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Abstract

The sustainability of dynamic natural systems often depends on their capac-
ity to adapt to uncertain climate-related changes, where different management
options may be combined to facilitate this adaptation. Salt marshes exemplify
such a system. Marsh sustainability under rapid sea level rise requires the preser-
vation of transgression zones - undeveloped uplands onto which marshes migrate.
Whether these uplands eventually become marsh depends on uncertain sea level
rise and natural dynamics that determine migration onto different land types.
Under conditions such as these, systematically diversified management actions
generally outperform ad hoc or non-diversified alternatives. This paper devel-
ops the first adaptation portfolio model designed to optimize the benefits of a
migrating coastal system. Results are illustrated using a case study of marsh
conservation in Virginia, USA. Results suggest that models of this type can en-
hance adaptation benefits beyond those available through current approaches.
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1 Introduction

The sustainability of dynamic natural systems often depends on their capacity to adapt
to climate-related changes. The uncertainties associated with such changes and the
effect of management responses pose challenges for economic analysis and decision-
making (Ando and Mallory 2012; Heal and Millner 2014; LaRiviere et al. 2018; New-
bold and Marten 2014; Pindyck 2007). Migrating coastal systems such as salt marshes
exemplify the type of dynamics for which climate-related uncertainty is relevant for
management. Salt marshes are regularly flooded intertidal habitats that provide mul-
tiple ecological functions (Vernberg 1993). The value of these systems is well established
and has been recognized as an important motivation for coastal management (Barbier
et al. 2011, 2013; Gopalakrishnan et al. 2018; Interis and Petrolia 2016; Johnston et
al. 2002a,b, 2005; Milon and Scrogin 2006; Petrolia et al. 2014). Until recently salt
marshes have been largely resilient to changes in sea level due to natural adjustments in
elevation via vegetation growth and sediment accretion, and by migrating landward as
sea levels rise (Kirwan et al. 2010, 2016a). However, there is now widespread concern
about the loss of marsh benefits given the accelerated and uncertain rise in sea level,
with regional and global analyses forecasting a 20 — 45% marsh loss by 2100 (Craft et
al. 2009; McFadden et al. 2007).

Efforts to sustain salt marshes typically emphasize the preservation of transgres-
sion zones - undeveloped uplands onto which marshes can migrate landward as sea
levels rise. Given limits in the extent to which marshes can build elevation natu-
rally, the preservation of these zones—often via fee-simple purchase by conservation
organizations—is necessary to ensure marsh persistence in many areas (Enwright et al.
2016; Field et al. 2017; Kirwan and Megonigal 2013; Kirwan et al. 2016b; Torio and
Chmura 2013). The extent to which preserved transgression zones eventually become
marsh, however, depends on uncertain future sea level rise (SLR) and natural dynamics

that determine when and where marshes migrate (Enwright et al. 2016; Feagin et al.



2010; Kirwan et al. 2016b; Smith 2013). Different types of transgression zones, e.g.,
different land types at different elevations and/or locations, will hence differ in their
expected productivity of future marsh “supply,” where this dynamic productivity is
subject to uncertainty. For example, preserving low-elevation land at marsh edges may
allow marsh migration at low SLR, but will be ineffective at high SLR, which causes
these low-lying areas to submerge or drown. Preserving higher-elevation land will be
ineffective at low SLR (because these areas remain above the marsh edge), but can
enable migration at high SLR.

Because the tendency of marshes to migrate onto different types of preserved upland
depends on uncertain SLR, systematic diversification of this preservation offers a po-
tential means to enhance management benefits. This reflects the capacity of diversified
approaches to hedge against risk (Ando and Mallory 2012). Insufficiently diversified
preservation increases the risk that marshes and their benefits will decline or even
vanish, despite efforts to ensure marsh migration. Optimal diversification can mini-
mize such risks, much as it does in financial portfolios (Markowitz 1952; Merton 1969,
1971). The potential benefits of diversification are further evident if one recognizes
that decision-makers are often risk averse (Berrens 2001; Holt and Laury 2002).

Despite recognition of concepts related to asset diversification within economics and
the relevance of uncertainty for decision-making, optimal portfolio models are relatively
sparse within environmental economics. Nonetheless, this literature demonstrates that
often substantial gains are available through systematic treatment of diversification.
For example, Ando and Mallory (2012) demonstrate the benefits of optimal portfolio
design for habitat conservation subject to climate-related uncertainty (cf. Mallory and
Ando 2014; Shah and Ando 2015). Sanchirico et al. (2008) find similar benefits within
ecosystem-based fishery management. Leroux and Martin (2016) and Leroux et al.
(2018) demonstrate the advantages of optimal water supply portfolios. Related work

by Van ’t Veld and Plantinga (2005) finds that optimal portfolios of greenhouse-gas



mitigation depend on carbon-price paths.! Yet while the capacity to reduce risk via
hedging can have first-order implications for management (LaRiviere et al. 2018),
economic analyses of conservation decisions rarely capitalize on the insights available
from portfolio theory. Moreover, we are aware of no economic model able to inform
management diversification of this type for dynamic, migrating coastal systems such
as salt marshes.?

This paper develops the first portfolio model designed to optimize the benefits of
a migrating coastal system. The model focuses on the diversification of transgression
zone investments to maximize marsh conservation benefits, while hedging risk across
transgression zone types. The model also provides insight into how diversification
can be adapted to address factors such as differing SLR expectations and preserva-
tion additionality, among other features. Unlike most diversification models in the
environmental literature that derive empirical solutions using modern portfolio theory
(Markowitz 1952; e.g., Ando and Mallory 2012; Mallory and Ando 2014; Sanchirico
et al. 2008), here we develop a dynamic model following Merton (1969, 1971) that
provides closed-form analytical solutions (Bretschger and Vinogradova 2017; Leroux
and Martin 2016, Leroux et al. 2018).> An empirical illustration is provided using
an application to the Virginia Coast Reserve Long Term Ecological Research (LTER)

site on the Eastern Shore of Virginia, USA, focusing on portfolios that preserve agri-

'Portfolio analyses in ecology and engineering address such topics as species biodiversity and flood
management (Aerts et al. 2008; Crowe and Parker 2008; Figge 2004; Koellner and Schmitz 2006;
Moore et al. 2010; Schindler et al. 2010; Yemshanov et al. 2014; Zhou et al. 2012). Additional
work in economics considers diversification in environmental and resource management, but does not
develop optimal portfolios (e.g., Gourguet et al. 2014; Jardine and Sanchirico 2015; Kasperski and
Holland 2013; Sethi et al. 2014).

2Even analyses proposed as a means to inform salt marsh conservation under uncertainty fail to
consider the role of diversification (e.g., Propato et al. 2018).

3Bretschger and Vinogradova (2017) derive analytical solutions for the optimal consumption profile
and aggregate income share allocated to national emission abatement with uncertain benefits. In the
context of water, closed-form solutions for the optimal water consumption path and composition of an
urban water supply are derived by Leroux and Martin (2016) and augmented in Leroux et al. (2018)
to allow for stochastic habit formation in water consumption. Our theoretical specification is adapted
to represent dynamic coastal resource, and unlike previous dynamic portfolio models allows for the
portfolio to be comprised of only risky assets.



cultural land, forest land and intertidal land with established marsh. Our empirical
results point to the benefits of emphasizing a particular land type for marsh transgres-
sion (higher-elevation agricultural land) that currently represents only a small portion
of coastal conservation portfolios. The underlying biophysical model accounts for the
dynamic nature of salt marsh geomorphology via a spatial, dynamic, process-based
approach. Although we develop the model for marshes, it may be adapted to other
systems whose sustainability depends on migration, including beaches, dunes and man-
groves (Barbier et al. 2011; Gopalakrishnan et al. 2018; Millar et al. 2007; Parsons et
al. 2013).

2 A Portfolio Model for Salt Marsh Migration

The goal of portfolio design is to identify the combination of land types for preservation
that exploits risk hedging opportunities to maximize expected marsh benefits, subject
to decision-makers’ risk aversion and budget. A number of financial portfolio models,
including Markowitz (1952) and Merton (1971), could provide a basic foundation for
a model of this type. Common to all of these is the premise that in an uncertain
world the optimal portfolio efficiently trades off expected portfolio returns against
the variance of those returns. Markowitz’ framework enables the identification of an
efficient portfolio frontier within a static variance-return space, while Merton’s model
yields the efficient portfolio that maximizes the flow of benefits over time for a given
set of risk preferences. The former is predominantly empirical; results are typically
obtained via numerical methods given an assumed model structure. The present model
is based on the latter approach, which generates closed-form analytical solutions from
which general economic intuition can be derived, as well as empirical results from a
case study.

Like all models of this type in finance or elsewhere, some aspects of the problem

are simplified to promote tractability and to enable a focus on issues that are most



relevant to the decision context. The model is also designed around parameters for
which empirical estimates are commonly available. The goal is a readily applicable
model that provides practical insights for marsh conservation. At the same time, we
acknowledge key assumptions and identify mechanisms through which they might be

relaxed as part of model extensions.

2.1 Salt Marsh Dynamics Under Sea-Level Rise

Development of the model requires an understanding of biophysical marsh dynamics.
The dynamics of salt marsh evolution depend on interactions among hydrology, plant
growth, and sediment transport (Fagherazzi et al. 2012; Kirwan and Megonigal 2013;
Reed 1995). The change in marsh area over time depends on the ability of marshes
to build elevation vertically (or accrete) at rates greater than relative SLR, and/or to
migrate onto upland areas at rates faster than erosion at their seaward edge (Kirwan
et al. 2016b). The ability of marshes to build elevation naturally is limited by factors
such as sediment supply and vegetation growth, and hence vertical accretion can only
sustain marshes up to a certain threshold rate of SLR (Kirwan et al. 2010).* When the
vertical elevation of marsh at any given point cannot keep up with SLR, it eventually
“drowns” and becomes open water.

When this occurs, the only way that marsh can be sustained is if it migrates onto
adjacent uplands (Feagin et al. 2010; Kirwan et al. 2016b; Kirwan and Megonigal
2013; Torio and Chmura 2013). That is, as seas rise, upland areas adjacent to marshes
obtain the ecological conditions (e.g., degree and frequency of inundation, soil salinity)
that enable them to become marsh (Anisfeld et al. 2017; Brinson et al. 1995; Raabe
and Stumpf 2015; Schieder et al. 2018). The ability of marshes to “migrate” in this way

depends on an array of biophysical factors, and on the absence of coastal development

4These thresholds differ across marshes as a function of spatially varying factors that determine
marsh accretion. Kirwan et al. (2016a, p. 256) estimate these thresholds for marshes on the Gulf
and Atlantic coasts of North America and Europe. Their results indicate that “marshes will generally
survive relative SLR rates of 10-50 mm yr—! during the twenty-first century, depending on tidal range
and suspended sediment availability.”



or armoring. If adjacent upland areas are armored (e.g., using sea walls), developed,
or topographically altered (via artificial sediment deposition), marshes can no longer
migrate and will be progressively drowned as they are “squeezed” between hardened
uplands and rising seas (Enwright et al. 2016; Torio and Chmura 2013). Hence,
preservation of undeveloped and unarmored uplands for marsh migration, typically
called preserved marsh transgression zones, is necessary for marsh sustainability, and
particularly in areas with rapid coastal development (Kirwan et al. 2016b; Kirwan and
Megonigal 2013).

The speed of SLR and coastal development has motivated calls for “urgent atten-
tion” and “pre-emptive planning to set aside key coastal areas for wetland migration”
(Runting et al. 2017, p. 49). This urgency, also seen in marsh conservation strategies
(e.g., The Nature Conservancy in Virginia 2011), informs the economic model that is
developed. If marsh conservation actions were seen as less urgent, other model types
might be more salient. For example, in some cases the question of optimal preser-
vation might be viewed as a real options problem (Arrow and Fisher 1974) wherein
the optimal timing and allocation of land purchases for marsh preservation depend on
the speed with which new SLR information becomes available. Models of this general
type have been developed to inform conservation under climate change (Leroux and
Whitten 2014). However, two properties of the marsh conservation context imply that
an optimal portfolio approach is better suited to provide relevant information. First,
coastal development pressures in many areas are such that conservation agencies do
not have the luxury to “wait and see” for SLR uncertainty to resolve before mak-
ing decisions. Second, conservation decisions are not irreversible as portfolios can be
rebalanced at any time to account for updated information as it becomes available. Re-
flecting this situation, marsh conservation decisions are typically viewed in terms that
are consistent with an optimal portfolio perspective (i.e., how to allocate conservation

investments now, based on available information). Hence, we proceed with a portfolio



model, while acknowledging that other adaptation contexts may be conducive to real

options or other approaches that account for decision time paths.

2.2 Defining Portfolio Assets

To examine natural resource conservation from a portfolio perspective requires that all
relevant management options are identified and grouped into classes pertinent for the
decision context. These options define the assets over which the portfolio is optimized.
Among the choices to be made are (1) how many assets to include, and (2) whether
assets are defined in explicit spatial terms. Closed-form models of this type generally
include a small number of assets to maintain tractability. Assets are further chosen to
match the primary conservation choices under consideration (e.g., Ando and Mallory
2012; Leroux and Martin 2016). In the case of salt marsh conservation these choices
include different types of land preservation that provide areas on which marsh may
exist now or in the future. These land types are defined as mutually exclusive com-
binations of land cover or use, elevation, location, and other land characteristics that
determine marsh dynamics. Preserving a particular land type yields specific marsh
benefits subject to uncertainty. In this sense, land types may be viewed as equivalent
to financial assets in an investment portfolio, where each asset is characterized by a
mean return and standard deviation.

Here, asset classes are defined based on marsh dynamics and the primary land cate-
gorizations used within conservation decision-making. Biophysical models of salt marsh
evolution—including the one used for our illustration below—are spatial and designed
to reproduce the natural migration of marshes (Fargherazzi et al. 2012). Models of
this type spatially implement equations that characterize marsh migration processes
over a gridded topography representing conditions at each study site (Appendix B).
For example, marsh accretion rates depend on local elevation relative to mean sea level

and on the distance to the closest channel, both of which are spatially variable and



change with time. The spatial nature of these forecasts is implied by the patchy nature
of marsh changes forecast over time (e.g., see case study below, Figure 2).

General patterns emerge from these spatial models that can provide insights into
the characteristics of the portfolio assets. Low-elevation uplands (largely forest in our
case study area)—if preserved—can enable effective marsh migration at low rates of
SLR. At higher SLR these low-elevation areas transition from marsh to open water
(i.e., drown). Hence, when higher SLR is expected, higher-elevation transgression
zones (largely agricultural land in our case study) are better able to support marsh
migration and retain marsh properties. The varying slopes of higher versus lower
elevation uplands also determine how much land is inundated by any given SLR. For
example, lower and flatter areas tend to yield relatively more marsh on average as seas
rise, ceteris paribus, but the variance of marsh migration due to changes in sea level
is also greater—leading to a mean versus variance trade-off. In addition to preserving
uplands for marsh migration, one can preserve intertidal land on which marsh is already
established. This preserves current marsh independent of upland migration, and is an
effective way to retain marsh at very low SLR, where there is minimal risk of marsh
drowning.

These patterns are used to define assets within the model. Most marsh conservation
sites include intertidal land and adjacent uplands. In our case study, upland areas are
characterized by high correlation in elevation and land use: agricultural land is found
at higher elevations and at a greater distance from the Atlantic Ocean than lower-
elevation forested land. Conservation decision-making emphasizes these three land
types (agricultural land, forest and intertidal salt marsh) in areas suitable for marsh
migration (The Nature Conservancy 2011; The Nature Conservancy in Virginia 2011;
Bruce and Crichton 2014). Reflecting this situation, the model is designed around
these three preservation land types.

Although we illustrate the model using this land classification, the model structure



is general and can accommodate any classification for which marsh migration can be
modeled. It is conceptually straightforward to extend the model to more than three
land types or to other classifications.® For example, if explicitly spatial categorizations
are desired, the model can be adapted accordingly. In general, however, practical limits
on asset numbers and data availability constrain the use of portfolio models for high-
resolution spatial planning. As noted by Mallory and Ando (2014, p. 4), these models
are “most useful for coarse-scale conservation targeting exercises and less well-suited
to function as a parcel-level targeting tool.” However, portfolios emerging from these
models can be combined with supplementary analyses that support spatial targeting

within each portfolio class; an example is provided in Section 4.4 below.

2.3 Model Structure and Objective Function

To develop the portfolio model based on these asset classes, let IN; be the total area
of conserved land of type ¢ in the portfolio, of which proportion S; is currently marsh.
Subscript ¢ = a, f, m, references the three land types (or asset classes) in the portfolio,
where a denotes agricultural land, f is forest and m is intertidal marsh. Commensurate
with financial portfolio theory (Merton 1969, 1971), we define the total size of the marsh

portfolio in monetary terms as M, where

i=1

The costs of preserving units of land type ¢ for the purpose of marsh preservation
are explicit in the form of marginal land costs ¢; (S;). These costs are sensitive to
marsh intrusion, or the proportion of each land type that is marsh at any given time.
Marsh intrusion is expected to reduce the productivity of transgression zone land for its

current land use (e.g., for agriculture), resulting in reduced land costs \; = dc; /dS; < 0,

% Although these land classes are not defined based on explicit spatial attributes (e.g., proximity to
channels), the spatial attributes of these land types are implicit in the underlying biophysical model.
Hence, spatial influences are captured within the portfolio model, even though our current selection
of land types does not include explicit spatial designations.



i = a, f.5 Marsh drowning on intertidal land on the other hand, implies that land mass
is lost and with it all marsh and alternative land use benefits, hence A, = dc,,,/dS,, > 0.
Following standard nomenclature for models of this type (Leroux and Martin 2016),
we refer to M as the “marsh budget.””

Asset or portfolio shares 6;, are defined as the proportion of the marsh budget

allocated to marsh conservation on land type ¢ at time ¢, such that

M

0, {i =a, f,m}. (2)

We refer to these as marsh shares, which satisfy the normalization 6, + 0 + 0,,, = 1.
Marsh shares may be further translated into shares of physical land type ¢ in the
portfolio, as shown in Section 2.4.

From this foundation, the purpose of portfolio optimization is to maximize the
expected discounted utility from salt marsh ecosystem benefits, x (¢) , over time ¢. The
inter-temporal utility function is maximized with respect to x (t) and asset shares 6;

according to

max Fy /000 e (x (1)) dt, {i =a, f,m}. (3)

z,0;
We assume a standard expected utility specification, where utility, U (x), is strictly
concave in z (¢) and is given by U(z) = z ()" /(1 —~). The parameter 7 is a
constant relative risk aversion parameter that characterizes the conservation planner’s
risk attitude associated with the flow of marsh benefits. Given this specification, the
conservation planner has logarithmic preferences for v = 1 and is risk averse when

~v > 0. The parameter § denotes the discount rate.

6To the extent that marsh intrusion is correlated with saltwater intrusion, this may also capture
effects related to the latter. Although the biophysical effects of saltwater intrusion on agricultural land
have been studied (Tully et al. 2019), we are aware of no research that models the effect of saltwater
intrusion (or anticipated SLR itself) on the cost of different types of land preservation. Hence, we
leave related extensions of the model for future work.

"This terminology does not imply a traditional budget constraint of the type encountered in static
utility maximization; the formal dynamic constraints for this model are derived below.
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2.4 Dynamic Constraints

Equation (3) is maximized subject to two dynamic constraints. The first governs how
marsh migrates from a biophysical perspective. The second governs how the size of
the marsh porfolio (or the marsh budget) changes over time. These two dynamic

constraints are formalized below.
2.4.1 Biophysical Migration Constraint
The dynamic constraint on biophysical marsh migration is given by
dS; = pdt + 0,dz;, {i=a, f,m}. (4)

This describes the change in marsh area on each preserved land type, with S,, S,
S, representing respectively the proportion of a unit (km?) of agricultural, forest and
intertidal land that is marsh at a given point in time, where the subscript ¢ has been
dropped for expositional convenience. At time zero we expect a large proportion of
intertidal land to be marsh, S,, < 1, owing to very limited localized marsh drowning.
In contrast, we expect most transgression zone land to be actively used as agricultural
or forest land, with only marginal marsh intrusion at the current time, S,, Sy ~ 0.
Marsh migration, d.5;, is a purely biophysical process, depending on elevation, location,
vegetation cover and SLR, all of which are modelled separately (Section 4.1). Here we
use the biophysical model’s aggregated dynamics by land class, describing the change
in marsh proportion on land class ¢ as a Brownian motion. The mean proportional
change of marsh on land type ¢ is denoted u; and the uncertainty associated with

2

marsh dynamics on this land type is described by the variance o7

7. The Brownian

motion z; is normally distributed with mean zero and variance dt, z; ~ N (0,dt). We
allow for marsh risk to be correlated across the different land types, dz.dzy = p,,dt,
dzad2pm = Py, dt and dzpdzy, = py,,dt. We expect migration onto agricultural and forest
land to be positively correlated, 0 < p,; < 1, as both are driven by SLR. In contrast,

SLR is likely to cause existing marsh on intertidal land to drown, so that the correlation

11



between marsh dynamics on transgression zone and intertidal land are expected to be
negative, —1 < p,,, Py, < 0.

We initially assume that marshes can only migrate onto land that has been pre-
served as part of the portfolio. This assumption implies that private landowners will
take actions to prevent unpreserved land from becoming marsh (e.g., armoring). Simi-
larly, it is assumed that existing marsh on unpreserved intertidal land will be developed
and converted into some other land use. Hence, the only way that managers can ensure

the future persistence of marsh is to preserve land.®
2.4.2 Dynamic Marsh Budget Constraint

To derive the dynamic constraint on the size of the marsh portfolio, denoted as the
dynamic (marsh) budget constraint, we begin with the marsh budget as described
above and defined by (1). Applying Ito’s lemma to equation (1) yields the change in

M over time
i=1 i=1 i=1 i=1

where the last term arises as ¢; is stochastic, being a function of S;, and the term o (dt)
groups higher order terms in dt.

Models in financial portfolio theory (Merton 1969, 1971) acknowledge a consumption-
investment trade-off (cf. Kamien and Schwartz 1981, p. 248), whereby expansion of
marsh in the portfolio via new land purchases, represented by d/V;, requires a consump-
tion sacrifice (Leroux and Martin 2016). Here it is the consumption of marsh ecosystem
benefits, zdt, valued at v at the margin, that is sacrificed (i.e., sold) to finance these
purchases, where v reflects the marginal willingness to pay for these benefits (or ser-
vices). We initially assume a simple case in which each unit area of marsh provides

identical benefits regardless of its location and the land type from which it originated.

8 A more general approach is adopted in Section 2.5 by allowing for a non-zero probability that
marsh can persist and migrate onto different types of unpreserved land.
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This assumption is relaxed in Section 2.5.° Unlike the returns from a financial port-
folio, salt marsh benefits have quasi-public good characteristics, meaning that only a
proportion ¢ of these benefits can be assigned tradeable property rights in markets for
ecosystem services, such as recreational, hunting or fishing access, or salt marsh hay
harvesting (Bromberg Gedan et al. 2009).!° The associated consumption-investment
trade-off between consuming all marsh benefits and privatizing some in order to finance
additional marsh preservation is hence given by Z?:l ¢;dN;S; = —pvadt.

Using the above expression in (5) yields

dM = " de;NiS;+ > eiNidS; + Y de;NidS; — doxdt + o (dt) . (6)
i=1 i=1 i=1
Substituting (4) for d.S; in (6) and using the definition of marsh shares 6;, in (2) gives

- )\Z n )‘z n M n M
dM = ; eic_i'uiMdt + ; Hic_iUiMdZi + ; Hz',uigidt + ZZI: Hiaigidzi

)

"N oM
+> 9ic—ia?§dt — pvxdt + o (dt) . (7)
=1

Imposing the normalization restriction, the resulting dynamic budget constraint may

be rewritten as

AM = i, Mdt + 0, Mdt + [, Mdt + 0, (adza — Grmdzn) M

+0¢ (0 pdzg — Tpdzm) M + 0, Mdz, — ¢pvzdt + o (dt), (8)

where
o= b 2 % (10)
Lty = g_;‘i‘i\_;ﬂf‘i‘i\_]{g_i—ﬁm- (11)

9There is no conclusive evidence suggesting that the long run economic value of marsh area is
affected by land use prior to marsh transition. This is consistent with the wetland valuation literature,
none of which identifies a systematic effect of marsh provenance on value. Hence, average marsh value
is initially assumed to be independent of its provenance (i.e., the original land type), and hence
optimizing over marsh area is formally equivalent to optimizing over marsh value, if one considers a
typical area and type of marsh. However, this need not always be the case.

10 A5 the parameters v and ¢ are model scalars and independent of land class 4, they have no effect
on the optimal portfolio composition.
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The term i, represents the risk-adjusted return from existing marsh on intertidal
land, and f1, and i, are respectively the risk-adjusted excess returns of agricultural
and forest land relative to p,,. Marsh migration per proportion of salt marsh on the
relevant land type is captured by the first term in equations (9) to (11), while the
second term represents mean migration adjusted for the change in land costs due to
marsh drowning on intertidal land, ),,, and salt marsh intrusion on transgression zone
land, A,, As. The third term adjusts land type’s ¢ mean return by type i’s migration
risk and land cost. Finally, 7; in equation (8) is the cost-adjusted standard deviation
given by

0, =0 <Sl + %) ; {i=a, f,m}. (12)

2.5 Model Solution

The model solution is obtained by maximizing expected utility (3) with respect to x (%)
and 6;, subject to the two dynamic constraints (4) and (8), and initial condition for the
marsh budget M (0) = My. As shown in Appendix A, the optimal solution is obtained

by solving the following Hamilton-Jacobi-Bellman equation

Vo o= max (x(l_”/ (1—=7)) — dvaViy + [Qalty + Ofip + i) MVar
T.VasVf
+% (02 (5% — 20 am + Goy) + 0oy + 03 (57 — 2641 + ) (13)

+ 29(19]0 (5af — 5am — 5fm + 572.“)

+ 200 (Gam — ) + 205 (Gpm — 02) ] M*Varar) + o0 (dt)

where 0;; = p,;;0,0, represents the cost-adjusted covariance between land types i and
j, and V is the time-invariant value function. The derivatives V), and Vj;5, denote
the first and second derivatives of the value function with regard to the marsh budget,
M. Maximizing (13) with respect to 6, and 6; and using the closed-form solution

V = AM'7, to solve for the optimal marsh portfolio yields optimal marsh shares from

14



agricultural, forest and intertidal land (see Appendix A)

0, = K“— — Gum + 5‘;’”) (53 — 26 ym + 5y
f)/
- (% _5fm+5371) (5af _&am_gfm+53n):| (14)

< [ (32— 2+ 32) (5% 2 g+ 52) — (Fag — Fom — 5y +52)°]

0 = K’% —Gm + 51) (G2 — 26 4m + 02,
_ (% G+ 5;) (Faf — Fam — Fpm + 5;)} (15)

—1
X [ (52 — 25 um + 02) (32 — 25 m +0%) — (Gug — Fam — Gpm + 53,1)2} ,

with the share allocated to intertidal marsh obtained from the normalization constraint

Om=1—0,—04. (16)

These model solutions provide insight into the characteristics of optimal portfolios.
For example, close inspection of marsh-share equations (14) to (16) reveals that under
most conditions, land type i’s share is higher the higher is its risk-adjusted excess
mean return df;/dp, > 0 and the lower is the risk-adjusted excess mean migration
onto the alternative transgression zone land type, df;/dji; < 0. Optimal marsh share
on land type i decreases with uncertainty surrounding marsh migration onto land type
i, df;/do? < 0. Expressions (14) and (15) further show that the relationship between
risk aversion, 7, and marsh share is ambiguous, and depends on the relative size of
excess returns, variances and covariances.

Equations (14) to (16) represent the optimal share of marsh from land type i in the
marsh portfolio and are a function of all parameters of the model, except the marsh
budget M. However, as the conservation planner is ultimately interested in the shares
of each land type that comprise the optimal land conservation portfolio, we use (2) to

convert marsh shares ;, into land shares 92, according to

g O

i = m, {’L = a,f,m}, (17)
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where > V; represents the total conservation area that is preserved for a given M and
;. Equations (14) to (16) and (17) constitute a key result of the theoretical model.
These equations characterize the portfolio shares that maximize the expected value of
marsh conservation subject to uncertain marsh dynamics and SLR. It is straightforward
to show that corresponding land shares 6!, decrease with respective land costs df’ /dc; <
0, as one would expect. Assuming that the key conditions of the model continue to
hold, these shares are applicable to a land portfolio of any given size.

The optimal marsh benefit x, from solving (13) is given by (see Appendix A)
v=(gv) T(1—7) TA M, (18)

where A is a constant defined implicitly in terms of the parameters of the model as

-1 1—~3 1_ 1— )5 1_ ~ ~ -
A~ = 577 (¢U)"’ t— & (QS,U)W ' (011“(1 + ef,uf + :um)
by (=) (00)77 62 (52— 26am + 52) (19)

+0% (67 — 26 + ) + Gy + 2040 (Gaf — Gam — O pm + 0y

+ 20, (Gam — 02) + 207 (Gpm — 52)] »

and where 0, and 0 are respectively the solutions for the agricultural land and forest
marsh shares from (14) and (15). As (qﬁv)f% (1-— 7)7% A 7 is a constant, equation
(18) shows that marsh benefits z, are proportional to the marsh budget M. Moreover,
given the definition of the ji, in equations (9) to (11) as well as the definition of 7; in

(12), equation (18) implies a non-linear relationship between the optimal marsh benefit

x and the proportion of marsh on land type ¢, S;.

2.6 Portfolios Under Additionality and Provenance Effects

The baseline model may be extended in various ways. For example, thus far we have
assumed that privately owned land will be armored with probability p; = 1 to pre-

vent marsh from migrating onto that land. Similarly, we have assumed that existing
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marsh will be developed or otherwise lost in the absence of conservation. Under these
assumptions, the additional benefit from purchasing a unit of land for marsh trans-
gression is equal to the expected marsh benefit on that land. In practice, however, not
all private land will likely be armored against SLR, nor will all unpreserved salt marsh
be developed. Where private land remains unarmored, marsh can migrate onto that
land in the same way as it migrates onto preserved land. Consequently, the economic
benefit of spending conservation funds to preserve private land that will never be ar-
mored or developed in the future is zero, because preserving this type of land provides
no additional benefit. These issues relate to the concept of additionality, or whether
the environmental services provided by a given policy intervention would have been
provided in the absence of that intervention (Pattanayak et al. 2010).

To allow for additionality, we extend the model to consider the probabilities p,, ps
and p,,, of armoring private agricultural land and forest or developing intertidal land as
being equivalent to the additionality provided by conserving that land. Suppose that
conservation of a piece of forest land has a probability of being armored of py = 0.25.
This would imply that marsh transgression in the absence of conservation would occur
with probability of 1 — py = 0.75, thereby reducing the value of marsh benefit from
conserving this land by 3/4. The effect of additionality matters for the analysis if the
probability p; varies across land types. Formally, this implies defining the unit value

of marsh benefit from land type i as v; = p;v, and rewriting dM in (6) as
dM = d—N,S; = N,;dS; d—N,dS; — ¢xdt, 20
2 NS D NS 2 NS .

with marsh shares now re-defined as 0; = ¢;5;N;/ (v;M) and solving as before. This
solution parallels that shown previously in equations (14) - (16) and (17), but with ¢;
replaced by ¢;/v; and \; = d (¢;/v;) /dS;, while M is interpreted as the physical marsh
budget and expressed in km?.

An identical model structure may be used to account for cases in which the value

of marsh depends on provenance, or the type of land from which the marsh originated.
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For example, one might consider a case in which marsh that was originally agricultural
land has higher or lower average value than marsh that was originally forest. In this
case, the equation introduced above, v; = p;v, may be reinterpreted as a measure of
different underlying unit values of marsh benefit from land type ¢, whereby p; = 1 is
assigned to the land type that generates the highest-value marsh, and p; < 1 to other
land types, reflecting the proportionally lower value of marsh from those land types.

Depending on the interpretation of this model structure (i.e., additionality or prove-
nance effects on marsh benefits), the formal solution leads to an intuitive result that
higher shares of land type ¢ in the optimal portfolio are associated with (a) higher
probability of armoring on land type ¢ (and hence greater additionality), and/or (b)
higher value of marsh originating from land type 7. Illustrative empirical results of this
effect for the additionality case are shown below.

Additional insight may be gained through empirical applications of the model.
These applications can be particularly informative when analytical results alone pro-
vide insufficient or inconclusive insight on particular effects of interest, or when quanti-
tative insights on portfolio shares are desired. Because the presented approach provides
closed-form, analytical solutions, it may be applied to any site for which sufficient data

are available to calibrate the model.

3 Empirical Illustration - Salt Marsh Conservation
at the Virginia Coast Reserve

Illustrative empirical results of the model are demonstrated for a case study application
to a 100 km? coastal area within the US Virginia Coast Reserve LTER on the Eastern
Shore of Virginia, USA, as depicted in Figure 1 (Hayden et al. 1991). Current land
cover within the case study site includes 49 km? of existing marsh and 51 km? of up-
land, of which 2.2 km? has been developed and armored. Remaining upland areas are

comprised of 27.3 km? of agricultural land and 21.5 km? of forest onto which marshes
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can potentially migrate, provided that the land is preserved in a way that enables mi-
gration (Brinson et al. 1995). This migration is necessary to offset losses due to erosion
and drowning at the seaward edge (Deaton et al. 2017). Given development pressures,
a major focus of conservation in the area is the preservation of marsh transgression
zones (Bruce and Crichton 2014; The Nature Conservancy 2011).

This case study site is similar to many other coastal areas in the US and elsewhere.
Hence, while the specific empirical results of the analysis are limited to our case study
site, the general patterns and economic intuition are likely applicable to other areas.

The biophysical model is run over a 90-year time horizon until 2100.
Figure 1 about here

3.1 Biophysical Dynamics of Marsh Migration

Net marsh migration (marsh migration minus marsh drowning) subject to uncertain
SLR is simulated using a dynamic process-based model with 30m grid spacing, based
on standard approaches (Fagherazzi et al. 2012; Kirwan et al. 2010, 2016b; Schile
et al. 2014). Details are given in Appendix B. The spatial model predicts when and
where SLR leads to marsh migration, and the conditions under which portions of marsh
drown due to insufficient accretion. This approach incorporates dynamic processes af-
fecting the vertical evolution of a salt marsh (e.g., feedbacks between flooding frequency,
vegetation growth, organic accretion, and sediment deposition) and inundation-driven
marsh migration, as influenced by spatial features such as channel and marsh location.

We begin with a set of four possible mean SLR trajectories, based on regionally
appropriate SLR scenarios from low to intermediate-high developed by the Sea Level
Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force (Sweet et

al. 2017).!' These scenarios involve local mean SLR projections that correspond to

Developed from updated global mean SLR scenarios, the corresponding regional scenarios of SLR
are incorporated into the U.S. coastal risk management tools and capabilities for deployment by
individual U.S. agencies (Sweet et al. 2017).
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a total local rise of 0.32, 0.60, 0.90 and 1.7 meters by 2100. These scenarios reflect
uncertainty (or more formally, risk) related to mean SLR over long periods. We also
incorporate random annual fluctuation in mean sea level (with a standard deviation
of 0.04m) based on annual variation of mean sea level observed at Wachapreague, VA.
This provides four stochastic SLR projections over which marsh changes are forecast.
To generate distributions of marsh extent for each year over the 90-year period, the
dynamic model is repeated 50 times for each SLR projection and land type, with each
run corresponding to a unique set of stochastic annual fluctuations in sea level.'?
Migration means and variances are estimated from these stochastic time series.
These reflect the net gain or loss of marsh for each grid across the entire modeled
area, at each point in time, distinguished by land type. These are central inputs
to portfolio model calibration. For illustration, Figure 2 shows projected results for
agricultural, forest and marsh land, by the year 2100, compared to current land cover.
The leftmost map shows current land cover, followed by projected mean model results
for projected SLRs of 0.32, 0.60, 0.90 and 1.7m, moving rightward. These illustrative
forecasts assume that all undeveloped land is preserved for migration, and illustrate
a situation in which marsh migration exceeds drowning at low SLR, but drowning
exceeds migration at higher SLR. At the highest level of 1.7m, virtually all existing

marsh is projected to be lost by 2100.'3

Figure 2 about here

12Independent calibrations are provided for each SLR projection, based on standard modeling ap-
proaches (Kirwan et al. 2016b). Each projection is grounded in a unique, path-dependent set of
“underlying ... socioeconomic conditions and technological considerations” (Sweet et al. 2017, p.
13). Because future conditions cannot instantaneously jump between the socio-technical scenarios
underlying different SLR projections (given their path-dependence), separate migration models are
estimated and portfolios identified for each one. We then consider the sensitivity of results to discrete
probability distributions over the four SLR projections, allowing for cases in which policy makers
have different perceptions regarding the relative likelihood that each will occur (Section 4.2). This
approach parallels the treatment of climate scenarios within prior portfolio models (e.g., Ando and
Mallory 2012; Mallory and Ando 2014).

13To calculate patterns of potential marsh migration the biophysical model considers the case in
which all private land has been purchased as transgression zone land. This does not affect the optimal
marsh or land shares calculated from the economic model, which can be applied to a land portfolio
of any size.
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3.2 Calibration of the Portfolio Model

The resulting parameter values used for the baseline model calibration are summarized
in Table 1. The initial proportions of marsh on agricultural S, = 0.03, and on forest
land S; = 0.16, were approximated from historic aerial records.'* The same records
suggest that approximately 5% of historic salt marsh has drowned such that S,, = 0.95
of what was once marsh remains. Allowing for these initial marsh proportions yields
transgression areas of N, = 28.1 km? and N; = 25.6 km? for agricultural and forest
land respectively and an intertidal marsh area of N,, = 44.5km?.

For the baseline model land costs ¢; per km?, and the marginal changes in these costs
for a change in marsh proportion \;, are drawn from Gardner and Johnston (2018). This
prior study reports average purchase costs of different types of undeveloped land parcels
using data on all raw land transactions from 2014 to 2016 in the two counties that
encompass the study site (Accomack and Northampton, Virginia).!> The average costs
for each land type are ¢, = 1,425,302 $/km?, ¢; = 904,651 $/km? and ¢, = 567, 320
$/km?. These are the expected costs of purchasing raw land for preservation via fee-
simple market purchase, which is the predominant method of land preservation in the
area. For the given values of N;, S; and ¢;, the initial marsh budget is calculated as
My = 28.82 $m.

The marginal change in land costs with respect to marsh intrusion is calculated
based on a linear interpolation of these average costs, assuming a 1 percent change
of each km? of land from one type to another (e.g., farm to marsh). This yields

Ao = dc,/dS, = —8,580 $/km? and A\; = dcy/dS; = —3,373 $/km?. The change

14Under initial conditions each land type includes some marsh, as explained above. Most of the
intertidal land is covered by marsh. Recently formed marsh on adjacent land, where the prior land
use is still clearly identifiable, retains its original classification as agricultural or forest land.

15The total amount of agricultural land in the modeled area is 27.3 km?, which represents less than
6 percent of the active farmland in these two counties, based on GIS land use data retrieved from
https://www.acrevalue.com/ on March 5, 2019. Given this small percentage we do not expect that
conservation in the area (that would realistically target only a portion of this small area) would have
a significant effect on agricultural land prices.
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in intertidal land cost as marsh drowns and becomes open water is measured as the
marginal value of marsh land, \,, = dc,,/dS,, = 5,673 $/km?. For comparison, and
to evaluate the robustness of portfolio results to other land cost assumptions, we also
calibrate the model using alternative cost estimates drawn from hedonic models of
undeveloped land sales in Gardner and Johnston (2018) and Allen et al. (2006). These
alternative calculations lead to similar land cost estimates and nearly identical optimal
portfolio results (Appendix C).

The value of marsh, v in equation (8), is not pivotal to the baseline model results
as this estimate does not influence portfolio shares because benefits do not vary by
marsh provenance.'® Hence, we approximate these benefits using the published meta-
analytic results of Ghermandi et al. (2010). This meta-analysis allows estimation of
wetland value per km? per year, for a wetland of specified attributes, generating an
estimated value of 3,104,403 $/km? of marsh.!” The marsh value reported in Table 1
includes public as well as private benefits, where only the private benefits can be sold
to increase the marsh budget as per equation (8). We assume that these privatizeable
benefits account for about ¢ = 0.05 of total annual marsh benefits. We illustrate the
model for an annual discount rate of 6 = 0.03, although the model can be readily
adapted to any desired rate of discount.'®

While anecdotal evidence points to a high degree of risk aversion among conser-
vationists (e.g., Berrens 2001), there are no empirical studies of the risk attitudes of
marsh conservation planners that could be used to determine . Our baseline calibra-
tion assumes v = 1.5. This value implies a relatively high level of risk aversion in

many experimental settings (Holt and Laury 2002), but falls within the lower range of

16Gection 2.6 illustrates how the model can be adapted to allow v to vary across land classes.

1T"We use this model to estimate annual value in 2018 USD per km? for a salt marsh in the study
area, subject to medium/low human pressure and providing water quality improvements, habitat and
nonuse, amenity and aesthetic values. Other variable values are representative of the study site,
including income (from US Census data for Virginia) and total wetland area within 50 km of the
study site (https://www.fws.gov/wetlands/Data/Mapper.html).

18This rate is consistent with the central discount rate recommended by the U.S. EPA for climate-
related projects (U.S. EPA 2014, pp. 6-19).
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estimates that are implied by natural resource planners’ decisions in related settings
(Leroux and Martin 2016; Leroux et al. 2018). Sensitivity analyses of the results un-
der alternative degrees of risk aversion suggest that the basic results of the model are
robust to a wide range of assumptions regarding this parameter. Hence, these results
are omitted for conciseness.

Table 1 about here

The means and standard deviations of the change in marsh proportions by land
type and SLR scenario are estimated using biophysical model outputs for years 0
to 90, and are reported in Table 2. Higher SLR leads to greater marsh migration
onto transgression zone land, with migration onto forest being faster, u; > p,, and
more volatile, o > 0,, than migration onto agricultural land across all scenarios.
Uncertainty with respect to migration increases with higher SLR for migration onto
agricultural land, but decreases for migration onto forest. In contrast, the aerial extent
of existing marsh remains mostly steady for low and medium SLR and decreases as a
result of marsh drowning for higher SLR. The uncertainty surrounding existing marsh
also increases with higher SLR.

Correlation coefficients in Table 2 show that marsh migration onto agricultural and
forest land is positively correlated p,; > 0. However, across the four scenarios p,;
decreases steadily, which implies that the risks associated with marsh migration are
increasingly driven by transgression zone characteristics rather than by uncertainties
surrounding marsh migration more generally. Transgression zone migration is neg-
atively correlated with existing salt marsh dynamics, p,,, ps, < 0, signalling that
investment in transgression zone land may be an effective way to hedge against the
risk of marsh drowning from rising sea levels. The relative effect of SLR on p,,, and
Prm, Suggests that agricultural land could be an increasingly important hedge against

the risk of existing marsh drowning.

Table 2 about here
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4 Empirical Results

This section presents the results of the illustrative empirical calibration. We first
illustrate results for the baseline model. This is followed by sensitivity analyses of SLR.
perceptions among conservation planners and additionality effects. We also illustrate
an extension of the model that enables spatial targeting of land preservation within

each asset class.

4.1 Optimal Portfolio as a Function of SLR

Table 3 presents the optimal portfolio, based on the parameter values summarized in
Tables 1 and 2. Two types of portfolios are presented for each scenario. The first is the
optimal marsh portfolio based on equations (14) to (16), where the share 6; represents
the optimal share of the total marsh budget allocated to land type 7. The second is
the corresponding physical land portfolio, where 02 represents the share of a particular
transgression zone in the total preserved land portfolio according to equation (17).
In some instances the difference between marsh and land shares is noticeable. For
example, while agricultural marsh shares range from 0.07 < 6, < 0.51, for rises in sea
level of 0.32m to 0.90m, the corresponding agricultural land shares are considerably
higher, between 0.47 < 02 < 0.93. This is because S, < Sy < S,. Hence, the land
share required to achieve the optimal marsh share from agricultural land is relatively
larger than for the other land types. For practical reasons marsh conservation planners
are primarily interested in the optimal mix of land in their conservation portfolios, and
so the discussion that follows focuses on land shares, §}."

As shown in Table 3, optimal land portfolios across all scenarios are dominated by
agricultural land. Agricultural land share increases from just below 0.5 to the maximum
of 1.0 between the lowest and highest scenarios, as marsh on agricultural land is least

likely to drown. The preservation of some current salt marsh area is optimal provided

9 These results are similarly applicable to the optimal marsh portfolio, defined by marsh shares 0;.
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SLR remains low to moderate. Similarly, the benefits from investing in forest land for
marsh migration are limited to low and medium SLR, as marsh on forest land also
becomes highly susceptible to drowning at higher SLR. This illustrates the potentially

important role of SLR uncertainty for marsh conservation decisions.
Table 3 about here

4.2 Optimal Portfolios under Combinations of SLR Scenarios

The optimal conservation portfolio depends on SLR expectations, which could involve
some probability distribution over a number of possible scenarios. While decision-
makers’ expectations regarding SLR are generally unknown, an optimal portfolio can
be generated for any given decision-maker with a specified set of assumptions.?’ Table
4 shows three illustrative cases. The optimistic case assumes that the likelihood of
the lowest SLR scenario is 70% with the remaining 30% equally distributed across the
other three scenarios. The middle case assumes equal weighting across all four scenarios
and the pessimistic case assumes that the highest scenario occurs with a probability of
70% while the three lower scenarios have equal weight of 10%. As shown in columns
2 to 4 in Table 4, greater optimism by the conservation planner with respect to future
SLR implies more diversified portfolios with investments in all three land classes being
optimal. As one becomes more pessimistic about SLR, portfolios are re-weighted more

heavily towards agricultural land.
Table 4 about here

The portfolio of land that is currently preserved in the study area is reported in

the last line of Table 4, and consists of 14% agricultural land, 7% forest land, and

20Because alternative SLR projections are grounded in different socio-technical assumptions regard-
ing the future world, objective probabilities for these distributions have not been established (Sweet et
al. 2017). Hence, we follow standard practice (e.g., Ando and Mallory 2012) and conduct sensitivity
analysis according to various possible assumptions regarding these probabilities.
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79% intertidal land.?! In comparison, all optimal land portfolios for SLRs of 0.32m
and above place greater emphasis on preserving agricultural land. This result suggests
that current conservation strategies may have led to an over-investment in existing salt
marsh and under-investment in transgression zone land.

When interpreting the discrepancy between optimal and observed portfolios, it
must be recognized that conservation decisions are subject to a number of consider-
ations that are not modeled here, such as supply- and demand-side constraints. For
example, not all land types may be available for purchase in required quantities at all
times, a conservation agency may not always be in a position to purchase land when
it becomes available, and agencies may consider other conservation benefits beyond
those associated with salt marsh. Planners may have different expectations regarding
SLR than those considered above (although the observed portfolio is non-optimal even
under very optimistic SLR expectations). Other considerations that may also influ-
ence decisions inlcude the relative likelihood of agricultural versus forest land being
armored against SLR or existing marsh being developed in the absence of preservation
(see Section 4.4). Moreover, despite a sense of urgency concerning the need to preserve
transgression zones (Runting et al. 2017), some conservation planners might nonethe-
less espouse a “wait and see” approach, delaying the preservation of higher-elevation
land until sea levels approach these elevations. These and other factors may represent
some of the difference between the seemingly non-optimal conservation strategies that
are currently observed and the optimal solutions derived here.

Such caveats aside, the large discrepancy between the observed and optimal port-
folios suggests that current conservation decisions may not be optimal. This is not
surprising as there is no means to characterize optimal diversification in the absence

of model results such as these.

2l These estimates are based on land conservation data from the NOAA Coastal Change Analysis
Program, (https://www.coast.noaa.gov/digitalcoast/).
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4.3 Benefits of Diversification

To assess the importance of optimal portfolio investment, column 5 of Table 4 reports

t obs

the ratio of the benefits from the optimal 7", and observed portfolios x°”*, based on
(18).22 Given that the model objective is to identify the portfolio that maximizes marsh
benefits z in (3), it is not surprising that the optimal portfolio outperforms the observed
portfolio in this criterion in all combinations of SLR scenarios considered. The relative
benefits of portfolio optimization increase the more pessimistic the conservation agency
is with respect to SLR. In the optimistic case the benefits from the optimal portfolio
exceed those obtainable from the observed portfolio by 8%, while the benefits from the
optimal portfolio are 46% higher than those obtainable from the observed portfolio in
the pessimistic case.

The observed portfolio includes 79% of intertidal land which is the least expensive
land type. Portfolio optimization requires significant investment in comparatively more
expensive agricultural land, resulting in 58% to 92% higher land costs than the observed
portfolio (column 6, Table 4). Implications for net benefits (i.e., benefits minus costs),
are calculated following Hallegatte et al. (2012). We report the difference in net
benefits per km? of conserved land from the optimal and observed portfolios in the last
column of Table 4.2 For the optimistic case we observe marginally higher net benefits
from the optimal portfolio than the observed portfolio. As greater weight is put on
to the possibility of high SLR, the optimal portfolio yields net benefits that are USD
0.54m higher in the balanced case, and USD 1.55m higher in the pessimistic case than

the net benefits that result from the observed portfolio.?*

22The optimal and observed marsh benefits are calculated based on the initial marsh wealth per
km? of preserved land.

3
23The net benefit for a 90-year time horizon is calculated as NB = zv (1 — 67906) / (106 x6)—> 0lec;

and reported in USD m per representative km? of preserved land.

24 A sensitivity analysis with respect to a realistic range of the privatizeable proportion of marsh
benefits, 0.01 < ¢ > 0.15, reveals for the pessimistic case that the difference in net benefits between
the optimal and observed portfolio range from USD 10.34m to USD 0.08m. As discussed above, this
parameter has no impact on the optimal portfolio, only on the benefits that are realized.
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4.4 Allowance for Spatial Targeting

A natural extension of the model is to a case in which spatial targeting of conservation
is desired. Although optimal portfolio models alone are not suitable for high-resolution
spatial targeting (Ando and Mallory 2014)%*, the model may be integrated with sup-
plemental analyses that inform such targeting, conditional on land classes and optimal
shares identified by the portfolio model. An approach of this type allows one to capi-
talize on the rich spatial information provided by the underlying biophysical model.

This section illustrates such a model extension for the agricultural land class, al-
though a parallel exercise can be conducted for any land type. The approach applies
standard performance ratio methods developed within financial modeling to select indi-
vidual assets optimally within asset classes (Farinelli et al. 2008; Sharpe 1994; Stoyanov
et al. 2007). We illustrate this targeting for marsh conservation using a reward-risk
performance ratio pi,;/0.,, where g, is the mean marsh return on individual land
area k within land type a (agricultural land), and o, is the corresponding standard
deviation. This is equivalent to the Sharpe Ratio compared to a default riskless asset
(zero investment) that provides zero marsh return (Sharpe 1994). Individual land areas
within an asset class may be ranked in terms of this performance ratio, enabling these
areas to be prioritized in terms of the reward-risk ratio.

To illustrate the approach empirically we disaggregate agricultural land in the study
site into 30 areas of roughly equal size, each containing a minimum of 600 modelled
grid cells, each spaced 30m apart. The performance ratio is calculated for each of these
areas following parallel methods to those discussed above. For the sake of conciseness,
we illustrate results only for the 0.6m SLR scenario, although analogous results may

be generated for any scenario. Under this low-to-moderate SLR scenario, 14 of the

25 Closed-form solutions are infeasible for large number of asset classes, precluding fine-scale spa-
tial targeting within the portfolio model itself. Similar constraints apply to financial models, which
provide guidance for diversification over broad asset classes (e.g., stocks, bonds) rather than specific
investments (e.g., one company’s stock).
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30 areas are characterized by /0 > 0, and would hence be suitable for marsh
conservation. Figure 3 shows the reward-risk prioritization for these areas mapped
across the case study region, along with information on area elevation in meters.

As shown by the portfolio shares in Table 3, 76% of the optimal portfolio is com-
prised of agricultural land under the 0.60m SLR scenario. Figure 3 demonstrates how
specific areas can be prioritized within this agricultural land class, subject to exogenous
factors such as the availability of parcels for conservation at any given time. Results
are consistent with expectations. Under the 0.60m SLR scenario, conservation within
the agricultural land class should target relatively low elevation areas close to current
marsh edges - as higher elevation agricultural areas have little marsh migration under
low-to-moderate SLR. Although most high priority agricultural parcels occur in low-
lying easterly regions where agriculture is interspersed with current marsh, some also
occur in upland areas, particularly towards the northern end of the case study area.
Results such as these provide a readily accessible means to help decision-makers opti-
mally target individual areas within general land classes (or portfolio assets), based on

standard reward-risk ratios that are consistent with the underlying portfolio model.?°
Figure 3 about here

4.5 Portfolio Optimization under Additionality

This section illustrates the effects of additionality assumptions for our case study,
grounded in the model adaptation introduced by Section 2.6. For illustrative purposes,
we first assume that armoring on private agricultural and forest land occurs with
probabilities p, = py = 1, while existing salt marsh is converted to some other land use

with varying probability 0 < p,, < 1. The result of this sensitivity analysis is shown

26Because performance ratios of this type do not consider the covariances across asset types that are
central to portfolio optimization, they are not well suited to identifying underlying portfolio shares.
Moreover, any within-asset targeting exercise that causes mean returns, variances or covariances of
the resulting asset class to differ significantly from those used to optimize the original portfolio shares,
may influence the optimality of those shares. These and related issues are discussed by Sharpe (1994),
inter alia.
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in the left panel of Figure 4 for the case of a 0.6m SLR. As the probability of salt
marsh conversion increases, so does the optimal share of existing salt marsh in the land
conservation portfolio. This rebalancing of the optimal portfolio occurs primarily at the
expense of agricultural land shares. The right-hand panel of Figure 4 demonstrates an
alternative case where existing marsh is developed with p,, = 0.2, agricultural land is
always armored (p, = 1), while forest is armored with varying probability 0 < p; < 1.
It shows that lower additionality from forest preservation leads to larger shares of
agricultural land being held in the optimal land portfolio, as expected.?” If marsh is
allowed to migrate freely on all privately held forest land (p; = 0) and all private farm

land is armored (p, = 1), then the optimal portfolio contains no forest land.?®
Figure 4 about here

4.6 Summary of Key Results

The results presented above demonstrate the type of insight that can be provided
through systematic consideration of diversification within coastal climate adaptation.
Theoretical results demonstrate how optimal portfolios respond to biophysical and
socio-economic dimensions, including factors such as land costs and characteristics of
both the landscape and conservation planners. Empirical results point to the benefits
of emphasizing a particular land type for marsh transgression (higher-elevation agri-
cultural land) that currently represents only a small portion of coastal conservation

portfolios. Other key empirical results include the following.

Result 1 Drivers: Optimal portfolios for marsh conservation depend nonlinearly on

expected SLR and corresponding rates of marsh migration onto different land

2TThis analysis is based on \; = dft/dS; = 0, as we are unable to estimate the effect of marsh
migration on the probability of armoriﬁg or marsh conversion.

28 The observed portfolio is sub-optimal over the wide range of additionality probabilities. To obtain
optimal portfolios that resemble the observed portfolio, one would have to assume very low addition-
ality in agricultural land conservation and very high additionality in forest and marsh conservation,
which is not consistent with observed patterns at the study site.
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types. They also depend on economic factors such as preservation additionality

across land types.

Result 2 Portfolio Composition: Greater SLR is associated with larger proportions
of higher-elevation agricultural land in the marsh conservation portfolio, ranging
from 0.47 at low SLR to 1.00 at high SLR in the baseline scenario. Forest land

has the lowest share, at a maximum of 0.12 under low SLR.

Result 3 Policy Relevance: Current conservation strategies may have under-invested
in transgression zone land, especially in agricultural land, for which the observed

share is 14% compared to 60% — 92% for the optimal share.

Result 4 Benefits and Costs: Portfolio optimization yields higher conservation costs
per km?, but also results in higher marsh benefits. Considering both benefits
and costs, the estimated net benefit of optimal diversification relative to observed
management increase with SLR, ranging from USD 0.5m to 1.55m per km? of

preserved land.

Result 5 Spatial Targeting: Allowing for spatial targeting, conservation within the
agricultural land class for the low-medium SLR should target relatively low ele-

vation areas close to current marsh edges.

Result 6 Additionality: The greater is the additionality in marsh conservation from

a given land type the greater is its share in the optimal land portfolio.

5 Discussion and Conclusions

Although illustrated for a particular case study, the structure of the theoretical model
facilitates applications to diverse marsh conservation contexts. For example, it can be
adapted to other transgression zone classes or numbers, including cases in which as-

sets are defined using explicit spatial attributes. One might also consider applications
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in which a lower-risk but higher-cost management option exists—such as alternatives
in which marshes are artificially constructed and then maintained in perpetuity via
management interventions to increase sediment delivery and accretion. Although the
model is demonstrated using four illustrative SLR scenarios, it can accommodate alter-
native stochastic paths. The model can also be adapted to marsh migration projections
provided via other biophysical modeling approaches. In addition, the model can be up-
dated to consider patterns of marsh benefits not considered here, but that might be
relevant in different coastal contexts. Parallel models could be developed for other
types of migrating assets vulnerable to climate change.

Naturally, the presented results must be viewed with respect to the implicit and ex-
plicit assumptions of the model, together with the characteristics and limitations of the
case study. Results of any model of this type may be affected by model specification,
including the treatment of marsh migration dynamics. The model is also estimated
contingent upon constant means and variances for marsh migration, whereas the in-
clusion of exogenous factors and structural breaks can lead to instances in which the
means and variances of environmental economic phenomena are time-varying. Gener-
alizations of the model for such cases is left for future work. The insights of the model
are also contingent upon the set of management alternatives considered—here repre-
sented by the preservation of alternative land classes for marsh migration. Finally, as
emphasized above, the model is designed for a case in which conservation planners wish
to identify an optimal portfolio of conservation actions based on information available
today. Portfolios can then be rebalanced at any time to accommodate new information
as it becomes available. We do not, however, formally consider the optimal tzming of
marsh conservation decisions, which would require a different modeling approach and
is beyond the scope of the current analysis.

In closing, we emphasize that despite the complexity of the underlying mathematics,

portfolio models of dynamic, natural assets provide concrete empirical guidance that is
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readily understood by decision-makers, and for which sensitivity analysis can be con-
ducted. This facilitates the direct use and exploration of results to inform adaptation

decisions.
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Figure 2: Forecast Land Use Cover by the year 2100 for the VCR Study Site (maps left
to right are current conditions and projections at 0.32, 0.60, 0.90 and 1.7m sea level
rise, respectively).
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migration reward-risk performance ratio, p,;,/0ar. Only areas for which p,;,/0ar > 0

are shown.
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Figure 4: Optimal land portfolio composition under varying probabilities of marsh benefits
being lost in the absence of land class conservation. The continuous line is ¢ and the dashed
line is 6, + Qlf.
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Table 1:

Base case parameter values.

Description Parameter Value Unit Source(®
Agricultural transgression area N, 28.08 km? emp. biophys. model
Forest transgression area Ny 25.61 km? emp. biophys. model
Intertidal marsh area N, 44.50  km? emp. biophys. model

Prop. of marsh on agric. land Sy 0.028 emp. biophys. model
Prop. of marsh on forest land Sy 0.161 emp. biophys. model

Prop. of marsh on intertidal land S 0.950 emp. biophys. model
Agricultural land cost Ca 1,425,302 $//{:m2 Gardner & Johnston (2018)
Forest land cost cr 904,651 $/ km®  Gardner & Johnston (2018)
Intertidal land cost Cm 567,320 $/ km®  Gardner & Johnston (2018)
Change in agricultural land cost dec, / dsS a —8,580 $ / /{:mQ comp.

Change in forest land cost dCf/de —3,373 $/km2 comp.

Change in intertidal land cost de,,/dS,, 5,673 $/ km? comp.

Willingness to pay for marsh (p.a.) v 3,104,403 $/k:m2 Ghermandi et al. (2010)
Privatizeable marsh benefits (prop.) 0] 0.05 Ghermandi et al. (2010)
Discount rate (p.a.) o 0.03 U.S. EPA. (2014)

Risk aversion parameter ol 1.50 Leroux et al. (2016, 2018)

(a) ‘emp. biophys. model’: the parameter value is empirically derived from the biophysical marsh

model, ‘comp.”: the parameter value is computed from empirical estimates.
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Table 2:

Annual mean change (1), standard deviation (0;) and correlation (p;;) of the
proportion of marsh on agricultural land (i = a), forest (i = f) and intertidal land
(¢ =m) by SLR scenario.

SLR Marsh Migration Correlation
Agriculture Forest Intertidal Coefficients
Hq Oq Hr or Hom Om Paf Pam Prm

0.32m 0.000 0.005 0.001 0.038  0.001 0.011 0.930 —0.545 —-0.652
0.60m 0.001 0.006 0.002 0.027  0.000 0.012 0.832 —0.778 —0.896
0.90m 0.001 0.007 0.003 0.025 -0.002 0.029 0.771 —0.867 —0.672
1.70m 0.002 0.007 0.003 0.025 -0.010 0.061 0.624 —0.895 —0.399

Table 3:

Optimal marsh and land portfolio shares for agricultural land (Ha, 92), forest (9 I Qlf)
and intertidal land (6,,, Gﬁn) by SLR scenario.

SLR Marsh Shares(® Land Shares®
0, ¢ 0,, (9; Qlf an
0.32m 0.07 0.07 0.86 047 0.12 0.41
0.60m 0.25 0.12 0.63 0.76 0.10 0.14
0.90m 0.51 0.00 0.49 0.93 0.00 0.07
1.70m 1.00 0.00 0.00 1.00 0.00 0.00

(a) Based on equations (14) to (16). (b) Based on equation (17).

Table 4:

Optimal land portfolio shares for agricultural land (¢",), forest (Hlf) and intertidal land
(! ) under alternative weights on a combined SLR scenario.

Combined Land Shares(® Benefit Cost Net Benefit
SLR Ratio® Ratio(® Difference@
0, 0, 0, Tk et NBP-NB
Optimistic®  0.60 0.09 0.31 1.08 1.58 0.05
Balanced)  0.79 0.05 0.16 1.21 1.79 0.54
Pessimistic®@ 0.92 0.02 0.06 1.46 1.92 1.55
Observed 0.14 0.07 0.79 1 1 0

(a) Based on equation (17). (b) Based on equation (18). (c) Ratio of total optimal and observed
portfolio land cost based per km?. (d) Difference in net benefit between the optimal and observed
portfolio in USD m per km?. Combined SLR based on weights of () 0.7, 0.1, 0.1 and 0.1; (f) 0.25,
0.25, 0.25 and 0.25 and (g) 0.1, 0.1, 0.1 and 0.7 for SLR scenarios of 0.32m, 1.60m, 1.90m and 1.70m.
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A Appendix: Derivations of Marsh Portfolio Model

This appendix contains derivations of key equations shown in the main text. The
optimal solution (see Kamien and Schwartz 1981, p. 248) is obtained by solving the
Hamilton-Jacobi-Bellman equation given in (13). Maximizing this equation with re-

spect to x and rearranging gives the following expression for marsh benefit

_l -1

x = (¢v) ~ VM;, (A6)

where V), is the derivative of the value function V' with respect to the marsh budget
M. Maximizing the right-hand side of (13) with respect to 6, and 6; and solving the

system of linear equations yields the portfolio shares for agricultural land and forest

()-(G0) () 4

where
0 = -2, 45
~92 ~ ~ ~
b = O—m+0_af_0_am — O fm;
¢ = 32+,
~ VM ~ ~92
z = _ILLGMVMM — Ogm T Om»
~ VM ~ ~92

and Vjsys is the second derivative of V' with respect to M. Substituting optimal con-
sumption from (A6) and the optimal share expressions from (A7) into the right-hand

side of (13), yields the second-order differential equation

2=

Y 1— 1 1~
v = ﬁ(‘f”’) "V

[62 (62 — 25 g + 52,) + 52, + 02 (52 — 254 + 52,) (AS8)

+ [Oatty + Ostf + Fipy ] MV

N~

+
+20,05 (Gay — Cam — G pm + o)
+ 200 (Gam — Go) + 207 (Gpm — ) | M*Varar.
A closed-form solution to (A8) is given by
V=AM"", (A9)

43



where A is an unknown constant as implicitly defined in (19). Substitution of the
derivatives Vj; and Vi into (A7) yields the optimal portfolio shares (14) to (16).
Substituting the derivative of (A9) into (A6) yields the expression for optimal marsh
benefits given in (18), where the analytical solution for A given in (19) is obtained by
substituting (A9) and its corresponding derivatives into (A8) and rearranging. Note
that the marsh benefits arising from any non-optimal marsh portfolio are also deter-
mined by (18), except that 6,, #; and 6,, now represent the non-optimal portfolio

shares.

B Appendix: Biophysical Dynamics of Marsh Mi-
gration

The biophysical model of marsh migration is adapted from prior work (Kirwan and
Murray 2008; Kirwan et al. 2010, 2016b) and a spatial model by Langston et al.
(2019). The model describes the response to relative sea level rise (SLR) of a spa-
tial 2-dimensional topography Z(x,y,t) subject to different land uses. Land uses are
grouped into five general classifications: open (salt) water, marsh, forest, agricultural
and developed land. Given a change in mean sea level (MSL) the model computes the
change in elevation, dominated by marsh accretion, which is adjusted for land use. The
parameter values of the model are calibrated to measurements taken from the Virginia

Coast Reserve LTER study area.
Change in Mean Sea Level

We assume the mean sea level Z,,¢;, at a given time ¢ is given by

t
ZMSL = / Zyvsrdt 4+ 0 Zyist, (B1)
0

where ¢ = 0 denotes the initial condition, ZMSL = R(t) is the average rate of relative sea
level rise, and 0 Zygr, is the fluctuation in mean sea level. The fluctuation in M SL was
found to be normally distributed with standard deviation o, based on the de-trended,
de-seasonalised interannual variation of MSL from Wachapreague, VA, a site in close

proximity to the study area. Assuming a typical response time of marshes and forests
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to changes in MSL of 6 months, the distribution of MSL fluctuations averaged over
that time has a standard deviation o ~ 0.04m. In the simulations we use o to generate
an annual time series of random fluctuations (§Z,51,) for different scenarios j of sea

level rise parameterized by a set of curves R; (t).
Marsh Accretion

We assume marsh habitat is defined by flooding frequency and is confined to a fixed

R

max’

to mean sea level. The limits Z™ and Z™

min max’

range in elevations: 27 where Z, = Z — Zys1(t) is the elevation relative
defined relative to mean sea level, are
calculated empirically.

Marshes naturally promote organic and inorganic accretion in response to SLR.
The surface accretion rate Z = dZ/dt can be written as the sum of the organic A, and

the inorganic A; accretion rates
Z = A(Z,) + Ai(Z,,0), (B2)

where we assume: (1) the organic accretion rate A, is a function of the local elevation
relative to MSL (Z, = Z — Zys1), and (2) the inorganic accretion rate A; is function
of both, the local relative elevation Z,., and the distance ¢ (x, y) to the nearest sediment
source, i.e. channels or flats, defined in the current context as ‘open water’.

Organic accretion rate: The organic accretion rate A,(Z,) is defined empirically
by calibrating to observed surface accretion rates (after removing the mineral contri-
bution) and assuming its continuity (A, = 0) along marsh elevation limits, Z and

Zm

max*

We find accretion rates change drastically from a typical value AV to Ahieh at

a ‘critical’ elevation Z, = Z. and can be approximated by
A2y < Z, < 7)) = AO(Z, - Z,) + AMse(Z, — Z,) (B3)

for Z, within the range (Zy, Z1) defined by the quadratic equation (Z]7, . — Zo.1)(Zo1 —
Znmin) = (Zinax = Zin

max min

)2/8. Outside that range, we assume accretion rates decay to zero

according to

m i S(err?ax B ZT)(ZT B Zr?l’bin)
AO(Zl < Zy < Zma.x) = Al; g (Zm _gm )2 d (B4)
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and

m ow8(ZrTr?ax — ZT)(ZT — er’gm)
AO(Zmin < Z7" < ZO) = A}J (Zm —gm )2 : (B5)

Inorganic accretion rate: Following reported field measurements and the solu-
tion of simplified conservation equations (Langston et al. 2019) we assume the inor-
ganic accretion rate A; decays exponentially with the distance ¢(z,y,t) to the nearest
sediment source:

Ai(Z,0) = AN(Z,) exp (—0/ L), (B6)

where L™ is the decay length and A%(Z,) is the accretion rate at the marsh edge
(¢ =0).
The decay length LP»™ in (B6) for a given basin is

L™ = 1.5LP07 /(Tws), (B7)

where LP*™ is the size of the local basin, 7 is the tidal range, T is the tidal period and
w} is the particle effective settling velocity. The size of the local basin LPasin g defined
as the local maximum of ¢(x,y,t).

The accretion rate A?(Z,) at the marsh edge is
A%Zy) = Arp (Z) (1 (1 Twi/r) ) /2. (BY)

with flooding frequency F (Z,) ~ (1/2 — Z,/7) and theoretical maximum accretion
rate AP = Cow$/p,,, where Cj is the average suspended sediment concentration at
the marsh edge and p,, is the characteristic density of mineral sediments inside the
marsh root layer.

Parameters for the marsh accretion model: Field data from Phillips Creek,
VA (alocation within the study area) is consistent with the following set of parameters:

Zm

m = 0lm, Z" = 12m, Z. = 0.8m, A% = 241073m/s, AMeh = 61073m/s,
7 = L4m, w§ = 10"*m/s, T' = 12.5h and Cy = 510~*kg/m?®. For the other parameters
we use w = 10"*m/s and p,, = 210°kg/m>.

Spatial character of the model: The marsh accretion rate, defined by equa-

tions (B2) and (B6), decreases with the distance to the marsh edge (sediment source)
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and thus changes within the marsh platform. Under SLR, this could lead to local marsh
loss, such as the formation of ponds and channels, as shown in Fig. 2. Furthermore,
as explained below, the dependence of the marsh accretion rate on the elevation Z,
relative to the mean sea level, ensures the upland marsh migration under SLR as the
inter-tidal region characterizing marsh habitat propagates upland with an increase in

sea level.

Change in Land Cover

We model only changes in land cover driven by long-term SLR and interannual fluctu-
ations in mean sea level. Since the location of the mean sea level essentially controls
marsh dynamics, those changes are of three types: (1) conversion to open waters due
to marsh drowning at lower elevations; (2) conversion to marsh due to increasing flood-
ing; and (3) recovery of forest and agricultural land or developed areas due to temporal
marsh loss at higher elevation.

Conversion to open waters: Following our definition of the marsh habitat, we
assume for elevations in the range Z < Z7 + Zygr,(t), marshes drown within the time
interval At = 1yr used to integrate the model. In that case, land is converted to ‘open
water’, a classification that includes coastal lagoons, tidal flats and tidal channels.

Conversion to marshes: We assume elevations in the range Z7% + ZysL(t) <

Z(t) < zZm

max

+ ZusL(t), convert into marsh within the time interval At = 1lyr, which
leads to marsh upland migration into forest and agricultural land.

Recovery of uplands due to marsh loss: A temporal decrease in mean sea level
due to a random fluctuation can lead to the temporary loss of marsh for elevations in
the range Z > Z™ + ZysL(t), and the partial recovery of the previous land use in

that location.

C Appendix: Sensitivity Analysis to Land Costs

This appendix evaluates the robustness of the empirical results in the main text to

alternative land cost estimates, c,, ¢y and c,,, and their sensitivity to marsh encroach-

47



ment, dc,/dS,, dcy/dSy and dc,,/dS,,. To conduct the analysis, we re-calibrate the
portfolio model using alternative cost estimates drawn from two prior hedonic models
of undeveloped land prices in the Northeastern US. The first, Gardner and Johnston
(2018), predicts costs of different types of undeveloped land that could be purchased to
ensure marsh migration, including farm, forest and intertidal marsh. This model was
estimated using data on all raw land transactions from 2014 to 2016 in the two coastal
counties that encompass our case study site (Accomack and Northampton, Virginia),
and incorporates spatial variables such as elevation and coastal distance. The second,
Allen et al. (2006), predicts easement prices for similar types of conservation land
(farm, forest and wetland) in three Delaware (USA) coastal counties. This model has
been used previously to inform published models of optimal land conservation (e.g.,
Duke et al. 2014). The applied hedonic models are taken from Table 2 in Gardner
and Johnston (2018) and Table 9 in Allen et al. (2006). We estimate costs assuming
a 1 km? parcel of agricultural and forest land at 1.96m of elevation, with a parcel
centroid within 100m of the Atlantic coast. The latter two assumptions approximate
anticipated locations and elevations of marsh by 2100, under a high SLR scenario. For
the Allen et al. (2006) model, we further assume a parcel that is 20 miles from the
nearest urban area, approximating the mean distance from the study site to the town
of Cape Charles, Virginia. Other variables are held at mean values for each dataset.
All cost estimates are updated to 2018 USD.

Table 5 compares the resulting land cost estimates to those used in the main text.
Cost estimates are similar regardless of source, with the only notable difference being
somewhat lower costs of forest land estimated using Allen et al. (2006). As shown
in Table 6, re-calibrating the model according to these alternative land cost estimates
yields very similar land shares to those shown in the main text, with no portfolio share
showing more than a 5 percentage point difference across the three calibrations, and
shares virtually identical for higher rates of SLR. None of the fundamental results
discussed in the main text change when alternative land cost estimates are used for
calibration, suggesting a high degree of robustness to these alternative sources of cost

information.
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Table

5:

Alternative land costs.

Description Parameter Base Costs(®  Gardner & Johnston Allen et al.  Unit

Agricultural land cost Ca 1,425,302 1,376,070 1,310,174 $/k3m2
Forest land cost cr 904, 651 945,749 608, 635 $/l{:m2
Salt marsh land cost Cm 567,320 511,648 433,130 $/k}m2
Change in ag. land cost dc,/dS, —8, 580 —8,651 —8,770 $/l€m2
Change in forest land cost dcf/de —3,373 —4,342 —1,755 $/km2
Change in marsh land cost  dc,,/dS, 5,673 5,116 4,331 $/km’

(a) Average land costs drawn from Gardner & Johnston (2018). (b) Based on the hedonic land cost
model of Gardner & Johnston (2018). (c¢) Based on the hedonic land cost model of Allen et al.

(2006).

Optimal land portfolio shares for agricultural land (951), forest (Hlf) and intertidal
land (an) for alternative sea level rise (SLR) scenarios and alternative land costs,

Table 6:

based on equation (17).

SLR Base Costs(® Gardner & Johnston(® Allen et al.(9)
7 d 0, 6 & 0, A
0.32m 0.47 0.12 041 0.47 0.11 0.42 042 0.15 044
0.60m 0.76 0.10 0.14 0.76 0.09 0.15 0.72 0.13 0.16
0.90m 0.93 0.00 0.07 0.93 0.00 0.07 0.92 0.00 0.08
1.70m 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

(a) Based on the average land costs drawn from Gardner & Johnston (2018). (b) Based on the
hedonic land cost models of Gardner & Johnston (2018). (¢) Based on the hedonic land cost model
of Allen et al. (2006).
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