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Abstract

We present a probabilistic model of illuminating a convex body by independently
distributed light sources. In addition to recovering C.A. Rogers’ upper bounds for
the illumination number, we improve previous estimates of J. Januszewski and M.
Nasz6di for a generalized version of the illumination parameter.

1 Introduction

Given a convex body (i.e. a compact convex set with non-empty interior) K in R™ and
points py, pa, ..., pm € R™\ K, we say that the collection {p1, pa, ..., pm} illuminates K if
for any point z on the boundary of K there is a point p; such that the line passing through
x and p; intersects the interior of K at a point not between p; and x. The illumination
number Z(K) is the cardinality of the smallest collection of points illuminating K.

The well known conjecture of H. Hadwider [10], independently formulated by I. Go-
hberg and A. Markus, asserts that Z(K) < 2" for any n-dimensional convex body, with the
equality attained for parallelotopes. The problem is known to be equivalent to the ques-
tion whether every convex body can be covered by at most 2" smaller homothetic copies
of itself (see, for example, V. Boltyanski, H. Martini, P. S. Soltan, [9, Theorem 34.3]).
For a detailed discussion of the problem and a survey of partial results, we refer to [9,
Chapter VI, K. Bezdek [4, Chapter 3] and a recent survey by K. Bezdek and M. A. Khan
[6].

An upper bound for the illumination number, which follows from a classical covering
argument of C.A. Rogers [15], is

Vol,, (K — K)

Z(K) < (nlogn + nloglogn + 5n) Vol (K)

(1)
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(see, for example, K. Bezdek [4, Theorem 3.4.1]). Here, Vol,(-) is the Lebesgue measure in
R"™, and K —K is the Minkowski sum of K and —K. Using the estimate of Vol,,(K —K) due
to C.A. Rogers and G.C. Shephard [16], we get Z(K) < (1 + 0(1))(277)n10g n. Moreover,
for a centrally-symmetric K we clearly have Vol, (K — K) = 2"Vol,,(K), whence Z(K) <
(14 o(1))2"nlogn.

The proof of (1) based on C.A. Rogers’ covering of R", combines probabilistic and
deterministic arguments, and does not give much information about the arrangement
of points illuminating K. The main motivation for this work is to present a simple
probabilistic model for the illumination, which provides more data about the collection of
the light sources. In fact, we consider a more general question of covering a given convex
body with its positive homothetic copies of different sizes. We prove the following:

Proposition 1. Let n be a sufficiently large positive integer, K be a convex body in R™
with the origin in its interior and let numbers (X)) satisfy \; € (e™™,1) (i=1,2,...,m)
and

Vol,,(K — K)

Z/\i" > (nlogn + nloglogn + 4n) Vol (K)
Olp,

i=1
For each i, let X; be a random vector uniformly distributed inside the set K — N\ K, so
that X1, Xo, ..., X,, are jointly independent. Then the random collection of translates
{X; + MK}, covers K with probability at least 1 — e 03",

As an easy corollary of the above statement, we obtain:

Corollary 2. Let n be a large positive integer, and K be a convex body in R™ with the
origin in its interior. Then there is a number R > 0 depending only on n with the following
property: Let X be a random vector uniformly distributed over K — K, and let

Vol,, (K — K)W

= 1 log1
m {(n ogn + nloglogn + 5n) Vol, (i)

Let X1, Xo, ..., X, be independent copies of X. Then with probability at least 1 — e~ 03"
the collection {RX1, RXs, ..., RX,,} illuminates K.

Let us note that illumination of convex sets by independent random light sources
was previously considered in literature. Namely, O. Schramm [19] used such a model to
estimate the illumination number for bodies of constant width; later, this approach was
generalized by K. Bezdek to so-called fat spindle bodies [5].

Proposition 1 allows us to study the following notion, closely related to the illumination
number. For a convex body K in R", define f,(K) to be the least positive number such
that for any sequence (A;) (\; € [0,1)) with > \" > f,(K) there are points z; € R"
such that the collection of homothets {\; K + z;} covers K. It was shown by A. Meir and
L. Moser [13] that fn([O, 1]”) = 2" — 1. For an arbitrary convex body K, J. Januszewski
[11] showed that f,(K) < (n+ 1)" — 1. Further, M. Naszddi [14] showed that for any K
with its center of mass at the origin,

fa(K) <2

Vol,(K N (—K))

nwmmwéKmeK»< 3", if K =—K,
— 16", otherwise.
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We refer to P. Brass, W. Moser, J. Pach [8, p. 131] for a more extensive discussion of this
quantity.
Our Proposition 1, together with a Rogers—type argument, gives the following:

Corollary 3. Let n be a (large enough) positive integer and K be a convex body in R™.
Then, with the quantity f,(K) defined above, we have

Vol,, (K — K)-‘

< 1 log1
fu(K) < {(n ogn + nloglogn + 5n) Vol, (i)

We remark, that together with the Rogers—Shephard bound on the volume of the
difference body from [16], Corollary 3 implies that

1K) 2"nlogn(l+ o(1)), if K =-K,
" - \/L?nlﬂ‘nlog n(l+o(1)), otherwise.

We note that several other illumination-related quantities, different from f,,(K), were
considered in literature. We refer, in particular, to [3, 7, 20].

Let us emphasize that proofs of all the above statements are very simple. The purpose
of this note is to put forward a randomized model for studying the illumination number
and its generalizations. We believe that such viewpoint to the Illumination Problem will
prove useful. Let us note that, using a randomized model for illumination (however,
different from the one considered in this note), the second author recently verified the
[Mlumination conjecture for the class of unit balls of 1-symmetric norms in R™ in high
dimensions [21].

We give a proof of Proposition 1 in Section 3, whereas the corollaries are derived in
Section 4.

2 Notation and preliminaries

The standard vector basis in R™ is denoted by {ej,es,...,e,}. For a non-zero vector
v € R™, vt is the hyperplane orthogonal to v. By B? we denote the cube [—1, 1]™.
Given two sets A, B C R", the Minkowski sum A + B is defined as

A+B:={r+y:x€A ye B}

Let K be a convex body, and let € > 0. Then an e-net N on K is a set of points {z;} C R”
such that the collection of convex sets {x; + K} covers K.
We make the following observation.

Lemma 4. Let n > 2 be an integer. For every convex body K in R™ and for every
A € [0,1] we have
, Vol (K — K)

Vol (K = AK) < (14 \)" 20—,



Proof. Observe that
Vol,,(K — AK) = (1 4+ X)"Vol,, (uK — (1 — p)K),

where p = 115 € [0,1]. The lemma follows from the fact that

max Vol,, (WK — (1 —v)K) = Vol,

ve(0,1]

(g - §> _ Voln(.;(n— K) @

To establish (2), let us consider an auxiliary (n + 1)-dimensional convex set C given by
C :=conv (K x {0} U (—K) x {1})

(let us remark that the use of such auxiliary sets is rather standard and goes back at least
to C.A. Rogers and G.C. Shephard [17]; also, see S. Artstein-Avidan [1]). Observe that
for any v € [0, 1] we have

CN(epq +venn)= WK —(1-v)K) x {v}.

The set C is convex and symmetric with respect to %enﬂ. Hence, the n-dimensional
section of C given by the hyperplane e, ; + %enﬂ, has maximal n-dimensional volume
among all other sections of C parallel to it. O]

Next, for the reader’s convenience we provide a standard estimate of the covering
number.

Lemma 5. Let n be a sufficiently large positive integer, and let K be a convex body in
R™ with the origin in its interior. Then for any ¢ € (0,1] there exists an e-net on K of
cardinality at most (g)n

Proof. By the Rogers—Zong lemma [18], there exists an e-net of cardinality at most

Vol,,(K — ¢K)
Vol,, (eK)

(nlogn+nloglogn+5n).

By Lemma 4, along with the Rogers—Shephard lemma [16], we estimate

Vol,, (K — eK) 4"(1 4 ¢)"nlogn 5\"
1 log1 <(1 1 <(-] .
Vol () (nlogn + nloglogn +5n) < (1+ o(1)) NG =z

3 Proof of Proposition 1

Let (\;), satisfy the assumptions of the proposition, and let X;, Xo, ..., X,, be jointly
independent random vectors, where each X is uniformly distributed in K — \; K. Assume
without loss of generality that Vol,(K) = 1.



We shall estimate the probability
IP’{K c o+ A,K)}.
i=1

Let € € (0,1] be chosen later, and consider an e-net A' on K of cardinality at most (g)n
(which exists according to Lemma 5). We can safely assume that N'C K — K. Observe
that

IP’{EIxGK cx ¢ O(Xi+/\iK)} SIP’{EyEN cy ¢ O(Xi+(/\i—5)+K)}>

where (A\; — ¢€)4 := max(0, \; — ). Hence, by the union bound,

£ yeN

IP{K C LmJ(XZ + /\iK)} >1- (§)nmaXIP’{y ¢ Lnj(XZ + (N —5)+K)}.

Fix any y € N and note that

m

P{y ¢ Ui+ (- )ek) ) =TT (1= P{y e Xi+ (i -2 K}).

i=1
Further, observe that

(A —e)4”

Plye Xi+ (N —e) K} =P{X;cy— (i —¢) K} = Vol, (K — NK)

where the last equality is due to the fact that Vol,,(K) = 1 and that
y— (N —e)K C K — K

whenever )\; > €. Combining the above relations, we obtain

IP’{K c Q(XZ- + )\iK)} >1- (g)nli (1 _ VOS(}; i);jm) .

Now, our aim is to show that under the assumptions of the proposition there exists

an € such that .
<§> H (1 . (/\z - 5)4— ) < 670.371’
£) o Vol,, (K — M K)

or, equivalently,

S (A —e)4" €
log (1 — <nlog(Z) = 0.3n.
;Og( Vol (K — \K) —”°g<5> 0-3n



In view of Lemma 4, and the relation log(1 — t) < —t valid for all ¢ > 0, we have
S (Ai — 2" (N —e)4”

1 1— 1 1—
D log < Voln(K )\ K) Z °8 (1+ \)"Vol, (K — K)

)
< (AZ - 5)
<=2 (L4 N)"™Vol (K — K)’

=1

Thus, in order to prove the proposition, it is sufficient to show that for some € € (0, 1] we
have

1 " 2”()\Z — 5)+n
logh log — — < —0.3n. 3
niogo+nie ;(lJr)\i)”Voln(K—K) =Then (3)
Let A, :==1— 410%. We consider two complimentary subsets of {1,2,...,m}:

Li={i<m: >4}, L={i<m: )\ <A,}.

The rest of the proof splits into two cases.

Case 1:
SN (1 - 10;1) Z)\i". (4)

i€ly

Choose ¢ := —4=
nlogn

1
logn

A —e)" >N (1 - ) for all ¢ € L,

whence, using the condition \; < 1 together with (4) and the condition on the sum of \;",
we get

> _
Z»EXL% (1+ X\)"Vol, (K — K) — (1 10gn> ZGZLl Vol,(K — K)

I \2 & A"
= (1 B @) ; Vol,, (K — K)

1 \2
> (1— ) (nlogn + nloglogn + 4n).
logn

It is easy to check, using the above inequality, that (3) is satisfied, and Case 1 is settled.
Case 2:

m

ANt — 1 )\ "
i€ Lo gn
Set ¢ := bg . By the assumption of the proposition, \; > e~ for all <. Hence,
n 1 no
(A —e)y 2(1— ))\i, i<m,
logn



and the left hand side of (3) is less than

1 on A"
logn) Vol,,(K — K) Z (1+ )"

NiE€Lo
m

1 A ;"
- DS
logn logn ) Vol,(K — K) < (1+ X"
1 2" nlogn + nloglogn + 4n
(I1+ A, logn

nlog5 + n® + nlogn + nloglogn — (1 —

nlog5 + n? + nlogn + nloglogn —

< nlog5+n?+nlogn + nloglogn — (1 —
logn

< —0.3n.

Here, we used the definition of A,,, and the assumption on the sum of \;". Thus, Case 2
is settled, and the proof of Proposition 1 is complete.

4 Proof of the Corollaries

4.1 Proof of Corollary 2

First, we recall that if K is a convex body and K C U,int(K) + z; for some non-
zero vectors xy, To, ..., T, then there exists R > 0 such that points Rxy, Rz, ..., Rz,
illuminate K (see, for example, [9, proof of Theorem 34.3]). It is not difficult to verify the
following quantitative version of above observation: If K C U™, (1 — ¢)K + z; for some
e € (0,1), then Rz, Rxs, ..., Rx,, illuminate K whenever R > %

Let n be a sufficiently large integer, denote

Vol,, (K — K)W

m = {(nlogn+nloglogn+5n) Vol,(K)

and select € = ¢(n) > 0 small enough so that
Vol (K — K)
Vol,,(K)
Let Xy, X5,..., X, be ii.d. uniformly distributed in K — K. Then, by Proposition 1,
with probability at least 1 — e7%3" the collection {X; + (1 — )K}, forms a covering

of K; hence, for any fixed R > %, the vectors RXy, RX5,..., RX,, illuminate K with
probability at least 1 — =037,

m(1l —¢e)" > (nlogn + nloglogn + 4n)

4.2 Proof of Corollary 3

The next lemma is a variation of the well known theorem of C.A. Rogers [15] on economical
coverings of R" with convex bodies.

Lemma 6. Let n be a sufficiently large positive integer and K be a convexr body in R™
such that —%K C K C B™. Further, let L > n* and let (Ai)f\il be a sequence of numbers
in [1/2,1] with

M
Z Vol,, (M K) > (nlogn + nloglogn + 5n)Vol,, (LBL).
i=1
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Then there exists a translative covering of LBY by {\K}M,

Proof. The proof to a large extent follows [15]; we provide it only for reader’s convenience.
Let M’ < M be the least number such that

Z Vol,, (M K) > (nlogn + nloglogn + 4n)Vol,, (LBL),

and let Y; (1 <i < M’) be independent random vectors uniformly distributed in LB —
2K. For any point x € LB} — K, using the condition K C B, we have

1
P{x¢ <)\i— >K+Yi for all iSM’}
2nlogn
M’ 1
e (- )a)
, 2nlogn
n Vol, (MK
< H 1— (1 _ ) ob (\:k) ,
nlogn/ Vol,(LB2 —2K)
where the last inequality is due to the fact that x — (/\Z- 2n10gn)K C LB} —2K. Further,
we have
ﬁ X (1 1 )n Vol, (A K)
pale nlogn/ Vol,(LB% — 2K)
M/
1 n Vol,, (/\Z-K)
<exp|—(1-——)
= P ( nlogn ZZI Vol,,(LBZ, — 2K)>
M/
L 1 n Vol,, (A K)

<exp| - (1 )Y s
= &P (L+2)" ( nlogn Zzl Voln(LBgo))

1
(14 2n—2

< exp

1
(1— >(nlogn+nloglogn+4n)
i logn
< exp(—nlogn —nloglogn — 2n),

where in the last inequality we used the assumption that n is large. Hence, there is a
non-random collection of vectors {y;}] such that

Vol,, (LB" \U<( ‘ 2nlogn)K+yi>>

< exp(—nlogn — nloglogn — 2n)Vol,, (LB — K).

Suppose that S := LB \ Y 1()\ K + y;) is non-empty. Let A/ be a maximal discrete
subset of S such that

K)ﬁ(y’— ! K)z@forally#y’e./\f.

(y o logn 2nlogn

8



Note that N — ——K C (LB — K) \ Uf‘ill(()\z 1)K +y;), whence

2nlogn T 2n logn

exp(—nlogn — nloglogn — 2n)Vol,, (LB}, — K) < Vol,,(LBY, — K)

VI = (2nlog n) Vol (K) S —ewvon (k) O

On the other hand, by the choice of A and in view of the inclusion —%K C K, we have

(K —K)C N + K.

SCcN
+2nlogn 2

Finally, from the choice of M’ it follows that

M
> Vol (\E) > Vol, (LBL) — Vol, (K),
i=M'+1

whence, using (5), M — M’ > V°17”(L50%)(_K\§OI”(K) > |N|. It remains to define the points

{yi} 11 so that {y;} M, = N; then the collection {y; + N K}, covers LBZ. [

Proof of Corollary 3. Let (\;)52, be a sequence of numbers in (0, 1) such that
Z Vol,, (A K) > (nlogn + nloglogn + 5n)Vol, (K — K).
i=1

We need to show that in this case there exists a covering of K of the form {y; + \; K }5°;.
We will assume that ) Vol,(\;K) < co. First, suppose that

=1

Z Vol,,(N\K) > (nlogn + nloglogn + 4n)Vol,, (K — K).

i:AiZn*5

Then the result immediately follows from Proposition 1.
Otherwise,
> Vol (\K) > Vol (K — K) > 2"Vol,,(K). (6)
A <n 5

Further, without loss of generality (for example, by applying John’s theorem [12, 2] to-
gether with an appropriate affine transformation) we can assume that B ¢ K C n*2B".
Let {z; +n~*?BL}Y | be a minimal covering of K by cubes with pairwise disjoint inte-
riors. Let us define subsets I, C N by

Li={ieN: \n°e (2" 27"}, k=1,2,...

and for every k € N set

2ier, Voln(AiK) J

F(k) = L .
() (nlogn + nloglogn + 6n)Vol, (2-++1n=3/2Bn)



Further, for those k with F(k) > 0, we let If (¢ =1,2,..., F(k)) be a partition of I, such
that

ZVoln()\iK) > (nlogn+nloglogn+5n)Vol,(27¥n=32B"), (=1,2,...,F(k). (7)

ielf

Note that such partitions can always be constructed as the volume of each \;K (i € Ij)
is negligible compared to Vol,,(27%*1n=3/2B% ). Further,

D> ) Vol (LK) < 4n*logn Vol, (n*?BL) < n™"Vol, (K),

k:F(k)<n i€l
whence, by (6)

n > ier, Vol (A K)
n+ 1 (nlogn + nloglogn + 6n)

> F(k)Vol,2*n™*2Br) > >~

k:F(k)>n k:F(k)>n
n 2"Vol,,(K)
~ n+ 1nlogn + nloglogn + 6n
N
> Vol, (U(a;j + n—3/2Bgo)),

j=1

—n""Vol,(K)

N
where the last inequality follows from the trivial observation |J(z; +n"%2B%) C (1 +
j=1
2n~3/2)K and our assumption that n is large. The last relation implies that there exists
a finite collection of translates

Co={yl+ 27 2Bk F(k)>n, (=12, F(k)} (4 €R")

N
such that the union of the cubes from C covers | (z; +n~32B"), hence, K. For each
j=1
cube from C we construct a translative covering by sets {\; K },;¢ r¢ using condition (7) and
Lemma 6. This completes the proof. [
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