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Abstract

It was conjectured by Levi, Hadwiger, Gohberg and Markus that the boundary of
any convex body in R” can be illuminated by at most 2" light sources, and, moreover,
2" — 1 light sources suffice unless the body is a parallelotope. We show that if a convex
body is close to the cube in the Banach—-Mazur metric, and it is not a parallelotope,
then indeed 2" — 1 light sources suffice to illuminate its boundary. Equivalently, any
convex body sufficiently close to the cube, but not isometric to it, can be covered by
2" — 1 smaller homothetic copies of itself.

Keywords Convex body - Illumination - Covering by homothetic copies

Mathematics Subject Classification 52A20 - 52C17

1 Introduction

The Levi-Hadwiger—Gohberg—Markus illumination conjecture [8,9] is a famous old
question in discrete geometry, which has several equivalent formulations. The view-
point we adopt in this note is due to Boltyanski (see, for example, [1,4,6]): Let B be
a convex body (i.e., compact convex set with non-empty interior) in R” and let B
denote its boundary. We say that a pointx € 9 B is illuminated in direction y € R\ {0}
if there is a small positive ¢ such that x 4 ¢y lies in the interior of B. Further, a col-
lection {y', y2, ..., y"} of non-zero vectors illuminates B if for any x € 9B there
is i = i(x) < m such that x is illuminated in direction y’. For any convex body B,
denote by Z(B) the cardinality of the smallest set of directions sufficient to illuminate
all the points from 9 B. The number Z(B) is called the illumination number of B.
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Conjecture (Levi-Hadwiger—Gohberg—Markus) For any convex body B in R" we have
Z(B) < 2", and equality holds if and only if B is a parallelotope.

As of this writing, the best known general upper bound for the illumination number
is due to Rogers [18]:

Vol, (B — B)

Z(B) < (nlogn + nloglogn + 5n) Vol, (B)

)

where B — B is the Minkowski sum of B and —B (called the difference body of
B), and Vol, (-) is the Lebesgue volume in R" (see, in particular, [4, Cor. 2.11]
and [1, Cor. 3.4.2], as well as [14] where a “fully random” proof of Rogers’ theo-
rem is given). If B is origin-symmetric then Vol,(B — B) = 2"Vol,(B), whence
Z(B) < (nlogn + nloglogn + 5n)2". For non-symmetric convex bodies, the
relation Vol,(B — B) < 4"Vol,(B) due to Rogers and Shephard [19] implies that
Z(B) < (nlogn + nloglogn + 5n)4".

The illumination conjecture has been solved (or almost solved) in some special
cases. In particular, it is known that each origin-symmetric convex body in R3 can be
illuminated by eight directions or fewer [12]. The conjecture holds true for so-called
belt polytopes [15] and their generalization—the belt bodies [5]; for bodies of constant
width [20] and, more generally, for the fat spindle bodies [2]; for dual cyclic polytopes
[3]. Recently, it has been shown in [21] that unit balls of 1-symmetric normed spaces
different from £7 can be illuminated in less than 2" directions. Finally, it is of interest
to note that there exist convex bodies arbitrarily close to the Euclidean ball in the
Banach—Mazur metric whose illumination number is exponential in the dimension
[16]. Let us refer to [1, Chap. 3] and [4] for more information on the subject. Let us
also mention a computer assisted approach to Hadwiger’s conjecture [22].

The approach to the illumination problem that we consider in this note was inspired
by the work [17] devoted to estimating the product of volumes of a convex body
and its polar. In what follows, for any p € [1, oo] we denote by BZ the closed
unit ball of the canonical || - || ,-norm on R”". The Mahler conjecture, one of the
central problems in convex geometry, asserts that for any origin-symmetric convex
body L, the Mahler volume Vol, (L) - Vol,(L°) is greater or equal to the Mahler
volume of the cube Vol (BY,) - Vol,,(B}), where L° denotes the polar body for L. We
refer to [7] (see also [11]) for an “isomorphic solution” to this problem and related
information. Very recently, this conjecture was verified in R3in[10]. In[17] the Mahler
conjecture was confirmed in every dimension in a small neighborhood of the cube and,
moreover, it was shown that the cube is a strict local minimizer in the Banach—Mazur
metric on the class of symmetric convex bodies. Let us recall that for any two (not
necessarily centrally-symmetric) convex bodies B and L in R", the Banach—-Mazur
distance dgy (B, L) between B and L is defined as the infimum of A > 1 such that there
is an invertible linear operator 7) : R" — R" and two vectors x; and y, satisfying
B C T, (L) 4+ x). C AB + yj,. The main theorem of [17] asserts that for every positive
integer n there is 6(n) > 0 such that any origin-symmetric convex body L with
1 #dpm(L, BS,) < 1+ 8(n) satisfies Vol, (L) - Vol,(L°) > Vol,(Bj,) - Vol,,(BY).

In this paper, we apply the “local” viewpoint of [ 17] in the context of the illumination
conjecture. The nature of the illumination problem is very different from the Mahler
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conjecture discussed above; the most obvious distinction coming from the lack of
continuity. Whereas the volume is stable with respect to small perturbations of a
convex body, the structure of its boundary—the layout of the extreme points, and the
combinatorial structure (in case of polytopes)—can change significantly even with
arbitrarily small perturbations. It becomes an interesting feature that certain “discrete—
geometric” properties related to the illumination (which we will mention later), remain
stable in a small neighborhood of the cube. The main non-technical result of this paper
is the following theorem.

Theorem 1.1 For any n > 3 there is a § = §(n) > 0 with the following property: Let
B be a convex body in R" and assume that 1 # dgm(B, BL,) < 1+ 6. Then B can be
illuminated with 2" — 1 directions or fewer.

It is well known that the illumination number of B can be equivalently defined as
the least number of translates of the interior of B needed to cover B (see, in particular
[6], [1, Chap. 3], [4]). In this sense, it becomes a simple observation that any convex
body with a sufficiently small Banach-Mazur distance to the cube can be illuminated
by 2" directions or fewer (in fact, more general statements are known; see [4, Sect. 4]
and references therein). The non-triviality of the above theorem consists in proving
that strictly less than 2" light sources suffice.

The construction of an illuminating set for B involves a careful study of its geometry.
Naturally, we consider the canonical illuminating set of the cube—the set of all sign
vectors—as the starting point. Next, we determine which pair of adjacent illuminating
directions can be “glued together” to form a single light source. The procedure is
completed by repositioning several of the “canonical” light sources in a special way.
Thus, we show that for any body B close to the cube in the Banach—Mazur metric
but not isometric to the cube, we can find a distinguished pair of boundary points of
B illuminated by the same light source, and complete the illumination of the entire
boundary of B by adding 2" — 2 light sources in “standard” or “almost standard”
positions. Interestingly, existence of this distinguished pair is a feature of all convex
sets sufficiently close to the cube (but not the cube itself). We will give a complete
description of this strategy later.

The dependency of the quantity § = §(n) of the main theorem on the dimension n
is not explicit as we use continuity arguments to establish certain properties of convex
sets close to the cube. In particular, it is an interesting question how large § can be made
by replacing the implicit estimates with more precise computations (while keeping the
same proof structure). We anticipate that this question will be addressed in our future
works.

Remark 1.2 We would like to point it out that our estimate is sharp in the sense that
for every n > 2 and for every ¢ € (0, 1) there exists a convex body B in R"” with
dpm(B, B%,) < 1+ ¢ and such that the illumination number of B is exactly 2" — 1.
We consider the following construction.

Letv := (1,1,...,1), v := (=1,1,1,...,1) and, for ¢ € (0,1), let v :=
(1—¢,1,1,...,1). Set

B := conv({—1, 1}"\v, ),
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where “conv(S)” denotes the convex hull of a set S, i.e., the smallest convex set
containing S. Note that dgm (B, BL,) < 1/(1 —¢).

For each vertex w of B, consider the set of vectors which illuminate w as a boundary
point of B:

n(B,w) := {x € R" : 38 > 0 such that w + éx is in the interior of B}.

Note that for all the vertices w of B which have at least two negative coordinates, as
well as for w = v/, one has n(B, w) = {x € R" : sign(x;) = —sign(w;) foralli <
n}. Moreover, for all vertices w of B with exactly one negative coordinate one has
n(B,w) C {x € R" : sign(x;) = —sign(w;) foralli < n}. This implies that the
illuminating sets for {—1, 1}""\v are pairwise disjoint, whence Z(B) > 2" — 1.

2 Notation and Preliminaries

Given a positive integer number n, [n] is the set {1,2,...,n}. We denote by
e1, e, ...,e, the standard basis in R” and by (-, -)—the canonical inner product
inR". Givenany 1 < p < oo, let || - ||, be the E’;,-norm on R", i.e.,

“ 1/p
H(xl,xz,...,xn)”p = (;lxiV’) and H(xl,xz,...,xn)”oo = rln;;( |xi|.
=

The unit ball of the E’;, -norm is denoted by Bz. By I we denote the identity operator
in R" (the dimension n will always be clear from the context). Further, given a linear
operator T: R" — R", let | T|| := || T |l2—2 stand for the spectral norm of T (i.e., its
largest singular value), and, more generally, for any two numbers 1 < p, g < oo, let
Tl p—4 be the operator norm of 7" considered as a mapping from Z’I’) to ZZ. Thus,

ITp—q = sup [Txllg-
=1

In view of standard comparison inequalities for £/ -norms, we have
ITlpq < I Tlly—q  forall 1< p.q.p'.q" < oo M

Given a cone K C R with the vertex at the origin, we define the solid angle o (K)
as

Vol, (K N B})

o(K) = Vol, (B})

Let B be a convex body in R”. Recall that the Gauss map vg: B — S"~! maps
each point x € 9B to the collection of outer unit normals to supporting hyperplanes
at x. The Gauss image v(B, x) of x € 0B is the convex cone given by {Ay : y €
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vp(x), A > 0}. Further, each point x € 9B can be associated with another convex
cone, the illuminating set n(B, x) which comprises all non-zero directions illuminating
x. Note that v(B, x) and the closure of (B, x) are polar cones, that is,

V(B,x)={yeR":(y,z) <O0forall z € n(B, x)}.

Given a point x € d B, denote by o (B, x) the solid angle of the cone 1 (B, x).
The next simple lemma will be useful; we give a proof for the reader’s convenience.

Lemma 2.1 Foranyn > 1 and B > O there is r,; = r,,(n, B) > 0 with the following
property: Let P be a non-degenerate parallelotope in R" such that for each vertex v of
the standard cube BY, there is a vertex v’ of P satisfying v’ — v € r,,BL.. Then there
is an invertible linear operator T in R" and a vector y such that B, = T (P)+y and
17 =1 177" = 1)) < B.

Proof Fix a small 8 > 0 and define g’ := B/n® and r = r,, := B'/4. Let P
be a parallelotope in R" satisfying the conditions of the lemma. First, observe that
(1 —r)BY, C P.Indeed, otherwise there would exist a vertex v of (1 — r)BJ, and
an affine hyperplane H passing through v and not intersecting P. On the other hand,
one could always find a pair of opposite vertices of B lying in different half-spaces
(determined by H) and such that the ¢ -distance of either vertex to H is greater
than r. This would contradict the assumption that every vertex of the cube can be
r-approximated by a point in P in the £ _-metric.

For each v € {—1,1}" let f(v) be the (unique) vertex of P satisfying |[v —

SWllee < r. Let S be the set of all vertices of BZ, adjacent to (1,1,...,1).
Note that the n vectors { f(1,1,...,1) — f(v)}yes are linearly independent whence
there is a unique linear operator 7' and a vector y € R” such that (1,1,...,1) =

T(f(1,1,....1)+yandv =T (f(v))+y (v € S). Note that necessarily T (P)+y =
B!, and, moreover, f is the restriction of T-'()=T7'(y) to {—1, 1}*. Together with
the inclusion (1 — r)BJ, C P, this gives (1 —r)T(B%,) C BZ, — y, whence, by the
symmetry of T(BZ,), (1 —r)T(BL,) C BZ,, and ||T[lec—soo < (1 — r~ L

By linearity of T', we have

o=2" Y 1l'w=T'm+27" > fw).

ve{—1,1}" ve{—1,1}"

whence

1T Do =27"

>orw| =27 Y w-ron|_

ve{—1,1}" ve{—1,1}"

<27 Y = f@lles <7

ve{—1,1}"
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Next, elementary convexity properties and the bound |7 ||oo—s00 < (1 — Nt <2
imply

1T —Hloosoo = max, NTv =l
ve{—1,1

<2m%Hw—ﬂw T 0llos < 4r = §'

Further,

177! = Tloemoo = max 17710 = vlloo

= max 1f@) v+ T Wl <2r < 4

Finally, note that in view of (1) we get from the above that |7 — 1|l < 'n* = g and
IT~! —1|| < B'n% = B. The result follows. o

3 High-Level Structure of the Proof

In this section, we give the proof of the main theorem assuming several properties of
convex bodies close to the cube (they are stated as lemmas). The proofs of the lemmas
which constitute the technical part of the paper, are deferred to the next section. In
the proof of the theorem, we work with quantities depending on various parameters
or other functions. For example, by writing 8 = B(n, o) we introduce f as a function
of two variables n and «. To make referencing easier, each function introduced within
a lemma is written with the number of that lemma as a subscript.

The invariance of the illumination number under affine transformations allows us
to restrict our analysis to the class of convex bodies B C R” such that

B, C B C dpm(B, BL,)Bs, +y (*)

for some vector y = y(B) € R". We say that a body B satisfying (%) is in a x-position.
Note that the x-position is not uniquely defined in general. It is obvious that any convex
body B in a x-position satisfies

B C (2dgm(B, BS,) — 1)BL.. 2)

Now, assume we have a convex body B in a x-position, with a very small Banach—
Mazur distance to the cube (but not the cube itself). How could we construct an
illuminating set for B of cardinality 2" — 1? It is natural to start with the standard
illuminating set for the cube, i.e., the set {—1, 1}, transform it in some way and
remove one direction. One may note that simply excluding one direction from {—1, 1}",
without changing the remaining directions is not sufficient. Indeed, consider a convex
polygon P in R? with eight vertices £(1 +¢,1 —¢), (1 —e, 1 4+¢), (-1 +¢, 1 +
e), (=1 —¢,1—¢), where ¢ > 0 is small enough. It can be checked that P is in a
*-position, and that any proper subset of {—1, 1}> does not illuminate P.
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Another natural approach is to replace a pair of adjacent illumination directions
with a single vector. That is, given a convex body B in R” in a x-position and with a
small distance to cube, construct an illumination set of the form

(=1 1"\ {~v, =o'} U {w}, 3)

where {—v, —v’} is some pair of adjacent directions from {—1, 1}"* and w is some non-
zero vector in R”. It can be checked directly that this method fails for the polygon P
constructed above, but, by slightly repositioning the canonical illumination directions,
itis possible to get an illuminating set for P (say, take the set {(1, —1.1), (1, 1.1)} U{w}
with w = (—1, 0)). It turns out that this approach can be generalized to convex bodies
in higher dimensions; thus, our construction in Theorem 1.1 resembles (3) but is
somewhat more technical. Let us give a formal definition.

For any n > 3 and any choice of parameters €, 6 € (0, 1), let us denote by C, (¢, 0)
the collection of all subsets S C R" of cardinality 2" — 1 such that there is a pair
v = v(S), v = v'(S) of adjacent vertices of the standard cube BZ, satisfying the
following three conditions:

e For any vertex w € {—1, 1}" adjacent neither to v nor to v/, S contains a vector in
the set —w + ¢ BZ,.

e For any vertex w = (wy, wa, ..., wy) € {—1, 1}"\{v, v’} adjacent either to v or
v/, S contains a vector in

— Z wije; — OQwje; +SBgo,
Jij#E

where i = i (w) is the unique index in [n] such that v; = vlf # Wj.
e S contains a vector w = (W1, Wa, ..., W,) in the parallelepiped

(vt ;
-11 — > 10.1]) + B
j=1

Note here that if £ € [n] is the unique index with v, = —v,’z, we get [wy| < e.

We will call w the distinguished direction of the set S, and v, v’ the distinguished
vertices of the cube w.r.t. set S. Roughly speaking, each set in C, (¢, 0) is constructed
by taking a standard illuminating set {—1, 1}" of B}, glueing together a pair of adja-
cent illuminating directions and then perturbing the collection in a special way. The
principal difference of the above construction from (3) is that we reposition all illu-
minating directions adjacent to either —v or —v’ by moving them “closer” to —v, —v’
(the reader may wish to compare this strategy to our illumination of the polytope P
in the above example). The rest of the illuminating directions, disregarding a small
perturbation, remain unchanged (i.e., are essentially sign vectors).

Observe that for any 0 < ¢ < ¢ and & > 0 we have Cy,(¢,0) C C,(¢’,0). The
definition of the class C, (¢, 6), being somewhat technical, is designed to be “stable”
with respect to linear transformations close to the identity:
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Lemma3.1 Foranyn > 2, 6,0 € (0,1) and o > O there is B;; = B;;(n, ) > 0
with the following property: whenever S € Cy (e, 0) and T is a linear operator in R"
satisfying |[T —1|| < B;,, we have T(S) € C,, (¢ + «, 0).

Our goal is to show that if B C R” is a convex body in a *-position which is
very close to the cube, yet distinct from it, then B can be illuminated by a collection
S € C, (¢, 0) for some appropriately chosen parameters ¢, 6. Both parameters will be
taken sufficiently small, but, importantly, ¢ shall be much smaller than 6.

A crucial notion that will help us to study illumination by directions from C, (¢, 0)
is that of pseudo-vertices. Let r € (0, 1) be a parameter and let B be a body in R” in a
*-position with dgm (B, BS,) < 1+ r/2. Note that, in view of (2), for any vertex v of
the standard cube B}, the set r B} + v intersects with the boundary of B. Given any
vertex v of B, we say that a point p € (r B, +v) N 9B is an (r)-pseudo-vertex of B
if p has minimal solid angle o (B, p) among all points in (r BL, + v) N dB. For all
admissible r, the set B has at least 2" (r)-pseudo-vertices, but may have more (in fact,
uncountably many if the boundary of B is smooth). Further, we say that a collection
of 2" points V C R" is a proper set of (r)-pseudo-vertices of B if for any vertex v of
B,V contains exactly one (r)-pseudo-vertex p(v) € (rBZ, 4+ v) N dB. In particular,
if B = B[, then the proper set of (r)-pseudo-vertices (for any admissible value of r)
coincides with the set of the regular vertices of the cube. In general, V may be not
uniquely defined.

It is easy to see that any point x on the boundary of the standard cube such that
o(BL,,x) < 27"*1 must be one of its vertices. Below we state a weaker relative of
this property for convex bodies sufficiently close to the cube and their pseudo-vertices.

Lemma 3.2 For each n > 2 there are n;, = n;,(n) € (0, 1), k;, = k;,(n) > 0 with
the following property. Let 0 < n < n;,. Then there is §;, = 8;,(n, n) € (0, n/2) such
that for any convex body B in R" in a x-position, with dgm(B, BL,) < 1+36,,, and for
any point x € B with o (B, x) < (1 4+ «;,) - 27", there is a vertex v of the standard
cube Bl such that x is the unique (n)-pseudo-vertex of B in (nBY, +v) N 0B.

Thus, we can detect a pseudo-vertex if its solid angle is less than certain critical value.
The following lemma provides a connection between this property of a boundary point
and the illumination of B, and, together with Lemma 3.6, comprises the most technical
part of the paper:

Lemma3.3 For any n > 2, k > 0 there is 6;;(n, k) € (0, 1) with the following
property. Forany(Q < 0 < 0,;thereare$;; = §;;(n, k,0) > Qande;; = ¢;;(n, k,0) €
(0, 1) such that for any convex body B in a x-position with dgm(B, BS) < 1+ 6,
and any element S € C, (g;;, 0) we have that every point x € d B not illuminated by S
satisfies

o(B,x) <(14+«)-27".

The following two lemmas are the core of our argument:

Lemma3.4 Letn > 2 and let €,0 € (0, 1) be any numbers. Let B be a convex body
in R" such that {—1,1)" C B and B # BJ,. Then there is a set S € C, (e, 0) which
illuminates every point in {—1, 1}"* (viewed as boundary points for B).
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Remark 3.5 Note that in the above lemma we illuminate only a subset of the boundary
and not the entire body.

Lemma3.6 Foranyn > 2 and ¢ € (0, 1) there is 0;, = 0;,(n) with the following
property. Let 0 < 0 < 0,,. Then there isr;s = r;,(n, €, 0) € (0, 1/2) such that for any
convex polytope P with 2" vertices and dgm(P, BL,) # 1sothatforeachv € {—1, 1}"
there is a vertex v' of P withv' — v € 135BL, we have that P is illuminated by some
set S € Cy(e, 0).

Remark 3.7 1t is crucial that the parameter 6, in the above lemma depends only on n
and not on €.

The above statements allow to complete the proof of the main theorem:

Proof of Theorem 1.1 Let us start by defining parameters. We fix any n > 2 and set

0 :=min(0,5(n), 0,;(n, k;,(n))), € :=¢&,,(n, k;,(n),0), B :=Pp;,(n,e/2),
7 1= min (’"3.6(”7 g,0),r,(n,B), 773.2(”))7 8 :=min (83.3(”17 K;2(n), 0), 85,(n, }’))

Consider a convex body B in R" with 1 # dgm(B, BZ,) < 1+ 5. Assume that B is
in a x-position. Let V be a proper set of (r)-pseudo-vertices of B (note that § < r/2
so V exists).

As the first step, we show that there is a set of directions S € C,(e, ) which
illuminates conv(}). Indeed, if conv()) is not a parallelotope then the assertion follows
from Lemma 3.6 and our choice of parameters. Otherwise, if dgm(conv()), BS ) = 1
then, in view of Lemma 2.1, there is a linear operator T and a vector y in R" such that
IT =1 < B, IT""=1I|| < Band T (conv(V))+y = B[. By Lemma 3.4, we can find
aset 8’ € C,(¢/2,0) which illuminates points in {—1, 1} considered as boundary
points of T (B) + y. Hence, T~!(S’) illuminates conv()) (again, viewed as a subset
of the boundary of B). Due to the assumptions on 7 and Lemma 3.1, S := T-1(5)
belongs to C,, (¢, 6).

Now, having constructed S, assume that there is a point x € 9B which is not
illuminated by S. Then, in view of Lemma 3.3 and our choice of parameters, we have
o(B,x) < (14 k;,(n)) - 27", But then, by Lemma 3.2 (applied with n := r), x is
the unique (r)-pseudo-vertex in (r B, 4+ v) N 0B for some vertex v of the standard
cube BJ,. Hence, x must belong to V leading to contradiction. Thus, B is entirely
illuminated in 2"* — 1 directions. O

4 Proofs of Lemmas 3.1-3.6

4.1 Proof of Lemma 3.1

Fix n > 2 and parameters ¢, 6 € (0, 1), « > 0. Instead of the spectral norm || - ||, it
will be convenient to consider || - ||co—s 0o (this makes no difference since we allow the
parameter S, , to depend on n). Set B := «/2. Suppose T is a linear operator satisfying

IT = Iloosoco < B-
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Take a vertex w of the standard cube and let p € —w + ¢BJ,. Observe that
P+ wloo < &and [[pllc < 1+ &. Thus

ITp + wlleo < ITp = plloc + Ip + wlloo = IT = 1IlloosoollPlloo + IP + wlleo
<Bl+e)+e<a+e,

and therefore Tp € —w + (¢ + ) BL,.

. . , n
In the same manner, given anyi < nand any p’ € — Zj:j# wjej —Ow;e; +eBy,,
we have

HTp/+<ZwJ€j+9wl€l>H <a-+e.
o0
Ji#

Finally, for any two adjacent vertices v, v’ of the standard cube and for any
n Vi 4 v
o e l‘[ (% .16, 1]> +¢&B,
j=1

we have

n U‘+U/-
Tp”e—]_[< / . ] -[9,1]>+(a+e)Bgo.
j=1

Together with the definition of the classes C,, (g, 0), this implies the result.

4.2 Proof of Lemma 3.2

We will prove the following two claims.

Claim 4.1 Foranyn > 2 and n > 0 there is §o(n, n) > 0 with the following property.
Let B be a convex body in R" with B, C B C (1 + 80) By, and let x be a point on
the boundary of B such that | x — v|leo > n for all v € {—1, 1}". Then necessarily
o(B,x)>15-27",

Claim 4.2 Foranyn > 2 there are positiven’ = n'(n) < land k' = k'(n) < 0.5 with
the following property. Let B be a convex body in R" satisfying BZ,, C B, let v be any
vertex of Bl and let x, y be two distinct points in B N (v + n’ BL,). Then necessarily
max(o (x),o(y)) > (1 +«)27"

Now, it is not difficult to verify that the claims imply the assertion of the lemma.
Indeed, fix any 0 < 1 < n,, := n’(n) and set §;, := min(8y(n, ), n)/2. Let B be
a convex body in R" in a *-position, with dgm(B, BS,) < 1 4+ &,,. Observe that,
in view of (2), we have B C (1 + 26,,)B%,. Let x be a point on the boundary of
B such that o (B, x) < (1 + k;,)27", with «;, := «’(n). In view of Claim 4.1, we
have ||x — v|leoc < n for some v € {—1, 1}". At the same time, for any other point
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y € 0BN(v+nBj,) wehave,inview of Claim4.2,0 (B, y) > (1+«;,)27" > o(B, x).
In other words, x is the (unique) minimizer for o (B, -) in d BN (v+nBL,). The lemma
follows. Now, we prove the claims.

Proof of Claim 4.1 For any point x € R"\Int(B%), define a convex cone K, :=
{tz—x) : z € B, t > 0}, and define a function f(x) : R"\Int(B}) — R
by f(x) := o(Ky, x). Observe that f(x) is lower semi-continuous, that is, for
any sequence (x™),>1 in R"\Int(B2) converging to a point x we have f(x) <
liminf,,_, o f(x™). Now, for any 6 > 0 and 0 < n < 1 consider the set

A(n,8):=((1+8)BI\Int(BL))N{yeR" : |y — vloo =7 forall v € {—1, 1}"}.

In other words, A(n,8) is the set of points in the closed thin shell between the
boundaries of cubes Bj, and (1 + §) B, with £2 -distance to {—1, 1}" at least 7.
Clearly, for any fixed 0 < n < 1 the lower semi-continuity of f(x) implies that
the limit lims_ o minyea(y,,s) f(x) exists (and is equal to 277ty Hence, there is
8o = do(n) > 0 with minyeca(,,s,) f(x) = 1.5-27". Now, for any convex body B
with B, C B C (1 4 80)B}, and x € 0B with [|x — v||ec > nforallv € {—1, 1}",
we have x € A(n, 8p), whence o (B, x) > f(x) > minyeac.sp) f(y) = 1.5-27".
The statement follows. O

Proof of Claim 4.2 Let us make a few preliminary observations. First, the Euclidean
distance from the point p = (1/4/n, 1/+/n, ..., 1/4/n) to each coordinate vector ¢;

1s
2
lp—eillo=,/2— ﬁ

On the other hand, given two opposite points p; and p» = —p; on the unit sphere
S"~! we have

lp—pil3+1lp— pl3 = 4.

Therefore,

max(|lp — pill2, lp — p2ll2) = V2 > lIp — el

By continuity, there are T = t(n) > 0 and u = u(n) > 0 such that for any two
points p| and p) on the unit sphere such that the line passing through p} and p} is at
the ¢} -distance at most 7 from the origin, we have max(||p — pill2, lp — p5ll2) >
| p — e1ll2 + u. Now, for each p € S"~! denote by K 7 the convex cone generated by
the vectors ej, e, ..., e, and p. It is clear that there is k = «(n) > 0 such that for
any p € " with | — pll2 > lp — eill2 + u, we have 0 (K5, 0) > (1 +«)27".
Using a compactness argument, we infer that a slighly weaker inequality should hold
in a small neighborhood of zero, namely, there is T = 7’(n) > 0 such that for any
z € T/ BY and any point 7 in S"~! with | — pll2 > Ilp — e1ll2 + u we have that
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the solid angle of z considered as the vertex of the convex cone generated by e¢; — z
(i=1,2,...,n)and p — z, is at least (1 + «/2)27".

Let us summarize. Let £ be an affine line in R” and z be a point on that line
such that z € min(z, /) BY, (with 7 and 7’ defined above). Further, let p; and p> be
intersection points of this line with the unit sphere, and take p; (j € {1, 2}) having the
larger Euclidean distance from p = (1//n, 1/4/n, ..., 1/4/n). Let K be the convex
cone with vertex at z generated by the vectors ¢; —z (i = 1,2,...,n) and p; — z.
Then the solid angle of z (w.r.t. K) is bounded from below by (1 + «/2)27".

The above assertion allows to complete the proof of the claim. Let x and y be
two distinct boundary points of a convex body B O Bj, with x — v,y —v €
min(z, T/ ) Bl for some vertex v of B . Without loss of generality, we can assume
that v = (—1, —1, ..., —1). Let £ be the line passing through x — v and y — v, and
let p1, p2 be intersection points of the line with the unit sphere (let us assume for
concreteness that y — v lies in the interval joining x — v and p;). Note that, since B
contains the cube and, in particular, points of the formv +¢;,i = 1,2, ..., n, we get
thate; — (x —v),i = 1,2, ..., n,lie in the closure of the illuminating cone n(B, x),
and the same is true for vector p» — (x — v). By analogy, the closure of the cone
n(B, y) contains the vectors ¢; — (y — v) and p; — (y — v). Take p; having larger
Euclidean distance to p = (1//n, 1/4/n, ..., 1/4/n). If j = 1 then, by the above
reasoning, we have

o(B,y) > o(conv{pi — (y —v),e1 = (y =), ..., en — (y — )}, y — V)
> (14+«x/2)27".

Similarly, if j = 2 then o (B, x) > (1 4+ x/2)27". The claim follows. O

4.3 Proof of Lemma 3.3

Claim 4.3 Fix parameters n > 2, 6 € (0, 1), assume that 0 < ¢ < 0/2 and 0 < § <
/7, take a convex body B in a -position with dgm(B, BS,) < 1 + 8, and pick any
set S € Cy(g,0). Let v, V' be the distinguished pair of vertices with respect to S. Then
forany x € 9B with x ¢ (v+ 98B ) U (v + 98BL), x is illuminated by S.

Proof Pick any point x € 9B, and let w be a vertex of the cube B}, with the smallest
distance to x; note that for all non-zero coordinates x; we have sign(w;) = sign(x;).
The choice of w is not unique if x has zero coordinates; in such situation we pick any
admissible vertex.
We will consider three cases.

Case 1: w is adjacent neither to v, nor to v'. In this case, S contains an element
s = —w + ¢y, for some y € B2 .By (2), B C (1 4 28)B%,, and we get for every
j=1,...,n,and forany a € (0, 1/2]:

[((x +a(—w+ey);| < |xj —aw;| +as < max(l + 26 —a, a) + ae
=14+25§—a+as.
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Selecting a := 38/(1 — ¢), we obtain that x + as is in the interior of BJ,. Since
B C B, itimplies that x + as € B\0B, and therefore x is illuminated by s.

Case 2: w is adjacent either to v or to v/, but w ¢ {v, v'}. Let i be the coordinate in
which v; = v; # wj. In this case, S contains an element s = —w + (1 — 0)w;e; + ¢y,
for some y € Bl,. As B C (1 + 268)B%,, we get for every j € [n]\{i}, and for any
ae0,1/2]:

[((x +a(—w+ (1 —Ow;e; +€y))j| <1+25 —a+ae.
In addition,
|(x +a(—Owie; +¢€y))il <1425 —ab + ae.

Selecting a := 35§/(0 — ¢) and using the assumptions on § and &, we obtain that
x + as € B\0B. As before, it means that x is illuminated by s € S.
Case 3: w is either v or v'. By construction of C, (¢, 8), S contains an element

n

v+ v
se —]‘[(%-[9, 1])+eBgo.

J=1

Let i be the coordinate in which v and v’ differ (note that it is not the same i as in the
previous case). Note that sign(x;) = —sign(s;) for all non-zero coordinates x; with
j € [n]\{i}. We then get for every j € [n]\{i} and for any a € (0, 1/2]:

[(x +as)j| <1428 —ab + ae.
In addition,
|(x +as)i| < |xi| + ae.

Selecting a := 3§/(0 — ¢), we obtain that x + as € B\dB unless |x;| > 1 — 34.
Thus, x is illuminated in the direction s whenever |x;| < 1 — 38. Now, assume that
|xi] > 1 —3§; without loss of generality, sign(x;) = sign(v;). Similarly to Case 2, we
note that S contains directions s = —w* + (1 — Q)w,]fek + eyk (k € [n]\{i}), where
yk e B! and for each k € [n]\{i}, w* is the vertex of {—1, 1}" adjacent to v that

differs from v on the k-th coordinate. Fix k € [n]\{i}. For any j € [n]\{k} we have,
just as in Case 2,

|(x +a(—w* + (1 —O)wiex +ey)j| <1+28 —a+ae <1,
where the last inequality holds, for example, with a := 35/(1 — ¢). Further, trivially
|(x 4+ a(=wk + (1 — Owiex + ey)i| < |x| +ab + ae,

and, with the last choice of a, the quantity is strictly less than 1 whenever |x;| < 1—94.
Thus, we get that x is illuminated by one of the n directions {s, ¥k e [n1\{i}},
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whenever there is a coordinate of x which is strictly less than 1 — 9§ in absolute value.
The result follows. O

Claim4.4 Foranyn > 2 and any ¢ € (0, 1) there is )’ = n'(n, ¢) € (0, 1) with the
following property. Let x € S"~! be a vector such that x j = & and x; < —¢ for some
j # k. Then there is a vector z € S"' with z; > n' for all i < n, an such that
(z,x) =0.

Proof Denotea =}, ; ; x;. Letus define a vector 7 € R" by setting Z; := 1 for all
i # Jj,kand

~ Jn - Jn+a
Zji=—>1; Zp=——.
xj —Xk
First, obviously (Z, x) = 0 by the construction. Further, by the Cauchy—Schwarts
inequality, a > —./nv/1 — 22 (where we used that x is a unit vector). Thus, all
coordinates of 7 are greater than min(1, \/n(1 — +/1 — 2¢&2)). It remains to choose
z:=7/IZll2. o

The next two claims can be verified with a standard compactness argument.

Claim4.5 For any n > 2 and k € (0, 1) there is ' = ¥/'(n, «) € (0, 1) with the
following property. Let 7', 2%, ..., 2" be vectors in R" such that |7} — eilloo < V'
Consider the convex cone

K = {x eR": (x,7)>0 forall i gn}.
Then
o (K,0) < (14K)-27"

Claim4.6 For anyn > 2 and n € (0, 1) there is " = " (n,n) € (0, 1) with the
following property. Let 'ZI,ZQ, .., 2" be vectors in R" such that |7 — ejlloo < ¥".
Consider the convex cone K generated by vectors 7' (i < n). Then any unit vector
feRwith f; > nforalli =1,2,...,n, lies in the interior ofI?.

Proof of Lemma 3.3 Fix parameters n > 2 and « € (0, 1), and let '(-, -), ¥'(-, -) and
¥ (-, -) be as in Claims 4.4, 4.5 and 4.6, respectively. Define v := v/'(n, x)/(4n) and
0,5 := ¥ /8. Now, take any 0 € (0, 6,,], and let

e =&, :=min(1/n?, 6y/4), §=235,,:=min(y" (n,n (n,0%/(8n)))/4.5,¢/7).

Further, take any element S € C, (g, 0) and a convex body B in a -position, with
B, C B C (1+8)B%,. Our goal is to show that for any point x on the boundary of
B not illuminated by S we have o (B, x) < (1 +«) -27".

Let v, v’ be distinguished vertices of the standard cube B, with respect to S, and
assume that there is a point x € 9B which is not illuminated by S. By Claim 4.3,
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x € (v+93BL) U (v + 98BL). Without loss of generality, let us assume that
lx—vllso < 98 and, moreover,v = (—1,—1,...,—Dandv = (1, —1,—1,..., —1).
Fori < n,let w' be the vertex of B adjacent to v, with wf # v;. Then w! — x belongs
to (B, x). By our assumption, w' — x = 2¢; + 983" for some ' € B”, so that

n(B, x) contains a convex cone generated by ¢; +4.58", i <n. @)

Next, we use the assumption that x is not illuminated by any of the directions
from S. As x is adjacent to a distinguished vertex, there are two types of illuminating
directions from S we will consider. First, for any vertex w of B}, adjacent to v but
distinct from v’, S contains a direction of the form

shi= —ijej —Owie; +ey',
J#

for some yi € B, where i > 2 is the unique index such that w; # v; = vlf . A trivial
computation gives

ss=, 1,1, )= +60)e+ey, i=23,...,n. (5)

Further, S contains the distinguished direction s' such that
n !/
+ v;

e

J=1

16, 1]) +eBL.

Since x is not illuminated by any of the s'’s, we have s’ ¢ n(B, x),i = 1,2, ...,n.The
Hahn-Banach separation theorem implies that for any i there is an affine hyperplane
H; passing through x and parallel to s’ but not intersecting the interior of x 4+ (B, x).
Choose the unit normal vector z' to H; such that (zi, e;) > 0.

First, consider the directions s’ for i > 2. Since (s’, z') = 0 and in view of (5) we
have

Zzi» —sz +8(yi,zi) =0.
J#i

Assume that there exist two coordinates z}; and Zfz (k # €) of 7 such that |Z;< [, |z2 | > .
Let us suppose for concreteness that k % i. Then | Zj#i z’]| <6 +eyn <y/4and
|zf(| > 1, whence there is u # k such that |zL | > ¥/(2n) and the sign of zi is opposite
to the sign of z};. Then, by Claim 4.4, there is a vector f € S"—! such that (f, zi) = 9
and f, > n'(n, ¥/(2n)) for all p < n. By Claim 4.6, applied to the convex cone K
generated by vectors 7' := ¢; + 4.58y", and our choice of parameters, we get that f
must belong to the interior of K. On the other hand, the vectors ¢; +4.56%" all belong to
the closure of the cone (B, x) (see (4)). Hence, f € n(B, x), so that H; intersects the
interior of x 4+ (B, x) and we come to contradiction. Thus, the vector z' has only one
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coordinate zﬁ, (b < n) with Izﬁ;l > 1 (note that automatically, |z§;| > 1 —ny). By the
choice of v and 6, we necessarily have b = i, and so Iz = eilloo < nyr < ' (n, k).

Next, we apply a similar argument to direction s'. We have Z?:z sjl. z}. + sl1 z} =0,
where 0 —e < s} < l+eforallj >2and —¢ < sl1 < ¢. Suppose that for some index
k > 2 we have |z;| > . Since |s{zj| < & < 6y/4, we have | 3}, sj2}| < 0y/4
while |s}z}| > 6v/2. Hence, there is £ > 2 (¢ # k) such that |s}z}| > 6v/(4n), and
the sign of z}z is opposite to the sign of lec. By Claim 4.4, there is a vector f € $"~!
such that (f,z') = 0 and fp = 1n'(n,0¢9/(8n)) for all p < n. An application of
Claim 4.6 identical to the previous case, yields a contradiction. Thus, |z}| < for all
jz2and|z' —eilloo < ny < ¥'(n ).

Observe that the cone 7(B, x) is contained inside the set {y € R" : (y,z!) >
0}. Finally, applying Claim 4.5, we get from the last observation and our choice of
parameters that o (B, x) < (1 + «) - 27", completing the proof. O

Remark 4.7 We would like to point out that the proof of Lemma 3.3 requires that
6 > ¢, and, this is the only place in the proof where this relation is used.

4.4 Proof of Lemma 3.4

The assumptions of the lemma imply that there exists a point x = (xq,...,x,) €
Int(B) with |x;| > 1 for atleastonei € {1, ..., n}. Without loss of generality, we can
assume thatx; > 1. Then, by convexity of B and the condition B2, C B, there exists a
pointy = (y1,0,0,...,0) € Int(B) with y; > 1. Take two verticesv := (1,1, ..., 1)
and v’ := (-1, 1, ..., 1) of the unit cube, and define

/
VY e = (=1 —1. ... —1),

pi=-

where ¢’ := min(s, (y; — 1)/2). Note that p illuminates v’ as a vertex of the cube, and
hence itilluminates v’ viewed as a boundary point of B. Additionally, as v+ p € Int(B),
we have that p illuminates v as a boundary point of B.

Consider the collection of directions S consisting of p, of all the directions —w
where w are the vertices of the unit cube not adjacent to {v, v'}, and of the directions
of the form — Z#i wje; — Ow;e;, for the vertices w adjacent to either v or v" and
different from v, v’ in i-th coordinate (i = 2,3, ..., n). Note that S belongs to the
class C, (¢, 0) and that each point of {—1, 1}" is illuminated by S.

4.5 Proof of the Lemma 3.6

We begin with the following elementary claim.

Claim 4.8 Consider the collection {w"}:-":1 of m vertices of the discrete cube {—1, 1}
in R™, where for eachi = 1, ..., m, all coordinates of w! except for the i-th are 41,
and the i-th coordinate is —1. Then the (m — 1)-dimensional affine linear span of

wl, w2, ..., w™ contains no other vertices of the cube except wl, . w™
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Proof Let x be a point in the affine linear span of wl, .. w™ ie, x = Zaiwi
for some coefficients o; € R so that " o; = 1. By the definition of w'’s, we have
x=(1-2a1,1—2ay,...,1—2a,). Assume that x € {—1, 1}"". Then |1 —2«;| = 1
for all i < m, whence all ¢;’s are equal to either 0 or 1. As their sum is one, that means
that all the «;’s except for one are equal to zero. Hence, x coincides with one of the
w'’s, which proves the claim. m]

Remark 4.9 The above claim implies that for any point w € {—1, 1}"\{w!, ..., w™}
the simplex A, with vertices {w, wl, w2, ..., w™} is non-degenerate. In particular,
it follows that there is a real number u = u(m) > 0 depending only on m such that
forall w € {—1, 1}"\{w', ..., w™} the average mil (w4 w4+ -+ w")is at the
Euclidean distance at least # from any supporting hyperplane for A,,.

Let O < r < 1/4 be a parameter, and let P be a convex polytope in R" such that
P has 2" vertices, and V v € {—1, 1} 3 avertex v of P withv —v € r BL,. ()

Let us make an immediate elementary observation that will be useful later:

Claim4.10 Foranyn > 2 and 0 € (0, 1) there is ¥ = 7(n,0) € (0, 1/4] with the
following property. Let P be a convex polytope in R" satisfying (6) with parameter
r <7, and let w be any vertex of P. Then for any k < n the vector (1 — 0)wyey.
belongs to Int(P).

Let P be asin (6). Forany i < n,let ViJr = Vi+(P) (resp., V;” = V.7 (P)) be the set
of vertices of P with positive (resp., negative) i-th coordinates. Further, for any i < n
we introduce special collections VV,Jr = Wfr(P) C ViJr and W, =W (P)CV,,
where Wi+ is the set of n — 1 vertices of P (from Vl.+) each having exactly n — 1
positive coordinates, and W, is the set of n — 1 vertices of P having exactly two
negative coordinates (one of them the i-th). Note that, when P is the standard cube
[—1, 17", the sets Wl+ and W;", with the i-th components of the vertices removed,
directly correspond to the vertex sets from Claim 4.8, withm =n — 1.

The next statement obviously holds for the standard cube (see Remark 4.9). Its
extension for very small perturbations of the cube follows by continuity. We omit the
proof.

Claim 4.11 Foreachn > 3thereisr” = r"(n) € (0, 1/4] with the following property:
Let P be a polytope in R" satisfying (6) with parameter r < r”, let i < n, and let
wt e VAW and w™ € V" \W" be two points with sign(wj) = sign(w;) for all
j # i. Denote by H the affine linear span of W; U{w™}. Further, let 5+ € W;" U{w™}
and W~ € W; U{w™} be two points with sign(ﬁ;r) = sign(wj_)for all j #i. Set

¢ i= Hwt + Y, o+ w) and let q be the point in H such that g — ¢ is parallel to

W~ —w™. Then necessarily q belongs to the interior of the simplex conv(W;” U{w™}).

In the next claim, we give a sufficient condition for P to be a parallelotope.
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Claim 4.12 Suppose that a polytope P in R" satisfies (6) with r < r”, where r" is
given by Claim 4.11. Further, suppose that for every i < n and every pair of vertices
F,v7) € (VW) x (VT \W)) such that sign(v]) = sign(v}) for all j # i, we
have that the affine spans of VV[.+ U{v*} and W, U {v™} are parallel and, moreover,
both spans are supporting hyperplanes for P. Then necessarily P is a parallelotope.

Proof Fix anyi < n,let (v, v™) be a pair as above, and let z € S"~! be the (unique)
vector such that for some number & < 0 we have (z, w) = a forallw € W, U{v™}.
By the assumption of the claim, the affine spans H; and H» of Wl.+ U {v*} and
W;~ U {v™} are parallel, hence there is a number 8 > 0 such that (z, w) = 8 for all
w € W U {vT}. Next, choose any vertex wt € VF\(W;" U {vT}) and the vertex
w™ € V\(W; U {v™}) such that sign(w;r) = sign(u)j_) for all j # i. Again, the
affine spans H{ and H} of )/Vl.+ U{wT}and W, U{w™ } are parallel. On the other hand,
by the fact that Hy, Hy are both supporting hyperplanes for P, we get that (z, w™) <
and (z, w™) > «.

Assume for a moment that at least one of the last two inequalities is strict. Note that
in this case necessarily both inequalities are strict, i.e., (z, w") < B and (z, w™) > «
(otherwise, we would get an immediate contradiction to the fact that H; and H, as
well as H{ and H} are parallel). Next, let ¢ and ¢~ be arithmetic means of points
in W" U {w*} and W, U {w™}, respectively, fix any pair (", #~) € W' x W,
such that sign(ﬂij) = sign(ﬁ)'j_) for all j # i, and define ¢ as the point in H} such
that g — ¢ is parallel to W~ — w™. By Claim 4.11, the point ¢ belongs to the interior
of the simplex conv(W;” U {w™}). This gives (z, q¢) > a. Let us summarize: we have
obtained four points w™, ¢*, ¢, W~ forming a parallelogram, but

>=ﬁ2< ct),
a<(z,q),

which is impossible. Thus, necessarily (z, w™) = B and (z, w™) = «, implying that
H; coincides with H{ and H; coincides with H,.

Repeating the above argument for all vertices in Vl.+\)/\)i+ and V. \W,, we get
that there is a single facet of P containing all vertices Vi+, and the same holds for
V.~ Since this condition holds for any i < n, we get that P is generated by n pairs of
parallel hyperplanes, so P is a parallelotope. O

Proof of Lemma 3.6 Fix parameters n > 2 and ¢ > 0, and take 6, := 4 .Let0 <
6 < 60, and let P be a polytope in R” satisfying condition (6) for r = r;, :=
min(7, r”, 0/5, ¢/4), where 7, r” are given by Claims 4.10 and 4.11. Assume further
that dgm (P, BZ,) # 1. We want to show that P can be illuminated by some S €
Cn(g,0). By Claim 4.12, there is i < n and two sets of vertices Wl+ U {v"} and
W, U{v™} (where sign(vf) = sign(vj_) forall j # i), such that one of the following
two conditions holds.

Case 1. The affine span of W;’ U {v™} is parallel to the affine span of WU v},
but at least one of the spans is not a supporting hyperplane for P. Without loss of
generality, assume that the simplex with vertices Wfr U {v™} is not a part of a facet,
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whence the point ¢t := %(mL + Zwewlf w) belongs to the interior of P. Consider

the unit vector z orthogonal to both affine spans of W;’ U {v"} and W U v},
chosen so that (z, v™) < (z, vT). Then, for all sufficiently small & > 0, the vector

p = ¢t —vt 4+ £z illuminates both v™ and v~ Indeed, illumination of v™ is obvious.
As for v~, note that, by Claim 4.11, there is a point g in the interior of the (n — 1)-
simplex conv(WW.” U {v™}) such that ¢ — ¢* is parallel to v~ — v™. This means that
g — v~ =ct — v, whence v~ + p belongs to the interior of P for small enough &.

We construct the illuminating set S for P as follows. Take any vertex w of P and let
w be the corresponding vertex of B (i.e., such that w — w € r BY,). Further, denote
by v and v’ the vertices of B” corresponding to v and v™. If @ is not adjacent to
{v, v’} then we add to S the direction —w (observe that —w € — + ¢ B, and that
—w illuminates w). Next, if w is adjacent to v or v’ but does not belong to {v, v} then
we pick the direction —w + (1 — 0)wgex, where k 7~ i is the unique index such that
v = v,/( = wy. Observe that, in view of Claim 4.10, the direction —w + (1 — @) wyex
illuminates w. On the other hand, —w + (1 — @)wiex € —W + (1 — O)Wiex + e BL.
Finally, if w coincides with either v or v’ then we consider the direction p constructed
above. Observe that |p;| < 3r (assuming & is small). Further, for any j # i we have
|c]+—uj++gz,-| > 1_2r—& > 20 andsign(p;) = sign(cj—vprgzj) = —sign(v;),
where we used the definition of the set Wf and the assumption that £ is small. Hence,

! (Yt ;

j=1

We add p/2 to S as the distinguished direction. By the construction of S, it illuminates
all vertices of P, and belongs to the class C, (¢, 6).

Case 2. Suppose that the affine span of W;’ U {vT} is not parallel to the affine span
of W~ U {v™}. Choose a vertex 1t e Wl+ U {v"} with the smallest distance to the
affine span H of WW,” U {v™}, and fix the unit vector z orthogonal to H and such
that (z,97) > 0. Let 9~ be the vertex in W, U {v™} corresponding to 7" (i.e.,
sign(?}L) = sign(v;) forall j # i), let ¢ be the average of points in W;" U{v "}, and
consider the vector p := ¢ —7T —&z, where £ > 01is a small parameter. Observe that
for small £, p'illuminates 7" by construction. Further, by Claim 4.11, there is a point
¢ in the interior of the simplex W,” U {v™}, such that ¢ — ¢ is parallel to 7~ — v+.
Since the span of Wl.+ U {v™"} is not parallel to H and by our choice of v+ and z, we
have that (¢t — 71, z) > 0 while (g — 77, z) = 0. Hence, the point 7~ + (¢t —7T)
lies in the interior of the interval joining ¢t and ¢ i.e., in the interior of P, and so p
illuminates v~ provided that £ is sufficiently small. We will construct an illuminating
set S for P taking 72 as the distinguished direction. The rest of the argument is very
similar to the first case, and we omit the details. O
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