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Abstract

We present a probabilistic model of illuminating a convex body by independently
distributed light sources. In addition to recovering C.A. Rogers’ upper bounds for
the illumination number, we improve previous estimates of J. Januszewski and M.
Naszódi for a generalized version of the illumination parameter.

1 Introduction

Given a convex body (i.e. a compact convex set with non-empty interior) K in Rn and
points p1, p2, . . . , pm ∈ Rn \K, we say that the collection {p1, p2, . . . , pm} illuminates K if
for any point x on the boundary of K there is a point pi such that the line passing through
x and pi intersects the interior of K at a point not between pi and x. The illumination
number I(K) is the cardinality of the smallest collection of points illuminating K.

The well known conjecture of H. Hadwider [10], independently formulated by I. Go-
hberg and A. Markus, asserts that I(K) ≤ 2n for any n-dimensional convex body, with the
equality attained for parallelotopes. The problem is known to be equivalent to the ques-
tion whether every convex body can be covered by at most 2n smaller homothetic copies
of itself (see, for example, V. Boltyanski, H. Martini, P. S. Soltan, [9, Theorem 34.3]).
For a detailed discussion of the problem and a survey of partial results, we refer to [9,
Chapter VI], K. Bezdek [4, Chapter 3] and a recent survey by K. Bezdek and M. A. Khan
[6].

An upper bound for the illumination number, which follows from a classical covering
argument of C.A. Rogers [15], is

I(K) ≤ (n log n+ n log log n+ 5n)
Voln(K −K)

Voln(K)
(1)
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(see, for example, K. Bezdek [4, Theorem 3.4.1]). Here, Voln(·) is the Lebesgue measure in
Rn, andK−K is the Minkowski sum of K and−K. Using the estimate of Voln(K−K) due
to C.A. Rogers and G.C. Shephard [16], we get I(K) ≤ (1 + o(1))

(
2n
n

)
n log n. Moreover,

for a centrally-symmetric K we clearly have Voln(K −K) = 2nVoln(K), whence I(K) ≤
(1 + o(1))2nn log n.

The proof of (1) based on C.A. Rogers’ covering of Rn, combines probabilistic and
deterministic arguments, and does not give much information about the arrangement
of points illuminating K. The main motivation for this work is to present a simple
probabilistic model for the illumination, which provides more data about the collection of
the light sources. In fact, we consider a more general question of covering a given convex
body with its positive homothetic copies of different sizes. We prove the following:

Proposition 1. Let n be a sufficiently large positive integer, K be a convex body in Rn

with the origin in its interior and let numbers (λi)
m
i=1 satisfy λi ∈ (e−n, 1) (i = 1, 2, . . . ,m)

and
m∑
i=1

λi
n ≥ (n log n+ n log log n+ 4n)

Voln(K −K)

Voln(K)
.

For each i, let Xi be a random vector uniformly distributed inside the set K − λiK, so
that X1, X2, . . . , Xm are jointly independent. Then the random collection of translates
{Xi + λiK}mi=1 covers K with probability at least 1− e−0.3n.

As an easy corollary of the above statement, we obtain:

Corollary 2. Let n be a large positive integer, and K be a convex body in Rn with the
origin in its interior. Then there is a number R > 0 depending only on n with the following
property: Let X be a random vector uniformly distributed over K −K, and let

m :=
⌈
(n log n+ n log log n+ 5n)

Voln(K −K)

Voln(K)

⌉
.

Let X1, X2, . . . , Xm be independent copies of X. Then with probability at least 1− e−0.3n
the collection {RX1, RX2, . . . , RXm} illuminates K.

Let us note that illumination of convex sets by independent random light sources
was previously considered in literature. Namely, O. Schramm [19] used such a model to
estimate the illumination number for bodies of constant width; later, this approach was
generalized by K. Bezdek to so-called fat spindle bodies [5].

Proposition 1 allows us to study the following notion, closely related to the illumination
number. For a convex body K in Rn, define fn(K) to be the least positive number such
that for any sequence (λi) (λi ∈ [0, 1)) with

∑
λi
n > fn(K) there are points xi ∈ Rn

such that the collection of homothets {λiK + xi} covers K. It was shown by A. Meir and
L. Moser [13] that fn

(
[0, 1]n

)
= 2n − 1. For an arbitrary convex body K, J. Januszewski

[11] showed that fn(K) ≤ (n+ 1)n − 1. Further, M. Naszódi [14] showed that for any K
with its center of mass at the origin,

fn(K) ≤ 2n
Voln(K + 1

2
K ∩ (−K))

Voln(K ∩ (−K))
≤

{
3n, if K = −K,
6n, otherwise.
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We refer to P. Brass, W. Moser, J. Pach [8, p. 131] for a more extensive discussion of this
quantity.

Our Proposition 1, together with a Rogers–type argument, gives the following:

Corollary 3. Let n be a (large enough) positive integer and K be a convex body in Rn.
Then, with the quantity fn(K) defined above, we have

fn(K) ≤
⌈
(n log n+ n log log n+ 5n)

Voln(K −K)

Voln(K)

⌉
.

We remark, that together with the Rogers–Shephard bound on the volume of the
difference body from [16], Corollary 3 implies that

fn(K) ≤

{
2nn log n(1 + o(1)), if K = −K,
1√
πn

4nn log n(1 + o(1)), otherwise.

We note that several other illumination-related quantities, different from fn(K), were
considered in literature. We refer, in particular, to [3, 7, 20].

Let us emphasize that proofs of all the above statements are very simple. The purpose
of this note is to put forward a randomized model for studying the illumination number
and its generalizations. We believe that such viewpoint to the Illumination Problem will
prove useful. Let us note that, using a randomized model for illumination (however,
different from the one considered in this note), the second author recently verified the
Illumination conjecture for the class of unit balls of 1-symmetric norms in Rn in high
dimensions [21].

We give a proof of Proposition 1 in Section 3, whereas the corollaries are derived in
Section 4.

2 Notation and preliminaries

The standard vector basis in Rn is denoted by {e1, e2, . . . , en}. For a non-zero vector
v ∈ Rn, v⊥ is the hyperplane orthogonal to v. By Bn

∞ we denote the cube [−1, 1]n.
Given two sets A,B ⊂ Rn, the Minkowski sum A+B is defined as

A+B := {x+ y : x ∈ A, y ∈ B}.

Let K be a convex body, and let ε > 0. Then an ε-net N on K is a set of points {xi} ⊂ Rn

such that the collection of convex sets {xi + εK} covers K.
We make the following observation.

Lemma 4. Let n ≥ 2 be an integer. For every convex body K in Rn and for every
λ ∈ [0, 1] we have

Voln(K − λK) ≤ (1 + λ)n
Voln(K −K)

2n
.
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Proof. Observe that

Voln(K − λK) = (1 + λ)nVoln (µK − (1− µ)K) ,

where µ = 1
1+λ
∈ [0, 1]. The lemma follows from the fact that

max
ν∈[0,1]

Voln (νK − (1− ν)K) = Voln

(
K

2
− K

2

)
=

Voln(K −K)

2n
. (2)

To establish (2), let us consider an auxiliary (n+ 1)-dimensional convex set C given by

C := conv (K × {0} ∪ (−K)× {1})

(let us remark that the use of such auxiliary sets is rather standard and goes back at least
to C.A. Rogers and G.C. Shephard [17]; also, see S. Artstein-Avidan [1]). Observe that
for any ν ∈ [0, 1] we have

C ∩ (e⊥n+1 + νen+1) = (νK − (1− ν)K)× {ν}.

The set C is convex and symmetric with respect to 1
2
en+1. Hence, the n-dimensional

section of C given by the hyperplane e⊥n+1 + 1
2
en+1, has maximal n-dimensional volume

among all other sections of C parallel to it.

Next, for the reader’s convenience we provide a standard estimate of the covering
number.

Lemma 5. Let n be a sufficiently large positive integer, and let K be a convex body in
Rn with the origin in its interior. Then for any ε ∈ (0, 1] there exists an ε-net on K of
cardinality at most

(
5
ε

)n
.

Proof. By the Rogers–Zong lemma [18], there exists an ε-net of cardinality at most

Voln(K − εK)

Voln(εK)

(
n log n+ n log log n+ 5n

)
.

By Lemma 4, along with the Rogers–Shephard lemma [16], we estimate

Voln(K − εK)

Voln(εK)

(
n log n+ n log log n+ 5n

)
≤ (1 + o(1))

4n(1 + ε)nn log n√
πn2nεn

≤
(

5

ε

)n
.

3 Proof of Proposition 1

Let (λi)
m
i=1 satisfy the assumptions of the proposition, and let X1, X2, . . . , Xm be jointly

independent random vectors, where each Xi is uniformly distributed in K−λiK. Assume
without loss of generality that Voln(K) = 1.
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We shall estimate the probability

P
{
K ⊂

m⋃
i=1

(Xi + λiK)
}
.

Let ε ∈ (0, 1] be chosen later, and consider an ε-net N on K of cardinality at most
(
5
ε

)n
(which exists according to Lemma 5). We can safely assume that N ⊂ K − εK. Observe
that

P
{
∃x ∈ K : x /∈

m⋃
i=1

(Xi + λiK)
}
≤ P

{
∃y ∈ N : y /∈

m⋃
i=1

(Xi + (λi − ε)+K)
}
,

where (λi − ε)+ := max(0, λi − ε). Hence, by the union bound,

P
{
K ⊂

m⋃
i=1

(Xi + λiK)
}
≥ 1−

(
5

ε

)n
max
y∈N

P
{
y 6∈

m⋃
i=1

(Xi + (λi − ε)+K)
}
.

Fix any y ∈ N and note that

P
{
y 6∈

m⋃
i=1

(Xi + (λi − ε)+K)
}

=
m∏
i=1

(
1− P

{
y ∈ Xi + (λi − ε)+K

})
.

Further, observe that

P
{
y ∈ Xi + (λi − ε)+K

}
= P

{
Xi ∈ y − (λi − ε)+K

}
=

(λi − ε)+n

Voln(K − λiK)
,

where the last equality is due to the fact that Voln(K) = 1 and that

y − (λi − ε)K ⊂ K − λiK

whenever λi > ε. Combining the above relations, we obtain

P
{
K ⊂

m⋃
i=1

(Xi + λiK)
}
≥ 1−

(
5

ε

)n m∏
i=1

(
1− (λi − ε)+n

Voln(K − λiK)

)
.

Now, our aim is to show that under the assumptions of the proposition there exists
an ε such that (

5

ε

)n m∏
i=1

(
1− (λi − ε)+n

Voln(K − λiK)

)
≤ e−0.3n,

or, equivalently,

m∑
i=1

log

(
1− (λi − ε)+n

Voln(K − λiK)

)
≤ n log

(ε
5

)
− 0.3n.
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In view of Lemma 4, and the relation log(1 − t) ≤ −t valid for all t ≥ 0, we have

m∑
i=1

log

(
1− (λi − ε)+n

Voln(K − λiK)

)
≤

m∑
i=1

log

(
1− 2n(λi − ε)+n

(1 + λi)nVoln(K −K)

)
≤ −

m∑
i=1

2n(λi − ε)+n

(1 + λi)nVoln(K −K)
.

Thus, in order to prove the proposition, it is sufficient to show that for some ε ∈ (0, 1] we
have

n log 5 + n log
1

ε
−

m∑
i=1

2n(λi − ε)+n

(1 + λi)nVoln(K −K)
≤ −0.3n. (3)

Let An := 1− 4 logn
n

. We consider two complimentary subsets of {1, 2, . . . ,m}:

L1 =
{
i ≤ m : λi ≥ An

}
, L2 =

{
i ≤ m : λi < An

}
.

The rest of the proof splits into two cases.
Case 1: ∑

i∈L1

λi
n ≥

(
1− 1

log n

) m∑
i=1

λi
n. (4)

Choose ε := An

n logn
. Then

(λi − ε)n ≥ λi
n

(
1− 1

log n

)
for all i ∈ L1,

whence, using the condition λi ≤ 1 together with (4) and the condition on the sum of λi
n,

we get ∑
i∈L1

2n(λi − ε)n

(1 + λi)nVoln(K −K)
≥
(

1− 1

log n

)∑
i∈L1

λi
n

Voln(K −K)

≥
(

1− 1

log n

)2 m∑
i=1

λi
n

Voln(K −K)

≥
(

1− 1

log n

)2
(n log n+ n log log n+ 4n).

It is easy to check, using the above inequality, that (3) is satisfied, and Case 1 is settled.
Case 2: ∑

i∈L2

λi
n >

1

log n

m∑
i=1

λi
n.

Set ε := e−n

n logn
. By the assumption of the proposition, λi ≥ e−n for all i. Hence,

(λi − ε)+n ≥
(

1− 1

log n

)
λi
n, i ≤ m,
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and the left hand side of (3) is less than

n log 5 + n2 + n log n+ n log log n−
(

1− 1

log n

)
2n

Voln(K −K)

∑
λi∈L2

λi
n

(1 + λi)n

n log 5 + n2 + n log n+ n log log n− 1

log n

(
1− 1

log n

)
2n

Voln(K −K)

m∑
i=1

λi
n

(1 + λi)n

≤ n log 5 + n2 + n log n+ n log log n−
(

1− 1

log n

)
2n

(1 + An)n
n log n+ n log log n+ 4n

log n

� −0.3n.

Here, we used the definition of An, and the assumption on the sum of λi
n. Thus, Case 2

is settled, and the proof of Proposition 1 is complete.

4 Proof of the Corollaries

4.1 Proof of Corollary 2

First, we recall that if K is a convex body and K ⊂ ∪mi=1int(K) + xi for some non-
zero vectors x1, x2, . . . , xm, then there exists R > 0 such that points Rx1, Rx2, . . . , Rxm
illuminate K (see, for example, [9, proof of Theorem 34.3]). It is not difficult to verify the
following quantitative version of above observation: If K ⊂ ∪mi=1(1 − ε)K + xi for some
ε ∈ (0, 1), then Rx1, Rx2, . . . , Rxm illuminate K whenever R > 1

ε
.

Let n be a sufficiently large integer, denote

m :=
⌈
(n log n+ n log log n+ 5n)

Voln(K −K)

Voln(K)

⌉
,

and select ε = ε(n) > 0 small enough so that

m(1− ε)n ≥ (n log n+ n log log n+ 4n)
Voln(K −K)

Voln(K)
.

Let X1, X2, . . . , Xm be i.i.d. uniformly distributed in K − K. Then, by Proposition 1,
with probability at least 1 − e−0.3n the collection {Xi + (1 − ε)K}mi=1 forms a covering
of K; hence, for any fixed R > 1

ε
, the vectors RX1, RX2, . . . , RXm illuminate K with

probability at least 1− e−0.3n.

4.2 Proof of Corollary 3

The next lemma is a variation of the well known theorem of C.A. Rogers [15] on economical
coverings of Rn with convex bodies.

Lemma 6. Let n be a sufficiently large positive integer and K be a convex body in Rn

such that − 1
n
K ⊂ K ⊂ Bn

∞. Further, let L ≥ n2 and let (λi)
M
i=1 be a sequence of numbers

in [1/2, 1] with

M∑
i=1

Voln(λiK) ≥ (n log n+ n log log n+ 5n)Voln(LBn
∞).
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Then there exists a translative covering of LBn
∞ by {λiK}Mi=1.

Proof. The proof to a large extent follows [15]; we provide it only for reader’s convenience.
Let M ′ ≤M be the least number such that

M ′∑
i=1

Voln(λiK) ≥ (n log n+ n log log n+ 4n)Voln(LBn
∞),

and let Yi (1 ≤ i ≤M ′) be independent random vectors uniformly distributed in LBn
∞ −

2K. For any point x ∈ LBn
∞ −K, using the condition K ⊂ Bn

∞, we have

P
{
x /∈

(
λi −

1

2n log n

)
K + Yi for all i ≤M ′

}
=

M ′∏
i=1

(
1− P

{
Yi ∈ x−

(
λi −

1

2n log n

)
K
})

≤
M ′∏
i=1

(
1−

(
1− 1

n log n

)n Voln
(
λiK

)
Voln(LBn

∞ − 2K)

)
,

where the last inequality is due to the fact that x−
(
λi− 1

2n logn

)
K ⊂ LBn

∞−2K. Further,
we have

M ′∏
i=1

(
1−

(
1− 1

n log n

)n Voln
(
λiK

)
Voln(LBn

∞ − 2K)

)

≤ exp

(
−
(

1− 1

n log n

)n M ′∑
i=1

Voln
(
λiK

)
Voln(LBn

∞ − 2K)

)

≤ exp

(
− Ln

(L+ 2)n

(
1− 1

n log n

)n M ′∑
i=1

Voln
(
λiK

)
Voln(LBn

∞)

)

≤ exp

(
− 1

(1 + 2n−2)n

(
1− 1

log n

)(
n log n+ n log log n+ 4n

))
≤ exp(−n log n− n log log n− 2n),

where in the last inequality we used the assumption that n is large. Hence, there is a
non-random collection of vectors {yi}M

′
i=1 such that

Voln

(
(LBn

∞ −K) \
M ′⋃
i=1

((
λi −

1

2n log n

)
K + yi

))
≤ exp(−n log n− n log log n− 2n)Voln(LBn

∞ −K).

Suppose that S := LBn
∞ \

⋃M ′

i=1

(
λiK + yi

)
is non-empty. Let N be a maximal discrete

subset of S such that(
y − 1

2n log n
K
)
∩
(
y′ − 1

2n log n
K
)

= ∅ for all y 6= y′ ∈ N .
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Note that N − 1
2n logn

K ⊂ (LBn
∞ −K) \

⋃M ′

i=1

(
(λi − 1

2n logn
)K + yi

)
, whence

|N | ≤ exp(−n log n− n log log n− 2n)Voln(LBn
∞ −K)

(2n log n)−nVoln(K)
≤ Voln(LBn

∞ −K)

enVoln(K)
. (5)

On the other hand, by the choice of N and in view of the inclusion − 1
n
K ⊂ K, we have

S ⊂ N +
1

2n log n
(K −K) ⊂ N +

1

2
K.

Finally, from the choice of M ′ it follows that

M∑
i=M ′+1

Voln(λiK) ≥ Voln(LBn
∞)− Voln(K),

whence, using (5), M −M ′ ≥ Voln(LBn
∞)−Voln(K)

Voln(K)
≥ |N |. It remains to define the points

{yi}Mi=M ′+1 so that {yi}Mi=M ′+1 = N ; then the collection {yi + λiK}Mi=1 covers LBn
∞.

Proof of Corollary 3. Let (λi)
∞
i=1 be a sequence of numbers in (0, 1) such that

∞∑
i=1

Voln(λiK) > (n log n+ n log log n+ 5n)Voln(K −K).

We need to show that in this case there exists a covering of K of the form {yi + λiK}∞i=1.

We will assume that
∞∑
i=1

Voln(λiK) <∞. First, suppose that

∑
i:λi≥n−5

Voln(λiK) ≥ (n log n+ n log log n+ 4n)Voln(K −K).

Then the result immediately follows from Proposition 1.
Otherwise, ∑

i:λi<n−5

Voln(λiK) ≥ Voln(K −K) ≥ 2nVoln(K). (6)

Further, without loss of generality (for example, by applying John’s theorem [12, 2] to-
gether with an appropriate affine transformation) we can assume that Bn

∞ ⊂ K ⊂ n3/2Bn
∞.

Let {xj + n−3/2Bn
∞}Nj=1 be a minimal covering of K by cubes with pairwise disjoint inte-

riors. Let us define subsets Ik ⊂ N by

Ik :=
{
i ∈ N : λin

5 ∈ (2−k, 2−k+1]
}
, k = 1, 2, . . .

and for every k ∈ N set

F (k) :=
⌊ ∑

i∈Ik Voln(λiK)

(n log n+ n log log n+ 6n)Voln(2−k+1n−3/2Bn
∞)

⌋
.
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Further, for those k with F (k) > 0, we let I`k (` = 1, 2, . . . , F (k)) be a partition of Ik such
that∑
i∈I`k

Voln(λiK) ≥ (n log n+n log log n+5n)Voln(2−k+1n−3/2Bn
∞), ` = 1, 2, . . . , F (k). (7)

Note that such partitions can always be constructed as the volume of each λiK (i ∈ Ik)
is negligible compared to Voln(2−k+1n−3/2Bn

∞). Further,∑
k:F (k)<n

∑
i∈Ik

Voln(λiK) ≤ 4n2 log nVoln(n−3/2Bn
∞)� n−nVoln(K),

whence, by (6)

∑
k:F (k)≥n

F (k)Voln(2−k+1n−3/2Bn
∞) ≥

∑
k:F (k)≥n

n

n+ 1

∑
i∈Ik Voln(λiK)

(n log n+ n log log n+ 6n)

≥ n

n+ 1

2nVoln(K)

n log n+ n log log n+ 6n
− n−nVoln(K)

> Voln

( N⋃
j=1

(xj + n−3/2Bn
∞)
)
,

where the last inequality follows from the trivial observation
N⋃
j=1

(xj + n−3/2Bn
∞) ⊂ (1 +

2n−3/2)K and our assumption that n is large. The last relation implies that there exists
a finite collection of translates

C :=
{
y`k + 2−k+1n−3/2Bn

∞, k : F (k) ≥ n, ` = 1, 2, . . . , F (k)
}

(y`k ∈ Rn)

such that the union of the cubes from C covers
N⋃
j=1

(xj + n−3/2Bn
∞), hence, K. For each

cube from C we construct a translative covering by sets {λiK}i∈I`k using condition (7) and
Lemma 6. This completes the proof.
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