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1. Introduction

We shall work in an n-dimensional vector space Rn with standard orthonormal basis 
e1, ..., en and a scalar product 〈·, ·〉. The standard Euclidean length is denoted by | · |.

A set K in Rn is said to be convex if together with every pair of points it contains 
the interval connecting them. Compact convex sets with non-empty interior are called 
convex bodies.

The standard Lebesgue measure of a set A in Rn shall be denoted by |A| or, sometimes, 
|A|n. When the standard Lebesgue measure on a subspace of dimension k is considered, 
it shall be denoted by | · |k. We shall denote the unit ball centered at the origin in Rn

by Bn
2 , and the unit sphere by Sn−1.

Given a convex body K in Rn, its Gauss map νK : ∂K → Sn−1 is the map that 
corresponds to every y ∈ ∂K the set of normal vectors at y with respect to K. The 
surface area measure of K is the measure on the unit sphere defined as the push forward 
to the sphere of the (n − 1)-dimensional Hausdorff measure on ∂K via the map νK . It is 
denoted by σK .

Minkowski’s existence theorem guarantees that every barycentered measure on Sn−1

which is not supported on any great subsphere is a surface area measure for some convex 
body; moreover, a convex body is determined by its surface area measure uniquely up 
to a shift.

For p ∈ R, the Lp surface area measure of a convex body with the support function 
hK is the measure on the sphere given by dσp,K(u) = h1−p

K (u)dσK(u). It was introduced 
by Lutwak. The normalized Lp surface area is given by dσ̄p,K(u) = 1

|K|dσp,K(u). An 
extension of Minkowski’s Theorem, called Lp-Minkowski problem is open in general. It 
asks which conditions should be required in order for a measure on the sphere to be 
an Lp-surface area measure, as well as whether Lp-surface area measure determines a 
convex body uniquely. Lutwak, Yang, Zhang have solved the normalized Lp-Minkowski 
problem with even data for the case p ≤ 0, and showed the uniqueness of the solution 
when p < 0. Böröczky, Lutwak, Yang, Zhang [8], [9], [10] have studied the case p = 0
and have, in particular, obtained the uniqueness in the case of symmetric convex bodies 
on the plane. Stancu [53], [54] has treated this problem for polytopes on the plane. 
Huang, Liu, Xu [21] have established uniqueness in R3 in the case when the Lp surface 
area is constant. The Lp-Minkowski problem is one of the main questions in the rapidly 
developing Brunn-Minkowski-Firey theory (see more in Ludwig [35], Lutwak [37], [38], 
Lutwak, Yang, Zhang [40], [41], [42], Lutwak, Oliker [39], Meyer, Werner [44], Ryabogin, 
Zvavitch [49], Zhu [56], [57], and the references therein).

In this manuscript, we prove an analogue of Minkowski’s theorem in a different setting. 
Let µ be an absolutely continuous measure on Rn, with a continuous density. Throughout 
the manuscript, continuity is understood in the sense of continuity on closed support. 
We study the surface area measure of convex bodies with respect to µ.
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Definition 1.1. Let K be a convex body and νK be its Gauss map. Let µ be a measure 
on Rn with continuous density g(x). Define σµ,K on Sn−1, a surface area measure of K
with respect to µ, as follows: for every Borel set Ω ⊂ Sn−1, let

σµ,K(Ω) =
∫

ν−1
K (Ω)

g(x)dHn−1(x),

where Hn−1 stands for the (n − 1)-dimensional Hausdorff measure on ∂K, and ν−1
K (Ω)

stands for the full pre-image of Ω under νK .

When µ is the standard Lebesgue measure, the measure σµ,K coincides with σK , the 
classical surface area measure.

Let p ∈ (0, +∞). We say that a function f : Rn → [0, ∞] is p-concave if fp(x) is a 
concave function on its support. That is, for every x, y ∈ supp(f) and for every λ ∈ [0, 1]
we have

fp(λx+ (1 − λ)y) ≥ λfp(x) + (1 − λ)fp(y).

Let r ∈ (−∞, +∞). We say that a function f : Rn → [0, ∞] is r- homogenous if for 
every a > 0 and for every x ∈ Rn we have f(ax) = arf(x).

We shall consider the class of measures on Rn with densities that have a positive degree 
of homogeneity and a positive degree of concavity. In fact, all such densities are p-concave 
and 1

p -homogenous for the same p ≥ 0 (see the Proposition A.2 from the Appendix). 
This class of measures was considered by E. Milman and L. Rotem [45], where they 
studied their isoperimetric properties. We remark that such measures are necessarily 
supported on convex cones. An example of a density function with said properties is 
f(x) = 1{〈x,θ〉>0}|〈x, θ〉|

1
p , where θ is a vector.

We prove an extension of Minkowski’s existence theorem to the class of surface area 
measures with respect to measures with positive degree of concavity and positive degree 
of homogeneity.

Theorem 1.2. Let µ on Rn be a measure and g(x) be its even r-homogenous density for 
some r ≥ 0, and the restriction of g to some half space is p-concave for a p ≥ 0. Let 
ϕ(u) be an arbitrary even measure on Sn−1, not supported on any great subsphere, such 
that supp(ϕ) ⊂ int(supp(g)) ∩ Sn−1. Then there exists a symmetric convex body K in 
Rn such that

dσK,µ(u) = dϕ(u).

Moreover, such convex body is determined uniquely up to a set of µ-measure zero.
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In Theorem 1.2, and throughout the paper, uniqueness up to µ-measure zero means 
that for every pair of K and L, symmetric convex bodies with σK,µ = σL,µ, the measure 
of their symmetric difference µ(K∆L) = 0.

We apply Theorem 1.2 to extend the study of volume comparison and unique deter-
mination of convex bodies related to projections.

Given a unit vector u ∈ Sn−1, we consider an (n − 1)-dimensional hyperplane orthog-
onal to it:

u⊥ = {x ∈ Rn : 〈x, u〉 = 0}.

An orthogonal projection of a convex body K to a subspace u⊥ shall be denoted by 
K|u⊥; that is,

K|u⊥ = {x ∈ u⊥ : ∃t ∈ R s.t.x+ tu ∈ K}.

Let K be an origin symmetric convex body in Rn with curvature function fK . The 
projection body ΠK of K is defined as the origin symmetric convex body in Rn whose 
support function in every direction is equal to the volume of the hyperplane projection 
of K in this direction.

The Shephard problem (see Shephard [52]) is the following question: given symmetric 
convex bodies K and L such that for every u ∈ Sn−1

|K|u⊥|n−1 ≤ |L|u⊥|n−1,

does it follow that |K|n ≤ |L|n? The problem was solved independently by Petty [47]
and Schneider [50]. They showed that the answer is affirmative if n ≤ 2 and negative 
if n ≥ 3. More precisely, the answer to Shephard’s problem is affirmative if and only 
if L is a projection body. As for general symmetric convex bodies, Ball [3] proved that 
if the volumes of projections of K are less than or equal to the volumes of projections 
of L in every direction, then |K| ≤

√
n|L|, for every dimension n. Goodey and Zhang 

[18] obtained a generalization of the Shephard problem for lower dimensional projec-
tions. A Fourier analytic approach to Shephard’s problem was presented by Koldobsky, 
Ryabogin and Zvavitch [31]. Ryabogin and Zvavitch [49] solved the generalization of 
Shephard’s problem for Firey projections.

The Busemann-Petty problem is in a sense dual to the Shephard problem. It asks 
whether symmetric convex bodies with larger central hyperplane sections necessarily 
have greater volume. The Busemann-Petty problem has been solved affirmatively for 
n ≤ 4 and negatively for n ≥ 5 (see Gardner, Koldobsky, Schlumprecht [17] and Zhang 
[55]). The answer to Busemann-Petty problem is affirmative if and only if the body with 
larger sections is an intersection body (see Lutwak [36] for the definition and properties 
of intersection bodies, and Koldobsky [24] for Fourier analytic approach to intersection 
bodies). Zvavitch solved an isomorphic version of Busemann-Petty problem for Gaussian 
measures [58], and completely generalized the solution of Busemann-Petty problem to 
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arbitrary measures with positive density [59]. Koldobsky [28], and further Koldobsky and 
Zvavitch [30] obtained estimates for the isomorphic version of Busemann-Petty problem 
for arbitrary measures; a discrete analog of those estimates was very recently obtained 
by Alexander, Zvavitch, Henk [2].

We refer the reader to the books by Koldobsky [26] and Koldobsky, Yaskin [29] for 
a deep, yet accessible study of the Fourier-analytic approach to the Busemann-Petty 
and Shephard problems, as well as a general introduction to Fourier analysis in Convex 
geometry.

Aleksandrov in [1] proved that any symmetric convex body in Rn is determined 
uniquely by the (n − 1)-dimensional volumes of its projections. See Zhang [55] for the 
discrete version of that statement under natural assumptions. In Section 5 we generalize 
Aleksandrov’s theorem to measures with positive degree of concavity and positive degree 
of homogeneity.

First, we find a natural analogue of the Lebesgue measure of projection of a convex 
body to other measures.

Definition 1.3. Let µ be a measure on Rn with continuous density g, and let K be a 
convex body. Consider a unit vector θ ∈ Sn−1. Define the following function on the 
cylinder Sn−1 × [0, 1]:

pµ,K(θ, t) := n

2

∫

Sn−1

|〈θ, u〉|dσµ,tK(u). (1)

We also consider µ − projection function on the unit sphere:

Pµ,K(θ) :=
1∫

0

pµ,K(θ, t)dt. (2)

In the particular case of Lebesgue measure λ we have

Pλ,K(θ) = |K|θ⊥|n−1.

The Definition 1.3 is natural since it is a generalization of Cauchy’s projection formula 
(see below (10)). For even g, the notion of pµ,K(θ, t) can be understood geometrically 
as the projected weight of the boundary of tK, t ∈ [0, 1]. More specifically, we define 
a measure µtK on θ⊥ to be the marginal measure of 1∂(tK)(x)g(x)dx. In other words, 
for a measurable set Ω ⊂ θ⊥, let µtK(Ω) =

∫
Ω g(π−1

tK (w))dw, where π−1
tK (w) is the full 

pre-image of w under the projection of tK onto θ⊥. Then

pµ,K(θ, t) = µtK(tK|θ⊥) = µtK(K|θ⊥),

where the last equality holds since tK ⊂ K. Hence,
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Pµ,K(θ) =
1∫

0

µtK(K|θ⊥)dt.

We prove the following result.

Theorem 1.4. Fix n ≥ 1; let µ on Rn be a measure and g(x) be its even r-homogenous 
density for some r ≥ 0, and the restriction of g to some half space is p-concave for a 
p ≥ 0.

Let K and L be symmetric convex bodies, and let L additionally be a projection body. 
Assume that for every θ ∈ Sn−1 we have

Pµ,K(θ) ≤ Pµ,L(θ).

Then µ(K) ≤ µ(L).

To compliment Theorem 1.4 we prove the following.

Theorem 1.5. Fix n ≥ 1; let µ on Rn be a measure and g(x) be its even r-homogenous 
density for some r ≥ 0, and the restriction of g to some half space is p-concave for a 
p ≥ 0. Assume further that the closure of the support of µ is the whole space.

Let L be a symmetric convex body which is not a projection body. Then there exists a 
symmetric convex body K such that for every θ ∈ Sn−1 we have

Pµ,K(θ) ≤ Pµ,L(θ),

but µ(K) > µ(L).

We remark that in the case of Lebesgue measure Theorems 1.4 and 1.5 are generaliza-
tions of the well-known solution to the classical Shephard problem (see Koldobsky [26], 
Chapter 8).

This paper is organized as follows. In Section 2 we present the preliminaries on the 
subject. In Section 3 we introduce and study the notion of mixed measure and prove 
an analogue of Minkowski’s first inequality for measures. In Section 4 we prove The-
orem 1.2. In Section 5 we prove two types of uniqueness results: one is the extension 
of Aleksandrov’s theorem, and the other is related to the uniqueness of the solution 
of certain PDE in the class of support functions. In Section 6 we prove Theorems 1.4
and 1.5. In Section 7 we discuss stability and separation results for Theorem 1.4, and 
their corollaries.

Acknowledgment. The author would like to thank Alex Koldobsky, Artem Zvavitch, 
Liran Rotem and Benjamin Jaye for very fruitful discussions and encouragement.



G.V. Livshyts / Advances in Mathematics 356 (2019) 106803 7

2. Preliminaries

2.1. Brunn-Minkowski theory

Below we present classical concepts and results of Convex geometry and Brunn-
Minkowski theory. We refer the reader to books by Ball [4], Milman, Schechtman [46], 
Schneider [51] for a detailed introduction to the subject.

Standard Minkowski’s addition for sets A, B ⊂ Rn is defined as

A+B := {a+ b : a ∈ A, b ∈ B}.

Scalar multiplication for α ∈ R and a set A ⊂ Rn is defined as

αA := {αa : a ∈ A}.

For Borel sets A, B in Rn and for arbitrary λ ∈ [0, 1], Brunn-Minkowski inequality states 
that

|λA+ (1 − λ)B| 1
n ≥ λ|A| 1

n + (1 − λ)|B| 1
n .

See Gardner [15] for an exhaustive survey on the subject. We remark that for convex 
bodies the equality in the Brunn-Minkowski inequality is attained if and only if the sets 
A and B are closed, convex dilates of each other.

First mixed volume of convex bodies K and L in Rn is defined as follows:

V1(K,L) := 1
n
lim inf

ε→0

|K + εL| − |K|
ε

.

Note that for any convex body K one has

V1(K,K) = |K|. (3)

Brunn-Minkowski inequality implies Minkowski’s first inequality:

V1(K,L) ≥ |K|
n−1
n |L| 1

n . (4)

There is equality in Minkowski’s first inequality if and only if K and L are closed convex 
dilates of each other (see Schneider [51] for more details).

A particular case of mixed volume, is the surface area of a convex set K in Rn:

|∂K|+ := nV1(K,Bn
2 ) = lim inf

ε→0

|K + εBn
2 | − |K|
ε

.

Therefore, (4) implies classical isoperimetric inequality:
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|∂K|+

|K|n−1
n

≥ |∂Bn
2 |+

|Bn
2 |

n−1
n

.

Next, we shall discuss Brunn-Minkowski inequality for p-concave measures (see Gard-
ner [15] for more details). For p ∈ R and for a, b ≥ 0, λ ∈ [0, 1] we define a p-average as 
follows:

Mp(a, b,λ) = (λap + (1 − λ)bp)
1
p . (5)

In the special cases p = 0, p = +∞ and p = −∞ we have

M0(a, b,λ) = aλb1−λ,

M−∞(a, b,λ) = min(a, b),

M+∞(a, b,λ) = max(a, b).

We say that a function g : Rn → R+ is p-concave if for every x, y ∈ Rn such that 
g(x)g(y) > 0, and for every λ ∈ [0, 1] one has

g(λx+ (1 − λ)y) ≥ Mp(g(x), g(y),λ).

We remark that 0-concave functions are also called log-concave.
The following generalized Brunn-Minkowski inequality is well known (see e.g. Borell 

[6], Gardner [15]). Let p ∈ [− 1
n , +∞], and let µ be a measure on Rn with p-concave 

density g. Let

q = p

np+ 1 .

Then the measure µ is q-concave on Rn. That is, for every pair of Borel sets A and B
and for every λ ∈ [0, 1] one has

µ(λA+ (1 − λ)B) ≥ Mq(µ(A), µ(B),λ). (6)

2.2. The surface area measure, its properties and applications

Support hyperplane of a convex body K at a point y ∈ ∂K is a hyperplane which 
contains y and does not contain any of the interior points of K. By convexity, such 
hyperplane exists at every point y ∈ ∂K, and is unique almost everywhere with respect 
to the (n −1)-dimensional Hausdorff measure on ∂K. The vector orthogonal to a support 
hyperplane at y ∈ ∂K is called normal vector at y; if such vector is unique it shall be 
denoted ny. The Gauss map νK : ∂K → Sn−1 corresponds y ∈ ∂K to the set of its 
normal vectors.
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The push forward of the (n − 1)-dimensional Hausdorff measure on ∂K under the 
Gauss map νK to the sphere is called surface area measure of K and is denoted by σK . 
In particular, |∂K|+ (the surface area of K) can be found as

|∂K|+ =
∫

Sn−1

dσK(u).

A class of strictly convex bodies whose support function is twice continuously dif-
ferentiable we shall denote by C2,+ (strict convexity means that the interior of every 
interval connecting a pair of points in the body is fully contained in the interior of the 
body). For such bodies, the Gauss map is a bijection, and the surface area measure σK

has a continuous density fK(u), which is called curvature function of K.
One can see via approximation by polytopes, that

∫

Sn−1

udσK(u) = 0.

Conversely, the following Minkowski’s existence Theorem holds (see e.g. Schneider [51]
or Koldobsky [26]).

Theorem 2.1 (Minkowski). Let µ be a measure on the sphere, not supported on any 
subspace, and such that

∫

Sn−1

udµ(u) = 0.

Then there exists a unique convex body K so that dσK(u) = dµ(u) for all u ∈ Sn−1.

We refer the reader to Schneider [51] for an accessible proof of Minkowski’s exis-
tence theorem, and to Pogorelov [48] for a detailed survey on the differential geometric 
approach to Minkowski’s existence theorem, its strengthening and related results.

The support function hK of a convex body K, containing the origin, is defined on Rn

via

hK(x) = max
y∈K

〈x, y〉.

Geometrically, for a unit vector θ, the value of hK(θ) represents distance to the support 
hyperplane of K in the direction θ. Due to the fact that hK is 1-homogenous, one has

〈∇hK(u), u〉 = hK(u), (7)

for every u ∈ Sn−1, provided that ∇hK(u) is well-defined. In this case, ∇hK(ny) = y for 
all y ∈ ∂K.
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We state a formula for a volume of a convex body K with surface area measure σK :

|K| = 1
n

∫

Sn−1

hK(u)dσK(u). (8)

The validity of this formula can be seen in the case when K is a polytope and the general 
case follows by approximation. Moreover, for arbitrary convex bodies K and L one has 
the following:

V1(K,L) = 1
n

∫

Sn−1

hL(u)dσK(u). (9)

Another formula involving surface area measure is the so called Cauchy projection for-
mula:

|K|θ⊥|n−1 = 1
2

∫

Sn−1

|〈u, θ〉|dσK(u), (10)

where θ is an arbitrary unit vector, and K is a convex symmetric body. The validity of 
(10), once again, can be seen for polytopes and it follows by approximation for arbitrary 
convex bodies. See Koldobsky [26] for more details about (8), (9) and (10).

2.3. Fourier transform on Sn−1 and its applications to Convex geometry

Fourier transform in Convexity plays a very important role. See books by Koldobsky 
[26], Koldobsky, Yaskin [29], and a survey by Koldobsky, Ryabogin, Zvavitch [32] for a 
detailed introduction to the subject.

The Schwartz class S is the space of complex valued rapidly decreasing infinitely 
differentiable functions on Rn. Every locally integrable real valued function f on Rn

with power growth at infinity represents a distribution acting by integration:

〈f,ϕ〉 =
∫

Rn

f(x)ϕ(x)dx,

for ϕ ∈ S.
The Fourier transform f̂ of a distribution f is defined by

〈f̂ , ϕ̂〉 = (2π)n〈f,ϕ〉,

for every test function ϕ ∈ S.
Let µ be a finite Borel measure on the unit sphere Sn−1. Let µe be a −(n +1)-homo-

genous extension of µ to Rn. µe is called the extended measure of µ if for every ϕ ∈ S,
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〈µe,ϕ〉 = 1
2

∫

Sn−1

〈r−2,ϕ(ru)〉dµ(u).

The following geometric representation of Fourier transform on the sphere was proved 
by Koldobsky, Ryabogin, Zvavitch [31] (see also Koldobsky [26]):

µ̂e(θ) = −π

2

∫

Sn−1

|〈u, θ〉|dµ(u), (11)

for every θ ∈ Sn−1.
Note that (10) and (11) imply that

dσ̂K(θ) = −π|K|θ⊥|dθ, (12)

where σK is the surface area measure of a symmetric convex body K, extended to Rn

with degree of homogeneity −(n + 1).
The following Parseval-type identity was proved by Koldobsky, Ryabogin, Zvavitch 

[31] (see also Koldobsky [25], [26]): for symmetric convex bodies K, L, so that the support 
function of K is infinitely smooth,

∫

Sn−1

ĥK(θ)f̂L(θ) = (2π)n
∫

Sn−1

hK(θ)fL(θ), (13)

where the Fourier transform of hK is considered with respect to its 1-homogenous exten-
sion, and the Fourier transform of fL is considered with respect to its −(n+ 1)-homo-
genous extension.

By Minkowski’s existence Theorem, for every symmetric convex body L and for every 
even density g, not supported on a great subsphere, there exists a symmetric convex 
body L̃ such that

σµ,L = σL̃.

Therefore, for all infinitely smooth symmetric convex bodies K, L in Rn, and for every 
even continuous density g, one has

∫

Sn−1

ĥK(θ)dσ̂µ,L(θ) = (2π)n
∫

Sn−1

hK(θ)dσµ,L(θ), (14)

where the Fourier transform of hK is considered with respect to its 1-homogenous exten-
sion, and the Fourier transform of σµ,L is considered with respect to its −(n +1)-homo-
genous extension.
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Another observation is that (11) implies:

dσ̂µ,L(θ) = −π

2

∫

Sn−1

|〈u, θ〉|dσµ,L(u), (15)

where the Fourier transform of σµ,L is considered with respect to its −(n +1)-homogenous 
extension.

In particular, considering tL in place of L we get

σ̂µ,tL(θ) = −π

n
pµ,L(θ, t), (16)

and

̂1∫

0

σµ,tL(θ)dt = −π

n
Pµ,L(θ). (17)

Remark 2.2. The degree of homogeneity with which a function on the sphere is extended 
to Rn impacts radically its Fourier transform, and, in particular, the restriction of its 
Fourier transform back to the unit sphere (see more in Goodey, Yaskin, Yaskina [19]).
We would like to emphasize the fact that the homogeneity properties of the measure µ
on Rn are completely irrelevant to the study of Fourier transforms of hK and σµ,K . In 
fact, we always extend hK and σµ,K in the most convenient way, after having already 
translated all the information about the underlying measure µ onto the sphere. The 
proof of Theorem 1.4, much like the classical Shephard’s problem (see [31]), consists 
of combining Fourier analysis and Brunn-Minkowski theory; the part which involves 
Fourier transform works for arbitrary measures, while the Brunn-Minkowski part is what 
reinforces the assumptions of concavity and homogeneity on the density of µ.

2.4. Projection bodies

Let K be an origin symmetric convex body in Rn with curvature function fK . The 
projection body ΠK of K is defined as the origin symmetric convex body in Rn whose 
support function in every direction is equal to the volume of the orthogonal projection 
of K in this direction. We extend hΠK to a homogeneous function of degree 1 on Rn. By 
(12),

hΠK(θ) = − 1
π
f̂K(θ).

The curvature function of a convex body is non-negative. Therefore, ĥΠK ≤ 0. On the 
other hand, by Minkowski’s existence theorem, an origin symmetric convex body K in 
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Rn is the projection body of some origin symmetric convex body if and only if there 
exists a measure µ on Sn−1 so that

ĥK = −µe.

The condition that L is a projection body is equivalent to L being a centered zonoid 
(see Gardner [16]). Zonoids are characterized as polar bodies of unit balls of finite di-
mensional sections of L1.

Every origin symmetric convex body on the plane is a projection body (see Herz [20], 
Ferguson [14], Lindenstrauss [33]). It was proved by Koldobsky [23] that p-balls in Rn

for n ≥ 3 and p ∈ [1, 2] are not projection bodies.

3. Mixed measures and related results

3.1. Mixed measures

As an analogue of the classical mixed volume consider the following notion.

Definition 3.1. Given sets K and L, we define their mixed µ-measure as follows.

µ1(K,L) = lim inf
ε→0

µ(K + εL) − µ(K)
ε

.

We observe that in the absence of homogeneity of µ, the mixed measure µ1(K, L)
is not homogenous in the first argument. However, it is necessarily homogenous in the 
second argument:

µ1(K, sL) = sµ1(K,L).

If, additionally, the measure µ is α-homogenous, i.e.

µ(tA) = tαµ(A)

for all t ∈ R+ and Borel sets A, then

µ1(tK,L) = tα−1µ1(K,L).

Definition 3.2. We also introduce the following analogue of mixed volume:

Vµ,1(K,L) =
1∫

0

µ1(tK,L)dt.
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Note that in the case of the Lebesgue measure λ we have

Vλ,1(K,L) = V1(K,L).

Definition 3.1 implies that for t ∈ (0, ∞),

µ1(tK,K) = µ(tK)′
t; (18)

this derivative exists by monotonicity. Therefore,

Vµ,1(K,K) =
1∫

0

µ1(tK,K)dt =
1∫

0

µ(tK)′dt = µ(tK)|10 = µ(K). (19)

Recall that we use the notation σµ,K for a surface area measure of a convex body K
with respect to a measure µ on Rn. That is, for a Borel set A ⊂ Sn−1,

σµ,K(A) =
∫

ν−1
K (A)

g(x)dHn−1(x),

where dHn−1(x) stands for the (n −1)-dimensional Hausdorff measure on ∂K. Following 
the idea from the appendix of [34], we prove the following representation for µ1(K, L).

Lemma 3.3. Given convex bodies K and L containing the origin, and a measure µ with 
continuous density g on Rn, we have

µ1(K,L) =
∫

Sn−1

hL(u)dσµ,K(u).

Here hK and hL are support functions of K and L and σµ,K is the surface area measure 
of K.

The proof is outlined in the Appendix (see Lemma A.1).
In order to provide some intuition about σµ,K , we describe it explicitly in a couple of 

partial cases.

Proposition 3.4. If a body K is C2-smooth and strictly convex then its surface area mea-
sure has representation

dσµ,K(u) = fK(u)g(∇hK(u))du.

Proposition 3.5. The surface area measure of a convex polytope P with respect to a mea-
sure µ has representation
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dσµ,P (u) =
N∑

i=1
δuiµn−1(Fi)du,

where ui, i = 1, ..., N are the normals to the faces of the polytope, Fi are the corresponding 
faces, and µn−1(Fi) stands for 

∫
Fi

g(x)dx.

See the Appendix for the proofs of Propositions 3.4 (Proposition A.5) and 3.5 (Propo-
sition A.4).

We remark that Lemma 3.3, Proposition 3.4, along with (16) and (13) imply for all 
symmetric convex infinitely smooth bodies K and L:

µ1(tK,L) = (2π)−n

∫

Sn−1

ĥL(u)dσ̂µ,tK(u)du

= − π

n
(2π)−n

∫

Sn−1

ĥL(u)pµ,K(t, u)du. (20)

As an immediate corollary of Lemma 3.3 and (19) we derive the following expression 
of the measure of a C2,+ convex body (see also [11]).

Lemma 3.6. Let µ be a measure with continuous density g. Let K be a C2,+ convex body 
with support function hK and curvature function fK . Then

µ(K) =
∫

Sn−1

hK(u)fK(u)
1∫

0

tn−1g (t∇hK(u)) dtdu. (21)

We outline that if the density of a measure µ on Rn is r-homogenous, then

µ(K) =
1∫

0

µ1(tK,K)dt = µ1(K,K)
1∫

0

tn+r−1dt = 1
n+ r

µ1(K,K). (22)

In view of (22), Lemma 3.3 and Proposition 3.5 imply the following.

Proposition 3.7. Let µ be a measure with r-homogenous density g(x) on Rn, and consider 
a polytope with N faces:

P = {x ∈ Rn : 〈x, ui〉 ≤ αi},

where ui ∈ Sn−1 and αi > 0, i = 1, ..., N . Let Fi be faces of P orthogonal to ui, 
i = 1, ..., N . Then

µ(P ) = 1
n+ r

N∑

i=1
αiµn−1(Fi),
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where µn−1(Fi) stands for 
∫
Fi

g(x)dx.

3.2. Minkowski’s first inequality generalized

The main result of this subsection is the following theorem.

Theorem 3.8. Let µ on Rn be an absolutely continuous measure. Assume that µ is 
F (t)-concave, i.e. there exists a differentiable invertible function F : R+ → R such 
that for every λ ∈ [0, 1] and for every pair of Borel sets K and L in a certain class, we 
have

µ(λK + (1 − λ)L) ≥ F−1 (λF (µ(K)) + (1 − λ)F (µ(L))) . (23)

Then the following holds:

µ1(K,L) ≥ µ1(K,K) + F (µ(L)) − F (µ(K))
F ′(µ(K)) , (24)

for all K, L in that class.

Proof. We write

µ(K + εL) = µ

(
(1 − ε) K

1 − ε
+ εL

)

≥ F−1
(
(1 − ε)F

(
µ( K

1 − ε
)
)
+ εF (µ(L))

)
=: GK,L,µ,F (ε).

The function GK,L,µ,F is differentiable since µ is absolutely continuous and F is differ-
entiable; in the case F ′(t) = 0 the expression from (24) is understood as a limit. Note 
that GK,L,µ,F (0) = µ(K). Therefore,

µ1(K,L) ≥ G′
K,L,µ,F (0).

We note that

µ

(
K

1 − ε

)′
|ε=0 = µ1(K,K).

Using the above along with standard rules of differentiation, such as

(F−1(a))′ = 1
F ′(F−1(a)) ,

we get the statement of the Theorem. ✷
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A standard argument implies that the equality cases of the inequality (24) coincide 
with equality cases of (23). We shall formulate a few corollaries of Theorem 3.8 in some 
special cases.

Corollary 3.9. Let p ≥ 0. Let g : Rn → R+ be a p-concave density of measure µ. Let 
q = 1

n+ 1
p
. Then for every pair of Borel sets K and L we have

µ1(K,L) ≥ µ1(K,K) + µ(L)q − µ(K)q
qµ(K)q−1 .

The Corollary 3.9 follows from Theorem 3.8 via considering F (t) = tq. We also obtain 
the following nicer-looking corollary for measures with p-concave and 1

p -homogenous 
densities. It was originally proved by E. Milman and L. Rotem [45].

Corollary 3.10 (E. Milman, L. Rotem). Let p ≥ 0. Let g : Rn → R+ be a p-concave 
1
p -homogenous density of measure µ. Let q = 1

n+ 1
p
. Then for every pair of Borel sets K

and L we have

µ1(K,L) ≥ 1
q
µ(K)1−qµ(L)q, (25)

and

Vµ,1(K,L) ≥ µ(K)1−qµ(L)q. (26)

Proof. Note that if g is 1p -homogenous then µ is an (n + 1
p ) =

1
q -homogenous measure. 

Therefore,

Vµ,1(K,L) =
1∫

0

µ1(tK,L)dt = µ1(K,L)
1∫

0

t
1
q −1dt = qµ1(K,L), (27)

and in particular

µ(K) = qµ1(K,K) (28)

Corollary 3.9 together with (28) implies (25). Also, (25) together with (27) implies 
(26). ✷

Recall that a measure µ is called log-concave if for all Borel sets K and L,

µ(λK + (1 − λ)L) ≥ µ(K)λµ(L)1−λ.

Applying Theorem 3.8 with F (t) = log t (as log t is an increasing function), we get the 
following corollary.
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Corollary 3.11. Let measure µ be log-concave. Then for every pair of Borel sets K and 
L we have

µ1(K,L) ≥ µ1(K,K) + µ(K) log µ(L)
µ(K) .

In particular, the following isoperimetric-type result follows from Theorem 3.8.

Proposition 3.12. Let a measure µ be log-concave. Then for every pair of Borel sets K
and L such that µ(K) = µ(L), one has

µ1(K,L) ≥ µ1(K,K).

For example, if γ is the standard Gaussian measure γ (that is, the measure with 

density 1√
2π

n e− |x|2
2 ), and K is a convex set containing the origin, then the expression

∫

∂K

〈y, νL(y)〉e− |y|2
2 dσ(y)

is minimized when L = K, where L is such convex region that γ(K) = γ(L), and νL is 
it Gauss map.

Another strengthening of Corollary 3.11 in the case of the standard Gaussian measure 
is possible to obtain using Ehrhard’s inequality (see Ehrhard [13], Borell [7]). Recall the 
notation

Ψ(a) = 1√
2π

a∫

−∞

e− t2
2 dt.

It was shown by Ehrhard (for convex sets), and further extended by Borell, that for 
every pair of Borel sets K and L and for every λ ∈ [0, 1] we have

Ψ−1 (γ(λK + (1 − λ)L)) ≥ λΨ−1(γ(K)) + (1 − λ)Ψ−1(γ(L)).

Hence the next Corollary follows.

Corollary 3.13. For the standard Gaussian measure γ and for every pair of convex sets 
K and L we have

γ1(K,L) ≥ γ1(K,K) +
√
2πe− Ψ−1(γ(K))2

2
(
Ψ−1(γ(L)) − Ψ−1(γ(K))

)
.

To obtain this corollary we use the fact that Ψ is an increasing function and the 
relation

Ψ−1(a)′ =
√
2πe

Ψ−1(a)2
2 .
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4. Extension of the Minkowski’s existence theorem

This section is dedicated to proving an extension of Minkowski’s existence theorem. 
We use ideas from the proof of the classical Minkowski’s existence theorem (see Schneider 
[51]).

First, we state a definition.

Definition 4.1. For a measure µ on Rn, we say that a convex body K in Rn with particular 
properties is µ-unique if every pair of convex bodies with said properties coincides up to 
a set of µ-measure zero.

Theorem 4.2. Let µ on Rn be a measure and g(x) be its even r-homogenous density for 
some r ≥ 0, such that a restriction of g on some half space is p-concave for p ≥ 0. Let ϕ
be an even measure on Sn−1, not supported on any great subsphere, such that supp(ϕ)
is spherically convex and supp(ϕ) ⊂ int(supp(g)) ∩ Sn−1. Then there exists a µ-unique 
convex body K in Rn such that

dσK,µ(u) = dϕ(u).

The existence part of Theorem 4.2 follows by approximation from the lemma below. 
We remark, that for an (n − 1)-dimensional surface F , the notation µn−1(F ) stands for

µn−1(F ) =
∫

F

g(x)dx,

where g(x) is the density of µ, and dx is the area element on F .

Lemma 4.3. Let µ on Rn be a measure and g(x) be its even r-homogenous density for 
some r > −n. Let N ≥ 2n be an even integer. Let u1, ..., uN be unit vectors spanning 
the Rn, ui ∈ int(supp(g)), such that ui = −uN

2 +i. Let f1, ..., fN be arbitrary positive 
numbers such that fi = fN

2 +i.
Then there exist positive α1, ..., αN such that the convex polytope

P = ∩N
i=1{|〈x, ui〉| ≤ αi}

with faces F (u1), ..., F (uN ) satisfies

µn−1(F (ui)) = fi.

Moreover, if restriction of g on a half space is p-concave for p ≥ 0 then such polytope P
is µ-unique.
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Proof. For a vector A = (α1, ..., αN ) ∈ RN we shall consider a polytope

P (A) = ∩N
i=1{x ∈ Rn : |〈x, ui〉| ≤ αi}.

Consider a set M ⊂ RN defined as follows:

M := {A ∈ RN : µ(P (A)) ≥ 1}.

Note that M ⊂ {A : αi ≥ 0 ∀i = 1, ..., N}. It is nonempty since the measure is 
unbounded. As the set M is closed, and fi > 0, the linear functional

ϕ(A) = 1
n+ r

N∑

i=1
fiαi

attains its minimum on M . Let A∗ = (α∗
1, ..., α

∗
N ) be the minimizing point, P ∗ = P (A∗), 

and let F ∗
i stand for the facet of P ∗ orthogonal to ui. Denote the value of the minimum 

ϕ(A∗) = mn+r−1.
We show that mP ∗ is the polytope which solves the problem. Indeed, consider hyper-

planes

H1 = {A ∈ RN : 1
n+ r

N∑

i=1
fiαi = mn+r−1},

H2 = {A ∈ RN : 1
n+ r

N∑

i=1
µn−1(F ∗

i )αi = 1}.

Note that all α∗
i > 0. Thus, by Proposition 3.7,

µ(P ∗) = 1
n+ r

N∑

i=1
α∗
i µn−1(F ∗

i ).

On the other hand, the linear functional ϕ attains its minimum on the boundary of M , 
and hence

µ(P ∗) = 1. (29)

We conclude that A∗ ∈ H1 ∩ H2.
Observe that H1 ∩ int(M) = ∅, as otherwise A∗ would not be the minimum. Consider 

a vector A ∈ H1 different from A∗. For any λ ∈ [0, 1], the vector λA∗ + (1 − λ)A ∈ H1, 
and hence

µ(P (λA∗ + (1 − λ)A)) ≤ 1.
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Note also that

λP (A∗) + (1 − λ)P (A) ⊂ P (λA∗ + (1 − λ)A),

and thus

µ(λP ∗ + (1 − λ)P (A)) ≤ 1. (30)

Therefore, by homogeneity of µ, (29) and (30),

µ1(P ∗, P (A)) = lim inf
ε→0

µ(P ∗ + εP (A)) − µ(P ∗)
ε

= lim inf
ε→0

(1 + ε)n+rµ( 1
1+εP

∗ + ε
1+εP (A)) − 1

ε
≤ lim inf

ε→0

(1 + ε)n+r − 1
ε

= n+ r.

On the other hand, if αi > 0, by Proposition 3.5 and Lemma 3.3 we have

µ1(P ∗, P (A)) =
N∑

i=1
αiµn−1(F ∗

i ),

and hence

1
n+ r

N∑

i=1
αiµn−1(F ∗

i ) ≤ 1. (31)

Therefore, there exists an open subset of H1,

U := H1 ∩ {A ∈ RN : αi > 0},

which is fully contained in the half space

H−
2 = {A ∈ RN : 1

n+ r

N∑

i=1
µn−1(F ∗

i )αi ≤ 1},

and, in addition, the interior of U contains A∗ ∈ H1 ∩ H2. This implies that H1 = H2.
Therefore,

µn−1(F ∗
i )mn+r−1 = fi.

Using homogeneity of g once again, we conclude that the polytope

mP ∗ = ∩N
i=1{x ∈ Rn : 〈x, ui〉 ≤ βi},
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with βi = mα∗
i , satisfies the conclusion of the Lemma.

The uniqueness part follows in the same manner as in subsection 4.1 for all convex 
bodies, therefore we skip the argument here. ✷

We remark that no concavity was necessary to prove the existence part for polytopes; 
however, it is used in the proof for uniqueness, and it is used in the approximation 
argument below.

4.1. Proof of the uniqueness part of Theorem 4.2

Proof. Let µ̃ be measure with density g̃(u) = g(u)1{〈u,v〉>0}, for some unit vector v, such 
that g̃ is p-concave and 1

p -homogenous on its support for some p ≥ 0 (assumptions of 
the Theorem along with Proposition A.2 of the appendix allow us to select such vector). 
Fix q = p

np+1 . Assume that there exist two symmetric convex bodies K and L such that

dσµ,K(u) = dσµ,L(u) (32)

for all u ∈ Sn−1. Observe that

µ1(K,L) =
∫

Sn−1

hK(u)dσµ,L(u)

=
∫

Sn−1

hK(u)dσµ,K(u) = µ1(K,K) = 1
q
µ(K).

By symmetry of K and L, it implies that

µ̃1(K,L) = 1
q
µ̃(K).

By Corollary 3.10,

1
q
µ̃(K) = µ̃1(K,L) ≥ 1

q
µ̃(K)1−qµ̃(L)q, (33)

and hence µ̃(K) ≥ µ̃(L). Analogously, by considering µ̃1(L, K), we get that µ̃(K) ≤ µ̃(L). 
Hence µ̃(K) = µ̃(L), and hence there is equality in (33). Milman and Rotem ([45]
Corollary 2.17) proved, using the results from Dubuc [12], that in this case K and L
have to coincide up to a dilation and a shift on the support of µ̃. As we assume that 
K and L are symmetric, we get that K = aL for some a > 0 almost everywhere with 
respect to µ̃. But as g is 1p -homogenous, we have

dσµ,K(u) = dσµ,aL(u) = an+
1
p −1dσµ,L(u),

and hence by (32), a = 1. Which means that K = L µ-almost everywhere. ✷
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4.2. Proof of the existence part of Theorem 4.2

Proof. We shall use Lemma 4.3 and argue by approximation. Let dϕ(u) be an even 
measure on Sn−1. For a positive integer k, consider a symmetric partition of Sn−1 ∩
supp(ϕ) into disjoint sets Ai, i = 1, ..., 2N with spherically convex closures of diameters 
at most 1k (recall that a subset of the sphere is called spherically convex if the geodesic 
interval connecting any pair of points in the set is fully contained in this set). This is 
possible to do since Sn−1 ∩ supp(ϕ) is spherically convex by the assumption. Consider 
the vector

ci =
1

ϕ(Ai)

∫

Ai

udϕ(u).

Note that ci 0= 0. Select ui ∈ Sn−1 and fi ∈ R+ to be such that ci = fiui. Note that 
ui ∈ int(Ai). Therefore, for every u ∈ Ai, |u − ui| ≤ 1

k , and hence

1 − 1
k

≤ fi ≤ 1. (34)

According to Lemma 4.3, there exists a polytope

Pk = {x ∈ Rn : |〈x, ui〉| ≤ αi}

with faces FPK , such that

µn−1(FPK (ui)) =
∫

Ai

ϕ(u)du.

Consider a measure ϕk on Sn−1 such that for every Borel set Ω ⊂ Sn−1,

ϕk(Ω) =
∑

ui∈Ω
µn−1(FPK (ui)).

Consider a bounded Lipschitz function a(u) on Sn−1. Observe that
∣∣∣∣∣∣

∫

Sn−1

a(u)dϕ(u) −
∫

Sn−1

a(u)dϕk(u)

∣∣∣∣∣∣
≤

∑ ∫

Ai

|a(u) − a(ui)fi|dϕ(u).

Observe as well, that by (34),

|a(u) − fia(ui)| ≤ |a(ui) − fia(ui)|+ |a(u) − a(ui)|

≤ 1
k
||a||Lip + ||a||∞|1 − fi| ≤ 1

k
(||a||Lip + ||a||∞) →k→∞ 0.



24 G.V. Livshyts / Advances in Mathematics 356 (2019) 106803

Thus ϕk → ϕ weakly, as k tends to infinity.
It remains to show that all the polytopes Pk are bounded on the support of µ: then, 

by Blaschke selection theorem (see [51], Theorem 1.8.6), applied on the support of µ, 
there exists a subsequence of {Pk} which converges to some convex body P in Hausdorff 
metric. Then σµ,Pk → σµ,P weakly (see Proposition A.3 from the appendix), and hence, 
by the uniqueness of the weak limit, we have dσµ,P (u) = dϕ(u).

To show the boundedness, observe first that µ+(∂Pk) =
∫
Sn−1 ϕ(u)du =: C̃ϕ, where 

µ+(∂Pk) stands for µ1(Pk, Bn
2 ).

Let g̃ be the restriction of g to a half space where it is p-concave. By Corollary 3.10,

µ̃(Pk) ≤
(
qµ̃(Bn

2 )−qµ̃+(∂Pk)
) 1

1−q ,

and hence, by symmetry of Pk,

µ(Pk) ≤
(
qµ(Bn

2 )−qµ+(∂Pk)
) 1

1−q ≤ Cµ,ϕ. (35)

Here q = p
np+1 , and Cµ,ϕ depends only on the measures µ and ϕ. On the other hand, for 

any x ∈ Pk we have

hPk(u) ≥ 〈u, x〉+ = |x|〈u, v〉+,

where v ∈ Sn−1 is such that x = |x|v, and 〈u, x〉+ stands for the positive part of 〈u, x〉. 
We note that for k large enough,

∫

Sn−1

〈u, v〉+dϕk(u) ≥ 1
2

∫

Sn−1

〈u, v〉+dϕ(u) =: Cϕ > 0,

where Cϕ > 0 is a positive constant depending on ϕ only. Therefore,

µ(Pk) =
1

n+ r

∫

Sn−1

hPK (u)dϕk(u) ≥ |x|Cϕ. (36)

By (35) and (36), |x| ≤ Cµ,ϕ

Cϕ
. As x was an arbitrary point from Pk, we conclude that the 

sequence {Pk} is indeed uniformly bounded. ✷

5. Applications to the questions about uniqueness

5.1. An extension of Aleksandrov’s theorem

Theorem 5.1. Let µ be a measure with density with positive degree of concavity and 
positive degree of homogeneity. Let K and L be symmetric convex bodies such that in 
every direction θ, Pµ,K(θ) = Pµ,L(θ). Then K = L µ-almost everywhere.
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Proof. Given g(x) on Rn, the density of µ, let µ̃ on Rn be the measure with density 
g̃(x) = g(x)+g(−x)

2 . Recall that by (16),

dσ̂µ̃,K(θ) = −C(µ)π

n
Pµ̃,K(θ)

and

dσ̂µ̃,L(θ) = −C(µ)π

n
Pµ̃,L(θ),

where C(µ) depends only on the dimension and the degree of homogeneity of µ, and the 
Fourier transform is considered with respect to −(n +1)-homogenous extensions of σµ̃,K

and σµ̃,L.
Note that Pµ,K(θ) = Pµ,L(θ) implies Pµ̃,K(θ) = Pµ̃,L(θ) for every θ. By Fourier 

inversion formula, we get that σµ̃,K = σµ̃,L everywhere on the sphere. By Theorem 1.2
we conclude that K and L coincide up to a set of µ-measure zero. ✷

5.2. Uniqueness of solutions for certain PDE’s in the class of support functions

Proposition 5.2. Let K and L be two symmetric C2,+ convex bodies in Rn with support 
functions hK and hL and curvature functions fK and fL such that

∂hK(u)
∂x1

fK(u) = ∂hL(u)
∂x1

fL(u)

for every u ∈ Sn−1. Then K = L.

Proof. Let g : Rn → R+ be given via

g(x) = |x1|.

Then, for every x ∈ Rn,

g(∇hK) =
∣∣∣∣
∂hK(u)

∂x1

∣∣∣∣ .

By the symmetry, the Proposition 3.4 and the condition of the Corollary,

σµ,K = fK(u)g(∇hK(u)) = fL(u)g(∇hL(u)) = σµ,L (37)

for every u ∈ Sn−1. Observe that the restriction of g onto {x ∈ Rn : x1 > 0} is 
1-homogenous and 1-concave. Therefore, it satisfies the condition of Theorem 4.2, and 
thus, by (37), K = L µ-almost everywhere. In this case it means that K = L coincide 
almost everywhere with respect to Lebesgue measure, and as they are also convex bodies, 
it means that K = L. ✷
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We remark that the curvature function fK can be written in the Aleksandrov’s form 
as det(δijh + hij), where h is the support function of K, hij are derivatives of it taken 
with respect to an orthonormal frame on Sn−1, and δij is the usual Kroneker symbol. 
Therefore, Proposition 5.2 implies that a PDE

∂h

∂x1
det(δijh+ hij) = F

has a unique solution in the class of even support functions of convex bodies. The ex-
istence of such solution for even continuous function F which is not supported on any 
great subsphere can be derived from Theorem 1.2.

Remark 5.3. Observe that

∂(hK(u)fK(u))
∂x1

= ∂hK(u)
∂x1

fK(u) + ∂fK(u)
∂x1

hK(u).

Hence, by Proposition 5.2, the following pair of conditions guarantee equality of smooth 
symmetric sets K and L:

(1) hK(u)fK(u) = hK(u)fK(u) at every u ∈ Sn−1;
(2) ∂fK(u)

∂x1
hK(u) = ∂fL(u)

∂x1
hL(u) at every u ∈ Sn−1.

Remark 5.4. Instead of requiring the condition of Proposition 5.2 it is in fact enough to 
require that there exists a vector v such that for every u ∈ Sn−1,

fK(u)〈∇hK(u), v〉 = fL(u)〈∇hL(u), v〉.

In this case we still conclude that K = L.

Remark 5.5. The Log-Minkowski problem (see e.g. Böröczky, Lutwak, Yang, Zhang [8], 
[9], [10], Lutwak, Yang, Zhang [43], Lutwak, Oliker [39], Stancu [53], Huang, Liu, Xu 
[21]) asks whether a symmetric convex body K is uniquely defined by its cone volume 
measure 1nhK(u)fK(u), where u ∈ Sn−1.

Suppose that symmetric convex bodies K and L satisfy

hK(u)fK(u) = hL(u)fL(u), (38)

for every u ∈ Sn−1. Consider a vector field

a(u) = ∇hK(u)fK(u) − ∇hL(u)fL(u).

Note that by (7), (38) is equivalent to the fact that a(u) is a tangent field, that is 
a(u) ⊥ u.
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In view of Corollary 5.2, unique determination of a smooth convex body would follow 
if one could show that in fact a(u) has to be identically zero. Moreover, in view of the 
previous remark it would suffice to show that there exists a vector v ∈ Sn−1 such that 
〈a(u), v〉 = 0 for all u ∈ Sn−1.

6. Extensions of the solution to Shephard’s problem

We shall follow the scheme of the proof for the classical Shephard problem (see 
Koldobsky [26]), which suggests glueing together harmonic-analytic results with the 
Brunn-Minkowski theory.

6.1. General preparatory lemmas

To prove Theorem 1.4, we first need the following Lemma.

Lemma 6.1. Let µ be a measure with continuous density g, and let K, L be symmetric 
convex bodies. Assume additionally that L is a projection body. Assume that for a given 
t ∈ [0, 1] and for every θ ∈ Sn−1 we have

pµ,K(θ, t) ≤ pµ,L(θ, t).

Then

µ1(tK,L) ≤ µ1(tL, L).

Proof. Without loss of generality we may assume that K and L are infinitely smooth 
strictly convex bodies; the general case then follows via standard approximation argu-
ment (see, e.g., Koldobsky [26] Section 8).

Consider a symmetrization of µ. Let µ̃ be the measure with density

g̃(x) = g(x) + g(−x)
2 .

Since K and L are symmetric, we have for all θ ∈ Sn−1 and t ∈ [0, 1]:

pµ̃,K(θ, t) = pµ,K(θ, t);
pµ̃,L(θ, t) = pµ,L(θ, t),

and hence

pµ̃,K(θ, t) ≤ pµ̃,L(θ, t). (39)

Assume for a moment that K and L are strictly convex and infinitely smooth. By (16),
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σ̂µ,tL(θ) = −π

n
pµ,L(θ, t).

Hence, by Proposition 3.4,

pµ̃,K(θ, t) = −n

π
̂ftK g̃(∇htK)(θ).

By (39), we get

̂ftK g̃(∇htK)(θ) ≥ ̂ftLg̃(∇htL)(θ),

for every θ ∈ Sn−1 and for every t ∈ [0, 1]. As L is a projection body, we have ĥL(θ) ≤ 0. 
Thus

ĥL(θ) ̂ftK g̃(∇htK)(θ) ≤ ĥL(θ) ̂ftLg̃(∇htL)(θ), (40)

for every θ ∈ Sn−1 and for every t ∈ [0, 1]. Integrating (40) over the unit sphere, and 
applying Parseval’s identity (13) on both sides of the inequality, we get

∫

Sn−1

hL(θ)ftK(θ)g̃(∇htK(θ))dθ ≤
∫

Sn−1

hL(θ)ftL(θ)g̃(∇htL(θ))dθ. (41)

Lemma 3.3 applied along with (41) implies that

µ̃1(tK,L) ≤ µ̃1(tL, L).

Using symmetry of K and L once again, we note that

µ̃1(tK,L) = µ1(tK,L);
µ̃1(tL, L) = µ1(tL, L),

and the lemma follows. ✷

Via the same scheme as above, invoking Lemma 3.6 along with the fact that 
Vµ,1(L, L) = µ(L), we get the following

Lemma 6.2. Let µ be a measure with continuous density g, and let K, L be symmetric 
convex bodies. Assume additionally that L is a projection body. Assume that for every 
θ ∈ Sn−1 we have

Pµ,K(θ) ≤ Pµ,L(θ).

Then

Vµ,1(K,L) ≤ µ(L).



G.V. Livshyts / Advances in Mathematics 356 (2019) 106803 29

6.2. Proof of the Theorem 1.4

Proof. As is shown in Proposition A.2 of the Appendix, if a non-negative function has a 
positive degree of homogeneity and a positive degree of concavity, then there exists p ≥ 0
such that g is p-concave and 1

p -homogenous. Additionally, such function is necessarily 
supported on a convex cone.

The assumptions of the Theorem allow us to apply Lemma 6.2 and obtain:

V1,µ(K,L) ≤ µ(L). (42)

On the other hand, we apply part (26) of Corollary 3.10 and write

µ(L) ≥ V1,µ(K,L) ≥ µ(K)1−qµ(L)q,

where q = p
np+1 . Hence µ(L) ≥ µ(K). ✷

Remark 6.3. Theorem 1.4 does not hold for all measures. Indeed, consider measure µ
with density 1Bn

2 and convex bodies L = rBn
2 , K = RBn

2 such that r ≤ 1 ≤ R and 
R ≥ r− 1

n−1 . Then Pµ,K(θ) ≤ Pµ,L(θ) for all θ ∈ Sn−1 but µ(K) ≥ µ(L). However, 
requiring the inequality pµ,K(θ, t) ≤ pµ,L(θ, t) for all θ ∈ Sn−1 and for all t ∈ [0, 1]
may suffice to conclude that µ(K) ≤ µ(L) for a wide class of measures with some basic 
concavity properties.

6.3. A general statement

Finally, we present a measure comparison-type result for a more general class of 
measures. It may prove useful for considering this problem in greater generality.

Proposition 6.4. Let µ be an absolutely continuous measure on Rn. Suppose that µ is 
F (t)-concave for some invertible C1 function F : R+ → R. Let K and L be convex 
symmetric bodies, and let L in addition be a projection body. Assume that for every 
θ ∈ Sn−1 and for every t ∈ [0, 1] we have

pµ,L(θ, t) ≥ pµ,K(θ, t).

Then

(i) µ(L) ≥ µ(K) +
1∫

0

F (µ(tL)) − F (µ(tK))
tF ′(µ(tK)) dt;

(ii) µ(L) ≥ µ(K) +
1∫

0

[
µ(tL) − µ(tK) + F (µ(tL)) − F (µ(tK))

F ′(µ(tK))

]
dt.
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Proof. By Lemma 6.1, we get that µ1(tK, L) ≤ µ1(tL, L) for every t ∈ [0, 1], and there-
fore

µ1(tK, tL) = tµ1(tK,L) ≥ tµ1(tL, L) = µ1(tL, tL). (43)

Applying (43) along with Theorem 3.8 we get

tµ1(tL, L) ≥ tµ1(tK,K) + F (µ(tL)) − F (µ(tK))
F ′(µ(tK)) . (44)

After dividing both sides by t and integrating we get

1∫

0

µ1(tL, L)dt ≥
1∫

0

µ1(tK,K)dt+
1∫

0

F (µ(tL)) − F (µ(tK))
tF ′(µ(tK)) dt, (45)

hence (i) follows from (19) and (45).
Next, we integrate by parts:

1∫

0

tµ1(tL, L)dt = µ(L) −
1∫

0

µ(tL)dt. (46)

Thus (44) and (46) imply (ii). ✷

6.4. Proof of Theorem 1.5

Proof. Without loss of generality we may assume that the boundary of L is infinitely 
smooth (see the approximation argument in Koldobsky [26], Section 8). Inasmuch as L
is not a projection body we have that ĥL is positive on an open set Ω ⊂ Sn−1; recall as 
well that, per our assumptions, the curvature function fL is positive everywhere on the 
sphere, and L is symmetric. Let v : Sn−1 → R be a non-negative infinitely smooth even 
function supported on Ω. Let g̃(x) be the restriction of g(x) on the half space where is 
had positive homogeneity, and let µ̃ be the measure with density g̃. Since we assume 
that g is supported on the whole space, g̃ is fully supported on a half space.

Define a symmetric convex body K via the relation

dσµ,K(u) = dσµ,L(u) − εv̂(u) (47)

for every u ∈ Sn−1. Here ε > 0 is chosen small enough so that the right hand side of 
(47) stays non-negative. Theorem 4.2 guarantees that such convex body exists. Applying 
Fourier transform to −(n + 1)-homogenous extensions of both sides of (47), we get

− π

nq
Pµ̃,K(θ) = − π

nq
Pµ̃,L(θ) − εv(θ),
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and hence, by symmetry of K and L,

−Pµ,K(θ) = −Pµ,L(θ) − nq

π
εv(θ). (48)

Recall that

Vµ,1(K,L) =
1∫

0

∫

Sn−1

hL(u)ftK(u)g(∇htK(u))dudt,

and that Pµ,K(θ) is the Fourier transform of the −(n + 1)-homogenous extension of

−π

n

1∫

0

ftK(u)g(∇htK(u))dt.

Note that ĥL(u)v(u) is positive for all u ∈ Ω. Therefore, by Parseval’s type formula (13),

Vµ,1(K,L) = Vµ,1(K,L) = −(2π)−n π

n

∫

Sn−1

ĥL(u)Pµ,K(u)du

= −(2π)−n π

n

∫

Sn−1

ĥL(u)Pµ,L(u)du − (2π)−nqε

∫

Ω

ĥL(u)v(u)du

< −(2π)−n π

n

∫

Sn−1

ĥL(u)Pµ,L(u)du = µ(L).

Using the above along with Corollary 3.10 we get that

µ(L) > Vµ,1(K,L) ≥ µ(K)1−qµ(L)q,

and hence µ(L) > µ(K). On the other hand, (48) implies that Pµ,L(θ) ≤ Pµ,K(θ) for 
every θ ∈ Sn−1. ✷

7. Stability and separation for Shephard’s problem extension

7.1. Separation result for Theorem 1.4

Theorem 7.1. Fix n ≥ 1, p ∈ [0, ∞) and consider a measure µ on Rn whose density 
g : Rn → R+ is p-concave and 1p -homogenous function. Set q = p

np+1 .
Let K and L be symmetric convex bodies, and let L additionally be a projection body. 

Fix ε > 0. Assume that for every θ ∈ Sn−1 we have

Pµ,K(θ) ≤ Pµ,L(θ) − ε.



32 G.V. Livshyts / Advances in Mathematics 356 (2019) 106803

Then

µ(K)1−q ≤ µ(L)1−q − C(µ)ε,

where C(µ) is a constant which only depends on the measure µ.

We formulate the following notable corollary of Theorem 7.1.

Corollary 7.2. Fix n ≥ 1, p ∈ [0, ∞) and consider a measure µ on Rn whose density 
g : Rn → R+ is p-concave and 1p -homogenous function. Set q = p

np+1 .
Let L be a strictly convex symmetric projection body. Then

µ(L)1−q ≥ C(µ) min
θ∈Sn−1

Pµ,L(θ),

where C(µ) is a constant which only depends on the measure µ.

Corollary 7.2 is an analogue of a hyperplane inequality for Lebesgue measure of pro-
jections (see Gadrner [15], or Koldobsky [27]).

Proof of Theorem 7.1. Let µ̃ be, as before, the symmetrization of µ, i.e. the measure 
with the density g(x) = g(x)+g(−x)

2 .
Assume without loss of generality that K and L are infinitely smooth. The assump-

tions ĥL ≤ 0 and

Pµ,K(θ) ≤ Pµ,L(θ) − ε,

lead to the following chain of inequalities:

Vµ̃,1(K,L) = −(2π)−n π

n

∫

Sn−1

ĥL(u)Pµ̃,K(u)du

≤ −(2π)−n π

n

∫

Sn−1

ĥL(u)Pµ̃,L(u)du+ ε(2π)−n π

n

∫

Sn−1

ĥL(u)du

= µ̃(L) + ε(2π)−n π

n

∫

Sn−1

ĥL(u)du.

By Corollary 3.10, we have

µ̃(L) + ε(2π)−n π

n

∫

Sn−1

ĥL(u)du ≥ µ̃(K)1−qµ̃(L)q. (49)

Let S = Sn−1 ∩ supp(g). By Theorem 4.2 there exists a symmetric convex body Q
(depending on the measure µ) with
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dσµ̃,Q = 1
q
1̂S ,

and therefore satisfying

Pµ̃,Q(θ) = 1S(θ).

We then estimate

(2π)−n π

n

∫

Sn−1

ĥL(u)du ≤ (2π)−n π

n

∫

S

ĥL(u)du = (2π)−n π

n

∫

Sn−1

ĥL(u)Pµ̃,Q(θ)du =

− Vµ̃,1(Q,L) ≤ −µ̃(Q)1−qµ̃(L)q. (50)

Letting C(µ) = µ̃(Q)1−q, by (49) and (50), we get

µ̃(L) − εC(µ)µ̃(L)q ≥ µ̃(K)1−qµ̃(L)q,

which implies the statement of the Theorem for µ̃ in place of µ, and hence the Theorem 
follows for µ as well. ✷

7.2. Stability for Theorem 1.4

Finally, we prove the stability result.

Theorem 7.3. Fix n ≥ 1, p ∈ [0, ∞) and consider a measure µ on Rn whose density 
g : Rn → R+ is p-concave and 1p -homogenous function. Set q = p

np+1 .
Let K and L be symmetric convex bodies, and let L additionally be a projection body. 

Let ε > 0. Assume that for every θ ∈ Sn−1 we have

Pµ,K(θ) ≤ Pµ,L(θ) + ε.

Then µ(K)1−q ≤ µ(L)1−q +C(µ, L)ε, where C(µ, L) is a constant which depends on the 
measure µ and the body L.

Proof. Suppose that

Pµ,K(θ) ≤ Pµ,L(θ) + ε.

Assume without loss of generality that K and L are infinitely smooth. Then, similarly 
to the proof of Theorem 7.1, we have

µ(L) − ε(2π)−n π

n

∫

Sn−1

ĥL(u)du ≥ µ(K)1−qµ(L)q.
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For the unit ball Bn
2 we have

(2π)−n π

n

∫

Sn−1

ĥL(u)du = −ν−1
n−1V1(Bn

2 , L).

Let R(L) be the smallest positive number such that L ⊂ R(L)Bn
2 . Note that

V1(Bn
2 , L) = lim

ε→0

|Bn
2 + εL| − |Bn

2 |
nε

≤ νn
(1 + εR(L))n − 1

nε
= νnR(L).

Letting C(L, µ) = νn
νn−1

R(L)µ(L)−q, we get the statement of the Theorem. ✷

Appendix A

Lemma A.1. Given convex bodies K and L containing the origin, and a measure µ with 
continuous density g on Rn, we have

µ1(K,L) =
∫

Sn−1

hL(u)dσµ,K(u).

Here hL is the support function of L and σµ,K is the surface area measure of K.

Proof. Consider a convex compact set K. Recall that a unit normal ny is well defined, 
continuous and differentiable Hn−1-almost everywhere for y ∈ ∂K; we shall denote the 
set where it happens by ∂̃K. Let X : ∂̃K×(0, ∞) → Rn\K be the map X(y, t) = y+tny. 
Let D(y, t) be the Jacobian of this map. Then

1
ε
(µ(K + εL) − µ(K)) = 1

ε

∫

∂̃K

εhL(ny)∫

0

D(y, t)g(y + tny)dtdHn−1(y).

First, we show that X(y, t) is an expanding map. Let y1, y2 ∈ ∂K and t1, t2 ∈ [0, ∞). 
Then

|X(y1, t1) − X(y2, t2)|2 = |y1 + t1n1 − y2 − t2n2|2

= |y1 − y2|2 + |t1n1 − t2n2|2 + t1〈y1 − y2, n1〉 + t2〈y2 − y1, n2〉.

(51)

By convexity,

〈y1, n1〉 ≥ 〈y2, n1〉,

〈y2, n2〉 ≥ 〈y1, n2〉.
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Hence (51) is greater than or equal to

|y1 − y2|2 + |t1n1 − t2n2|2 ≥ |y1 − y2|2 + |t1 − t2|2.

This implies that X(y, t) is expanding, and hence D(y, t) ≥ 1. Therefore,

µ1(K,L) ≥ lim inf
ε→0

1
ε

∫

∂̃K

εhL(ny)∫

0

g(y + tny)dtdHn−1(y)

=
∫

∂̃K

hL(ny)g(y)dHn−1(y). (52)

Using the fact that Hn−1(∂K \ ∂̃K) = 0, and applying the Gauss map to pass the 
integration on the sphere, we get

µ1(K,L) ≥
∫

Sn−1

hL(u)dσµ,K(u).

Next, for an arbitrary δ > 0, consider a set

(∂K)δ = {y ∈ ∂K : ∃a ∈ Rn s.t. y ∈ B(a, δ) ⊂ K},

where B(a, δ) stands for a ball of radius δ centered at a. It was shown by Hug [22] (see 
Besau, Werner [5] for more details), that the Gauss map is Lipschitz for y ∈ (∂K)δ.

For a (small) ε > 0, assume that 0 ≤ t1, t2 ≤ ε, and y1, y2 ∈ (∂K)δ. Then (51) is 
smaller than or equal to

|y1 − y2|2 + |t1 − t2|2 + ε2|n1 − n2|2 + ε〈y1 − y2, n1 − n2〉.

Denote by L(δ) the Lipschitz constant of the Gauss map on (∂K)δ. Then

|y1 − y2|2 + |t1 − t2|2 + ε2|n1 − n2|2 + ε〈y1 − y2, n1 − n2〉
|y1 − y2|2 + |t1 − t2|2

≤ 1 + L(δ)ε + L(δ)2ε2.

Therefore,

D(y, t) ≤ (1 + L(δ)ε + L(δ)2ε2)n−1 ≤ 1 + C(K,n, δ)ε.

Hence, in view of (52), the limit in ε exists, and

lim
ε→0

1
ε

∫

(∂K)δ

εhL(ny)∫

0

D(y, t)g(y + tny)dtdHn−1(y) =
∫

(∂K)δ

hL(ny)g(y)dHn−1(y),
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and by dominated convergence theorem and lower-semi continuity,

µ1(K,L) = lim inf
ε→0

1
ε

∫

∂K

εhL(ny)∫

0

D(y, t)g(y + tny)dtdHn−1(y)

= lim
ε→0

lim
δ→0

1
ε

∫

(∂K)δ

εhL(ny)∫

0

D(y, t)g(y + tny)dtdHn−1(y)

= lim
δ→0

lim
ε→0

1
ε

∫

(∂K)δ

εhL(ny)∫

0

D(y, t)g(y + tny)dtdHn−1(y)

= lim
δ→0

∫

(∂K)δ

hL(ny)g(y)dHn−1(y)

=
∫

∂̃K

hL(ny)g(y)dHn−1(y) =
∫

∂K

hL(ny)g(y)dHn−1(y)

=
∫

Sn−1

hL(u)dσµ,K(u).

The last equation is obtained via the application of the Gauss map. ✷

Proposition A.2. For p ≥ 0 and r ≥ 0, let g : Rn → R+ be p-concave and r-homogenous. 
Then g is also 1r -concave.

Proof. The proof splits in two cases. Firstly, if 1r ≤ p, then the statement follows auto-
matically by the standard inequality for q-averages

Mq(λ, a, b) ≤ Mq′(λ, a, b),

whenever q ≤ q′ (see the definition (5) and Gardner [15] for more details).
Secondly, let 0 ≤ r ≤ 1

p . Observe, that in the presence of r-homogeneity it is sufficient 
to show that for every x, y ∈ Rn one has

g(x+ y) ≥
(
g(x) 1

r + g(y) 1
r

)r
. (53)

By p-concavity, we have for every λ ∈ [0, 1]:

g(x+ y) = g

(
λ
x

λ
+ (1 − λ) y

1 − λ

)
≥

(
λg

(x

λ

)p
+ (1 − λ)g

(
y

1 − λ

)p) 1
p

=
(
λ1−prg(x)p + (1 − λ)1−prg(y)p

) 1
p . (54)
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Observe that for

λ0 = g(x) 1
r

g(x) 1
r + g(y) 1

r

,

the expression in (54) is exactly equal to the right hand side of (53), which concludes 
the proof. ✷

We remark that λ0 in the proof above is found as the maximizer for the function from 
(54).

Proposition A.3. Let K and L be convex bodies within Hausdorff distance ε from each 
other, ε > 0. Let µ be a measure on Rn with continuous density g(x). Then for every 
Lipschitz function a(u),

∣∣∣∣∣∣

∫

Sn−1

a(u)dσµ,K(u) −
∫

Sn−1

a(u)dσµ,L(u)

∣∣∣∣∣∣
≤ C(ε),

where the constant C(ε) > 0 depends on a(u), g(x), K and L, and tends to zero when 
ε → 0.

Proof. We write
∣∣∣∣∣∣

∫

Sn−1

a(u)dσµ,K(u) −
∫

Sn−1

a(u)dσµ,L(u)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

Sn−1

a(u)g(ν−1
K (u))dσK(u) −

∫

Sn−1

a(u)g(ν−1
L (u))dσL(u)

∣∣∣∣∣∣

≤
∫

Sn−1

|a(u)|
∣∣g(ν−1

K (u)) − g(ν−1
L (u))

∣∣ dσK(u) (55)

+

∣∣∣∣∣∣

∫

Sn−1

a(u)g(ν−1
L (u))dσK(u) −

∫

Sn−1

a(u)g(ν−1
L (u))dσL(u)

∣∣∣∣∣∣
. (56)

Since K and L are convex bodies, and hence are bounded, g(x) is uniformly continuous 
on both ∂K and ∂L. Hence, as the Hausdorff distance between K and L is bounded by ε,

|g(ν−1
K (u)) − g(ν−1

L (u))| ≤ C ′|ν−1
K (u) − ν−1

L (u)|,

and thus, by the weak convergence of the inverse Gauss maps of convex bodies converging 
in Hausdorff distance (see, e.g. Schneider [51]),
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∫

Sn−1

|a(u)|
∣∣g(ν−1

K (u)) − g(ν−1
L (u))

∣∣ dσK(u) ≤ C ′(ε),

where C ′(ε) → 0 as ε → 0. As a(u) is a continuous function on Sn−1, it attains its 
maximum. Hence there exists a constant C ′′(ε), depending on a(u), g(x), K and L such 
that (55) is bounded from above by C ′′(ε), and C ′′(ε) tends to zero as ε → 0.

Next, (56) is bounded from above by

C̃

∣∣∣∣∣∣

∫

Sn−1

a(u)dσK(u) −
∫

Sn−1

a(u)dσL(u)

∣∣∣∣∣∣
,

which in turn is bounded by C̃ ′(ε) →ε→0 0, since classical (Lebesgue) surface area mea-
sures of convex bodies, which converge in Hausdorff distance, do converge weakly (see, 
e.g. Schneider [51]). The proposition follows. ✷

Proposition A.4. If a body K is C2-smooth and strictly convex then its surface area 
measure with respect to a measure µ with continuous density g, has representation

dσµ,K(u) = fK(u)g(∇hK(u))du.

Proof. Under the assumptions of the proposition, the Gauss map νK of K is a bijection, 
and ν−1

K (u) = ∇hK(u) for every u ∈ Sn−1. Therefore, for every Ω ⊂ Sn−1,

σµ,K(Ω) =
∫

ν−1
K (Ω)

g(x)dσK(x)

=
∫

Ω

g(ν−1
K (u))fK(u)du =

∫

Ω

fK(u)g(∇hK(u))du. ✷

Proposition A.5. The surface area measure of a convex polytope P with respect to a 
measure µ has representation

dσµ,P (u) =
N∑

i=1
δuiµn−1(Fi),

where ui, i = 1, ..., N are the normals to the faces of the polytope, Fi are the corresponding 
faces, and µn−1(Fi) stands for 

∫
Fi

dµ(x).

Proof. For a polytope P with faces Fi and corresponding normals ui, Gauss map νK is 
defined everywhere in the interior of the faces, and for x ∈ int(Fi), νK(x) = ui. Hence, 
for a Borel set Ω ⊂ Sn−1,
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σµ,K(Ω) =
∫

ν−1
K (Ω)

g(x)dσK(x) =
∑

i: ui∈Ω

∫

Fi

dµn−1(x). ✷
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