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• Urban greenspace (UGS) is highly
fragmented, heterogeneous, and dy-
namic.

• UGS has high turnover rates, but
changes often occur as small patches.

• Only can high resolution image reveal
such change, but notmedium resolution
data.

• Cross-city comparison reveals different
spatial patterns and change among
cities.
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Quantifying the spatial pattern and change of urban greenspace is a prerequisite to understanding the myriad
ecosystem services provided by urban greenspace. Previous studies have largely focused on loss of greenspace
due to urban expansion, using medium resolution imagery. This paper presents a comparison study on the spa-
tiotemporal patterns of urban greenspace in nine major cities in China, using 2.5 m resolution ALOS and SPOT
image data collected in 2005 and 2010, respectively. The changes in urban greenspace were further compared
with those based on the commonly used 30 m Landsat TM data. The results show: 1) Urban greenspace was
highly fragmented and heterogeneous, characterized by a mix of a large number of small-sized patches (smaller
than 0.1 ha) with relatively few dispersed large patches in nine cities. 2) In contrast to findings from previous re-
search that greenspace in inner cities tends to remain largely unchanged, urban greenspace in all nine cities was
highly dynamic, experiencing both gain and loss, with net change ranging from 0.51% to 11.26% over five years.
Most of the changes in urban greenspace, however, tended to occur as small patches, and could only be revealed
by high spatial resolution imagery. 3) Spatial patterns of greenspace varied greatly across cities in terms of patch
size, patch and edge density, and shape. Urban greenspace became increasingly fragmented and complex in the
southern cities, but the opposite in the northern cities. The high turnover dynamics of urban greenspace in cities
proper provide opportunities for better design and planning to achieve urban sustainability, but also call for bet-
ter protection of small-sized urban greenspaces in Chinese cities.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Urban greenspace refers to any vegetation found in the urban envi-
ronment, including woodland, grassland, wetland, garden and other
vegetated areas (Kabisch and Haase, 2013; Taylor and Hochuli, 2017).
Greenspace in urban areas provides myriad ecosystem services (ES)
that are central to human well-being and urban sustainability
(Groenewegen et al., 2006; Ouyang et al., 2016; Pathak et al., 2011;
Thompson et al., 2012; Wu, 2013; Wolf and Housley, 2014; Zhou et
al., 2014; Yan et al., 2016). Ecosystem services provided by urban
greenspace play a vital role in counteracting environmental problems
caused by increasing urban density or by climate change (Kabisch,
2015). These include regulating services such as urban heat islandmitiga-
tion, air pollution reduction, stormwater runoff interception (Huang and
Cadenasso, 2016; Park et al., 2017; Yao et al., 2015; Yan et al., 2016; Zhou
et al., 2011, 2017b), biodiversity conservation (Ziter, 2016), and health
benefits such as relieving stress and anxiety (Coutts and Hahn, 2015).
The combination of environmental and social values has motivated
many cities to maintain and expand urban greenspace, both within and
surrounding the cities. However, the spatial pattern and change of
urban greenspace can significantly affect the ES provided by the
greenspace. For example, numerous studies that focus on effects of spatial
pattern of greenspace on land surface temperature have shown that the
composition and configuration of greenspace had significant effects on
regulating services on microclimate (e.g., Chen et al., 2014;
Maimaitiyiming et al., 2014; Zhou et al., 2017a, 2017b). In addition, the
spatial pattern of greenspace is strongly related to adequacy of
greenspace in cities, and thereby influences the cultural ecosystem ser-
vices provided by greenspace (Lo and Jim, 2010). Therefore, to evaluate
the efficacy of their efforts, and fully understand the ES provided by
urban greenspace, it is crucial to first accurately characterize and quantify
the spatial pattern and change of urban greenspace (Lovell and Taylor,
2013;Wu, 2014; Pickett et al., 2017;Qian et al., 2015b; Zhou et al., 2017a).

Quantifying spatiotemporal pattern of urban greenspace frequently
relies on remote sensing. Numerous studies have been conducted on
urban greenspace mapping and change analysis. These studies have
used a variety of remotely sensed image data having different spatial
resolutions, ranging from sub-meter to 1000 m (e.g., Stefanov et al.,
2001; Zhang et al., 2003; Zhou et al., 2008; Wang et al., 2018). While
changes in urban greenspace have been an important research topic,
most previous studies focused on loss of greenspace associated with
urban expansion (Hurd et al., 2001; Kong and Nakagoshi, 2006; Miller,
2012; Portillo-Quintero et al., 2012; Seto et al., 2002; Yuan et al., 2005;
Zhou and Wang, 2011; Yang et al., 2014). These studies usually found
that changes in greenspace occurred in the urban-rural periphery, coin-
cident with urban expansion (Peng et al., 2016b; Portillo-Quintero et al.,
2012; Seto et al., 2002; Yuan et al., 2005; Miller, 2012). Greenspace in cit-
ies proper, or urban core areas, however, remained largely unchanged (Li
et al., 2011; Xu et al., 2011; Zhou and Wang, 2011). These results are
somewhat contradictory to the perceptions in many cities. On the one
hand, there are still great pressures from development on conversion of
greenspace to buildings and infrastructures, particularly in cities in devel-
oping countries (Qian et al., 2015a). On the other hand, many cities have
devoted great efforts to increasing urban greenspace (Beijing Landscape
Bureau, 2007; Van Den Hoek et al., 2014). Consequently, urban
greenspace may be dynamic, even in highly urbanized areas.

These contradictory results may be due to the data used to quantify
the dynamics of urban greenspace (Qian et al., 2015b). Most of the previ-
ous studies of urban greenspace dynamics have used data derived from
medium-resolution remotely sensed imagery. While these data are very
useful for quantifying the coarse-scale loss of greenspace associated
with urban expansion, theymay be inadequate in characterizing changes
of urban greenspace in built areas, where most of the changes in urban
greenspace may involve small areas (Qian et al., 2015b). However, these
small patches of greenspace, similar to large greenspaces such as parks
and urban forests, can provide important ecological functions and
ecosystem services (Pickett, 2010; Niemelä, 2014; Wu, 2014). Consider-
ing the “invisible” greenspace patches, which can only be revealed by
high spatial resolution remote sensing data, can help better understand
and assess ecosystem services provided by urban greenspace (Qian et
al., 2015b).

Recognizing the importance of accurate quantification of the spatial
pattern and change of urban greenspace at fine scales, high spatial res-
olution image data, such as SPOT, IKONOS, QUICKBIRD, WorldView,
and aerial imagery, have been increasingly used for fine-resolution
urban greenspace mapping and change analysis (e.g., Zhou et al.,
2008; MacFaden et al., 2012; Ramos-Gonzalez, 2014; Qian et al.,
2015a). In addition to large greenspaces, patches of small-sized urban
green cover can be accurately mapped from high spatial resolution im-
agery (Mathieu et al., 2007; Zhou and Troy, 2008; Zhou et al., 2008;
MacFaden et al., 2012). Using multitemporal high spatial resolution
image data, fine-scale changes in urban greenspace can also be detected
(e.g., Zhou et al., 2008; Qian et al., 2015a). These studies havemostly fo-
cused on a single city. However, Nowak and Greenfield (2012) com-
pared the change in tree and impervious cover in 20 U.S. cities. They
used a random sampling approach focusing on changes in direction
and rate of coverage but not the spatial pattern. Few studies, however,
have examined the fine-scale spatial pattern of urban greenspace and
its change for cross-city comparisons. Consequently, a quantitative un-
derstanding of the fine-scale spatiotemporal pattern of urban
greenspace across different cities remains elusive.

This paper presents a comparison study of the spatiotemporal pat-
terns of urban greenspace in nine major cities in China, using high spa-
tial resolution image data collected in 2005 and 2010. The study cities
are located in the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta
(YRD) urban megaregions, described in details below. It tests the hy-
pothesis that urban greenspace in well-developed city regions may be
experiencing great changes, due to the combination of pressure for de-
velopment and renewal, as well as the increasing efforts to increase
urban greenspace in many cities (United Nations, 2014; Locke et al.,
2010; Pataki, 2013). The changes in urban greenspace based on high
resolution image data were further compared and contrasted with
those from themost commonly used 30m resolution Landsat Thematic
Mapper (TM) data. Specially, the aims of this study are: 1) to quantify
the spatiotemporal patterns of urban greenspace in urban core areas,
and examine how they varied within and across different cities; and
2) to investigate and compare the efficacy of data with different spatial
resolution on detecting such patterns. Results from this study have im-
portant implications for urban greenspace management and planning.

2. Data and methods

2.1. Study area

This research focuses on nine cities in China, including the three larg-
est cities, Beijing (BJ), Tianjin (TJ) and Tangshan (TS) in the Beijing-Tian-
jin-Heibei (BTH) urban megaregion, and the six largest cities, Shanghai
(SH), Nanjing (NJ), Hangzhou (HZ), Suzhou (SZ),Wuxi (WX), Changzhou
(CZ)in the Yangtze River Delta (YRD) urbanmegaregion (Fig. 1). The BTH
urban megaregion is located in the eastern part of North China, with a
total population of 10.53 million, and gross domestic product (GDP) of
6647.90 billion RMB (10.45% of the total GDP of China) in 2014. The
YRD urban megaregion is located at the lower reach of Yangtze River in
the eastern and coastal part of China. It is one of the most densely popu-
lated and rapidly developing regions in China, with a total population of
150.47million andGDPof 13,804.73 billion, accounting for approximately
11% and 22% of China's total population andGDP, respectively (Appendix,
Table A1). The nine cities vary in socioeconomic characteristics. Beijing
and Shanghai, the two largest cities in China, are the political and cultural
center, andfinancial and economic center, respectively. Tianjin is the larg-
est open port city, and an economic center in northern China. Nanjing and
Hangzhou, as the capitals of Jiangsu and Zhejiang Provinces, respectively,



Fig. 1. The spatial distribution of the two urban megaregions, and the nine cities.

Table 1
The data and their acquisition dates for the analysis.

Sensor SPOT-5 ALOS TM

Beijing 2005-10-08 2009-10-22 Summer leaf-on
Shanghai 2005-6-12

2005-9-30
2010-01-14 Summer leaf-on

Tianjin 2006-09-11 2009-05-03
2009-10-17

Summer leaf-on

Nanjing 2004-08-10
2004-11-15

2009-05-22
2010-05-25

Summer leaf-on

Hangzhou 2005-9-19
2005-10-30

2010-10-05 Summer leaf-on

Suzhou_Wuxi_ChangZhou Area 2005-06-12
2005-09-29
2006-05-27

2010-05-03
2010-08-20
2010-12-07

Summer leaf-on

Tangshan 2005-10-14 2009-06-30
2009-10-17

Summer leaf-on
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are regional political, economic, cultural, and transportation centers. Su-
zhou, Wuxi, Changzhou, and Tangshan represent medium-sized cities.
For all nine cities, the continuous population growth and economic devel-
opment frequently resulted in loss of vegetation on construction, and thus
reduction in ES provision (Zhang et al., 2017). On the other hand, the
great efforts on greening led to increase of urban greenspace (Qian et
al., 2015a), which is vital to provision of multiple ES.

Our analysis is restricted to the most well-developed areas, or the
urban cores of the nine cities, instead of encompassing the entire city
administrative boundaries, which would include a large proportion of
undeveloped lands (Fig. 1). The core area for each city was defined as
the largest continuously developed region within the municipality of
each city, excluding satellite cities, towns and villageswithin themunic-
ipality (Hu et al., 2017). The boundary of the core area for each city was
delineated based on the 30 m resolution land cover classification data,
following the approach detailed in Hu et al. (2017).

The study chose the time period of 2005–2010 for comparisons be-
cause changes in urban greenspacewere expected in these cities during
this time period. From 2005 to 2010, many of the selected cities experi-
enced great pressure on the urban expansion or renewal, but mean-
while, were also implementing many green strategies and campaigns
(Du et al., 2014; Jiang et al., 2016;Wu and Zhang, 2012; Yu et al., 2017).

2.2. Mapping urban greenspace based on high andmedium spatial resolution
data

Two types of remotely sensed images were used to map urban
greenspace. Specifically, this study used high spatial resolution image
data from SPOT-5 (Systeme Probatoire d'Observation de la Terre) and
ALOS (Advanced Land Observation Satellite), and the most commonly
used 30 m Landsat-5 TM imagery (Table 1). The SPOT imagery has one
2.5 m panchromatic band and four multispectral bands including three
10mbands (green, red andnear-infrared) and one 20mresolution short-
wave infrared band. Similarly, the ALOS imagery has one 2.5 m panchro-
matic band and four 10mmultispectral bands (green, blue, red, and near-
infrared). The multispectral bands were first pan-sharpened into 2.5 m
spatial resolution using the panchromatic bandwith the principal compo-
nents algorithm. Geometric registration was then conducted using imag-
ery from Google Earth™ as the reference. A polynomial model and the
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nearest neighborhood resampling approach were used for spatial rectifi-
cation. The root mean square error was less than 0.5 pixel.

An object-based approach was used for land cover classification with
the high spatial resolution imagery (Qian et al., 2015a; Qian et al.,
2015b; Zhou et al., 2008). Using an object-based approach, required the
image to be first segmented into objects. Subsequently, rulesets were de-
veloped to classify the objects into different land cover types (Zhou and
Troy, 2008; Qian et al., 2015a). The multi-resolution segmentation algo-
rithm is a bottom-up region merging technique that is embedded in
eCognition software (version 9.0). Four land cover classes were included:
(1) vegetation (referred to as urban greenspace), (2) impervious surface
(or developed land), (3)water, and (4) bare soil. The accuracy assessment
was conducted by visually referring to the 1-meter spatial resolution im-
agery available from Google Earth™. A stratified random sampling
method in Erdas Imagine (version 9.1) was used to generate 300 sample
points,with at least 30 samples for each class. The overall accuracies of the
classifications based on high spatial resolution imagery ranged from
81.02% to 96.33%,with theuser's andproducer's accuracies for greenspace
ranging from 84.78% to 99.90% (Table 2).

An object-based backdating approachwas used for land cover classi-
fication from Landsat TM imagery (Yu et al., 2017). The LULC map of
2010 was first generated by an object-based classification approach.
Three levels of objects were created with the scale parameters setting
as 10 (Level 1), 30 (Level 2), and 50 (Level 3) by testing different param-
eter values. Objects at Level 1were used for classification of water, grass
and barren land. Objects at Level 2 were used for identifying farmland
and developed land, and those at Level 3 were used for forested land.
The 2010 LULC map was then used as a reference map to generate the
map in 2005 using an object-based backdating approach. Extensive
manual editing was conducted for classification refinement to further
improve the accuracies of the maps by referring to high spatial resolu-
tion data such as 2.4 m QuickBird and 2.5 m SPOT 5 imagery. Conse-
quently, the overall accuracies based on TM data ranged from 90.25%
to 96.69%, and the user's and producer's accuracies for greenspace
ranged from 88.00% to 98.67% (Table 2).

2.3. Quantifying the spatial pattern of urban greenspace and its change

For each city, the percent cover of urban greenspace (PLAND) was
first calculated for both 2005 and 2010. The calculation was done sepa-
rately using the high and medium spatial resolution data of urban
greenspace, and the results from the two datasets were compared. As
the results showed that for all the nine cities, medium resolution TM
data greatly underestimated the percent cover of urban greenspace, as
well as the change, the analysis focuses on urban greenspace mapped
from the high spatial resolution image data hereafter.

To better understand the gain and loss of greenspace, the land cover
transfer matrix was calculated to quantify the conversions between
urban greenspace and other land cover types. Four frequently usedmet-
rics were selected to quantify the spatial pattern of urban greenspace
and its change (McGarigal et al., 2002; Peng et al., 2010; Peng et al.,
2016a). These included landscape shape index (LSI) thatmeasures land-
scape complexity, mean patch size (MPS), patch density (PD), and edge
density (ED) to quantify fragmentation of urban greenspace (Appendix,
Table 2
Accuracies of the classifications of urban greenspace for the nine cities.

SPOT-5 ALOS

Producer's accuracy User's accuracy Kappa Producer's

Beijing 95.10% 90.78% 0.89 90.24%
Shanghai 97.33% 92.41% 0.90 77.78%
Tianjin 90.48% 84.78% 0.78 88.57%
Nanjing 94.58% 96.91% 0.93 89.45%
Hangzhou 91.46% 99.90% 1.00 92.68%
Suzhou_Wuxi_Changzhou 96.08% 96.08% 0.92 95.12%
Tangshan 90.25% 84.93% 0.87 92.73%
Table A2). To better understand the distribution and changes of urban
greenspace patches of different sizes, and thus the fragmentation process
of urban greenspace, the distributions of patch size of greenspace and
their changes were further investigated from 2005 to 2010. Specifically,
the urban greenspace patches were divided into five size classes: (1)
less than 0.1 ha, (2) 0.1–1 ha, (3) 1–10 ha, (4) 10–100 ha, and (5) more
than 100 ha (Fig. 2). The frequency distribution of urban greenspace
was calculated according to the five classes in terms of total area and
number of patches for each city in 2005 and 2010. Box-plots were used
to measure the dispersion and range of the patch sizes. By comparing
the box-plots from different years for each city, the characteristics of
transformations of patches in different sizes were examined.

Following the comparison based on individual landscape metrics,
principal component analysis (PCA)were conducted using a combination
of thefivemetrics, to reveal the difference and similarity of spatial pattern
of urban greenspace and the change among the nine cities. In contrast to
previous studies that mostly focused on analysis of stand-alone metrics
(Gan et al., 2014; Qian et al., 2015b; Zhou et al., 2011; Zhou and Wang,
2011), the PCA integrated the characteristics of five metrics, and trans-
formed a set of observations of potentially correlated landscape indices
into a set of values of linearly uncorrelated variables called principal com-
ponents (Wold et al., 1987). This transformation allows for a better un-
derstanding of a combination of multiple indices, and could identify
potential clusters of cities having similar spatial patterns of urban
greenspace in given year, or having similar patterns in changes.

3. Results

3.1. Medium resolution TM data greatly underestimated the cover of
greenspace

The results showed that the percent cover of urban greenspace
mapped from the two datasets with different spatial resolution was
very different. According to the TM data, the percent cover of urban
greenspace ranged from 9.90% in Shanghai to 28.64% in Nanjing for
2005, with a mean of 20.44%, and from 9.85% in Tianjin to 20.52% in
Nanjing for 2010, with a mean of 15.94% (Table 3). In contrast, percent
cover of urban greenspace derived from the 2.5 m high resolution
image data was much higher than that revealed by the 30 m resolution
TMdata for all the nine cities (Fig. 3, Table 3). The average percent cover
of urban greenspacewas 34.48% in 2005, ranging from 26.06% in Tianjin
to 41.30% in Changzhou. In 2010, the average percent cover of urban
greenspace was 35.11%, ranging from 24.50% in Tangshan to 48.99% in
Nanjing (Table 3).

Changes in percent cover of greenspace revealed by TM data were
also very different from those from high resolution data, and the differ-
ence varied by cities. The high resolution data showed that urban
greenspace increased in five cities, including Beijing, Shanghai, Tianjin,
Nanjing, and Hangzhou. TM data, however, indicated that percent
cover of greenspace decreased in seven out of the nine cities (the excep-
tions were Beijing and Shanghai). Themagnitudes in the change of per-
cent cover revealed by the two datasets, were also different. For
example, in Beijing, the percent cover of urban greenspace remained
largely unchanged, with a slight increase of 0.42% from 13.27% to
TM

accuracy User's accuracy Kappa Producer's accuracy User's accuracy Kappa

97.37% 0.92 94.87% 98.67% 0.97
74.47% 0.64 87.50% 96.97% 0.95
88.57% 0.83 91.67% 93.22% 0.93
93.68% 0.85 95.42% 96.51% 0.94
84.44% 0.70 90.51% 94.13% 0.92
98.73% 0.98 88.00% 97.06% 0.95
83.61% 0.89 91.65% 93.22% 0.93



Table 3
The percent cover of urban greenspace based on TM and SPOT/ALOS for nine cities in 2005
and 2010.

TM SPOT/ALOS

2005 2010 2005 2010

Beijing 13.27% 13.69% 28.00% 32.22%
Shanghai 9.90% 19.40% 29.45% 35.92%
Tianjin 11.76% 9.85% 26.06% 26.56%
Nanjing 28.64% 20.52% 44.40% 48.99%
Hangzhou 18.66% 14.78% 36.39% 47.58%
Suzhou 25.27% 17.42% 39.60% 34.27%
Wuxi 25.67% 16.31% 31.06% 31.06%
Changzhou 26.89% 15.61% 41.30% 34.88%
Tangshan 23.94% 15.84% 34.02% 24.50%

Fig. 2. The spatial distribution of patches with different sizes for nine cities.
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13.69%, as suggested by TM data. However, the high resolution data
showed that the percent cover increased from 28.01% to 32.22%, an in-
crease of 4.21%, or approximately 30 km2 in total area.

Our results showed that while the 30 m resolution TM data could
generally extract relatively large patches of urban greenspace (e.g., for-
est remnants, large parks, and large golf courses), they neither detected
most of the small patches, nor their changes (see example in Fig. 4).
Consequently, the results from the TM data greatly underestimated
the percent cover of greenspace and its change in core cities. This result
was consistent with those from previous studies (e.g., Zhou et al., 2008;
Ramos-Gonzalez, 2014; Qian et al., 2015a, 2015b). Therefore, we will
hereafter focus on the results from the high resolution data.

3.2. Urban greenspace was highly dynamic

The results based on the high spatial resolution data showed that
urban greenspace was highly dynamic for all the nine cities. Propor-
tional cover of urban greenspace increased in all the fivemore populous
cities (i.e., Beijing, Shanghai, Tianjin, Nanjing and Hangzhou). Percent
cover of urban greenspace, however, greatly decreased in the four me-
dium-sized cities. Specifically, the percent cover of greenspace in-
creased by 11.26%, or a total of 4384 ha for Hangzhou, 6.45%, or
5074.66 ha for Shanghai, 4.54%, or 2348.35 ha for Nanjing, 4.21%, or
2812.67 ha for Beijing, and 0.51%, or 296.08 ha for Tianjin. Meanwhile,
there were a net decrease of 9.52% (or 1509.23 ha), 9.07% (or
2618.43 ha), 6.40% (or 2438.81 ha), and 5.30% (or 1908.17 ha) in Tang-
shan, Wuxi, Changzhou and Suzhou, respectively.

Results from the transfer matrices indicated that changes in urban
greenspace were much more dramatic than the net increase or decrease
would suggest (Table 4). The absolute values in net change of percent
cover of urban greenspace ranged from 0.51% to 11.26%, or from
296.08 ha to 5074.66 ha (Table 4). However, when considering both the
gain and loss of greenspace, the percent cover involved was much more
dynamic (Table 4). For example, there was slight increase of 0.51% in
urban greenspace for Tianjin City. However, this relatively small net



Fig. 3. The percent cover of urban greenspace and changemapped from SPOT/ALOS (left) and TM (right) for the nine cities. Notes, BJ=Beijing, SH= Shanghai, TJ= Tianjin, NJ=Nanjing,
HZ = Hangzhou, WX = Wuxi, CZ = Changzhou, TS = Tangshan.
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increase resulted froman approximately 18% (or 10,525.28 ha) gross land
cover change related to greenspace: There was 9.19% (or 5410.68 ha) of
greenspace gained and 8.68% (or 5114.60 ha) of greenspace lost. For cities
such as Hangzhou, the changes related to urban greenspace were even
greater. From the relatively short period between 2005 and 2010,
8875.57 ha of new urban greenspace were generated from other land
cover types (mainly impervious surfaces), but over the same time,
4491.57 ha of urban greenspace were lost, resulting in a net increase of
4384 ha (or 11.26%) greenspace in Hangzhou (Table 4). Overall, the
Fig. 4. Classification results for Beijing from TM d
three largest cities, Shanghai, Beijing, and Tianjin, had less change in
greenspace than the other six cities. This is likely due to the greater efforts
dedicated to greening in these large cities (Zhao et al., 2013).

3.3. Spatial patterns of urban greenspace and their changes

Therewere similarities and differences in the spatial patterns of urban
greenspace among cities, according to the selected landscape metrics
(Fig. 5). For example, the mean patch size of urban greenspace was
ata and the high resolution SPOT/ALOS data.



Table 4
Greenspace change from 2005 to 2010, based on the 2.5 m high resolution SPOT/ALOS data.

Change of greenspace Gained greenspace Lost greenspace Net change

Area (ha) Percentage (%) Area (ha) Percentage (%) Area (ha) Percentage (%)

Beijing 7010.97 10.50% 4198.30 6.29% 2812.67 4.21%
Shanghai 12,306.38 15.65% 7231.72 9.21% 5074.66 6.45%
Tianjin 5410.68 9.19% 5114.60 8.68% 296.08 0.51%
Nanjing 9460.25 18.27% 7111.90 13.74% 2348.35 4.54%
Hangzhou 8875.57 22.80% 4491.57 11.54% 4384.00 11.26%
Suzhou 5034.81 13.99% 6942.97 19.30% −1908.17 −5.30%
Wuxi 2771.35 9.60% 5389.78 18.67% −2618.43 −9.07%
Changzhou 4646.73 12.19% 7085.53 18.58% −2438.81 −6.40%
Tangshan 735.65 4.64% 5544.88 14.15% −1509.23 −9.52%
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small for all the cities, almost all amounting to less than 1 ha. Patch den-
sity, edge density and landscape shape index differed greatly among the
nine cities. Even for cities in the same megaregion, spatial patterns of
urban greenspace varied greatly. Changes in spatial patterns of urban
greenspace, however, were more similar among cities in the same
urban megaregion than for cities in other regions. For example, PD and
ED decreased, but MPS increased in all three cities of the BTH urban
megaregion (i.e., Beijing, Tianjin and Tangshan), suggesting urban
greenspace became more aggregated instead of fragmented in these cit-
ies. In contrast, both PD and ED increased, while MPS declined in all the
six cities except for Nanjing in the YRD urban megaregion, indicating in-
creasingly fragmented urban greenspace in these cities. Similarly, in con-
trast to the decrease of LSI in Beijing, Tianjin, and Tangshan, LSI increased
in all of the six cities in the YRD urban megaregion, suggesting the shape
of urban greenspace became more complicated from 2005 to 2010 in
these six cities.

The proportional distribution of patches based on patch size showed
that the majority of the patches were small (Fig. 6). For all nine cities,
approximately 60% of the greenspace patches were smaller than
0.1 ha. These small patches, however, generally accounted for less
than 10% of the total area of the urban greenspace. Large patches,
while much fewer in number, contributed to the majority of the total
Fig. 5. The four spatial configuration metrics for greenspace of t
area of urban greenspace. In contrast, fewer than 10% of the patches
ranged in size from 1 to 100 ha. These patches, however, accounted
for more than 50% of the total area of urban greenspace. The number
of patches greater than 100 ha was less than 1%, but accounted for
more than 10% of the total area of greenspace.

The accumulated probability of patches in terms of the number and
size of patches showed that the proportional distributions of patches
changed greatly from 2005 to 2010, but with large variations in magni-
tude among cities (Figs. 6, 7). First, the proportion of small patches
greatly increased in all the six cities of the YRD urban megaregion, sug-
gesting increased degree of fragmentation in urban greenspace. In con-
trast, patch sizes of urban greenspace in the three cities of theBTHurban
megaregion, tended to increase (Fig. 7a). Second, the trends of
greenspace patch size varied among cities. The patch size of urban
greenspace in Beijing, Shanghai, Hangzhou and Suzhou revealed a
trend of polarization. That is, the small patches tended to be smaller,
while large patches became even larger. However, in Tianjin, Nanjing
and Tangshan, the proportion of medium-sized patches increased,
most likely resulting from the expansion of some of the small patches,
combined with a loss of some of the large patches (Fig. 7b–f).

By combining of the landscape metrics and their changes, the PCA
showed how the structure of greenspace and the fragmentation
he nine cities in 2005 and 2010 based on SPOT/ALOS data.



Fig. 6. Accumulated probability of patches in terms of patch size in the nine cities between 2005 and 2010.
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processes in these citieswere clustered (Fig. 8; Appendix, Table A3). The
spatial patterns of urban greenspace in the nine cities were clearly dis-
tinguished by PCA in 2005 and 2010 (Fig. 8a, b). In 2005, about 90.71%
of the total variance was explained by the first two principal compo-
nents (i.e., PCA12005 and PCA22005). Based on the loadings of PCA12005,
the threemegacities, Beijing, Shanghai and Tianjin, were well separated
from the other six relatively small cities (Appendix, Table A3). It showed
that these threemegacities had positive loadings on PCA12005, while cit-
ies such as Hangzhou, Suzhou, Wuxi, and Changzhou were more com-
pactly clustered on the negative range of that axis (Fig. 8a). In 2010,
the first PC (PCA12010) accounted for 58.44% of the total variance, and
represented the variations in the two fragmentation metrics (i.e., MPS
and ED), while PCA22010 accounted for 24.11% of the total variance
Fig. 7.Boxplots of different patch size for thenine cities between 2005 and 2010. Here, the bottom
the second quartile (themedian). The length of a box indicates approximately 50% of patch num
and 1.5 IQR of the upper quartile.
and mainly represented the variation of percent cover of urban
greenspace. Similarly, the nine cities were divided into two groups:
the first group, including Suzhou, Wuxi, Changzhou, and Tianjin, was
closer to the PCA22010 axis and gathered together at the negative
range of PCA12010. And the second group, including Beijing, Shanghai
and Hangzhou, clustered around the origin (Fig. 8b).

As for the changes from 2005 to 2010, the first two principal compo-
nents accounted for 89.59% of the total variance, with the first axis con-
tributing 65.46% of the variance of initial eigenvalues, and the second
24.13% (Fig. 8c). The first component consisted of ED, PD and LSI,
representing the variation of patch fragmentation and shape complexity.
The results showed that PCA1 clearly differentiated cities in the north
from those in the south (except for Nanjing). Shanghai, Hangzhou,
and top of the boxwere thefirst (Q1) and third (Q3) quartiles, and the line in the boxwas
bers, the lower andupperwhiskers represents 1.5 IQR (IQR=Q3-Q1) of the lower quartile



Fig. 8. Principal Components Analysis of the nine cities with different greenspace patch metrics mapped from SPOT/ALOS data. The dots of the same color were grouped together into a
category. Pane A: 2005, panel B: 2010, and panel C: the change from 2005 to 2010.
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Suzhou, Wuxi, and Changzhou were located on the positive section of
PCA1, but Beijing, Tianjin and Tangshan occupied the negative range.
This suggested increased greenspace fragmentation and complexity in
the southern cities, but reduced fragmentation in northern cities from
2005 to 2010 (Fig. 8c). This type of regional difference may result from
geographical and climatic factors. Compared to northern cities, cities in
the south have more favorable climate for vegetation growth, and there-
fore are more likely to create more discrete, and small-sized green spaces
(Zhao et al., 2013).

4. Discussion

4.1. The highly dynamic urban greenspace in Chinese cities

Relatively few studies have been conducted to examine the within-
city urban greenspace dynamics for Chinese cities, especially using high
spatial resolution imagery (Qian et al., 2015b). Our results based on high
spatial resolution image data indicated that urban greenspace in all the
nine cities was highly dynamic. Within a relatively short five-year time
period, all of the nine cities experienced tremendous absolute changes
in gain or loss of urban greenspace, even though the net change might
appear small in some of the cities. These results were contradictory to
most of the previous studies that used medium resolution image data
(typically 30 m TM data), which found that urban greenspace within
urban cores remained largely unchanged (e.g., Xu et al., 2011; Zhou
and Wang, 2011). It should also be noted that most of these studies,
however, focused on changes of urban greenspace in the urban fringes
caused by urban expansion. The current study focused on the formally
defined core areas of the nine cities. Focus on core areas of cities is jus-
tified by the need to consider demand and provision of ecosystem ser-
vices in these densely populated zones (Haase et al., 2014).

Studies have also been conducted to investigate within-city urban
greenspace change in other U.S. and European cities (e.g., Fuller and
Gaston, 2009; Kabisch and Haase, 2013; Nowak and Greenfield, 2012;
Szymanska et al., 2015; Zhou et al., 2008). These studies, however,
generally found much lower degrees of urban greenspace dynamics
within cities. For example, the study by Nowak and Greenfield (2012)
on 20 U.S. cities showed that from 2005 to 2009 tree cover increased
by an average of 2.1%, and an average of 2.3% loss, resulting in an aver-
age net change of 0.2% during the four years of their study. Additionally,
in contrast to the general trends of decreasing tree cover in many U.S.
cities (Nowak and Greenfield, 2012), urban greenspace in five out of
the nine Chinese cities increased. Because there are few assessments
of urban greenspace change within cities, further investigation is re-
quired, especially the inclusion of more cities globally. Such future stud-
ies can test whether the very high degree of greenspace change within
cities only occurs in developing countries such as China, or also occurs
in developed countries. In addition, it would be important to include cit-
ies representing a larger range of sizes, from large cities as in this study,
to medium- and small-sized cities. The United Nations (2014) has esti-
mated that in fact the majority of urban conversion globally will take
place in small to medium sized cities. The complexity of urban change
in cities representing different sizes throughout the world may reveal
a variety of greenspace dynamics (McHale et al., 2015).

The high dynamismof urban greenspace in the nine cities seems to be
the result of the combined influences of two major factors – efforts on
greening such as tree planning programs, and great pressures fromdevel-
opment. On the one hand, because of the very high value of land in the
core city, urban development and increased economic activity have
caused many changes to the existing urban green space (Qian et al.,
2015a; Li et al., 2016). Infill development even caused clearance of
those small patches that are not well protected (Brunner and Cozens,
2013). On the other hand, many of the Chinese cities have devoted sub-
stantial efforts to increasing urban greenspace, aiming to improve resi-
dents' living environments. Due to the limited land resources in city
cores that are available for greening, it is impossible to depend upon plen-
tiful large-sized greenspace patches. The ‘filling in’ approaches, therefore,
are frequently conducted, and thus lead to numerous small-sized urban
greenspace. For example, establishing the Olympic Forest Park and
implementing the “Plant Where Possible” policy in Beijing have
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successfully led to the creation of much new, and mostly small urban
greenspace (Qian et al., 2015a;Wang, 2009). Similarly, Hangzhouhas cre-
ated a program to establish a greennetwork system, alongwith a series of
greening projects. The nine cities in this study are relatively well-devel-
oped and wealthy, and thus have more resources for city greening
(Zhao et al., 2013). Future studies that include a larger number of cities
with a broad range of social and economic conditions would be highly
desirable.

Thefinding that greenspace is highly dynamicwithin cities has impor-
tant implications for urban greenspace management and planning. This
high degree of dynamism provides both opportunity and challenge for
better urban greenspace management and planning. On the one hand,
the creation of a large amount of new urban greenspace provides oppor-
tunities for better design and planning to improve the accessibility, equity
of spatial distribution, and quality of urban greenspace, and therefore to
achieve an improved urban sustainability (Beatley and Manning, 1997;
Wu, 2008; Niemelä, 2014; Qian et al., 2015b). On the other hand, such a
high degree of dynamism may threaten the quality or persistence of
existing greenspace, and resulting in substitution of greenspace having
low quality. Such degradation of greenspace can lead to lower quality of
life in well-developed parts of cities, due to loss of biodiversity, worsened
recreation possibilities, and reduced provision of ecosystem services
(Haaland and van den Bosch, 2015; Lo and Jim, 2010).

In addition, such frequent changes of urban greenspace may lead to
inconsistent provision of ecosystem services over time, with implica-
tions for urban sustainability (Lo and Jim, 2010; Wolch et al., 2014;
Zhou et al., 2017). This is because not only the spatial pattern of urban
greenspace influences its provision services (Li et al., 2011; Chen et al.,
2014;Maimaitiyiming et al., 2014), but alsowhere and how greenspace
has changed (Lo and Jim, 2010; Sivam et al., 2012). For example, the
high turnover rate of urban greenspace associated with shrinking, or
even disappearing of existing greenspace in old core areasmay decrease
the local availability of greenspace, and thereby damage the ecosystem
services provided by greenspace (Lo and Jim, 2010). Provision of new
greenspace on urban fringes is not likely to compensate residents of
old core areas. Future research that focuses on the effects of different
types of changes in greenspace –disappearing, new creation, expansion,
fragmentation or shrinking– on the provision of ecosystem services
would be highly desirable. Meanwhile, in addition to protecting the
large patches of urban greenspace such as parks and remnant forests,
policy-makers and natural resource managers should pay more atten-
tion to the protection of small patches of urban greenspace (Pickett,
2010), which are frequently ignored, and therefore become the targets
of development (Brunner and Cozens, 2013). These small urban
greenspaces, similar to larger ones, play crucial roles in providing regu-
lating and cultural ES, as well as enhancing human health and well-
being. In fact, recent studies have suggested that the roles of small
greenspaces for urban conservationmay bemore important than previ-
ously assumed (Rupprecht and Byrne, 2014).

4.2. Quantifying within-city urban greenspace and change needs high spa-
tial resolution image data

Our results showed that for all the nine cities, urban greenspace was
highly dynamic. However, such dynamics, can only be revealed by high
spatial resolution imagery, but not by the medium resolution data such
as the most commonly used 30 m resolution TM data. Indeed, our re-
sults showed that the majority of the patches of urban greenspace
were too small to be detectable bymedium resolution imagery. In addi-
tion, medium resolution imagery was not able to detect most of the
changes in urban greenspace, which tend to be small due to the very
limited land available for greening within cities (Qian et al., 2015b).
Consequently, medium resolution data such as 30 m TM imagery tend
to underestimate the percent coverage of urban greenspace, as well as
their changes. Similarly, Smith et al. (2010) found that the 30-m Na-
tional Land Cover Database (NLCD) in the U.S. poorly discerned small
or patchy tree cover and under-reported canopy cover in urbanized
areas. Urban greenspace is highly fragmented and heterogeneous, char-
acterized by a mix of very many small patches with relatively few dis-
persed large patches (Figs. 6 & 7) only visible tohigh resolution imagery.

These small patches of urban greenspace, unlike large greenspaces
that are relatively rare and typically not within walking distance of the
majority of urban residents (Wolch et al., 2014), are widely distributed
and embedded in built-up areaswhere people live,work, and play. There-
fore, these greenspaces are considered as “nature nearby” (Nilon, 2011),
and thus can play crucial roles in providing cultural ecosystem services
(Niemelä, 2014), and enhancing human health and well-being (Coutts
and Hahn, 2015). Additionally, these small patches of green cover can
contribute to biodiversity, stormwater management, microclimate miti-
gation and other services, similar to large greenspaces (Bolund and
Hunhammar, 1999; Strohbach et al., 2013; Wu, 2014; Zhou et al., 2014).
In fact, recent studies suggested that the roles of these “informal” urban
greenspace for urban conservation may be more important than previ-
ously assumed (Rupprecht and Byrne, 2014). Consequently, to fully un-
derstand ecosystem services provided by urban greenspace, it is
important andnecessity to usehigh spatial resolution imagedata to quan-
tify the fine-scale spatial patterns of urban greenspace and change.

5. Conclusion

Previous studies have largely focused on loss of greenspace due to
urban expansion, using medium resolution imagery and focusing on
the growing urban fringes. This study presents a comparison study of
the spatiotemporal patterns of urban greenspace in nine major cities
in China, using 2.5 m high spatial resolution ALOS and SPOT image
data collected in 2005 and 2010, respectively. The changes in urban
greenspace were further compared and contrasted with those based
on themost commonly used 30m Landsat TMdata. The results showed:
1) Urban greenspace was highly fragmented and heterogeneous, char-
acterized by a mix of a large number of small-sized patches with rela-
tively few dispersed large patches in all nine cities. 2) In contrast to
findings from previous research that greenspace in inner cities tends
to remain largely unchanged, urban greenspace in all nine cities was
highly dynamic, experiencing dramatic gain and loss during the five
years. Changes in percent cover of urban greenspace ranged from a re-
duction of 9.52% (or 1509.23 ha) in Tangshan to an increase of 11.26%
(or 4383.0 ha) for Hangzhou. Most of changes in urban greenspace,
however, tended to occur as patches that were small in size, which
could only be revealed by high spatial resolution imagery. 3) Spatial pat-
terns of greenspace varied greatly across cities in terms of patch size,
patch and edge density and shape. Urban greenspace became increas-
ingly fragmented and complex in the southern cities, but the opposite
in the northern cities. Our results highlight the necessity of using high
spatial resolution data to adequately quantify the spatial distribution
of urban greenspace and its change, and therefore to fully understand
the myriad ecosystem services provided by urban greenspace. The
high dynamics of urban greenspace in core cities provide opportunities
for better design and planning to achieve an improved urban sustain-
ability, but also call for better protection of small urban greenspace in
Chinese cities.
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Table A1
Quick fact of the nine cities.
B
Ti
Ta
Sh
N
H
Su
W

P

M
P

E
La

P
M
P
E
LS
Ei
%

Size of well-developed area
(km2)⁎
Climatic types
 Mean annual temperature
(°C)
Mean annual precipitation
(mm)
Population
(million)
GDP (billion
RMB)
eijing
 667.8
 Temperate continental monsoon
climate
10.0–12.0
 626.0
 19.6
 1411.4

anjin
 617.5
 13.0
 650.0
 12.9
 922.4

ngshan
 158.6
 10.6
 644.2
 7.4
 446.9

anghai
 786.3
 Subtropical monsoon climate
 16.0
 1200.0
 23.0
 1716.6

anjing
 517.7
 15.4
 1106.0
 80.0
 501.0

angzhou
 389.5
 17.5
 1139.0
 87.0
 594.6

zhou
 359.8
 16.2
 1500.0
 6.4
 922.9

uxi
 288.8
 15.5
 1000.0
 4.7
 575.8

hangzhou
 381.5
 15.4
 1071.0
 3.6
 297.7
C
From NBSN (2010).
⁎ Sizes of the well-developed proportion of the city, but population and GDP statistics from the whole city.

Table A2
Landscape metrics used in this study.
Metrics
 Description
 Unit
 Range
ercentage of landscape
(PLAND)
The proportion of the area of certain land use class to the entire landscape area
 %
 [0,100]
ean patch size (MPS)
 The area occupied by particular patch type divided by the number of patches of that type
 m2
 [0, ∞]

atch density (PD)
 The number of patches per 100 ha
 Number per 100

ha

[0, ∞]
dge density (ED)
 The total perimeter of particular patch type divided by the total area of patches of that type
 m−1
 [0, ∞]

ndscape shape index (LSI)
 A modified perimeter-area ration of the form that measures the shape complexity of the whole landscape or a

specific patch type

None
 [1, ∞]
Table A3
Loading on each metric in the PCA.
Metric
 2015
 2010
 Change from 2005 to 2010
Component 1
 Component 2
 Component 1
 Component 2
 Component 1
 Component 2
LAND
 −0.5651
 −0.099
 0.1627
 0.8314
 −0.067
 0.8811

PS
 −0.1824
 0.7062
 0.5686
 0.1267
 −0.501
 0.2360

D
 −0.2185
 −0.6927
 −0.4666
 0.1324
 0.5184
 −0.0308

D
 0.5652
 −0.1006
 −0.5672
 −0.047
 0.5060
 0.0027

I
 0.5294
 −0.0408
 −0.3329
 0.5218
 0.4693
 0.4087

genvalue
 2.74
 1.79
 2.92
 1.21
 3.27
 1.21

Variance explained
 54.88%
 35.83%
 58.44%
 24.11%
 65.46%
 24.13%

Cumulative variance
 54.88%
 90.71%
 58.44%
 82.55%
 65.46%
 89.59%
%
Note: the bold values represent the main explanatory variables of corresponding principle component axes.
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