.5 Model Solution

The model solution is obtained by maximizing expected utility (3) with respect to x (t)

and θi, subject to the two dynamic constraints (4) and (8), and initial condition for the

marsh budget M (0) = M0. As shown in Appendix A, the optimal solution is obtained

by solving the following Hamilton-Jacobi-Bellman equation

δV = max
x,θa,θf

(
x(1−γ)/ (1− γ)

)
− φvxVM +

[
θaµ̃a + θf µ̃f + µ̃m

]
MVM

+
1

2

[
θ2a
(
σ̃2a − 2σ̃am + σ̃2m

)
+ σ̃2m + θ2f

(
σ̃2f − 2σ̃fm + σ̃2m

)
(13)

+ 2θaθf
(
σ̃af − σ̃am − σ̃fm + σ̃2m

)
+ 2θa

(
σ̃am − σ̃2m

)
+ 2θf

(
σ̃fm − σ̃2m

)]
M2VMM

)
+ o (dt) ,

where σ̃ij = ρijσ̃iσ̃j, represents the cost-adjusted covariance between land types i and

j, and V is the time-invariant value function. The derivatives VM and VMM denote

the first and second derivatives of the value function with regard to the marsh budget,

M . Maximizing (13) with respect to θa and θf and using the closed-form solution

V = AM1−γ, to solve for the optimal marsh portfolio yields optimal marsh shares from
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agricultural, forest and intertidal land (see Appendix A)

θa =

[(
µ̃a
γ
− σ̃am + σ̃2m

)(
σ̃2f − 2σ̃fm + σ̃2m

)
−
(
µ̃f
γ
− σ̃fm + σ̃2m

)(
σ̃af − σ̃am − σ̃fm + σ̃2m

)]
(14)

×
[ (

σ̃2a − 2σ̃am + σ̃2m
) (
σ̃2f − 2σ̃fm + σ̃2m

)
−
(
σ̃af − σ̃am − σ̃fm + σ̃2m

)2]−1
,

θf =

[(
µ̃f
γ
− σ̃fm + σ̃2m

)(
σ̃2a − 2σ̃am + σ̃2m

)
−
(
µ̃a
γ
− σ̃am + σ̃2m

)(
σ̃af − σ̃am − σ̃fm + σ̃2m

)]
(15)

×
[ (

σ̃2a − 2σ̃am + σ̃2m
) (
σ̃2f − 2σ̃fm + σ̃2m

)
−
(
σ̃af − σ̃am − σ̃fm + σ̃2m

)2]−1
,

with the share allocated to intertidal marsh obtained from the normalization constraint

θm = 1− θa − θf . (16)

These model solutions provide insight into the characteristics of optimal portfolios.

For example, close inspection of marsh-share equations (14) to (16) reveals that under

most conditions, land type i’s share is higher the higher is its risk-adjusted excess

mean return dθi/dµ̃i > 0 and the lower is the risk-adjusted excess mean migration

onto the alternative transgression zone land type, dθi/dµ̃j < 0. Optimal marsh share

on land type i decreases with uncertainty surrounding marsh migration onto land type

i, dθi/dσ2i < 0. Expressions (14) and (15) further show that the relationship between

risk aversion, γ, and marsh share is ambiguous, and depends on the relative size of

excess returns, variances and covariances.

Equations (14) to (16) represent the optimal share of marsh from land type i in the

marsh portfolio and are a function of all parameters of the model, except the marsh

budget M. However, as the conservation planner is ultimately interested in the shares

of each land type that comprise the optimal land conservation portfolio, we use (2) to

convert marsh shares θi, into land shares θ
l
i, according to

θli =
θiM

ciSi
∑
Ni

, {i = a, f,m}, (17)
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where
∑
Ni represents the total conservation area that is preserved for a given M and

θi. Equations (14) to (16) and (17) constitute a key result of the theoretical model.

These equations characterize the portfolio shares that maximize the expected value of

marsh conservation subject to uncertain marsh dynamics and SLR. It is straightforward

to show that corresponding land shares θli, decrease with respective land costs dθ
l
i/dci <

0, as one would expect. Assuming that the key conditions of the model continue to

hold, these shares are applicable to a land portfolio of any given size.

The optimal marsh benefit x, from solving (13) is given by (see Appendix A)

x = (φv)
− 1
γ (1− γ)

− 1
γ A

− 1
γM, (18)

where A is a constant defined implicitly in terms of the parameters of the model as

A
− 1
γ = δ

1− γ
γ

1
γ

(φv)
1
γ
−1 − (1− γ)1+

1
γ

γ
(φv)

1
γ
−1 (θaµ̃a + θf µ̃f + µ̃m

)
+

1

2
(1− γ)1+

1
γ (φv)

1
γ
−1 [θ2a (σ̃2a − 2σ̃am + σ̃2m

)
(19)

+θ2f
(
σ̃2f − 2σ̃fm + σ̃2m

)
+ σ̃2m + 2θaθf

(
σ̃af − σ̃am − σ̃fm + σ̃2m

)
+ 2θa

(
σ̃am − σ̃2m

)
+ 2θf

(
σ̃fm − σ̃2m

)]
,

and where θa and θf are respectively the solutions for the agricultural land and forest

marsh shares from (14) and (15). As (φv)
− 1
γ (1− γ)

− 1
γ A

− 1
γ is a constant, equation

(18) shows that marsh benefits x, are proportional to the marsh budget M . Moreover,

given the definition of the µ̃i in equations (9) to (11) as well as the definition of σ̃i in

(12), equation (18) implies a non-linear relationship between the optimal marsh benefit

x and the proportion of marsh on land type i, Si.

2.6 Portfolios Under Additionality and Provenance Effects

The baseline model may be extended in various ways. For example, thus far we have

assumed that privately owned land will be armored with probability pi = 1 to pre-

vent marsh from migrating onto that land. Similarly, we have assumed that existing
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marsh will be developed or otherwise lost in the absence of conservation. Under these

assumptions, the additional benefit from purchasing a unit of land for marsh trans-

gression is equal to the expected marsh benefit on that land. In practice, however, not

all private land will likely be armored against SLR, nor will all unpreserved salt marsh

be developed. Where private land remains unarmored, marsh can migrate onto that

land in the same way as it migrates onto preserved land. Consequently, the economic

benefit of spending conservation funds to preserve private land that will never be ar-

mored or developed in the future is zero, because preserving this type of land provides

no additional benefit. These issues relate to the concept of additionality, or whether

the environmental services provided by a given policy intervention would have been

provided in the absence of that intervention (Pattanayak et al. 2010).

To allow for additionality, we extend the model to consider the probabilities pa, pf

and pm of armoring private agricultural land and forest or developing intertidal land as

being equivalent to the additionality provided by conserving that land. Suppose that

conservation of a piece of forest land has a probability of being armored of pf = 0.25.

This would imply that marsh transgression in the absence of conservation would occur

with probability of 1 − pf = 0.75, thereby reducing the value of marsh benefit from

conserving this land by 3/4. The effect of additionality matters for the analysis if the

probability pi varies across land types. Formally, this implies defining the unit value

of marsh benefit from land type i as vi ≡ piv, and rewriting dM in (6) as

dM =
n∑
i=1

d
ci
vi
NiSi +

n∑
i=1

ci
vi
NidSi +

n∑
i=1

d
ci
vi
NidSi − φxdt, (20)

with marsh shares now re-defined as θi ≡ ciSiNi/ (viM) and solving as before. This

solution parallels that shown previously in equations (14) - (16) and (17), but with ci

replaced by ci/vi and λi ≡ d (ci/vi) /dSi, while M is interpreted as the physical marsh

budget and expressed in km2.

An identical model structure may be used to account for cases in which the value

of marsh depends on provenance, or the type of land from which the marsh originated.
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For example, one might consider a case in which marsh that was originally agricultural

land has higher or lower average value than marsh that was originally forest. In this

case, the equation introduced above, vi ≡ piv, may be reinterpreted as a measure of

different underlying unit values of marsh benefit from land type i, whereby pi = 1 is

assigned to the land type that generates the highest-value marsh, and pi < 1 to other

land types, reflecting the proportionally lower value of marsh from those land types.

Depending on the interpretation of this model structure (i.e., additionality or prove-

nance effects on marsh benefits), the formal solution leads to an intuitive result that

higher shares of land type i in the optimal portfolio are associated with (a) higher

probability of armoring on land type i (and hence greater additionality), and/or (b)

higher value of marsh originating from land type i. Illustrative empirical results of this

effect for the additionality case are shown below.

Additional insight may be gained through empirical applications of the model.

These applications can be particularly informative when analytical results alone pro-

vide insuffi cient or inconclusive insight on particular effects of interest, or when quanti-

tative insights on portfolio shares are desired. Because the presented approach provides

closed-form, analytical solutions, it may be applied to any site for which suffi cient data

are available to calibrate the model.

3 Empirical Illustration - Salt Marsh Conservation
at the Virginia Coast Reserve

Illustrative empirical results of the model are demonstrated for a case study application

to a 100 km2 coastal area within the US Virginia Coast Reserve LTER on the Eastern

Shore of Virginia, USA, as depicted in Figure 1 (Hayden et al. 1991). Current land

cover within the case study site includes 49 km2 of existing marsh and 51 km2 of up-

land, of which 2.2 km2 has been developed and armored. Remaining upland areas are

comprised of 27.3 km2 of agricultural land and 21.5 km2 of forest onto which marshes
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can potentially migrate, provided that the land is preserved in a way that enables mi-

gration (Brinson et al. 1995). This migration is necessary to offset losses due to erosion

and drowning at the seaward edge (Deaton et al. 2017). Given development pressures,

a major focus of conservation in the area is the preservation of marsh transgression

zones (Bruce and Crichton 2014; The Nature Conservancy 2011).

This case study site is similar to many other coastal areas in the US and elsewhere.

Hence, while the specific empirical results of the analysis are limited to our case study

site, the general patterns and economic intuition are likely applicable to other areas.

The biophysical model is run over a 90-year time horizon until 2100.

Figure 1 about here

3.1 Biophysical Dynamics of Marsh Migration

Net marsh migration (marsh migration minus marsh drowning) subject to uncertain

SLR is simulated using a dynamic process-based model with 30m grid spacing, based

on standard approaches (Fagherazzi et al. 2012; Kirwan et al. 2010, 2016b; Schile

et al. 2014). Details are given in Appendix B. The spatial model predicts when and

where SLR leads to marsh migration, and the conditions under which portions of marsh

drown due to insuffi cient accretion. This approach incorporates dynamic processes af-

fecting the vertical evolution of a salt marsh (e.g., feedbacks between flooding frequency,

vegetation growth, organic accretion, and sediment deposition) and inundation-driven

marsh migration, as influenced by spatial features such as channel and marsh location.

We begin with a set of four possible mean SLR trajectories, based on regionally

appropriate SLR scenarios from low to intermediate-high developed by the Sea Level

Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force (Sweet et

al. 2017).11 These scenarios involve local mean SLR projections that correspond to

11Developed from updated global mean SLR scenarios, the corresponding regional scenarios of SLR
are incorporated into the U.S. coastal risk management tools and capabilities for deployment by
individual U.S. agencies (Sweet et al. 2017).
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a total local rise of 0.32, 0.60, 0.90 and 1.7 meters by 2100. These scenarios reflect

uncertainty (or more formally, risk) related to mean SLR over long periods. We also

incorporate random annual fluctuation in mean sea level (with a standard deviation

of 0.04m) based on annual variation of mean sea level observed at Wachapreague, VA.

This provides four stochastic SLR projections over which marsh changes are forecast.

To generate distributions of marsh extent for each year over the 90-year period, the

dynamic model is repeated 50 times for each SLR projection and land type, with each

run corresponding to a unique set of stochastic annual fluctuations in sea level.12

Migration means and variances are estimated from these stochastic time series.

These reflect the net gain or loss of marsh for each grid across the entire modeled

area, at each point in time, distinguished by land type. These are central inputs

to portfolio model calibration. For illustration, Figure 2 shows projected results for

agricultural, forest and marsh land, by the year 2100, compared to current land cover.

The leftmost map shows current land cover, followed by projected mean model results

for projected SLRs of 0.32, 0.60, 0.90 and 1.7m, moving rightward. These illustrative

forecasts assume that all undeveloped land is preserved for migration, and illustrate

a situation in which marsh migration exceeds drowning at low SLR, but drowning

exceeds migration at higher SLR. At the highest level of 1.7m, virtually all existing

marsh is projected to be lost by 2100.13

Figure 2 about here
12Independent calibrations are provided for each SLR projection, based on standard modeling ap-

proaches (Kirwan et al. 2016b). Each projection is grounded in a unique, path-dependent set of
“underlying ... socioeconomic conditions and technological considerations” (Sweet et al. 2017, p.
13). Because future conditions cannot instantaneously jump between the socio-technical scenarios
underlying different SLR projections (given their path-dependence), separate migration models are
estimated and portfolios identified for each one. We then consider the sensitivity of results to discrete
probability distributions over the four SLR projections, allowing for cases in which policy makers
have different perceptions regarding the relative likelihood that each will occur (Section 4.2). This
approach parallels the treatment of climate scenarios within prior portfolio models (e.g., Ando and
Mallory 2012; Mallory and Ando 2014).
13To calculate patterns of potential marsh migration the biophysical model considers the case in

which all private land has been purchased as transgression zone land. This does not affect the optimal
marsh or land shares calculated from the economic model, which can be applied to a land portfolio
of any size.
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3.2 Calibration of the Portfolio Model

The resulting parameter values used for the baseline model calibration are summarized

in Table 1. The initial proportions of marsh on agricultural Sa = 0.03, and on forest

land Sf = 0.16, were approximated from historic aerial records.14 The same records

suggest that approximately 5% of historic salt marsh has drowned such that Sm = 0.95

of what was once marsh remains. Allowing for these initial marsh proportions yields

transgression areas of Na = 28.1 km2 and Nf = 25.6 km2 for agricultural and forest

land respectively and an intertidal marsh area of Nm = 44.5km2.

For the baseline model land costs ci per km2, and the marginal changes in these costs

for a change in marsh proportion λi, are drawn fromGardner and Johnston (2018). This

prior study reports average purchase costs of different types of undeveloped land parcels

using data on all raw land transactions from 2014 to 2016 in the two counties that

encompass the study site (Accomack and Northampton, Virginia).15 The average costs

for each land type are ca = 1, 425, 302 $/km2, cf = 904, 651 $/km2 and cm = 567, 320

$/km2. These are the expected costs of purchasing raw land for preservation via fee-

simple market purchase, which is the predominant method of land preservation in the

area. For the given values of Ni, Si and ci, the initial marsh budget is calculated as

M0 = 28.82 $m.

The marginal change in land costs with respect to marsh intrusion is calculated

based on a linear interpolation of these average costs, assuming a 1 percent change

of each km2 of land from one type to another (e.g., farm to marsh). This yields

λa ≡ dca/dSa = −8, 580 $/km2 and λf ≡ dcf/dSf = −3, 373 $/km2. The change

14Under initial conditions each land type includes some marsh, as explained above. Most of the
intertidal land is covered by marsh. Recently formed marsh on adjacent land, where the prior land
use is still clearly identifiable, retains its original classification as agricultural or forest land.
15The total amount of agricultural land in the modeled area is 27.3 km2, which represents less than

6 percent of the active farmland in these two counties, based on GIS land use data retrieved from
https://www.acrevalue.com/ on March 5, 2019. Given this small percentage we do not expect that
conservation in the area (that would realistically target only a portion of this small area) would have
a significant effect on agricultural land prices.
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in intertidal land cost as marsh drowns and becomes open water is measured as the

marginal value of marsh land, λm ≡ dcm/dSm = 5, 673 $/km2. For comparison, and

to evaluate the robustness of portfolio results to other land cost assumptions, we also

calibrate the model using alternative cost estimates drawn from hedonic models of

undeveloped land sales in Gardner and Johnston (2018) and Allen et al. (2006). These

alternative calculations lead to similar land cost estimates and nearly identical optimal

portfolio results (Appendix C).

The value of marsh, v in equation (8), is not pivotal to the baseline model results

as this estimate does not influence portfolio shares because benefits do not vary by

marsh provenance.16 Hence, we approximate these benefits using the published meta-

analytic results of Ghermandi et al. (2010). This meta-analysis allows estimation of

wetland value per km2 per year, for a wetland of specified attributes, generating an

estimated value of 3, 104, 403 $/km2 of marsh.17 The marsh value reported in Table 1

includes public as well as private benefits, where only the private benefits can be sold

to increase the marsh budget as per equation (8). We assume that these privatizeable

benefits account for about φ = 0.05 of total annual marsh benefits. We illustrate the

model for an annual discount rate of δ = 0.03, although the model can be readily

adapted to any desired rate of discount.18

While anecdotal evidence points to a high degree of risk aversion among conser-

vationists (e.g., Berrens 2001), there are no empirical studies of the risk attitudes of

marsh conservation planners that could be used to determine γ. Our baseline calibra-

tion assumes γ = 1.5. This value implies a relatively high level of risk aversion in

many experimental settings (Holt and Laury 2002), but falls within the lower range of

16Section 2.6 illustrates how the model can be adapted to allow v to vary across land classes.
17We use this model to estimate annual value in 2018 USD per km2 for a salt marsh in the study

area, subject to medium/low human pressure and providing water quality improvements, habitat and
nonuse, amenity and aesthetic values. Other variable values are representative of the study site,
including income (from US Census data for Virginia) and total wetland area within 50 km of the
study site (https://www.fws.gov/wetlands/Data/Mapper.html).
18This rate is consistent with the central discount rate recommended by the U.S. EPA for climate-

related projects (U.S. EPA 2014, pp. 6-19).
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estimates that are implied by natural resource planners’decisions in related settings

(Leroux and Martin 2016; Leroux et al. 2018). Sensitivity analyses of the results un-

der alternative degrees of risk aversion suggest that the basic results of the model are

robust to a wide range of assumptions regarding this parameter. Hence, these results

are omitted for conciseness.

Table 1 about here

The means and standard deviations of the change in marsh proportions by land

type and SLR scenario are estimated using biophysical model outputs for years 0

to 90, and are reported in Table 2. Higher SLR leads to greater marsh migration

onto transgression zone land, with migration onto forest being faster, µf > µa, and

more volatile, σf > σa, than migration onto agricultural land across all scenarios.

Uncertainty with respect to migration increases with higher SLR for migration onto

agricultural land, but decreases for migration onto forest. In contrast, the aerial extent

of existing marsh remains mostly steady for low and medium SLR and decreases as a

result of marsh drowning for higher SLR. The uncertainty surrounding existing marsh

also increases with higher SLR.

Correlation coeffi cients in Table 2 show that marsh migration onto agricultural and

forest land is positively correlated ρaf > 0. However, across the four scenarios ρaf

decreases steadily, which implies that the risks associated with marsh migration are

increasingly driven by transgression zone characteristics rather than by uncertainties

surrounding marsh migration more generally. Transgression zone migration is neg-

atively correlated with existing salt marsh dynamics, ρam, ρfm < 0, signalling that

investment in transgression zone land may be an effective way to hedge against the

risk of marsh drowning from rising sea levels. The relative effect of SLR on ρam and

ρfm, suggests that agricultural land could be an increasingly important hedge against

the risk of existing marsh drowning.

Table 2 about here
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4 Empirical Results

This section presents the results of the illustrative empirical calibration. We first

illustrate results for the baseline model. This is followed by sensitivity analyses of SLR

perceptions among conservation planners and additionality effects. We also illustrate

an extension of the model that enables spatial targeting of land preservation within

each asset class.

4.1 Optimal Portfolio as a Function of SLR

Table 3 presents the optimal portfolio, based on the parameter values summarized in

Tables 1 and 2. Two types of portfolios are presented for each scenario. The first is the

optimal marsh portfolio based on equations (14) to (16), where the share θi represents

the optimal share of the total marsh budget allocated to land type i. The second is

the corresponding physical land portfolio, where θli represents the share of a particular

transgression zone in the total preserved land portfolio according to equation (17).

In some instances the difference between marsh and land shares is noticeable. For

example, while agricultural marsh shares range from 0.07 ≤ θa ≤ 0.51, for rises in sea

level of 0.32m to 0.90m, the corresponding agricultural land shares are considerably

higher, between 0.47 ≤ θla ≤ 0.93. This is because Sa < Sf < Sm. Hence, the land

share required to achieve the optimal marsh share from agricultural land is relatively

larger than for the other land types. For practical reasons marsh conservation planners

are primarily interested in the optimal mix of land in their conservation portfolios, and

so the discussion that follows focuses on land shares, θli.
19

As shown in Table 3, optimal land portfolios across all scenarios are dominated by

agricultural land. Agricultural land share increases from just below 0.5 to the maximum

of 1.0 between the lowest and highest scenarios, as marsh on agricultural land is least

likely to drown. The preservation of some current salt marsh area is optimal provided

19These results are similarly applicable to the optimal marsh portfolio, defined by marsh shares θi.

24



SLR remains low to moderate. Similarly, the benefits from investing in forest land for

marsh migration are limited to low and medium SLR, as marsh on forest land also

becomes highly susceptible to drowning at higher SLR. This illustrates the potentially

important role of SLR uncertainty for marsh conservation decisions.

Table 3 about here

4.2 Optimal Portfolios under Combinations of SLR Scenarios

The optimal conservation portfolio depends on SLR expectations, which could involve

some probability distribution over a number of possible scenarios. While decision-

makers’expectations regarding SLR are generally unknown, an optimal portfolio can

be generated for any given decision-maker with a specified set of assumptions.20 Table

4 shows three illustrative cases. The optimistic case assumes that the likelihood of

the lowest SLR scenario is 70% with the remaining 30% equally distributed across the

other three scenarios. The middle case assumes equal weighting across all four scenarios

and the pessimistic case assumes that the highest scenario occurs with a probability of

70% while the three lower scenarios have equal weight of 10%. As shown in columns

2 to 4 in Table 4, greater optimism by the conservation planner with respect to future

SLR implies more diversified portfolios with investments in all three land classes being

optimal. As one becomes more pessimistic about SLR, portfolios are re-weighted more

heavily towards agricultural land.

Table 4 about here

The portfolio of land that is currently preserved in the study area is reported in

the last line of Table 4, and consists of 14% agricultural land, 7% forest land, and

20Because alternative SLR projections are grounded in different socio-technical assumptions regard-
ing the future world, objective probabilities for these distributions have not been established (Sweet et
al. 2017). Hence, we follow standard practice (e.g., Ando and Mallory 2012) and conduct sensitivity
analysis according to various possible assumptions regarding these probabilities.
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79% intertidal land.21 In comparison, all optimal land portfolios for SLRs of 0.32m

and above place greater emphasis on preserving agricultural land. This result suggests

that current conservation strategies may have led to an over-investment in existing salt

marsh and under-investment in transgression zone land.

When interpreting the discrepancy between optimal and observed portfolios, it

must be recognized that conservation decisions are subject to a number of consider-

ations that are not modeled here, such as supply- and demand-side constraints. For

example, not all land types may be available for purchase in required quantities at all

times, a conservation agency may not always be in a position to purchase land when

it becomes available, and agencies may consider other conservation benefits beyond

those associated with salt marsh. Planners may have different expectations regarding

SLR than those considered above (although the observed portfolio is non-optimal even

under very optimistic SLR expectations). Other considerations that may also influ-

ence decisions inlcude the relative likelihood of agricultural versus forest land being

armored against SLR or existing marsh being developed in the absence of preservation

(see Section 4.4). Moreover, despite a sense of urgency concerning the need to preserve

transgression zones (Runting et al. 2017), some conservation planners might nonethe-

less espouse a “wait and see”approach, delaying the preservation of higher-elevation

land until sea levels approach these elevations. These and other factors may represent

some of the difference between the seemingly non-optimal conservation strategies that

are currently observed and the optimal solutions derived here.

Such caveats aside, the large discrepancy between the observed and optimal port-

folios suggests that current conservation decisions may not be optimal. This is not

surprising as there is no means to characterize optimal diversification in the absence

of model results such as these.
21These estimates are based on land conservation data from the NOAA Coastal Change Analysis

Program, (https://www.coast.noaa.gov/digitalcoast/).
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4.3 Benefits of Diversification

To assess the importance of optimal portfolio investment, column 5 of Table 4 reports

the ratio of the benefits from the optimal xopt, and observed portfolios xobs, based on

(18).22 Given that the model objective is to identify the portfolio that maximizes marsh

benefits x in (3), it is not surprising that the optimal portfolio outperforms the observed

portfolio in this criterion in all combinations of SLR scenarios considered. The relative

benefits of portfolio optimization increase the more pessimistic the conservation agency

is with respect to SLR. In the optimistic case the benefits from the optimal portfolio

exceed those obtainable from the observed portfolio by 8%, while the benefits from the

optimal portfolio are 46% higher than those obtainable from the observed portfolio in

the pessimistic case.

The observed portfolio includes 79% of intertidal land which is the least expensive

land type. Portfolio optimization requires significant investment in comparatively more

expensive agricultural land, resulting in 58% to 92% higher land costs than the observed

portfolio (column 6, Table 4). Implications for net benefits (i.e., benefits minus costs),

are calculated following Hallegatte et al. (2012). We report the difference in net

benefits per km2 of conserved land from the optimal and observed portfolios in the last

column of Table 4.23 For the optimistic case we observe marginally higher net benefits

from the optimal portfolio than the observed portfolio. As greater weight is put on

to the possibility of high SLR, the optimal portfolio yields net benefits that are USD

0.54m higher in the balanced case, and USD 1.55m higher in the pessimistic case than

the net benefits that result from the observed portfolio.24

22The optimal and observed marsh benefits are calculated based on the initial marsh wealth per
km2 of preserved land.

23The net benefit for a 90-year time horizon is calculated as NB = xv
(
1− e−90δ

)
/
(
106×δ

)
−

3∑
i

θlici

and reported in USD m per representative km2 of preserved land.
24A sensitivity analysis with respect to a realistic range of the privatizeable proportion of marsh

benefits, 0.01 ≤ φ ≥ 0.15, reveals for the pessimistic case that the difference in net benefits between
the optimal and observed portfolio range from USD 10.34m to USD 0.08m. As discussed above, this
parameter has no impact on the optimal portfolio, only on the benefits that are realized.
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4.4 Allowance for Spatial Targeting

A natural extension of the model is to a case in which spatial targeting of conservation

is desired. Although optimal portfolio models alone are not suitable for high-resolution

spatial targeting (Ando and Mallory 2014)25, the model may be integrated with sup-

plemental analyses that inform such targeting, conditional on land classes and optimal

shares identified by the portfolio model. An approach of this type allows one to capi-

talize on the rich spatial information provided by the underlying biophysical model.

This section illustrates such a model extension for the agricultural land class, al-

though a parallel exercise can be conducted for any land type. The approach applies

standard performance ratio methods developed within financial modeling to select indi-

vidual assets optimally within asset classes (Farinelli et al. 2008; Sharpe 1994; Stoyanov

et al. 2007). We illustrate this targeting for marsh conservation using a reward-risk

performance ratio µak/σak, where µak is the mean marsh return on individual land

area k within land type a (agricultural land), and σak is the corresponding standard

deviation. This is equivalent to the Sharpe Ratio compared to a default riskless asset

(zero investment) that provides zero marsh return (Sharpe 1994). Individual land areas

within an asset class may be ranked in terms of this performance ratio, enabling these

areas to be prioritized in terms of the reward-risk ratio.

To illustrate the approach empirically we disaggregate agricultural land in the study

site into 30 areas of roughly equal size, each containing a minimum of 600 modelled

grid cells, each spaced 30m apart. The performance ratio is calculated for each of these

areas following parallel methods to those discussed above. For the sake of conciseness,

we illustrate results only for the 0.6m SLR scenario, although analogous results may

be generated for any scenario. Under this low-to-moderate SLR scenario, 14 of the

25Closed-form solutions are infeasible for large number of asset classes, precluding fine-scale spa-
tial targeting within the portfolio model itself. Similar constraints apply to financial models, which
provide guidance for diversification over broad asset classes (e.g., stocks, bonds) rather than specific
investments (e.g., one company’s stock).
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30 areas are characterized by µak/σak > 0, and would hence be suitable for marsh

conservation. Figure 3 shows the reward-risk prioritization for these areas mapped

across the case study region, along with information on area elevation in meters.

As shown by the portfolio shares in Table 3, 76% of the optimal portfolio is com-

prised of agricultural land under the 0.60m SLR scenario. Figure 3 demonstrates how

specific areas can be prioritized within this agricultural land class, subject to exogenous

factors such as the availability of parcels for conservation at any given time. Results

are consistent with expectations. Under the 0.60m SLR scenario, conservation within

the agricultural land class should target relatively low elevation areas close to current

marsh edges - as higher elevation agricultural areas have little marsh migration under

low-to-moderate SLR. Although most high priority agricultural parcels occur in low-

lying easterly regions where agriculture is interspersed with current marsh, some also

occur in upland areas, particularly towards the northern end of the case study area.

Results such as these provide a readily accessible means to help decision-makers opti-

mally target individual areas within general land classes (or portfolio assets), based on

standard reward-risk ratios that are consistent with the underlying portfolio model.26

Figure 3 about here

4.5 Portfolio Optimization under Additionality

This section illustrates the effects of additionality assumptions for our case study,

grounded in the model adaptation introduced by Section 2.6. For illustrative purposes,

we first assume that armoring on private agricultural and forest land occurs with

probabilities pa = pf = 1, while existing salt marsh is converted to some other land use

with varying probability 0 ≤ pm ≤ 1. The result of this sensitivity analysis is shown

26Because performance ratios of this type do not consider the covariances across asset types that are
central to portfolio optimization, they are not well suited to identifying underlying portfolio shares.
Moreover, any within-asset targeting exercise that causes mean returns, variances or covariances of
the resulting asset class to differ significantly from those used to optimize the original portfolio shares,
may influence the optimality of those shares. These and related issues are discussed by Sharpe (1994),
inter alia.
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in the left panel of Figure 4 for the case of a 0.6m SLR. As the probability of salt

marsh conversion increases, so does the optimal share of existing salt marsh in the land

conservation portfolio. This rebalancing of the optimal portfolio occurs primarily at the

expense of agricultural land shares. The right-hand panel of Figure 4 demonstrates an

alternative case where existing marsh is developed with pm = 0.2, agricultural land is

always armored (pa = 1) , while forest is armored with varying probability 0 ≤ pf ≤ 1.

It shows that lower additionality from forest preservation leads to larger shares of

agricultural land being held in the optimal land portfolio, as expected.27 If marsh is

allowed to migrate freely on all privately held forest land (pf = 0) and all private farm

land is armored (pa = 1), then the optimal portfolio contains no forest land.28

Figure 4 about here

4.6 Summary of Key Results

The results presented above demonstrate the type of insight that can be provided

through systematic consideration of diversification within coastal climate adaptation.

Theoretical results demonstrate how optimal portfolios respond to biophysical and

socio-economic dimensions, including factors such as land costs and characteristics of

both the landscape and conservation planners. Empirical results point to the benefits

of emphasizing a particular land type for marsh transgression (higher-elevation agri-

cultural land) that currently represents only a small portion of coastal conservation

portfolios. Other key empirical results include the following.

Result 1 Drivers: Optimal portfolios for marsh conservation depend nonlinearly on

expected SLR and corresponding rates of marsh migration onto different land

27This analysis is based on λi ≡ d civi /dSi = 0, as we are unable to estimate the effect of marsh
migration on the probability of armoring or marsh conversion.
28The observed portfolio is sub-optimal over the wide range of additionality probabilities. To obtain

optimal portfolios that resemble the observed portfolio, one would have to assume very low addition-
ality in agricultural land conservation and very high additionality in forest and marsh conservation,
which is not consistent with observed patterns at the study site.
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types. They also depend on economic factors such as preservation additionality

across land types.

Result 2 Portfolio Composition: Greater SLR is associated with larger proportions

of higher-elevation agricultural land in the marsh conservation portfolio, ranging

from 0.47 at low SLR to 1.00 at high SLR in the baseline scenario. Forest land

has the lowest share, at a maximum of 0.12 under low SLR.

Result 3 Policy Relevance: Current conservation strategies may have under-invested

in transgression zone land, especially in agricultural land, for which the observed

share is 14% compared to 60%− 92% for the optimal share.

Result 4 Benefits and Costs: Portfolio optimization yields higher conservation costs

per km2, but also results in higher marsh benefits. Considering both benefits

and costs, the estimated net benefit of optimal diversification relative to observed

management increase with SLR, ranging from USD 0.5m to 1.55m per km2 of

preserved land.

Result 5 Spatial Targeting: Allowing for spatial targeting, conservation within the

agricultural land class for the low-medium SLR should target relatively low ele-

vation areas close to current marsh edges.

Result 6 Additionality: The greater is the additionality in marsh conservation from

a given land type the greater is its share in the optimal land portfolio.

5 Discussion and Conclusions

Although illustrated for a particular case study, the structure of the theoretical model

facilitates applications to diverse marsh conservation contexts. For example, it can be

adapted to other transgression zone classes or numbers, including cases in which as-

sets are defined using explicit spatial attributes. One might also consider applications
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in which a lower-risk but higher-cost management option exists– such as alternatives

in which marshes are artificially constructed and then maintained in perpetuity via

management interventions to increase sediment delivery and accretion. Although the

model is demonstrated using four illustrative SLR scenarios, it can accommodate alter-

native stochastic paths. The model can also be adapted to marsh migration projections

provided via other biophysical modeling approaches. In addition, the model can be up-

dated to consider patterns of marsh benefits not considered here, but that might be

relevant in different coastal contexts. Parallel models could be developed for other

types of migrating assets vulnerable to climate change.

Naturally, the presented results must be viewed with respect to the implicit and ex-

plicit assumptions of the model, together with the characteristics and limitations of the

case study. Results of any model of this type may be affected by model specification,

including the treatment of marsh migration dynamics. The model is also estimated

contingent upon constant means and variances for marsh migration, whereas the in-

clusion of exogenous factors and structural breaks can lead to instances in which the

means and variances of environmental economic phenomena are time-varying. Gener-

alizations of the model for such cases is left for future work. The insights of the model

are also contingent upon the set of management alternatives considered– here repre-

sented by the preservation of alternative land classes for marsh migration. Finally, as

emphasized above, the model is designed for a case in which conservation planners wish

to identify an optimal portfolio of conservation actions based on information available

today. Portfolios can then be rebalanced at any time to accommodate new information

as it becomes available. We do not, however, formally consider the optimal timing of

marsh conservation decisions, which would require a different modeling approach and

is beyond the scope of the current analysis.

In closing, we emphasize that despite the complexity of the underlying mathematics,

portfolio models of dynamic, natural assets provide concrete empirical guidance that is
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readily understood by decision-makers, and for which sensitivity analysis can be con-

ducted. This facilitates the direct use and exploration of results to inform adaptation

decisions.
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A Figures and Tables

Figure 1: Aerial photograph of the VCR Study Site, Virginia, USA (Google Earth).

Figure 2: Forecast Land Use Cover by the year 2100 for the VCR Study Site (maps left
to right are current conditions and projections at 0.32, 0.60, 0.90 and 1.7m sea level
rise, respectively).
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Figure 3: Conservation ranking of individual agricultural land areas based on the marsh
migration reward-risk performance ratio, µak/σak. Only areas for which µak/σak > 0
are shown.

Intertidal Land Forest

Figure 4: Optimal land portfolio composition under varying probabilities of marsh benefits
being lost in the absence of land class conservation. The continuous line is θla and the dashed
line is θla + θlf .
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Table 1:

Base case parameter values.

Description Parameter Value Unit Source(a)

Agricultural transgression area Na 28.08 km2 emp. biophys. model

Forest transgression area Nf 25.61 km2 emp. biophys. model

Intertidal marsh area Nm 44.50 km2 emp. biophys. model

Prop. of marsh on agric. land Sa 0.028 emp. biophys. model

Prop. of marsh on forest land Sf 0.161 emp. biophys. model

Prop. of marsh on intertidal land Sm 0.950 emp. biophys. model

Agricultural land cost ca 1, 425, 302 $/km2
Gardner & Johnston (2018)

Forest land cost cf 904, 651 $/km2
Gardner & Johnston (2018)

Intertidal land cost cm 567, 320 $/km2
Gardner & Johnston (2018)

Change in agricultural land cost dca/dSa −8, 580 $/km2
comp.

Change in forest land cost dcf/dSf −3, 373 $/km2
comp.

Change in intertidal land cost dcm/dSm 5, 673 $/km2
comp.

Willingness to pay for marsh (p.a.) v 3, 104, 403 $/km2
Ghermandi et al. (2010)

Privatizeable marsh benefits (prop.) φ 0.05 Ghermandi et al. (2010)

Discount rate (p.a.) δ 0.03 U.S. EPA. (2014)

Risk aversion parameter γ 1.50 Leroux et al. (2016, 2018)

(a) ‘emp. biophys. model’: the parameter value is empirically derived from the biophysical marsh

model, ‘comp.’: the parameter value is computed from empirical estimates.
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Table 2:

Annual mean change (µi), standard deviation (σi) and correlation
(
ρij
)
of the

proportion of marsh on agricultural land (i = a), forest (i = f) and intertidal land
(i = m) by SLR scenario.

SLR Marsh Migration Correlation
Agriculture Forest Intertidal Coeffi cients
µa σa µf σf µm σm ρaf ρam ρfm

0.32m 0.000 0.005 0.001 0.038 0.001 0.011 0.930 −0.545 −0.652
0.60m 0.001 0.006 0.002 0.027 0.000 0.012 0.832 −0.778 −0.896
0.90m 0.001 0.007 0.003 0.025 −0.002 0.029 0.771 −0.867 −0.672
1.70m 0.002 0.007 0.003 0.025 −0.010 0.061 0.624 −0.895 −0.399

Table 3:

Optimal marsh and land portfolio shares for agricultural land
(
θa, θ

l
a

)
, forest

(
θf , θ

l
f

)
and intertidal land

(
θm, θ

l
m

)
by SLR scenario.

SLR Marsh Shares(a) Land Shares(b)

θa θf θm θla θlf θlm
0.32m 0.07 0.07 0.86 0.47 0.12 0.41
0.60m 0.25 0.12 0.63 0.76 0.10 0.14
0.90m 0.51 0.00 0.49 0.93 0.00 0.07
1.70m 1.00 0.00 0.00 1.00 0.00 0.00

(a) Based on equations (14) to (16). (b) Based on equation (17).

Table 4:

Optimal land portfolio shares for agricultural land (θla), forest (θ
l
f) and intertidal land

(θlm) under alternative weights on a combined SLR scenario.

Combined Land Shares(a) Benefit Cost Net Benefit
SLR Ratio(b) Ratio(c) Difference(d)

θla θlf θlm
xopt

xobs
costopt

costobs NBopt−NBobs

Optimistic(e) 0.60 0.09 0.31 1.08 1.58 0.05
Balanced(f) 0.79 0.05 0.16 1.21 1.79 0.54
Pessimistic(g) 0.92 0.02 0.06 1.46 1.92 1.55
Observed 0.14 0.07 0.79 1 1 0

(a) Based on equation (17). (b) Based on equation (18). (c) Ratio of total optimal and observed

portfolio land cost based per km2. (d) Difference in net benefit between the optimal and observed

portfolio in USD m per km2. Combined SLR based on weights of (e) 0.7, 0.1, 0.1 and 0.1; (f) 0.25,
0.25, 0.25 and 0.25 and (g) 0.1, 0.1, 0.1 and 0.7 for SLR scenarios of 0.32m, 1.60m, 1.90m and 1.70m.
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A Appendix: Derivations of Marsh Portfolio Model

This appendix contains derivations of key equations shown in the main text. The

optimal solution (see Kamien and Schwartz 1981, p. 248) is obtained by solving the

Hamilton-Jacobi-Bellman equation given in (13). Maximizing this equation with re-

spect to x and rearranging gives the following expression for marsh benefit

x = (φv)
− 1
γ V

− 1
γ

M , (A6)

where VM is the derivative of the value function V with respect to the marsh budget

M. Maximizing the right-hand side of (13) with respect to θa and θf and solving the

system of linear equations yields the portfolio shares for agricultural land and forest(
θa
θf

)
=

(
a b
b c

)−1(
z
y

)
, (A7)

where

a = σ̃2a − 2σ̃am + σ̃2m,

b = σ̃2m + σ̃af − σ̃am − σ̃fm,

c = σ̃2f − 2σ̃fm + σ̃2m,

z = −µ̃a
VM

MVMM

− σ̃am + σ̃2m,

y = −µ̃f
VM

MVMM

− σ̃fm + σ̃2m,

and VMM is the second derivative of V with respect to M. Substituting optimal con-

sumption from (A6) and the optimal share expressions from (A7) into the right-hand

side of (13), yields the second-order differential equation

δV =
γ

1− γ (φv)
1− 1

γ V
1− 1

γ

M +
[
θaµ̃a + θf µ̃f + µ̃m

]
MVM

+
1

2

[
θ2a
(
σ̃2a − 2σ̃am + σ̃2m

)
+ σ̃2m + θ2f

(
σ̃2f − 2σ̃fm + σ̃2m

)
(A8)

+2θaθf
(
σ̃af − σ̃am − σ̃fm + σ̃2m

)
+ 2θa

(
σ̃am − σ̃2m

)
+ 2θf

(
σ̃fm − σ̃2m

)]
M2VMM .

A closed-form solution to (A8) is given by

V = AM1−γ, (A9)
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where A is an unknown constant as implicitly defined in (19). Substitution of the

derivatives VM and VMM into (A7) yields the optimal portfolio shares (14) to (16).

Substituting the derivative of (A9) into (A6) yields the expression for optimal marsh

benefits given in (18), where the analytical solution for A given in (19) is obtained by

substituting (A9) and its corresponding derivatives into (A8) and rearranging. Note

that the marsh benefits arising from any non-optimal marsh portfolio are also deter-

mined by (18), except that θa, θf and θm now represent the non-optimal portfolio

shares.

B Appendix: Biophysical Dynamics of Marsh Mi-
gration

The biophysical model of marsh migration is adapted from prior work (Kirwan and

Murray 2008; Kirwan et al. 2010, 2016b) and a spatial model by Langston et al.

(2019). The model describes the response to relative sea level rise (SLR) of a spa-

tial 2-dimensional topography Z(x, y, t) subject to different land uses. Land uses are

grouped into five general classifications: open (salt) water, marsh, forest, agricultural

and developed land. Given a change in mean sea level (MSL) the model computes the

change in elevation, dominated by marsh accretion, which is adjusted for land use. The

parameter values of the model are calibrated to measurements taken from the Virginia

Coast Reserve LTER study area.

Change in Mean Sea Level

We assume the mean sea level ZMSL at a given time t is given by

ZMSL =

∫ t

0

ŻMSLdt+ δZMSL, (B1)

where t = 0 denotes the initial condition, ŻMSL = R(t) is the average rate of relative sea

level rise, and δZMSL is the fluctuation in mean sea level. The fluctuation inMSL was

found to be normally distributed with standard deviation σ, based on the de-trended,

de-seasonalised interannual variation of MSL from Wachapreague, VA, a site in close

proximity to the study area. Assuming a typical response time of marshes and forests
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to changes in MSL of 6 months, the distribution of MSL fluctuations averaged over

that time has a standard deviation σ ≈ 0.04m. In the simulations we use σ to generate

an annual time series of random fluctuations (δZMSL) for different scenarios j of sea

level rise parameterized by a set of curves Rj (t) .

Marsh Accretion

We assume marsh habitat is defined by flooding frequency and is confined to a fixed

range in elevations: Zm
min < Zr < Zm

max, where Zr = Z−ZMSL(t) is the elevation relative

to mean sea level. The limits Zm
min and Z

m
max, defined relative to mean sea level, are

calculated empirically.

Marshes naturally promote organic and inorganic accretion in response to SLR.

The surface accretion rate Ż ≡ dZ/dt can be written as the sum of the organic Ao and

the inorganic Ai accretion rates

Ż = Ao(Zr) + Ai(Zr, `), (B2)

where we assume: (1) the organic accretion rate Ao is a function of the local elevation

relative to MSL (Zr = Z − ZMSL), and (2) the inorganic accretion rate Ai is function

of both, the local relative elevation Zr, and the distance ` (x, y) to the nearest sediment

source, i.e. channels or flats, defined in the current context as ‘open water’.

Organic accretion rate: The organic accretion rate Ao(Zr) is defined empirically

by calibrating to observed surface accretion rates (after removing the mineral contri-

bution) and assuming its continuity (Ao = 0) along marsh elevation limits, Zm
min and

Zm
max. We find accretion rates change drastically from a typical value Alowo to Ahigho at

a ‘critical’elevation Zr = Zc and can be approximated by

Ao(Z0 < Zr < Z1) = Alowo Θ(Zc − Zr) + Ahigho Θ(Zr − Zc) (B3)

for Zr within the range (Z0, Z1) defined by the quadratic equation (Zm
max−Z0,1)(Z0,1−

Zm
min) = (Zm

max−Zm
min)

2/8. Outside that range, we assume accretion rates decay to zero

according to

Ao(Z1 < Zr < Zm
max) = Ahigho

8(Zm
max − Zr)(Zr − Zm

min)

(Zm
max − Zm

min)
2

, (B4)
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and

Ao(Z
m
min < Zr < Z0) = Alowo

8(Zm
max − Zr)(Zr − Zm

min)

(Zm
max − Zm

min)
2

. (B5)

Inorganic accretion rate: Following reported field measurements and the solu-

tion of simplified conservation equations (Langston et al. 2019) we assume the inor-

ganic accretion rate Ai decays exponentially with the distance `(x, y, t) to the nearest

sediment source:

Ai(Zr, `) = A0i (Zr) exp (−`/Lbasinc ), (B6)

where Lbasinc is the decay length and A0i (Zr) is the accretion rate at the marsh edge

(` = 0).

The decay length Lbasinc in (B6) for a given basin is

Lbasinc = 1.5Lbasinτ/(Twef ), (B7)

where Lbasin is the size of the local basin, τ is the tidal range, T is the tidal period and

wef is the particle effective settling velocity. The size of the local basin L
basin is defined

as the local maximum of `(x, y, t).

The accretion rate A0i (Zr) at the marsh edge is

A0i (Zr) = Amaxi z (Zr)
(

1 +
(
1 + Twef/τ

)−1)
/2, (B8)

with flooding frequency z (Zr) ≈ (1/2− Zr/τ) and theoretical maximum accretion

rate Amaxi = C0w
e
f/ρm, where C0 is the average suspended sediment concentration at

the marsh edge and ρm is the characteristic density of mineral sediments inside the

marsh root layer.

Parameters for the marsh accretion model: Field data from Phillips Creek,

VA (a location within the study area) is consistent with the following set of parameters:

Zm
min = 0.1m, Zm

max = 1.2m, Zc = 0.8m, Alowo = 2.4 10−3m/s, Ahigho = 6 10−3m/s,

τ = 1.4m, wef = 10−4m/s, T = 12.5h and C0 = 5 10−2kg/m3. For the other parameters

we use wef = 10−4m/s and ρm = 2 103kg/m3.

Spatial character of the model: The marsh accretion rate, defined by equa-

tions (B2) and (B6), decreases with the distance to the marsh edge (sediment source)
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and thus changes within the marsh platform. Under SLR, this could lead to local marsh

loss, such as the formation of ponds and channels, as shown in Fig. 2. Furthermore,

as explained below, the dependence of the marsh accretion rate on the elevation Zr

relative to the mean sea level, ensures the upland marsh migration under SLR as the

inter-tidal region characterizing marsh habitat propagates upland with an increase in

sea level.

Change in Land Cover

We model only changes in land cover driven by long-term SLR and interannual fluctu-

ations in mean sea level. Since the location of the mean sea level essentially controls

marsh dynamics, those changes are of three types: (1) conversion to open waters due

to marsh drowning at lower elevations; (2) conversion to marsh due to increasing flood-

ing; and (3) recovery of forest and agricultural land or developed areas due to temporal

marsh loss at higher elevation.

Conversion to open waters: Following our definition of the marsh habitat, we

assume for elevations in the range Z < Zm
min+ZMSL(t), marshes drown within the time

interval ∆t = 1yr used to integrate the model. In that case, land is converted to ‘open

water’, a classification that includes coastal lagoons, tidal flats and tidal channels.

Conversion to marshes: We assume elevations in the range Zm
min + ZMSL(t) <

Z(t) < Zm
max + ZMSL(t), convert into marsh within the time interval ∆t = 1yr, which

leads to marsh upland migration into forest and agricultural land.

Recovery of uplands due to marsh loss: A temporal decrease in mean sea level

due to a random fluctuation can lead to the temporary loss of marsh for elevations in

the range Z > Zm
max + ZMSL(t), and the partial recovery of the previous land use in

that location.

C Appendix: Sensitivity Analysis to Land Costs

This appendix evaluates the robustness of the empirical results in the main text to

alternative land cost estimates, ca, cf and cm, and their sensitivity to marsh encroach-
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ment, dca/dSa, dcf/dSf and dcm/dSm. To conduct the analysis, we re-calibrate the

portfolio model using alternative cost estimates drawn from two prior hedonic models

of undeveloped land prices in the Northeastern US. The first, Gardner and Johnston

(2018), predicts costs of different types of undeveloped land that could be purchased to

ensure marsh migration, including farm, forest and intertidal marsh. This model was

estimated using data on all raw land transactions from 2014 to 2016 in the two coastal

counties that encompass our case study site (Accomack and Northampton, Virginia),

and incorporates spatial variables such as elevation and coastal distance. The second,

Allen et al. (2006), predicts easement prices for similar types of conservation land

(farm, forest and wetland) in three Delaware (USA) coastal counties. This model has

been used previously to inform published models of optimal land conservation (e.g.,

Duke et al. 2014). The applied hedonic models are taken from Table 2 in Gardner

and Johnston (2018) and Table 9 in Allen et al. (2006). We estimate costs assuming

a 1 km2 parcel of agricultural and forest land at 1.96m of elevation, with a parcel

centroid within 100m of the Atlantic coast. The latter two assumptions approximate

anticipated locations and elevations of marsh by 2100, under a high SLR scenario. For

the Allen et al. (2006) model, we further assume a parcel that is 20 miles from the

nearest urban area, approximating the mean distance from the study site to the town

of Cape Charles, Virginia. Other variables are held at mean values for each dataset.

All cost estimates are updated to 2018 USD.

Table 5 compares the resulting land cost estimates to those used in the main text.

Cost estimates are similar regardless of source, with the only notable difference being

somewhat lower costs of forest land estimated using Allen et al. (2006). As shown

in Table 6, re-calibrating the model according to these alternative land cost estimates

yields very similar land shares to those shown in the main text, with no portfolio share

showing more than a 5 percentage point difference across the three calibrations, and

shares virtually identical for higher rates of SLR. None of the fundamental results

discussed in the main text change when alternative land cost estimates are used for

calibration, suggesting a high degree of robustness to these alternative sources of cost

information.
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Table 5:

Alternative land costs.

Description Parameter Base Costs(a) Gardner & Johnston Allen et al. Unit

Agricultural land cost ca 1, 425, 302 1, 376, 070 1, 310, 174 $/km2

Forest land cost cf 904, 651 945, 749 608, 635 $/km2

Salt marsh land cost cm 567, 320 511, 648 433, 130 $/km2

Change in ag. land cost dca/dSa −8, 580 −8, 651 −8, 770 $/km2

Change in forest land cost dcf/dSf −3, 373 −4, 342 −1, 755 $/km2

Change in marsh land cost dcm/dSm 5, 673 5, 116 4, 331 $/km2

(a) Average land costs drawn from Gardner & Johnston (2018). (b) Based on the hedonic land cost

model of Gardner & Johnston (2018). (c) Based on the hedonic land cost model of Allen et al.

(2006).

Table 6:

Optimal land portfolio shares for agricultural land
(
θla
)
, forest

(
θlf
)
and intertidal

land
(
θlm
)
for alternative sea level rise (SLR) scenarios and alternative land costs,

based on equation (17).
SLR Base Costs(a) Gardner & Johnston(b) Allen et al.(c)

θla θlf θlm θla θlf θlm θla θlf θlm
0.32m 0.47 0.12 0.41 0.47 0.11 0.42 0.42 0.15 0.44
0.60m 0.76 0.10 0.14 0.76 0.09 0.15 0.72 0.13 0.16
0.90m 0.93 0.00 0.07 0.93 0.00 0.07 0.92 0.00 0.08
1.70m 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

(a) Based on the average land costs drawn from Gardner & Johnston (2018). (b) Based on the

hedonic land cost models of Gardner & Johnston (2018). (c) Based on the hedonic land cost model

of Allen et al. (2006).
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