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Abstract
It was conjectured by Levi, Hadwiger, Gohberg and Markus that the boundary of
any convex body in Rn can be illuminated by at most 2n light sources, and, moreover,
2n −1 light sources suffice unless the body is a parallelotope.We show that if a convex
body is close to the cube in the Banach–Mazur metric, and it is not a parallelotope,
then indeed 2n − 1 light sources suffice to illuminate its boundary. Equivalently, any
convex body sufficiently close to the cube, but not isometric to it, can be covered by
2n − 1 smaller homothetic copies of itself.

Keywords Convex body · Illumination · Covering by homothetic copies
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1 Introduction

The Levi–Hadwiger–Gohberg–Markus illumination conjecture [8,9] is a famous old
question in discrete geometry, which has several equivalent formulations. The view-
point we adopt in this note is due to Boltyanski (see, for example, [1,4,6]): Let B be
a convex body (i.e., compact convex set with non-empty interior) in R

n and let ∂ B
denote its boundary.We say that a point x ∈ ∂ B is illuminated in direction y ∈ R

n\{0}
if there is a small positive ε such that x + εy lies in the interior of B. Further, a col-
lection {y1, y2, . . . , ym} of non-zero vectors illuminates B if for any x ∈ ∂ B there
is i = i(x) ≤ m such that x is illuminated in direction yi . For any convex body B,
denote by I(B) the cardinality of the smallest set of directions sufficient to illuminate
all the points from ∂ B. The number I(B) is called the illumination number of B.
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Conjecture (Levi–Hadwiger–Gohberg–Markus)For any convex body B inRn we have
I(B) ≤ 2n, and equality holds if and only if B is a parallelotope.

As of this writing, the best known general upper bound for the illumination number
is due to Rogers [18]:

I(B) ≤ (n log n + n log log n + 5n)
Voln(B − B)

Voln(B)
,

where B − B is the Minkowski sum of B and −B (called the difference body of
B), and Voln(·) is the Lebesgue volume in R

n (see, in particular, [4, Cor. 2.11]
and [1, Cor. 3.4.2], as well as [14] where a “fully random” proof of Rogers’ theo-
rem is given). If B is origin-symmetric then Voln(B − B) = 2nVoln(B), whence
I(B) ≤ (n log n + n log log n + 5n)2n . For non-symmetric convex bodies, the
relation Voln(B − B) ≤ 4nVoln(B) due to Rogers and Shephard [19] implies that
I(B) ≤ (n log n + n log log n + 5n)4n .

The illumination conjecture has been solved (or almost solved) in some special
cases. In particular, it is known that each origin-symmetric convex body in R3 can be
illuminated by eight directions or fewer [12]. The conjecture holds true for so-called
belt polytopes [15] and their generalization—the belt bodies [5]; for bodies of constant
width [20] and, more generally, for the fat spindle bodies [2]; for dual cyclic polytopes
[3]. Recently, it has been shown in [21] that unit balls of 1-symmetric normed spaces
different from �n∞ can be illuminated in less than 2n directions. Finally, it is of interest
to note that there exist convex bodies arbitrarily close to the Euclidean ball in the
Banach–Mazur metric whose illumination number is exponential in the dimension
[16]. Let us refer to [1, Chap. 3] and [4] for more information on the subject. Let us
also mention a computer assisted approach to Hadwiger’s conjecture [22].

The approach to the illumination problem that we consider in this note was inspired
by the work [17] devoted to estimating the product of volumes of a convex body
and its polar. In what follows, for any p ∈ [1,∞] we denote by Bn

p the closed
unit ball of the canonical ‖ · ‖p-norm on R

n . The Mahler conjecture, one of the
central problems in convex geometry, asserts that for any origin-symmetric convex
body L , the Mahler volume Voln(L) · Voln(L◦) is greater or equal to the Mahler
volume of the cube Voln(Bn∞) ·Voln(Bn

1 ), where L◦ denotes the polar body for L . We
refer to [7] (see also [11]) for an “isomorphic solution” to this problem and related
information.Very recently, this conjecturewas verified inR3 in [10]. In [17] theMahler
conjecture was confirmed in every dimension in a small neighborhood of the cube and,
moreover, it was shown that the cube is a strict local minimizer in the Banach–Mazur
metric on the class of symmetric convex bodies. Let us recall that for any two (not
necessarily centrally-symmetric) convex bodies B and L in R

n , the Banach–Mazur
distance dBM(B, L) between B and L is defined as the infimumofλ ≥ 1 such that there
is an invertible linear operator Tλ : Rn → R

n and two vectors xλ and yλ satisfying
B ⊂ Tλ(L) + xλ ⊂ λB + yλ. The main theorem of [17] asserts that for every positive
integer n there is δ(n) > 0 such that any origin-symmetric convex body L with
1 
= dBM(L, Bn∞) ≤ 1 + δ(n) satisfies Voln(L) · Voln(L◦) > Voln(Bn∞) · Voln(Bn

1 ).
In this paper,we apply the “local” viewpoint of [17] in the context of the illumination

conjecture. The nature of the illumination problem is very different from the Mahler
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conjecture discussed above; the most obvious distinction coming from the lack of
continuity. Whereas the volume is stable with respect to small perturbations of a
convex body, the structure of its boundary—the layout of the extreme points, and the
combinatorial structure (in case of polytopes)—can change significantly even with
arbitrarily small perturbations. It becomes an interesting feature that certain “discrete–
geometric” properties related to the illumination (whichwewill mention later), remain
stable in a small neighborhood of the cube. The main non-technical result of this paper
is the following theorem.

Theorem 1.1 For any n ≥ 3 there is a δ = δ(n) > 0 with the following property: Let
B be a convex body in R

n and assume that 1 
= dBM(B, Bn∞) ≤ 1+ δ. Then B can be
illuminated with 2n − 1 directions or fewer.

It is well known that the illumination number of B can be equivalently defined as
the least number of translates of the interior of B needed to cover B (see, in particular
[6], [1, Chap. 3], [4]). In this sense, it becomes a simple observation that any convex
body with a sufficiently small Banach–Mazur distance to the cube can be illuminated
by 2n directions or fewer (in fact, more general statements are known; see [4, Sect. 4]
and references therein). The non-triviality of the above theorem consists in proving
that strictly less than 2n light sources suffice.

The construction of an illuminating set for B involves a careful study of its geometry.
Naturally, we consider the canonical illuminating set of the cube—the set of all sign
vectors—as the starting point. Next, we determine which pair of adjacent illuminating
directions can be “glued together” to form a single light source. The procedure is
completed by repositioning several of the “canonical” light sources in a special way.
Thus, we show that for any body B close to the cube in the Banach–Mazur metric
but not isometric to the cube, we can find a distinguished pair of boundary points of
B illuminated by the same light source, and complete the illumination of the entire
boundary of B by adding 2n − 2 light sources in “standard” or “almost standard”
positions. Interestingly, existence of this distinguished pair is a feature of all convex
sets sufficiently close to the cube (but not the cube itself). We will give a complete
description of this strategy later.

The dependency of the quantity δ = δ(n) of the main theorem on the dimension n
is not explicit as we use continuity arguments to establish certain properties of convex
sets close to the cube. In particular, it is an interesting question how large δ can bemade
by replacing the implicit estimates with more precise computations (while keeping the
same proof structure). We anticipate that this question will be addressed in our future
works.

Remark 1.2 We would like to point it out that our estimate is sharp in the sense that
for every n ≥ 2 and for every ε ∈ (0, 1) there exists a convex body B in R

n with
dBM(B, Bn∞) ≤ 1 + ε and such that the illumination number of B is exactly 2n − 1.
We consider the following construction.

Let v := (1, 1, . . . , 1), v′ := (−1, 1, 1, . . . , 1) and, for ε ∈ (0, 1), let ṽ :=
(1 − ε, 1, 1, . . . , 1). Set

B := conv
({−1, 1}n\v, ṽ

)
,
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where “conv(S)” denotes the convex hull of a set S, i.e., the smallest convex set
containing S. Note that dBM(B, Bn∞) ≤ 1/(1 − ε).

For each vertexw of B, consider the set of vectors which illuminatew as a boundary
point of B:

η(B, w) := {
x ∈ R

n : ∃ δ > 0 such that w + δx is in the interior of B
}
.

Note that for all the vertices w of B which have at least two negative coordinates, as
well as for w = v′, one has η(B, w) = {x ∈ R

n : sign(xi ) = −sign(wi ) for all i ≤
n}. Moreover, for all vertices w of B with exactly one negative coordinate one has
η(B, w) ⊂ {x ∈ R

n : sign(xi ) = −sign(wi ) for all i ≤ n}. This implies that the
illuminating sets for {−1, 1}n\v are pairwise disjoint, whence I(B) ≥ 2n − 1.

2 Notation and Preliminaries

Given a positive integer number n, [n] is the set {1, 2, . . . , n}. We denote by
e1, e2, . . . , en the standard basis in R

n and by 〈·, ·〉—the canonical inner product
in Rn . Given any 1 ≤ p ≤ ∞, let ‖ · ‖p be the �n

p-norm on R
n , i.e.,

∥∥(x1, x2, . . . , xn)
∥∥

p :=
( n∑

i=1

|xi |p
)1/p

and
∥∥(x1, x2, . . . , xn)

∥∥∞ := max
i≤n

|xi |.

The unit ball of the �n
p-norm is denoted by Bn

p. By I we denote the identity operator
in Rn (the dimension n will always be clear from the context). Further, given a linear
operator T : Rn → R

n , let ‖T ‖ := ‖T ‖2→2 stand for the spectral norm of T (i.e., its
largest singular value), and, more generally, for any two numbers 1 ≤ p, q ≤ ∞, let
‖T ‖p→q be the operator norm of T considered as a mapping from �n

p to �n
q . Thus,

‖T ‖p→q := sup
‖x‖p=1

‖T x‖q .

In view of standard comparison inequalities for �n
p-norms, we have

‖T ‖p→q ≤ n2‖T ‖p′→q ′ for all 1 ≤ p, q, p′, q ′ ≤ ∞. (1)

Given a cone K ⊂ R
n with the vertex at the origin, we define the solid angle σ(K )

as

σ(K ) := Voln(K ∩ Bn
2 )

Voln(Bn
2 )

.

Let B be a convex body in R
n . Recall that the Gauss map νB : ∂ B → S

n−1 maps
each point x ∈ ∂ B to the collection of outer unit normals to supporting hyperplanes
at x . The Gauss image ν(B, x) of x ∈ ∂ B is the convex cone given by {λy : y ∈
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νB(x), λ ≥ 0}. Further, each point x ∈ ∂ B can be associated with another convex
cone, the illuminating set η(B, x)which comprises all non-zero directions illuminating
x . Note that ν(B, x) and the closure of η(B, x) are polar cones, that is,

ν(B, x) = {y ∈ R
n : 〈y, z〉 ≤ 0 for all z ∈ η(B, x)}.

Given a point x ∈ ∂ B, denote by σ(B, x) the solid angle of the cone η(B, x).
The next simple lemmawill be useful; we give a proof for the reader’s convenience.

Lemma 2.1 For any n > 1 and β > 0 there is r2.1 = r2.1(n, β) > 0 with the following
property: Let P be a non-degenerate parallelotope in R

n such that for each vertex v of
the standard cube Bn∞ there is a vertex v′ of P satisfying v′ − v ∈ r2.1 Bn∞. Then there
is an invertible linear operator T in R

n and a vector y such that Bn∞ = T (P)+ y and
‖T − I‖, ‖T −1 − I‖ ≤ β.

Proof Fix a small β > 0 and define β ′ := β/n2 and r = r2.1 := β ′/4. Let P
be a parallelotope in R

n satisfying the conditions of the lemma. First, observe that
(1 − r)Bn∞ ⊂ P . Indeed, otherwise there would exist a vertex v of (1 − r)Bn∞ and
an affine hyperplane H passing through v and not intersecting P . On the other hand,
one could always find a pair of opposite vertices of Bn∞ lying in different half-spaces
(determined by H ) and such that the �n∞-distance of either vertex to H is greater
than r . This would contradict the assumption that every vertex of the cube can be
r -approximated by a point in P in the �n∞-metric.

For each v ∈ {−1, 1}n let f (v) be the (unique) vertex of P satisfying ‖v −
f (v)‖∞ ≤ r . Let S be the set of all vertices of Bn∞ adjacent to (1, 1, . . . , 1).
Note that the n vectors { f (1, 1, . . . , 1) − f (v)}v∈S are linearly independent whence
there is a unique linear operator T and a vector y ∈ R

n such that (1, 1, . . . , 1) =
T ( f (1, 1, . . . , 1))+y and v = T ( f (v))+y (v ∈ S). Note that necessarily T (P)+y =
Bn∞, and, moreover, f is the restriction of T −1(·)−T −1(y) to {−1, 1}n . Together with
the inclusion (1 − r)Bn∞ ⊂ P , this gives (1 − r)T (Bn∞) ⊂ Bn∞ − y, whence, by the
symmetry of T (Bn∞), (1 − r)T (Bn∞) ⊂ Bn∞, and ‖T ‖∞→∞ ≤ (1 − r)−1.

By linearity of T , we have

0 = 2−n
∑

v∈{−1,1}n

T −1(v) = T −1(y) + 2−n
∑

v∈{−1,1}n

f (v),

whence

‖T −1(y)‖∞ = 2−n
∥∥∥

∑

v∈{−1,1}n

f (v)

∥∥∥∞ = 2−n
∥∥∥

∑

v∈{−1,1}n

(v − f (v))

∥∥∥∞

≤ 2−n
∑

v∈{−1,1}n

‖v − f (v)‖∞ ≤ r .
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Next, elementary convexity properties and the bound ‖T ‖∞→∞ ≤ (1 − r)−1 < 2
imply

‖T − I‖∞→∞ = max
v∈{−1,1}n

‖T v − v‖∞

< 2 max
v∈{−1,1}n

‖v − f (v) − T −1(y)‖∞ ≤ 4r = β ′.

Further,

‖T −1 − I‖∞→∞ = max
v∈{−1,1}n

‖T −1v − v‖∞

= max
v∈{−1,1}n

‖ f (v) − v + T −1(y)‖∞ ≤ 2r ≤ β ′.

Finally, note that in view of (1) we get from the above that ‖T − I‖ ≤ β ′n2 = β and
‖T −1 − I‖ ≤ β ′n2 = β. The result follows. ��

3 High-Level Structure of the Proof

In this section, we give the proof of the main theorem assuming several properties of
convex bodies close to the cube (they are stated as lemmas). The proofs of the lemmas
which constitute the technical part of the paper, are deferred to the next section. In
the proof of the theorem, we work with quantities depending on various parameters
or other functions. For example, by writing β = β(n, α) we introduce β as a function
of two variables n and α. To make referencing easier, each function introduced within
a lemma is written with the number of that lemma as a subscript.

The invariance of the illumination number under affine transformations allows us
to restrict our analysis to the class of convex bodies B ⊂ R

n such that

Bn∞ ⊂ B ⊂ dBM(B, Bn∞)Bn∞ + y (�)

for some vector y = y(B) ∈ R
n . We say that a body B satisfying (�) is in a �-position.

Note that the �-position is not uniquely defined in general. It is obvious that any convex
body B in a �-position satisfies

B ⊂ (2dBM(B, Bn∞) − 1)Bn∞. (2)

Now, assume we have a convex body B in a �-position, with a very small Banach–
Mazur distance to the cube (but not the cube itself). How could we construct an
illuminating set for B of cardinality 2n − 1? It is natural to start with the standard
illuminating set for the cube, i.e., the set {−1, 1}n , transform it in some way and
removeonedirection.Onemaynote that simply excludingonedirection from {−1, 1}n ,
without changing the remaining directions is not sufficient. Indeed, consider a convex
polygon P in R2 with eight vertices ±(1+ ε, 1− ε),±(1− ε, 1+ ε),±(−1+ ε, 1+
ε),±(−1 − ε, 1 − ε), where ε > 0 is small enough. It can be checked that P is in a
�-position, and that any proper subset of {−1, 1}2 does not illuminate P .
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Another natural approach is to replace a pair of adjacent illumination directions
with a single vector. That is, given a convex body B in R

n in a �-position and with a
small distance to cube, construct an illumination set of the form

({−1, 1}n\{−v,−v′}) ∪ {w}, (3)

where {−v,−v′} is some pair of adjacent directions from {−1, 1}n andw is some non-
zero vector in R

n . It can be checked directly that this method fails for the polygon P
constructed above, but, by slightly repositioning the canonical illumination directions,
it is possible to get an illuminating set for P (say, take the set {(1,−1.1), (1, 1.1)} ∪{w}
withw = (−1, 0)). It turns out that this approach can be generalized to convex bodies
in higher dimensions; thus, our construction in Theorem 1.1 resembles (3) but is
somewhat more technical. Let us give a formal definition.

For any n ≥ 3 and any choice of parameters ε, θ ∈ (0, 1), let us denote by Cn(ε, θ)

the collection of all subsets S ⊂ R
n of cardinality 2n − 1 such that there is a pair

v = v(S), v′ = v′(S) of adjacent vertices of the standard cube Bn∞ satisfying the
following three conditions:

• For any vertex w ∈ {−1, 1}n adjacent neither to v nor to v′, S contains a vector in
the set −w + εBn∞.

• For any vertex w = (w1, w2, . . . , wn) ∈ {−1, 1}n\{v, v′} adjacent either to v or
v′, S contains a vector in

−
∑

j : j 
=i

w j e j − θwi ei + εBn∞,

where i = i(w) is the unique index in [n] such that vi = v′
i 
= wi .

• S contains a vector w = (w1,w2, . . . ,wn) in the parallelepiped

−
n∏

j=1

(
v j + v′

j

2
· [θ, 1]

)
+ εBn∞.

Note here that if � ∈ [n] is the unique index with v� = −v′
�, we get |w�| ≤ ε.

We will call w the distinguished direction of the set S, and v, v′ the distinguished
vertices of the cube w.r.t. set S. Roughly speaking, each set in Cn(ε, θ) is constructed
by taking a standard illuminating set {−1, 1}n of Bn∞, glueing together a pair of adja-
cent illuminating directions and then perturbing the collection in a special way. The
principal difference of the above construction from (3) is that we reposition all illu-
minating directions adjacent to either −v or −v′ by moving them “closer” to −v, −v′
(the reader may wish to compare this strategy to our illumination of the polytope P
in the above example). The rest of the illuminating directions, disregarding a small
perturbation, remain unchanged (i.e., are essentially sign vectors).

Observe that for any 0 < ε < ε′ and θ > 0 we have Cn(ε, θ) ⊂ Cn(ε′, θ). The
definition of the class Cn(ε, θ), being somewhat technical, is designed to be “stable”
with respect to linear transformations close to the identity:
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Lemma 3.1 For any n > 2, ε, θ ∈ (0, 1) and α > 0 there is β3.1 = β3.1(n, α) > 0
with the following property: whenever S ∈ Cn(ε, θ) and T is a linear operator in R

n

satisfying ‖T − I‖ ≤ β3.1, we have T (S) ∈ Cn(ε + α, θ).

Our goal is to show that if B ⊂ R
n is a convex body in a �-position which is

very close to the cube, yet distinct from it, then B can be illuminated by a collection
S ∈ Cn(ε, θ) for some appropriately chosen parameters ε, θ . Both parameters will be
taken sufficiently small, but, importantly, ε shall be much smaller than θ .

A crucial notion that will help us to study illumination by directions from Cn(ε, θ)

is that of pseudo-vertices. Let r ∈ (0, 1) be a parameter and let B be a body in Rn in a
�-position with dBM(B, Bn∞) ≤ 1+ r/2. Note that, in view of (2), for any vertex v of
the standard cube Bn∞, the set r Bn∞ + v intersects with the boundary of B. Given any
vertex v of Bn∞, we say that a point p ∈ (r Bn∞ + v)∩ ∂ B is an (r)-pseudo-vertex of B
if p has minimal solid angle σ(B, p) among all points in (r Bn∞ + v) ∩ ∂ B. For all
admissible r , the set B has at least 2n (r)-pseudo-vertices, but may have more (in fact,
uncountably many if the boundary of B is smooth). Further, we say that a collection
of 2n points V ⊂ R

n is a proper set of (r)-pseudo-vertices of B if for any vertex v of
Bn∞, V contains exactly one (r)-pseudo-vertex p(v) ∈ (r Bn∞ + v)∩ ∂ B. In particular,
if B = Bn∞ then the proper set of (r)-pseudo-vertices (for any admissible value of r )
coincides with the set of the regular vertices of the cube. In general, V may be not
uniquely defined.

It is easy to see that any point x on the boundary of the standard cube such that
σ(Bn∞, x) < 2−n+1, must be one of its vertices. Below we state a weaker relative of
this property for convex bodies sufficiently close to the cube and their pseudo-vertices.

Lemma 3.2 For each n > 2 there are η3.2 = η3.2(n) ∈ (0, 1), κ3.2 = κ3.2(n) > 0 with
the following property. Let 0 < η ≤ η3.2. Then there is δ3.2 = δ3.2(n, η) ∈ (0, η/2) such
that for any convex body B in R

n in a �-position, with dBM(B, Bn∞) ≤ 1+ δ3.2, and for
any point x ∈ ∂ B with σ(B, x) ≤ (1 + κ3.2) · 2−n, there is a vertex v of the standard
cube Bn∞ such that x is the unique (η)-pseudo-vertex of B in (ηBn∞ + v) ∩ ∂ B.

Thus, we can detect a pseudo-vertex if its solid angle is less than certain critical value.
The following lemma provides a connection between this property of a boundary point
and the illumination of B, and, together with Lemma 3.6, comprises themost technical
part of the paper:

Lemma 3.3 For any n > 2, κ > 0 there is θ3.3(n, κ) ∈ (0, 1) with the following
property. For any 0 < θ ≤ θ3.3 there are δ3.3 = δ3.3(n, κ, θ) > 0 and ε3.3 = ε3.3(n, κ, θ) ∈
(0, 1) such that for any convex body B in a �-position with dBM(B, Bn∞) ≤ 1 + δ3.3

and any element S ∈ Cn(ε3.3, θ) we have that every point x ∈ ∂ B not illuminated by S
satisfies

σ(B, x) ≤ (1 + κ) · 2−n .

The following two lemmas are the core of our argument:

Lemma 3.4 Let n > 2 and let ε, θ ∈ (0, 1) be any numbers. Let B be a convex body
in R

n such that {−1, 1}n ⊂ ∂ B and B 
= Bn∞. Then there is a set S ∈ Cn(ε, θ) which
illuminates every point in {−1, 1}n (viewed as boundary points for B).

123



Discrete & Computational Geometry

Remark 3.5 Note that in the above lemma we illuminate only a subset of the boundary
and not the entire body.

Lemma 3.6 For any n > 2 and ε ∈ (0, 1) there is θ3.6 = θ3.6(n) with the following
property. Let 0 < θ ≤ θ3.6. Then there is r3.6 = r3.6(n, ε, θ) ∈ (0, 1/2) such that for any
convex polytope P with 2n vertices and dBM(P, Bn∞) 
= 1 so that for each v ∈ {−1, 1}n

there is a vertex v′ of P with v′ − v ∈ r3.6 Bn∞, we have that P is illuminated by some
set S ∈ Cn(ε, θ).

Remark 3.7 It is crucial that the parameter θ3.6 in the above lemma depends only on n
and not on ε.

The above statements allow to complete the proof of the main theorem:

Proof of Theorem 1.1 Let us start by defining parameters. We fix any n > 2 and set

θ := min(θ3.6(n), θ3.3(n, κ3.2(n))), ε := ε3.3(n, κ3.2(n), θ), β := β3.1(n, ε/2),

r := min
(
r3.6(n, ε, θ), r2.1(n, β), η3.2(n)

)
, δ := min

(
δ3.3(n, κ3.2(n), θ), δ3.2(n, r)

)
.

Consider a convex body B in R
n with 1 
= dBM(B, Bn∞) ≤ 1 + δ. Assume that B is

in a �-position. Let V be a proper set of (r)-pseudo-vertices of B (note that δ ≤ r/2
so V exists).

As the first step, we show that there is a set of directions S ∈ Cn(ε, θ) which
illuminates conv(V). Indeed, if conv(V) is not a parallelotope then the assertion follows
from Lemma 3.6 and our choice of parameters. Otherwise, if dBM(conv(V), Bn∞) = 1
then, in view of Lemma 2.1, there is a linear operator T and a vector y in Rn such that
‖T − I‖ ≤ β, ‖T −1− I‖ ≤ β and T (conv(V))+ y = Bn∞. By Lemma 3.4, we can find
a set S′ ∈ Cn(ε/2, θ) which illuminates points in {−1, 1}n considered as boundary
points of T (B) + y. Hence, T −1(S′) illuminates conv(V) (again, viewed as a subset
of the boundary of B). Due to the assumptions on T and Lemma 3.1, S := T −1(S′)
belongs to Cn(ε, θ).

Now, having constructed S, assume that there is a point x ∈ ∂ B which is not
illuminated by S. Then, in view of Lemma 3.3 and our choice of parameters, we have
σ(B, x) ≤ (1 + κ3.2(n)) · 2−n . But then, by Lemma 3.2 (applied with η := r ), x is
the unique (r)-pseudo-vertex in (r Bn∞ + v) ∩ ∂ B for some vertex v of the standard
cube Bn∞. Hence, x must belong to V leading to contradiction. Thus, B is entirely
illuminated in 2n − 1 directions. ��

4 Proofs of Lemmas 3.1–3.6

4.1 Proof of Lemma 3.1

Fix n > 2 and parameters ε, θ ∈ (0, 1), α > 0. Instead of the spectral norm ‖ · ‖, it
will be convenient to consider ‖ · ‖∞→∞ (this makes no difference since we allow the
parameter β3.1 to depend on n). Set β := α/2. Suppose T is a linear operator satisfying
‖T − I‖∞→∞ ≤ β.
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Take a vertex w of the standard cube and let p ∈ −w + εBn∞. Observe that
‖p + w‖∞ ≤ ε and ‖p‖∞ ≤ 1 + ε. Thus

‖T p + w‖∞ ≤ ‖T p − p‖∞ + ‖p + w‖∞ ≤ ‖T − I‖∞→∞‖p‖∞ + ‖p + w‖∞
≤ β(1 + ε) + ε ≤ α + ε,

and therefore T p ∈ −w + (α + ε)Bn∞.
In the same manner, given any i ≤ n and any p′ ∈ −∑

j : j 
=i w j e j −θwi ei +εBn∞,
we have

∥∥
∥T p′ +

( ∑

j : j 
=i

w j e j + θwi ei

)∥∥
∥∞ ≤ α + ε.

Finally, for any two adjacent vertices v, v′ of the standard cube and for any

p′′ ∈ −
n∏

j=1

(
v j + v′

j

2
· [θ, 1]

)

+ εBn∞,

we have

T p′′ ∈ −
n∏

j=1

(
v j + v′

j

2
· [θ, 1]

)

+ (α + ε)Bn∞.

Together with the definition of the classes Cn(ε, θ), this implies the result.

4.2 Proof of Lemma 3.2

We will prove the following two claims.

Claim 4.1 For any n > 2 and η > 0 there is δ0(n, η) > 0 with the following property.
Let B be a convex body in R

n with Bn∞ ⊂ B ⊂ (1 + δ0)Bn∞, and let x be a point on
the boundary of B such that ‖x − v‖∞ ≥ η for all v ∈ {−1, 1}n. Then necessarily
σ(B, x) ≥ 1.5 · 2−n.

Claim 4.2 For any n > 2 there are positive η′ = η′(n) < 1 and κ ′ = κ ′(n) < 0.5 with
the following property. Let B be a convex body in R

n satisfying Bn∞ ⊂ B, let v be any
vertex of Bn∞ and let x, y be two distinct points in ∂ B ∩ (v +η′ Bn∞). Then necessarily
max(σ (x), σ (y)) > (1 + κ ′)2−n.

Now, it is not difficult to verify that the claims imply the assertion of the lemma.
Indeed, fix any 0 < η ≤ η3.2 := η′(n) and set δ3.2 := min(δ0(n, η), η)/2. Let B be
a convex body in R

n in a �-position, with dBM(B, Bn∞) ≤ 1 + δ3.2. Observe that,
in view of (2), we have B ⊂ (1 + 2δ3.2)Bn∞. Let x be a point on the boundary of
B such that σ(B, x) ≤ (1 + κ3.2)2−n , with κ3.2 := κ ′(n). In view of Claim 4.1, we
have ‖x − v‖∞ ≤ η for some v ∈ {−1, 1}n . At the same time, for any other point
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y ∈ ∂ B∩(v+ηBn∞)wehave, in viewofClaim4.2,σ(B, y) > (1+κ3.2)2−n ≥ σ(B, x).
In other words, x is the (unique) minimizer for σ(B, ·) in ∂ B ∩(v+ηBn∞). The lemma
follows. Now, we prove the claims.

Proof of Claim 4.1 For any point x ∈ R
n\Int(Bn∞), define a convex cone Kx :=

{t(z − x) : z ∈ Bn∞, t ≥ 0}, and define a function f (x) : R
n\Int(Bn∞) → R

by f (x) := σ(Kx , x). Observe that f (x) is lower semi-continuous, that is, for
any sequence (xm)m≥1 in R

n\Int(Bn∞) converging to a point x we have f (x) ≤
lim infm→∞ f (xm). Now, for any δ > 0 and 0 < η < 1 consider the set

A(η, δ) :=(
(1+δ)Bn∞\Int(Bn∞)

)∩{
y ∈R

n : ‖y − v‖∞ ≥η for all v ∈ {−1, 1}n}
.

In other words, A(η, δ) is the set of points in the closed thin shell between the
boundaries of cubes Bn∞ and (1 + δ)Bn∞, with �n∞-distance to {−1, 1}n at least η.
Clearly, for any fixed 0 < η < 1 the lower semi-continuity of f (x) implies that
the limit limδ→0 minx∈A(η,δ) f (x) exists (and is equal to 2−n+1). Hence, there is
δ0 = δ0(η) > 0 with minx∈A(η,δ0) f (x) ≥ 1.5 · 2−n . Now, for any convex body B
with Bn∞ ⊂ B ⊂ (1 + δ0)Bn∞ and x ∈ ∂ B with ‖x − v‖∞ ≥ η for all v ∈ {−1, 1}n ,
we have x ∈ A(η, δ0), whence σ(B, x) ≥ f (x) ≥ miny∈A(η,δ0) f (y) ≥ 1.5 · 2−n .
The statement follows. ��
Proof of Claim 4.2 Let us make a few preliminary observations. First, the Euclidean
distance from the point p = (1/

√
n, 1/

√
n, . . . , 1/

√
n) to each coordinate vector ei

is

‖p − ei‖2 =
√

2 − 2√
n
.

On the other hand, given two opposite points p1 and p2 = −p1 on the unit sphere
S

n−1, we have

‖p − p1‖22 + ‖p − p2‖22 = 4.

Therefore,

max(‖p − p1‖2, ‖p − p2‖2) ≥ √
2 > ‖p − e1‖2.

By continuity, there are τ = τ(n) > 0 and u = u(n) > 0 such that for any two
points p′

1 and p′
2 on the unit sphere such that the line passing through p′

1 and p′
2 is at

the �n∞-distance at most τ from the origin, we have max(‖p − p′
1‖2, ‖p − p′

2‖2) ≥
‖p − e1‖2 + u. Now, for each p̃ ∈ S

n−1 denote by K p̃ the convex cone generated by
the vectors e1, e2, . . . , en and p̃. It is clear that there is κ = κ(n) > 0 such that for
any p̃ ∈ S

n−1 with ‖ p̃ − p‖2 ≥ ‖p − e1‖2 + u, we have σ(K p̃, 0) ≥ (1 + κ)2−n .
Using a compactness argument, we infer that a slighly weaker inequality should hold
in a small neighborhood of zero, namely, there is τ ′ = τ ′(n) > 0 such that for any
z ∈ τ ′ Bn∞ and any point p̃ in S

n−1 with ‖ p̃ − p‖2 ≥ ‖p − e1‖2 + u we have that
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the solid angle of z considered as the vertex of the convex cone generated by ei − z
(i = 1, 2, . . . , n) and p̃ − z, is at least (1 + κ/2)2−n .

Let us summarize. Let � be an affine line in R
n and z be a point on that line

such that z ∈ min(τ, τ ′)Bn∞ (with τ and τ ′ defined above). Further, let p1 and p2 be
intersection points of this line with the unit sphere, and take p j ( j ∈ {1, 2}) having the
larger Euclidean distance from p = (1/

√
n, 1/

√
n, . . . , 1/

√
n). Let K be the convex

cone with vertex at z generated by the vectors ei − z (i = 1, 2, . . . , n) and p j − z.
Then the solid angle of z (w.r.t. K ) is bounded from below by (1 + κ/2)2−n .

The above assertion allows to complete the proof of the claim. Let x and y be
two distinct boundary points of a convex body B ⊃ Bn∞, with x − v, y − v ∈
min(τ, τ ′)Bn∞ for some vertex v of Bn∞. Without loss of generality, we can assume
that v = (−1,−1, . . . ,−1). Let � be the line passing through x − v and y − v, and
let p1, p2 be intersection points of the line with the unit sphere (let us assume for
concreteness that y − v lies in the interval joining x − v and p2). Note that, since B
contains the cube and, in particular, points of the form v + ei , i = 1, 2, . . . , n, we get
that ei − (x − v), i = 1, 2, . . . , n, lie in the closure of the illuminating cone η(B, x),
and the same is true for vector p2 − (x − v). By analogy, the closure of the cone
η(B, y) contains the vectors ei − (y − v) and p1 − (y − v). Take p j having larger
Euclidean distance to p = (1/

√
n, 1/

√
n, . . . , 1/

√
n). If j = 1 then, by the above

reasoning, we have

σ(B, y) ≥ σ
(
conv{p1 − (y − v), e1 − (y − v), . . . , en − (y − v)}, y − v

)

≥ (1 + κ/2)2−n .

Similarly, if j = 2 then σ(B, x) ≥ (1 + κ/2)2−n . The claim follows. ��

4.3 Proof of Lemma 3.3

Claim 4.3 Fix parameters n > 2, θ ∈ (0, 1), assume that 0 < ε ≤ θ/2 and 0 < δ ≤
ε/7, take a convex body B in a �-position with dBM(B, Bn∞) ≤ 1 + δ, and pick any
set S ∈ Cn(ε, θ). Let v, v′ be the distinguished pair of vertices with respect to S. Then
for any x ∈ ∂ B with x /∈ (v + 9δBn∞) ∪ (v′ + 9δBn∞), x is illuminated by S.

Proof Pick any point x ∈ ∂ B, and let w be a vertex of the cube Bn∞ with the smallest
distance to x ; note that for all non-zero coordinates x j we have sign(w j ) = sign(x j ).
The choice of w is not unique if x has zero coordinates; in such situation we pick any
admissible vertex.

We will consider three cases.
Case 1: w is adjacent neither to v, nor to v′. In this case, S contains an element
s = −w + εy, for some y ∈ Bn∞. By (2), B ⊂ (1 + 2δ)Bn∞, and we get for every
j = 1, . . . , n, and for any a ∈ (0, 1/2]:

|(x + a(−w + εy)) j | ≤ |x j − aw j | + aε ≤ max(1 + 2δ − a, a) + aε

= 1 + 2δ − a + aε.
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Selecting a := 3δ/(1 − ε), we obtain that x + as is in the interior of Bn∞. Since
Bn∞ ⊂ B, it implies that x + as ∈ B\∂ B, and therefore x is illuminated by s.
Case 2: w is adjacent either to v or to v′, but w /∈ {v, v′}. Let i be the coordinate in
which vi = v′

i 
= wi . In this case, S contains an element s = −w + (1− θ)wi ei + εy,
for some y ∈ Bn∞. As B ⊂ (1 + 2δ)Bn∞, we get for every j ∈ [n]\{i}, and for any
a ∈ (0, 1/2]:

|(x + a(−w + (1 − θ)wi ei + εy)) j | ≤ 1 + 2δ − a + aε.

In addition,

|(x + a(−θwi ei + εy))i | ≤ 1 + 2δ − aθ + aε.

Selecting a := 3δ/(θ − ε) and using the assumptions on δ and ε, we obtain that
x + as ∈ B\∂ B. As before, it means that x is illuminated by s ∈ S.
Case 3: w is either v or v′. By construction of Cn(ε, θ), S contains an element

s ∈ −
n∏

j=1

(
v j + v′

j

2
· [θ, 1]

)
+ εBn∞.

Let i be the coordinate in which v and v′ differ (note that it is not the same i as in the
previous case). Note that sign(x j ) = −sign(s j ) for all non-zero coordinates x j with
j ∈ [n]\{i}. We then get for every j ∈ [n]\{i} and for any a ∈ (0, 1/2]:

|(x + as) j | ≤ 1 + 2δ − aθ + aε.

In addition,

|(x + as)i | ≤ |xi | + aε.

Selecting a := 3δ/(θ − ε), we obtain that x + as ∈ B\∂ B unless |xi | ≥ 1 − 3δ.
Thus, x is illuminated in the direction s whenever |xi | < 1 − 3δ. Now, assume that
|xi | ≥ 1− 3δ; without loss of generality, sign(xi ) = sign(vi ). Similarly to Case 2, we
note that S contains directions sk = −wk + (1 − θ)wk

k ek + εyk (k ∈ [n]\{i}), where
yk ∈ Bn∞ and for each k ∈ [n]\{i}, wk is the vertex of {−1, 1}n adjacent to v that
differs from v on the k-th coordinate. Fix k ∈ [n]\{i}. For any j ∈ [n]\{k} we have,
just as in Case 2,

|(x + a(−wk + (1 − θ)wk
k ek + εy)) j | ≤ 1 + 2δ − a + aε < 1,

where the last inequality holds, for example, with a := 3δ/(1 − ε). Further, trivially

|(x + a(−wk + (1 − θ)wk
k ek + εy))k | ≤ |xk | + aθ + aε,

and, with the last choice of a, the quantity is strictly less than 1whenever |xk | < 1−9δ.
Thus, we get that x is illuminated by one of the n directions {s, sk, k ∈ [n]\{i}},
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whenever there is a coordinate of x which is strictly less than 1−9δ in absolute value.
The result follows. ��
Claim 4.4 For any n > 2 and any ε ∈ (0, 1) there is η′ = η′(n, ε) ∈ (0, 1) with the
following property. Let x ∈ S

n−1 be a vector such that x j ≥ ε and xk ≤ −ε for some
j 
= k. Then there is a vector z ∈ S

n−1 with zi ≥ η′ for all i ≤ n, an such that
〈z, x〉 = 0.

Proof Denote a := ∑
i 
= j,k xi . Let us define a vector z̃ ∈ R

n by setting z̃i := 1 for all
i 
= j, k and

z̃ j :=
√

n

x j
> 1; z̃k :=

√
n + a

−xk
.

First, obviously 〈̃z, x〉 = 0 by the construction. Further, by the Cauchy–Schwarts
inequality, a ≥ −√

n
√
1 − 2ε2 (where we used that x is a unit vector). Thus, all

coordinates of z̃ are greater than min(1,
√

n(1 − √
1 − 2ε2)). It remains to choose

z := z̃/‖̃z‖2. ��
The next two claims can be verified with a standard compactness argument.

Claim 4.5 For any n > 2 and κ ∈ (0, 1) there is ψ ′ = ψ ′(n, κ) ∈ (0, 1) with the
following property. Let z1, z2, . . . , zn be vectors in R

n such that ‖zi − ei‖∞ ≤ ψ ′.
Consider the convex cone

K := {
x ∈ R

n : 〈x, zi 〉 ≥ 0 for all i ≤ n
}
.

Then

σ(K , 0) ≤ (1 + κ) · 2−n .

Claim 4.6 For any n > 2 and η ∈ (0, 1) there is ψ ′′ = ψ ′′(n, η) ∈ (0, 1) with the
following property. Let z̃1, z̃2, . . . , z̃n be vectors in R

n such that ‖̃zi − ei‖∞ ≤ ψ ′′.
Consider the convex cone K̃ generated by vectors z̃i (i ≤ n). Then any unit vector
f ∈ R

n with fi ≥ η for all i = 1, 2, . . . , n, lies in the interior of K̃ .

Proof of Lemma 3.3 Fix parameters n > 2 and κ ∈ (0, 1), and let η′(·, ·), ψ ′(·, ·) and
ψ ′′(·, ·) be as in Claims 4.4, 4.5 and 4.6, respectively. Define ψ := ψ ′(n, κ)/(4n) and
θ3.3 := ψ/8. Now, take any θ ∈ (0, θ3.3], and let

ε = ε3.3 := min(1/n2, θψ/4), δ = δ3.3 := min(ψ ′′(n, η′(n, θψ/(8n)))/4.5, ε/7).

Further, take any element S ∈ Cn(ε, θ) and a convex body B in a �-position, with
Bn∞ ⊂ B ⊂ (1 + δ)Bn∞. Our goal is to show that for any point x on the boundary of
B not illuminated by S we have σ(B, x) ≤ (1 + κ) · 2−n .

Let v, v′ be distinguished vertices of the standard cube Bn∞ with respect to S, and
assume that there is a point x ∈ ∂ B which is not illuminated by S. By Claim 4.3,
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x ∈ (v + 9δBn∞) ∪ (v′ + 9δBn∞). Without loss of generality, let us assume that
‖x−v‖∞ ≤ 9δ and,moreover,v = (−1,−1, . . . ,−1) andv′ = (1,−1,−1, . . . ,−1).
For i ≤ n, letwi be the vertex of Bn∞ adjacent to v, withwi

i 
= vi . Thenwi −x belongs
to η(B, x). By our assumption, wi − x = 2ei + 9δ ỹi for some ỹi ∈ Bn∞, so that

η(B, x) contains a convex cone generated by ei + 4.5δ ỹi , i ≤ n. (4)

Next, we use the assumption that x is not illuminated by any of the directions
from S. As x is adjacent to a distinguished vertex, there are two types of illuminating
directions from S we will consider. First, for any vertex w of Bn∞ adjacent to v but
distinct from v′, S contains a direction of the form

si := −
∑

j 
=i

w j e j − θwi ei + εyi ,

for some yi ∈ Bn∞, where i ≥ 2 is the unique index such that wi 
= vi = v′
i . A trivial

computation gives

si = (1, 1, 1, . . . , 1) − (1 + θ)ei + εyi , i = 2, 3, . . . , n. (5)

Further, S contains the distinguished direction s1 such that

s1 ∈ −
n∏

j=1

(
v j + v′

j

2
· [θ, 1]

)
+ εBn∞.

Since x is not illuminated by any of the si ’s, we have si /∈ η(B, x), i = 1, 2, . . . , n. The
Hahn–Banach separation theorem implies that for any i there is an affine hyperplane
Hi passing through x and parallel to si but not intersecting the interior of x +η(B, x).
Choose the unit normal vector zi to Hi such that 〈zi , ei 〉 ≥ 0.

First, consider the directions si for i ≥ 2. Since 〈si , zi 〉 = 0 and in view of (5) we
have

∑

j 
=i

zi
j − θ zi

i + ε〈yi , zi 〉 = 0.

Assume that there exist two coordinates zi
k and zi

� (k 
= �) of zi such that |zi
k |, |zi

�| ≥ ψ .
Let us suppose for concreteness that k 
= i . Then

∣
∣∑

j 
=i zi
j

∣
∣ ≤ θ + ε

√
n ≤ ψ/4 and

|zi
k | ≥ ψ , whence there is u 
= k such that |zi

u | ≥ ψ/(2n) and the sign of zi
u is opposite

to the sign of zi
k . Then, by Claim 4.4, there is a vector f ∈ S

n−1 such that 〈 f , zi 〉 = 0
and f p ≥ η′(n, ψ/(2n)) for all p ≤ n. By Claim 4.6, applied to the convex cone K̃
generated by vectors z̃i := ei + 4.5δ ỹi , and our choice of parameters, we get that f
must belong to the interior of K̃ . On the other hand, the vectors ei +4.5δ ỹi all belong to
the closure of the cone η(B, x) (see (4)). Hence, f ∈ η(B, x), so that Hi intersects the
interior of x +η(B, x) and we come to contradiction. Thus, the vector zi has only one
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coordinate zi
b (b ≤ n) with |zi

b| ≥ ψ (note that automatically, |zi
b| > 1− nψ). By the

choice of ψ and θ , we necessarily have b = i , and so ‖zi − ei‖∞ ≤ nψ < ψ ′(n, κ).
Next, we apply a similar argument to direction s1. We have

∑n
j=2 s1j z1j + s11 z11 = 0,

where θ −ε ≤ s1j ≤ 1+ε for all j ≥ 2 and−ε ≤ s11 ≤ ε. Suppose that for some index

k ≥ 2 we have |z1k | ≥ ψ . Since |s11 z11| ≤ ε ≤ θψ/4, we have
∣∣ ∑n

j=2 s1j z1j
∣∣ ≤ θψ/4

while |s1k z1k | ≥ θψ/2. Hence, there is � ≥ 2 (� 
= k) such that |s1� z1�| ≥ θψ/(4n), and
the sign of z1� is opposite to the sign of z1k . By Claim 4.4, there is a vector f ∈ S

n−1

such that 〈 f , zi 〉 = 0 and f p ≥ η′(n, θψ/(8n)) for all p ≤ n. An application of
Claim 4.6 identical to the previous case, yields a contradiction. Thus, |z1j | ≤ ψ for all

j ≥ 2, and ‖z1 − e1‖∞ ≤ nψ < ψ ′(n, κ).
Observe that the cone η(B, x) is contained inside the set {y ∈ R

n : 〈y, zi 〉 ≥
0}. Finally, applying Claim 4.5, we get from the last observation and our choice of
parameters that σ(B, x) ≤ (1 + κ) · 2−n , completing the proof. ��
Remark 4.7 We would like to point out that the proof of Lemma 3.3 requires that
θ � ε, and, this is the only place in the proof where this relation is used.

4.4 Proof of Lemma 3.4

The assumptions of the lemma imply that there exists a point x = (x1, . . . , xn) ∈
Int(B) with |xi | > 1 for at least one i ∈ {1, . . . , n}. Without loss of generality, we can
assume that x1 > 1. Then, by convexity of B and the condition Bn∞ ⊂ B, there exists a
point y = (y1, 0, 0, . . . , 0) ∈ Int(B)with y1 > 1. Take two vertices v := (1, 1, . . . , 1)
and v′ := (−1, 1, . . . , 1) of the unit cube, and define

p := −v + v′

2
+ ε′e1 = (ε′,−1,−1, . . . ,−1),

where ε′ := min(ε, (y1 −1)/2). Note that p illuminates v′ as a vertex of the cube, and
hence it illuminatesv′ viewedas aboundarypoint of B.Additionally, asv+p ∈ Int(B),
we have that p illuminates v as a boundary point of B.

Consider the collection of directions S consisting of p, of all the directions −w

where w are the vertices of the unit cube not adjacent to {v, v′}, and of the directions
of the form −∑

j 
=i w j e j − θwi ei , for the vertices w adjacent to either v or v′ and
different from v, v′ in i-th coordinate (i = 2, 3, . . . , n). Note that S belongs to the
class Cn(ε, θ) and that each point of {−1, 1}n is illuminated by S.

4.5 Proof of the Lemma 3.6

We begin with the following elementary claim.

Claim 4.8 Consider the collection {wi }m
i=1 of m vertices of the discrete cube {−1, 1}m

in R
m, where for each i = 1, . . . , m, all coordinates of wi except for the i-th are +1,

and the i-th coordinate is −1. Then the (m − 1)-dimensional affine linear span of
w1, w2, . . . , wm contains no other vertices of the cube except w1, . . . , wm.
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Proof Let x be a point in the affine linear span of w1, . . . , wm , i.e., x = ∑
αiw

i

for some coefficients αi ∈ R so that
∑

αi = 1. By the definition of wi ’s, we have
x = (1−2α1, 1−2α2, . . . , 1−2αm). Assume that x ∈ {−1, 1}m . Then |1−2αi | = 1
for all i ≤ m, whence all αi ’s are equal to either 0 or 1. As their sum is one, that means
that all the αi ’s except for one are equal to zero. Hence, x coincides with one of the
wi ’s, which proves the claim. ��

Remark 4.9 The above claim implies that for any point w ∈ {−1, 1}m\{w1, . . . , wm}
the simplex �w with vertices {w,w1, w2, . . . , wm} is non-degenerate. In particular,
it follows that there is a real number u = u(m) > 0 depending only on m such that
for all w ∈ {−1, 1}m\{w1, . . . , wm} the average 1

m+1 (w + w1 + · · · + wm) is at the
Euclidean distance at least u from any supporting hyperplane for �w.

Let 0 < r ≤ 1/4 be a parameter, and let P be a convex polytope in Rn such that

P has 2n vertices, and ∀ v ∈ {−1, 1}n ∃ a vertex ṽ of P with ṽ − v ∈ r Bn∞. (6)

Let us make an immediate elementary observation that will be useful later:

Claim 4.10 For any n > 2 and θ ∈ (0, 1) there is r̃ = r̃(n, θ) ∈ (0, 1/4] with the
following property. Let P be a convex polytope in R

n satisfying (6) with parameter
r ≤ r̃ , and let w be any vertex of P. Then for any k ≤ n the vector (1 − θ)wkek

belongs to Int(P).

Let P be as in (6). For any i ≤ n, let V +
i = V +

i (P) (resp., V −
i = V −

i (P)) be the set
of vertices of P with positive (resp., negative) i-th coordinates. Further, for any i ≤ n
we introduce special collections W+

i = W+
i (P) ⊂ V +

i and W−
i = W−

i (P) ⊂ V −
i ,

where W+
i is the set of n − 1 vertices of P (from V +

i ) each having exactly n − 1
positive coordinates, and W−

i is the set of n − 1 vertices of P having exactly two
negative coordinates (one of them the i-th). Note that, when P is the standard cube
[−1, 1]n , the sets W+

i and W−
i , with the i-th components of the vertices removed,

directly correspond to the vertex sets from Claim 4.8, with m = n − 1.
The next statement obviously holds for the standard cube (see Remark 4.9). Its

extension for very small perturbations of the cube follows by continuity. We omit the
proof.

Claim 4.11 For each n ≥ 3 there is r ′′ = r ′′(n) ∈ (0, 1/4] with the following property:
Let P be a polytope in R

n satisfying (6) with parameter r ≤ r ′′, let i ≤ n, and let
w+ ∈ V +

i \W+
i and w− ∈ V −

i \W−
i be two points with sign(w+

j ) = sign(w−
j ) for all

j 
= i . Denote by H the affine linear span ofW−
i ∪{w−}. Further, let w̃+ ∈ W+

i ∪{w+}
and w̃− ∈ W−

i ∪ {w−} be two points with sign(w̃+
j ) = sign(w̃−

j ) for all j 
= i . Set

c+ := 1
n

(
w+ +∑

w∈W+
i

w
)

and let q be the point in H such that q − c+ is parallel to

w̃−−w̃+. Then necessarily q belongs to the interior of the simplex conv(W −
i ∪{w−}).

In the next claim, we give a sufficient condition for P to be a parallelotope.
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Claim 4.12 Suppose that a polytope P in R
n satisfies (6) with r ≤ r ′′, where r ′′ is

given by Claim 4.11. Further, suppose that for every i ≤ n and every pair of vertices
(v+, v−) ∈ (V +

i \W+
i )× (V −

i \W−
i ) such that sign(v+

j ) = sign(v−
j ) for all j 
= i , we

have that the affine spans of W+
i ∪ {v+} and W−

i ∪ {v−} are parallel and, moreover,
both spans are supporting hyperplanes for P. Then necessarily P is a parallelotope.

Proof Fix any i ≤ n, let (v+, v−) be a pair as above, and let z ∈ S
n−1 be the (unique)

vector such that for some number α < 0 we have 〈z, w〉 = α for all w ∈ W−
i ∪ {v−}.

By the assumption of the claim, the affine spans H1 and H2 of W+
i ∪ {v+} and

W−
i ∪ {v−} are parallel, hence there is a number β > 0 such that 〈z, w〉 = β for all

w ∈ W+
i ∪ {v+}. Next, choose any vertex w+ ∈ V +\(W+

i ∪ {v+}) and the vertex
w− ∈ V −\(W−

i ∪ {v−}) such that sign(w+
j ) = sign(w−

j ) for all j 
= i . Again, the

affine spans H ′
1 and H ′

2 ofW+
i ∪{w+} andW−

i ∪{w−} are parallel. On the other hand,
by the fact that H1, H2 are both supporting hyperplanes for P , we get that 〈z, w+〉 ≤ β

and 〈z, w−〉 ≥ α.
Assume for a moment that at least one of the last two inequalities is strict. Note that

in this case necessarily both inequalities are strict, i.e., 〈z, w+〉 < β and 〈z, w−〉 > α

(otherwise, we would get an immediate contradiction to the fact that H1 and H2, as
well as H ′

1 and H ′
2 are parallel). Next, let c+ and c− be arithmetic means of points

in W+
i ∪ {w+} and W−

i ∪ {w−}, respectively, fix any pair (w̃+, w̃−) ∈ W+
i × W−

i
such that sign(w̃+

j ) = sign(w̃−
j ) for all j 
= i , and define q as the point in H ′

2 such
that q − c+ is parallel to w̃− − w̃+. By Claim 4.11, the point q belongs to the interior
of the simplex conv(W−

i ∪ {w−}). This gives 〈z, q〉 > α. Let us summarize: we have
obtained four points w̃+, c+, q, w̃− forming a parallelogram, but

〈z, w̃+〉 = β ≥ 〈z, c+〉,
〈z, w̃−〉 = α < 〈z, q〉,

which is impossible. Thus, necessarily 〈z, w+〉 = β and 〈z, w−〉 = α, implying that
H1 coincides with H ′

1 and H2 coincides with H ′
2.

Repeating the above argument for all vertices in V +
i \W+

i and V −
i \W−

i , we get
that there is a single facet of P containing all vertices V +

i , and the same holds for
V −

i . Since this condition holds for any i ≤ n, we get that P is generated by n pairs of
parallel hyperplanes, so P is a parallelotope. ��
Proof of Lemma 3.6 Fix parameters n > 2 and ε > 0, and take θ3.6 := 1

4n . Let 0 <

θ ≤ θ3.6, and let P be a polytope in R
n satisfying condition (6) for r = r3.6 :=

min(̃r , r ′′, θ/5, ε/4), where r̃ , r ′′ are given by Claims 4.10 and 4.11. Assume further
that dBM(P, Bn∞) 
= 1. We want to show that P can be illuminated by some S ∈
Cn(ε, θ). By Claim 4.12, there is i ≤ n and two sets of vertices W+

i ∪ {v+} and
W−

i ∪{v−} (where sign(v+
j ) = sign(v−

j ) for all j 
= i), such that one of the following
two conditions holds.
Case 1. The affine span of W+

i ∪ {v+} is parallel to the affine span of W−
i ∪ {v−},

but at least one of the spans is not a supporting hyperplane for P . Without loss of
generality, assume that the simplex with vertices W+

i ∪ {v+} is not a part of a facet,
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whence the point c+ := 1
n

(
v+ + ∑

w∈W+
i

w
)
belongs to the interior of P . Consider

the unit vector z orthogonal to both affine spans of W+
i ∪ {v+} and W−

i ∪ {v−},
chosen so that 〈z, v−〉 < 〈z, v+〉. Then, for all sufficiently small ξ > 0, the vector
p = c+ −v+ + ξ z illuminates both v+ and v−. Indeed, illumination of v+ is obvious.
As for v−, note that, by Claim 4.11, there is a point q in the interior of the (n − 1)-
simplex conv(W−

i ∪ {v−}) such that q − c+ is parallel to v− − v+. This means that
q − v− = c+ − v+, whence v− + p belongs to the interior of P for small enough ξ .

We construct the illuminating set S for P as follows. Take any vertexw of P and let
w̃ be the corresponding vertex of Bn∞ (i.e., such that w − w̃ ∈ r Bn∞). Further, denote
by v and v′ the vertices of Bn∞ corresponding to v+ and v−. If w̃ is not adjacent to
{v, v′} then we add to S the direction −w (observe that −w ∈ −w̃ + εBn∞ and that
−w illuminates w). Next, if w̃ is adjacent to v or v′ but does not belong to {v, v′} then
we pick the direction −w + (1 − θ)wkek , where k 
= i is the unique index such that
vk = v′

k 
= w̃k . Observe that, in view of Claim 4.10, the direction −w + (1− θ)wkek

illuminates w. On the other hand, −w + (1 − θ)wkek ∈ −w̃ + (1 − θ)w̃kek + εBn∞.
Finally, if w̃ coincides with either v or v′ then we consider the direction p constructed
above. Observe that |pi | ≤ 3r (assuming ξ is small). Further, for any j 
= i we have
|c+

j −v+
j +ξ z j | ≥ 1

n −2r −ξ ≥ 2θ and sign(p j ) = sign(c+
j −v+

j +ξ z j ) = −sign(v j ),

where we used the definition of the setW+
i and the assumption that ξ is small. Hence,

1

2
p ∈ −

n∏

j=1

(
v j + v′

j

2
· [θ, 1]

)
+ 2r Bn∞.

We add p/2 to S as the distinguished direction. By the construction of S, it illuminates
all vertices of P , and belongs to the class Cn(ε, θ).
Case 2. Suppose that the affine span of W+

i ∪ {v+} is not parallel to the affine span
of W−

i ∪ {v−}. Choose a vertex ṽ+ ∈ W+
i ∪ {v+} with the smallest distance to the

affine span H of W−
i ∪ {v−}, and fix the unit vector z orthogonal to H and such

that 〈z, ṽ+〉 > 0. Let ṽ− be the vertex in W−
i ∪ {v−} corresponding to ṽ+ (i.e.,

sign(̃v+
j ) = sign(̃v−

j ) for all j 
= i), let c+ be the average of points inW+
i ∪{v+}, and

consider the vector p̃ := c+− ṽ+−ξ z, where ξ > 0 is a small parameter. Observe that
for small ξ , p̃ illuminates ṽ+ by construction. Further, by Claim 4.11, there is a point
q in the interior of the simplex W−

i ∪ {v−}, such that q − c+ is parallel to ṽ− − ṽ+.
Since the span of W+

i ∪ {v+} is not parallel to H and by our choice of ṽ+ and z, we
have that 〈c+ − ṽ+, z〉 > 0 while 〈q − ṽ−, z〉 = 0. Hence, the point ṽ− + (c+ − ṽ+)

lies in the interior of the interval joining c+ and q i.e., in the interior of P , and so p̃
illuminates ṽ− provided that ξ is sufficiently small. We will construct an illuminating
set S for P taking /̃2 as the distinguished direction. The rest of the argument is very
similar to the first case, and we omit the details. ��
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