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1. Introduction

‘We shall work in an n-dimensional vector space R™ with standard orthonormal basis
e1,...,en and a scalar product (-, -). The standard Euclidean length is denoted by |- |.

A set K in R™ is said to be convex if together with every pair of points it contains
the interval connecting them. Compact convex sets with non-empty interior are called
convex bodies.

The standard Lebesgue measure of a set A in R™ shall be denoted by | A| or, sometimes,
|Al,. When the standard Lebesgue measure on a subspace of dimension k is considered,
it shall be denoted by | - |x. We shall denote the unit ball centered at the origin in R™
by B%, and the unit sphere by S"~1.

Given a convex body K in R, its Gauss map vk : 0K — S™ ! is the map that
corresponds to every y € 0K the set of normal vectors at y with respect to K. The
surface area measure of K is the measure on the unit sphere defined as the push forward
to the sphere of the (n — 1)-dimensional Hausdorff measure on 0K via the map vg. It is
denoted by ok

Minkowski’s existence theorem guarantees that every barycentered measure on S™!
which is not supported on any great subsphere is a surface area measure for some convex
body; moreover, a convex body is determined by its surface area measure uniquely up
to a shift.

For p € R, the L, surface area measure of a convex body with the support function
hx is the measure on the sphere given by dop, x(u) = h};p(u)daK(u). It was introduced
by Lutwak. The normalized L, surface area is given by dop x(u) = |—Il(|dop7 k(u). An
extension of Minkowski’s Theorem, called L,-Minkowski problem is open in general. It
asks which conditions should be required in order for a measure on the sphere to be
an Ly-surface area measure, as well as whether L,-surface area measure determines a
convex body uniquely. Lutwak, Yang, Zhang have solved the normalized L,-Minkowski
problem with even data for the case p < 0, and showed the uniqueness of the solution
when p < 0. Boroezky, Lutwak, Yang, Zhang [8], [9], [10] have studied the case p = 0
and have, in particular, obtained the uniqueness in the case of symmetric convex bodies
on the plane. Stancu [53], [54] has treated this problem for polytopes on the plane.
Huang, Liu, Xu [21] have established uniqueness in R? in the case when the L, surface
area is constant. The L,-Minkowski problem is one of the main questions in the rapidly
developing Brunn-Minkowski-Firey theory (see more in Ludwig [35], Lutwak [37], [38],
Lutwak, Yang, Zhang [40], [41], [42], Lutwak, Oliker [39], Meyer, Werner [44], Ryabogin,
Zvavitch [49], Zhu [56], [57], and the references therein).

In this manuscript, we prove an analogue of Minkowski’s theorem in a different setting.
Let ¢ be an absolutely continuous measure on R, with a continuous density. Throughout
the manuscript, continuity is understood in the sense of continuity on closed support.
We study the surface area measure of convex bodies with respect to u.
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Definition 1.1. Let K be a convex body and vx be its Gauss map. Let p be a measure
on R™ with continuous density g(z). Define o, x on S"™!, a surface area measure of K
with respect to p, as follows: for every Borel set Q C S~ 1, let

nu @ = [ gle)dH,i(a),

vH(Q)

where H,,_; stands for the (n — 1)-dimensional Hausdorff measure on 9K, and vy ()
stands for the full pre-image of Q under vi.

When g is the standard Lebesgue measure, the measure o, x coincides with ok, the
classical surface area measure.

Let p € (0,+00). We say that a function f : R™ — [0, 0] is p-concave if fP(z) is a
concave function on its support. That is, for every x,y € supp(f) and for every A € [0, 1]
we have

Pz + (1= XNy) = AfP(x) + (1 = A)fP(y).

Let r € (—o0,+00). We say that a function f : R™ — [0, 00] is r- homogenous if for
every a > 0 and for every x € R™ we have f(ax) = a” f(z).

We shall consider the class of measures on R™ with densities that have a positive degree
of homogeneity and a positive degree of concavity. In fact, all such densities are p-concave
and %—homogenous for the same p > 0 (see the Proposition A.2 from the Appendix).
This class of measures was considered by E. Milman and L. Rotem [45], where they
studied their isoperimetric properties. We remark that such measures are necessarily
supported on convex cones. An example of a density function with said properties is
f(x) = 1z 0501 |{z, 9>|%7 where 6 is a vector.

We prove an extension of Minkowski’s existence theorem to the class of surface area
measures with respect to measures with positive degree of concavity and positive degree
of homogeneity.

Theorem 1.2. Let p on R™ be a measure and g(x) be its even r-homogenous density for
some r > 0, and the restriction of g to some half space is p-concave for a p > 0. Let
©(u) be an arbitrary even measure on S™~t, not supported on any great subsphere, such
that supp(p) C int(supp(g)) N S™~L. Then there exists a symmetric convex body K in
R"™ such that

dog,,(u) = do(u).

Moreover, such convex body is determined uniquely up to a set of p-measure zero.
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In Theorem 1.2, and throughout the paper, uniqueness up to p-measure zero means
that for every pair of K and L, symmetric convex bodies with ok ,, = o1, ,, the measure
of their symmetric difference (KAL) = 0.

We apply Theorem 1.2 to extend the study of volume comparison and unique deter-
mination of convex bodies related to projections.

Given a unit vector u € S"~1, we consider an (n — 1)-dimensional hyperplane orthog-
onal to it:

ut = {z € R™ : (x,u) = 0}.

An orthogonal projection of a convex body K to a subspace u® shall be denoted by
Klut; that is,

Klut ={zx cut : It €Rst.x+tuc K}.

Let K be an origin symmetric convex body in R™ with curvature function fx. The
projection body IIK of K is defined as the origin symmetric convex body in R™ whose
support function in every direction is equal to the volume of the hyperplane projection
of K in this direction.

The Shephard problem (see Shephard [52]) is the following question: given symmetric
convex bodies K and L such that for every u € S*1

|K|UL|H—1 < |L|UJ_|n—17

does it follow that | K|, < |L|,? The problem was solved independently by Petty [47]
and Schneider [50]. They showed that the answer is affirmative if n < 2 and negative
if n > 3. More precisely, the answer to Shephard’s problem is affirmative if and only
if L is a projection body. As for general symmetric convex bodies, Ball [3] proved that
if the volumes of projections of K are less than or equal to the volumes of projections
of L in every direction, then |K| < /n|L|, for every dimension n. Goodey and Zhang
[18] obtained a generalization of the Shephard problem for lower dimensional projec-
tions. A Fourier analytic approach to Shephard’s problem was presented by Koldobsky,
Ryabogin and Zvavitch [31]. Ryabogin and Zvavitch [49] solved the generalization of
Shephard’s problem for Firey projections.

The Busemann-Petty problem is in a sense dual to the Shephard problem. It asks
whether symmetric convex bodies with larger central hyperplane sections necessarily
have greater volume. The Busemann-Petty problem has been solved affirmatively for
n < 4 and negatively for n > 5 (see Gardner, Koldobsky, Schlumprecht [17] and Zhang
[55]). The answer to Busemann-Petty problem is affirmative if and only if the body with
larger sections is an intersection body (see Lutwak [36] for the definition and properties
of intersection bodies, and Koldobsky [24] for Fourier analytic approach to intersection
bodies). Zvavitch solved an isomorphic version of Busemann-Petty problem for Gaussian
measures [58], and completely generalized the solution of Busemann-Petty problem to
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arbitrary measures with positive density [59]. Koldobsky [28], and further Koldobsky and
Zvavitch [30] obtained estimates for the isomorphic version of Busemann-Petty problem
for arbitrary measures; a discrete analog of those estimates was very recently obtained
by Alexander, Zvavitch, Henk [2].

We refer the reader to the books by Koldobsky [26] and Koldobsky, Yaskin [29] for
a deep, yet accessible study of the Fourier-analytic approach to the Busemann-Petty
and Shephard problems, as well as a general introduction to Fourier analysis in Convex
geometry.

Aleksandrov in [1] proved that any symmetric convex body in R™ is determined
uniquely by the (n — 1)-dimensional volumes of its projections. See Zhang [55] for the
discrete version of that statement under natural assumptions. In Section 5 we generalize
Aleksandrov’s theorem to measures with positive degree of concavity and positive degree
of homogeneity.

First, we find a natural analogue of the Lebesgue measure of projection of a convex
body to other measures.

Definition 1.3. Let © be a measure on R™ with continuous density g, and let K be a
convex body. Consider a unit vector # € S™~!. Define the following function on the
cylinder S"~! x [0, 1]:

pscl0.0) =5 [ 1.0l (1)
Sn—1

We also consider p — projection function on the unit sphere:

Pui(0) = [ pu(6.0)dt (2)
0

In the particular case of Lebesgue measure A we have
Py (0) = |K[0" |1

The Definition 1.3 is natural since it is a generalization of Cauchy’s projection formula
(see below (10)). For even g, the notion of p, x(6,t) can be understood geometrically
as the projected weight of the boundary of tK, t € [0,1]. More specifically, we define
a measure f;x on 6+ to be the marginal measure of lo@ry(x)g(w)dr. In other words,
for a measurable set Q C 64, let p;x(Q) = ng(w;K1 (w))dw, where ;¢ (w) is the full
pre-image of w under the projection of tK onto 6+. Then

P (0,1) = puxc (LK 107) = purc (K |6%),

where the last equality holds since tK C K. Hence,
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1
P (0) = / e (K |65 dt.
0

We prove the following result.

Theorem 1.4. Fiz n > 1; let u on R™ be a measure and g(x) be its even r-homogenous
density for some r > 0, and the restriction of g to some half space is p-concave for a
p > 0.

Let K and L be symmetric convex bodies, and let L additionally be a projection body.
Assume that for every 6 € S*~1 we have

Pk (0) < Pur(0)
Then p(K) < p(L).
To compliment Theorem 1.4 we prove the following.

Theorem 1.5. Fiz n > 1; let p on R™ be a measure and g(x) be its even r-homogenous
density for some r > 0, and the restriction of g to some half space is p-concave for a
p > 0. Assume further that the closure of the support of u is the whole space.

Let L be a symmetric convex body which is not a projection body. Then there exists a
symmetric convex body K such that for every € S*™1 we have

Py k(0) < Py (0),
but p(K) > p(L).

We remark that in the case of Lebesgue measure Theorems 1.4 and 1.5 are generaliza-
tions of the well-known solution to the classical Shephard problem (see Koldobsky [26],
Chapter 8).

This paper is organized as follows. In Section 2 we present the preliminaries on the
subject. In Section 3 we introduce and study the notion of mixed measure and prove
an analogue of Minkowski’s first inequality for measures. In Section 4 we prove The-
orem 1.2. In Section 5 we prove two types of uniqueness results: one is the extension
of Aleksandrov’s theorem, and the other is related to the uniqueness of the solution
of certain PDE in the class of support functions. In Section 6 we prove Theorems 1.4
and 1.5. In Section 7 we discuss stability and separation results for Theorem 1.4, and
their corollaries.

Acknowledgment. The author would like to thank Alex Koldobsky, Artem Zvavitch,
Liran Rotem and Benjamin Jaye for very fruitful discussions and encouragement.
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2. Preliminaries
2.1. Brunn-Minkowski theory

Below we present classical concepts and results of Convex geometry and Brunn-
Minkowski theory. We refer the reader to books by Ball [4], Milman, Schechtman [46],
Schneider [51] for a detailed introduction to the subject.

Standard Minkowski’s addition for sets A, B C R™ is defined as

A+B:={a+b:acAbe B}
Scalar multiplication for & € R and a set A C R" is defined as
ad:={aa : a € A}.

For Borel sets A, B in R™ and for arbitrary A € [0, 1], Brunn-Minkowski inequality states
that

M+ (1= N)B|* > A|A|" + (1= \)|B|=.

See Gardner [15] for an exhaustive survey on the subject. We remark that for convex
bodies the equality in the Brunn-Minkowski inequality is attained if and only if the sets
A and B are closed, convex dilates of each other.

First mixed volume of convex bodies K and L in R™ is defined as follows:

1 K+el| - |K
Vi(K, L) = L tim ing KL= 1K
n e—0 €
Note that for any convex body K one has
Vi(K, K) = |K|. (3)

Brunn-Minkowski inequality implies Minkowski’s first inequality:
Vi(K, L) > [K|"% |L| " (4)

There is equality in Minkowski’s first inequality if and only if K and L are closed convex
dilates of each other (see Schneider [51] for more details).
A particular case of mixed volume, is the surface area of a convex set K in R™:

|K +eBg| - |K]|

|OK|" = nV4(K, BY) = lim inf
e—0 €

Therefore, (4) implies classical isoperimetric inequality:
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OK|* _ loBy|*
n—1 n—1*

(K| By

Next, we shall discuss Brunn-Minkowski inequality for p-concave measures (see Gard-
ner [15] for more details). For p € R and for a,b > 0, A € [0, 1] we define a p-average as
follows:

=

Mp(a,b,A) = (Aa? + (1 — A)bP) (5)

In the special cases p =0, p = +00 and p = —oo we have

MO(O‘7 ba )‘) = a>‘b17>\7
M_(a,b,\) = min(a, b),
Moo (a,b,\) = max(a,b).

We say that a function g : R® — R¥ is p-concave if for every x,y € R™ such that
g(x)g(y) > 0, and for every A € [0, 1] one has

gz + (1= A)y) = Mp(g(x), 9(y), A)-

We remark that 0-concave functions are also called log-concave.

The following generalized Brunn-Minkowski inequality is well known (see e.g. Borell
[6], Gardner [15]). Let p € [—1,40c], and let y be a measure on R™ with p-concave
density g. Let

p
np+1

q:

Then the measure p is g-concave on R™. That is, for every pair of Borel sets A and B
and for every A € [0, 1] one has

HOA + (1= X)B) > M, (u(A), u(B), ). (6)
2.2. The surface area measure, its properties and applications

Support hyperplane of a convex body K at a point y € 0K is a hyperplane which
contains y and does not contain any of the interior points of K. By convexity, such
hyperplane exists at every point y € K, and is unique almost everywhere with respect
to the (n—1)-dimensional Hausdorff measure on 0K . The vector orthogonal to a support
hyperplane at y € 0K is called normal vector at y; if such vector is unique it shall be
denoted n,. The Gauss map vi : 0K — S™! corresponds y € JK to the set of its
normal vectors.
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The push forward of the (n — 1)-dimensional Hausdorff measure on 0K under the
Gauss map vk to the sphere is called surface area measure of K and is denoted by o .
In particular, |0K|* (the surface area of K) can be found as

OK|+ = / dog (u).

Sn—1

A class of strictly convex bodies whose support function is twice continuously dif-
ferentiable we shall denote by C?7 (strict convexity means that the interior of every
interval connecting a pair of points in the body is fully contained in the interior of the
body). For such bodies, the Gauss map is a bijection, and the surface area measure og
has a continuous density fx (u), which is called curvature function of K.

One can see via approximation by polytopes, that

/ udo g (u) = 0.

Sn—1
Conversely, the following Minkowski’s existence Theorem holds (see e.g. Schneider [51]

or Koldobsky [26]).

Theorem 2.1 (Minkowski). Let 11 be a measure on the sphere, not supported on any
subspace, and such that

/ udp(u) = 0.

Sn—1

Then there exists a unique convex body K so that dox (u) = du(u) for all u € SP~1.

We refer the reader to Schneider [51] for an accessible proof of Minkowski’s exis-
tence theorem, and to Pogorelov [48] for a detailed survey on the differential geometric
approach to Minkowski’s existence theorem, its strengthening and related results.

The support function hg of a convex body K, containing the origin, is defined on R"
via

hi(z) = 2%%((1;, Y)-

Geometrically, for a unit vector 6, the value of hy () represents distance to the support
hyperplane of K in the direction 8. Due to the fact that hx is 1-homogenous, one has

(Vhie(u),u) = hi(u), (7)

for every u € S"~!, provided that Vh (u) is well-defined. In this case, Vhg (n,) = y for
all y € 0K.
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We state a formula for a volume of a convex body K with surface area measure o:

K= / e (w)doc (). (8)

Sn—1

The validity of this formula can be seen in the case when K is a polytope and the general
case follows by approximation. Moreover, for arbitrary convex bodies K and L one has
the following:

Vvl(_Kv,L):l / hL(u)dJK(u) (9)

Sn—1

Another formula involving surface area measure is the so called Cauchy projection for-
mula:

Ko wa =5 [ I 8)ldoxc(w) (10)
Sn—1

where 6 is an arbitrary unit vector, and K is a convex symmetric body. The validity of
(10), once again, can be seen for polytopes and it follows by approximation for arbitrary
convex bodies. See Koldobsky [26] for more details about (8), (9) and (10).

2.3. Fourier transform on S"~' and its applications to Convex geometry

Fourier transform in Convexity plays a very important role. See books by Koldobsky
[26], Koldobsky, Yaskin [29], and a survey by Koldobsky, Ryabogin, Zvavitch [32] for a
detailed introduction to the subject.

The Schwartz class S is the space of complex valued rapidly decreasing infinitely
differentiable functions on R™. Every locally integrable real valued function f on R"
with power growth at infinity represents a distribution acting by integration:

(f.g) = / f(@)p(@)de,
R‘n

for p € S.
The Fourier transform f of a distribution f is defined by

(f.8) = 20)™(f, ),

for every test function ¢ € S.
Let 1 be a finite Borel measure on the unit sphere S" 1. Let . be a —(n + 1)-homo-
genous extension of u to R™. p, is called the extended measure of pu if for every ¢ € S,
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o) =5 [ 072 ptr)dutu),

Sn—1

The following geometric representation of Fourier transform on the sphere was proved
by Koldobsky, Ryabogin, Zvavitch [31] (see also Koldobsky [26]):

@ =-3 [ lw0)daCw) (1)
Sn—l

for every 6 € S*1.
Note that (10) and (11) imply that

dog (0) = —| K|0*|do), (12)

where ok is the surface area measure of a symmetric convex body K, extended to R™
with degree of homogeneity —(n + 1).

The following Parseval-type identity was proved by Koldobsky, Ryabogin, Zvavitch
[31] (see also Koldobsky [25], [26]): for symmetric convex bodies K, L, so that the support
function of K is infinitely smooth,

e (0)F(6) = (2m)" / e (6)£1.(6). (13)
Sn—1 Sn—1

where the Fourier transform of hg is considered with respect to its 1-homogenous exten-
sion, and the Fourier transform of fr, is considered with respect to its —(n + 1)-homo-
genous extension.

By Minkowski’s existence Theorem, for every symmetric convex body L and for every
even density g, not supported on a great subsphere, there exists a symmetric convex
body L such that

Ou,L =0

Therefore, for all infinitely smooth symmetric convex bodies K, L in R”, and for every
even continuous density g, one has

/ hi(0)de,1(0) = (2m)" / hic(0)do,. 1,(6), (14)

Sn—1 Sn—1

where the Fourier transform of hg is considered with respect to its 1-homogenous exten-
sion, and the Fourier transform of ¢,, 1, is considered with respect to its —(n + 1)-homo-
genous extension.
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Another observation is that (11) implies:
_ T
a1 0) =5 [ 1(.0)ldosw). (15)
Sn—1

where the Fourier transform of o, 1, is considered with respect to its —(n+1)-homogenous
extension.
In particular, considering tL in place of L we get

— ™
Uu,tL(e) = _EpM,L<9at>7 (16)
and
1 —_—
™
/O"u’tL(e)dt = _EPM’L(G). (17)
0

Remark 2.2. The degree of homogeneity with which a function on the sphere is extended
to R™ impacts radically its Fourier transform, and, in particular, the restriction of its
Fourier transform back to the unit sphere (see more in Goodey, Yaskin, Yaskina [19]).
We would like to emphasize the fact that the homogeneity properties of the measure p
on R™ are completely irrelevant to the study of Fourier transforms of hx and o, x. In
fact, we always extend hg and o, x in the most convenient way, after having already
translated all the information about the underlying measure p onto the sphere. The
proof of Theorem 1.4, much like the classical Shephard’s problem (see [31]), consists
of combining Fourier analysis and Brunn-Minkowski theory; the part which involves
Fourier transform works for arbitrary measures, while the Brunn-Minkowski part is what
reinforces the assumptions of concavity and homogeneity on the density of p.

2.4. Projection bodies

Let K be an origin symmetric convex body in R™ with curvature function fg. The
projection body IIK of K is defined as the origin symmetric convex body in R™ whose
support function in every direction is equal to the volume of the orthogonal projection
of K in this direction. We extend hrjx to a homogeneous function of degree 1 on R™. By

(12),
1~
hn () = —;fK(G).

The curvature function of a convex body is non-negative. Therefore, i;-;( < 0. On the
other hand, by Minkowski’s existence theorem, an origin symmetric convex body K in
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R™ is the projection body of some origin symmetric convex body if and only if there
exists a measure y on S"~! so that

—

hK = —Ue-

The condition that L is a projection body is equivalent to L being a centered zonoid
(see Gardner [16]). Zonoids are characterized as polar bodies of unit balls of finite di-
mensional sections of L.

Every origin symmetric convex body on the plane is a projection body (see Herz [20],
Ferguson [14], Lindenstrauss [33]). It was proved by Koldobsky [23] that p-balls in R™
for n > 3 and p € [1, 2] are not projection bodies.

3. Mixed measures and related results
3.1. Mized measures

As an analogue of the classical mixed volume consider the following notion.

Definition 3.1. Given sets K and L, we define their mixed y-measure as follows.

(K + L) — p(K)

€

w1 (K, L) = liminf a
e—0
We observe that in the absence of homogeneity of p, the mixed measure p; (K, L)
is not homogenous in the first argument. However, it is necessarily homogenous in the
second argument:
w1 (K, sL) = suy (K, L).
If, additionally, the measure p is a-homogenous, i.e.
p(tA) = t%p(A)
for all t € R™ and Borel sets A, then
p(tK, L) =t 'py (K, L).

Definition 3.2. We also introduce the following analogue of mixed volume:

1
Voi(K, L) = / (LK, L)dt.
0
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Note that in the case of the Lebesgue measure A we have
Va1 (K, L) =Vi(K,L).
Definition 3.1 implies that for ¢ € (0, 00),
i (tK, K) = p(tK); (18)

this derivative exists by monotonicity. Therefore,

Vi B, K) = [ ma(ef, K)dt = [ eyt = p(ek) s = (). (19)
0 0

Recall that we use the notation o, i for a surface area measure of a convex body K
with respect to a measure p on R™. That is, for a Borel set A C S"7!,

0,0 () = / o) dH, 1 (),

Vi (A)

where dH,,_1(x) stands for the (n —1)-dimensional Hausdor{f measure on 0K . Following
the idea from the appendix of [34], we prove the following representation for u; (K, L).

Lemma 3.3. Given convex bodies K and L containing the origin, and a measure p with
continuous density g on R™, we have

i L) = [ hela)dow.
Snfl

Here hi and hy, are support functions of K and L and o, i is the surface area measure
of K.

The proof is outlined in the Appendix (see Lemma A.1).
In order to provide some intuition about o, i, we describe it explicitly in a couple of
partial cases.

Proposition 3.4. If a body K is C%-smooth and strictly convex then its surface area mea-
sure has representation

do5c(u) = fic (w)g(Vhrc (u))du.

Proposition 3.5. The surface area measure of a convex polytope P with respect to a mea-
sure i has representation



G.V. Livshyts / Advances in Mathematics 356 (2019) 106803 15

da,uP 25 iMn— 1

where u;, 1 = 1,..., N are the normals to the faces of the polytope, F; are the corresponding
faces, and p,—1(F;) stands for fF x)dx.

See the Appendix for the proofs of Propositions 3.4 (Proposition A.5) and 3.5 (Propo-
sition A.4).

We remark that Lemma 3.3, Proposition 3.4, along with (16) and (13) imply for all
symmetric convex infinitely smooth bodies K and L:

(1) = 20" [ (g (w)d

)-n / or () py i (1 ) (20)

As an immediate corollary of Lemma 3.3 and (19) we derive the following expression
of the measure of a C?* convex body (see also [11]).

Lemma 3.6. Let pu be a measure with continuous density g. Let K be a C*% convez body
with support function hx and curvature function fri. Then

w(K) = / hi /t” Lg (tVhi (u)) dtdu. (21)
0

We outline that if the density of a measure p on R™ is r-homogenous, then

——m(KK).(22)

O\H

1
p (K, K)dt = ulKK/t"“ Lat =
0

In view of (22), Lemma 3.3 and Proposition 3.5 imply the following.

Proposition 3.7. Let 1 be a measure with r-homogenous density g(x) on R™, and consider
a polytope with N faces:

P={zeR": (z,u;) <y},

where u; € S* ' and a; > 0, i = 1,...,N. Let F; be faces of P orthogonal to u;,
i=1,...,N. Then
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where pi,_1(F;) stands for [ g(x)dz.
3.2. Minkowski’s first inequality generalized

The main result of this subsection is the following theorem.
Theorem 3.8. Let  on R™ be an absolutely continuous measure. Assume that p is
F(t)-concave, i.e. there exists a differentiable invertible function F : RT — R such
that for every A € [0,1] and for every pair of Borel sets K and L in a certain class, we
have

UK + (1= ML) > P AF(u(K)) + (1 - N F(u(L))). (23)

Then the following holds:

,ul(KvL) > :ul(KvK) +

for all K, L in that class.

Proof. We write

s +et) = (1= O et

> 7 (1= OF (W) ) + eF (D)) = G (o)

The function Gk, 1., is differentiable since u is absolutely continuous and F' is differ-
entiable; in the case F'(t) = 0 the expression from (24) is understood as a limit. Note
that Gk 1, 7(0) = p(K). Therefore,

p (K, L) > GIK,L,;L,F(O)'
We note that

. (L)l o = i (K, K).

1—e¢
Using the above along with standard rules of differentiation, such as

1

(F~'(a)) = FF1(a)

we get the statement of the Theorem. O
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A standard argument implies that the equality cases of the inequality (24) coincide
with equality cases of (23). We shall formulate a few corollaries of Theorem 3.8 in some
special cases.

Corollary 3.9. Let p > 0. Let g : R® — RY be a p-concave density of measure u. Let
q= F Then for every pair of Borel sets K and L we have

p(L)? — p(K)*

(K, L) > (K, K) + qu(K)a1

The Corollary 3.9 follows from Theorem 3.8 via considering F'(t) = 7. We also obtain
the following nicer-looking corollary for measures with p-concave and %—homogenous
densities. It was originally proved by E. Milman and L. Rotem [45].

Corollary 3.10 (E. Milman, L. Rotem). Let p > 0. Let g : R™ — R™ be a p-concave
%-homogenous density of measure p. Let ¢ = n}r

. Then for every pair of Borel sets K
p

and L we have

(K. L) = () ()" (25)
and

Vi (K, L) 2 p(K) (L) (26)

Proof. Note that if g is %—homogenous then p is an (n + %) = %—homogenous measure.
Therefore,

1 1
Vo1 (K, L) = /ﬂl (tK,L)dt = 1 (K, L) /t%—ldt = qui (K, L), (27)
0 0

and in particular

W(K) = qui (K, K) (28)

Corollary 3.9 together with (28) implies (25). Also, (25) together with (27) implies
(26). O

Recall that a measure p is called log-concave if for all Borel sets K and L,
UK + (1= L) = p(K) (L)',

Applying Theorem 3.8 with F(t) = logt (as logt is an increasing function), we get the
following corollary.
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Corollary 3.11. Let measure p be log-concave. Then for every pair of Borel sets K and
L we have

(L)

pa (K, L) = pun (K, K) + p(K) log WK

In particular, the following isoperimetric-type result follows from Theorem 3.8.

Proposition 3.12. Let a measure p be log-concave. Then for every pair of Borel sets K
and L such that u(K) = u(L), one has

pi(K, L) > (K, K).

For example, if v is the standard Gaussian measure + (that is, the measure with
le|?

density ﬁe*T), and K is a convex set containing the origin, then the expression

lv|?

2 do(y)

[wmwie

oK

is minimized when L = K, where L is such convex region that v(K) = (L), and vy, is
it Gauss map.

Another strengthening of Corollary 3.11 in the case of the standard Gaussian measure
is possible to obtain using Ehrhard’s inequality (see Ehrhard [13], Borell [7]). Recall the
notation

It was shown by Ehrhard (for convex sets), and further extended by Borell, that for
every pair of Borel sets K and L and for every A € [0, 1] we have

U (y(AK + (1= A)L)) 2 A0 (y(K) + (1= NP H(y(L).
Hence the next Corollary follows.

Corollary 3.13. For the standard Gaussian measure v and for every pair of conver sets
K and L we have

(K, L) > 3 (K, K) + vVame 39 (01 (y(L)) — U1 (1(K))) -

To obtain this corollary we use the fact that ¥ is an increasing function and the
relation

—1/,\ vl@)?
U (a) =V2me 2 .
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4. Extension of the Minkowski’s existence theorem

This section is dedicated to proving an extension of Minkowski’s existence theorem.
We use ideas from the proof of the classical Minkowski’s existence theorem (see Schneider
51]).

First, we state a definition.

Definition 4.1. For a measure p on R™, we say that a convex body K in R™ with particular
properties is p-unique if every pair of convex bodies with said properties coincides up to
a set of p-measure zero.

Theorem 4.2. Let p on R™ be a measure and g(x) be its even r-homogenous density for
some r > 0, such that a restriction of g on some half space is p-concave for p > 0. Let ¢
be an even measure on S"~1, not supported on any great subsphere, such that supp(p)
is spherically convex and supp(p) C int(supp(g)) N S™~ L. Then there exists a pu-unique
convez body K in R™ such that

dog u(u) = dp(u).

The existence part of Theorem 4.2 follows by approximation from the lemma below.
We remark, that for an (n — 1)-dimensional surface F', the notation y,_1(F') stands for

o (F) = [ gla)aa.

F

where g(x) is the density of u, and dx is the area element on F.

Lemma 4.3. Let p on R™ be a measure and g(x) be its even r-homogenous density for
some r > —n. Let N > 2n be an even integer. Let uy,...,un be unit vectors spanning
the R™, u; € int(supp(g)), such that u; = TUN Let f1,..., fn be arbitrary positive
numbers such that f; = f%ﬂ-.

Then there exist positive aq, ...,an such that the conver polytope

P =L {|{z,u)] < as}
with faces F(uy),..., F(un) satisfies

pn—1(F(u;)) = fi.

Moreover, if restriction of g on a half space is p-concave for p > 0 then such polytope P
1S [-unique.
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Proof. For a vector A = (ay,...,ay) € RY we shall consider a polytope
P(A) =L {z e R™ : [(z,us)] < ai}.
Consider a set M C R defined as follows:
M= {AeRY : u(P(4)) > 1}.

Note that M C {A : «; > 0Vi = 1,...,N}. It is nonempty since the measure is
unbounded. As the set M is closed, and f; > 0, the linear functional

LN
p(A) = n+r;fioéi

attains its minimum on M. Let A* = (of, ..., a’y) be the minimizing point, P* = P(A*),
and let F7* stand for the facet of P* orthogonal to u;. Denote the value of the minimum
(,O(A*) = mntr-1,

We show that mP* is the polytope which solves the problem. Indeed, consider hyper-
planes

N
1
_ N . P n+r—1
H ={AecR .n+ri§:1f1az—m h
1 N
_ N . _
Hy={AeR" : n+rl§=1“"‘1(Fl Ja; =1}

Note that all of > 0. Thus, by Proposition 3.7,

1 N
WP = —— 3 alp 1 (F)).

n-+r4
=1

On the other hand, the linear functional ¢ attains its minimum on the boundary of M,
and hence

u(P*) = 1. (20)

We conclude that A* € H; N Ho.

Observe that Hy Nint(M) = @, as otherwise A* would not be the minimum. Consider
a vector A € H; different from A*. For any A € [0, 1], the vector AA* + (1 — \)A € Hy,
and hence

W(POA™ + (1 — \A)) < 1.
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Note also that
AP(A*) + (1 = M)P(A) € POA" + (1 — \)A),
and thus
p(AP*+ (1 =XN)P(A)) <1.
Therefore, by homogeneity of p, (29) and (30),

(11 (P*, P(A)) = lim inf ((P* + eP(A)) — u(P*)

e—0 €
1+ e)" (- P* 4+ - P(A) — 1 14 e)ntr —
= lim inf ( ) 'u(H_E 1te (4)) < liminf L
e—0 € e—0 €
=n-+r.

On the other hand, if «; > 0, by Proposition 3.5 and Lemma 3.3 we have

N
p(P*, P(A)) = Zaiﬂnfl(Fi*)v

and hence

1 N
ntr ;O‘iﬂn—l(Fi )<L

Therefore, there exists an open subset of Hy,
U:ZHlﬂ{AERN : Ozi>0},

which is fully contained in the half space

N

- 1 .

Hy ={AeR": ntr E fin—1(F )i < 1},
i—1

21

(30)

1

and, in addition, the interior of U contains A* € Hy N Hy. This implies that H; = Ho.

Therefore,
fn—1 (F)ym™ =t = f.
Using homogeneity of g once again, we conclude that the polytope

mP* =Y {z € R™ : (z,u;) < B},
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with 8; = ma], satisfies the conclusion of the Lemma.
The uniqueness part follows in the same manner as in subsection 4.1 for all convex
bodies, therefore we skip the argument here. 0O

We remark that no concavity was necessary to prove the existence part for polytopes;
however, it is used in the proof for uniqueness, and it is used in the approximation
argument below.

4.1. Proof of the uniqueness part of Theorem /.2

Proof. Let fi be measure with density §(u) = g(u)1{(u,)>0}, for some unit vector v, such
that g is p-concave and %—homogenous on its support for some p > 0 (assumptions of

the Theorem along with Proposition A.2 of the appendix allow us to select such vector).

p
np+1°

Fix ¢ = Assume that there exist two symmetric convex bodies K and L such that

do,, k(u) = do,, r(u) (32)

for all w € S®~1. Observe that

(K, L) = / e (u)do 1 (u)
S‘n—l

= / hic(u)do, i (u) = pi (K, K) = %M(K)-
Sn—l

By symmetry of K and L, it implies that

By Corollary 3.10,

SR = (K. L) = - a(K)' IR (L) (3)
and hence i(K) > fi(L). Analogously, by considering fi; (L, K), we get that 2(K) < i(L).
Hence fi(K) = (L), and hence there is equality in (33). Milman and Rotem ([45]
Corollary 2.17) proved, using the results from Dubuc [12], that in this case K and L
have to coincide up to a dilation and a shift on the support of fi. As we assume that
K and L are symmetric, we get that K = aL for some a > 0 almost everywhere with
respect to ji. But as g is %—homogenous, we have

doy (1) = doy ar (1) = a7~ do, 1 (u),

and hence by (32), a = 1. Which means that K = L p-almost everywhere. O
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4.2. Proof of the existence part of Theorem j.2

Proof. We shall use Lemma 4.3 and argue by approximation. Let dp(u) be an even
measure on S®~!. For a positive integer k, consider a symmetric partition of S*~!' N
supp(p) into disjoint sets A;, i = 1,...,2N with spherically convex closures of diameters
at most % (recall that a subset of the sphere is called spherically convex if the geodesic
interval connecting any pair of points in the set is fully contained in this set). This is
possible to do since S™"~! N supp(y) is spherically convex by the assumption. Consider
the vector

1
¢ = oA /udcp(u).

A;

Note that ¢; # 0. Select u; € S*! and f; € RT to be such that ¢; = fju;. Note that
u; € int(A;). Therefore, for every u € A;, |u — u;| < 7, and hence

1—%§fi§1. (34)

According to Lemma 4.3, there exists a polytope
P, ={z eR": [{z,u;)] < a;}
with faces Fp,, such that
tin—1(Fpy (ui)) = /@(U)dw
Ai

Consider a measure ¢ on S"~! such that for every Borel set Q C S*~1,

= D pn-1(Fep ().

u, €Q
Consider a bounded Lipschitz function a(u) on S"~!. Observe that
[ e~ [ et < Z/| ~ aw)filde(u).
n—1 Sn—1
Observe as well, that by (34),

la(u) = fia(ui)| < la(ui) = fia(wi)| + |a(uw) — a(ui)]

1 1
< E”aHLip +[lal|oo |1 — fi] < E(HG‘HLZP—'_ lalloo) =00 0.
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Thus ¢ — ¢ weakly, as k tends to infinity.

It remains to show that all the polytopes P} are bounded on the support of u: then,
by Blaschke selection theorem (see [51], Theorem 1.8.6), applied on the support of p,
there exists a subsequence of { Py} which converges to some convex body P in Hausdorff
metric. Then o, p, — 0, p weakly (see Proposition A.3 from the appendix), and hence,
by the uniqueness of the weak limit, we have do, p(u) = de(u).

To show the boundedness, observe first that p*(0P:) = [q.-1 ¢(u)du =: C,, where
ut (0Py) stands for ui(Py, BY).

Let g be the restriction of g to a half space where it is p-concave. By Corollary 3.10,

A(P) < (qfi(BE) ™9t (0P) ™7 ,

and hence, by symmetry of Py,

1(P) < (qu(BE) ™t (0P) ™7 < C (35)

Here ¢ = and C), , depends only on the measures i and . On the other hand, for

P
np+1°
any x € P, we have

hp,(u) > (u,z) " = |a](u,v) ",

where v € S"~! is such that z = |z|v, and (u,z)™ stands for the positive part of (u,z).
We note that for k large enough,

1
/ (u, v) T depy (u) > 5 / (u,v)Tdp(u) =: C, > 0,
Sn—l Sn—l
where C, > 0 is a positive constant depending on ¢ only. Therefore,

WP = s [ (o) > JalC. (36)

n+r
S

By (35) and (36), |z| < % As z was an arbitrary point from Py, we conclude that the
sequence { Py} is indeed uniformly bounded. O

5. Applications to the questions about uniqueness
5.1. An extension of Aleksandrov’s theorem
Theorem 5.1. Let p be a measure with density with positive degree of concavity and

positive degree of homogeneity. Let K and L be symmetric convex bodies such that in
every direction 0, P, i (0) = P, 1(6). Then K = L p-almost everywhere.
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Proof. Given g(x) on R™, the density of u, let i on R™ be the measure with density
g(x) = W. Recall that by (16),

457 7 (0) = ~C () P xc (6)

and
— i
dop1(0) = _O(U)EP/I,L(G)a

where C(u) depends only on the dimension and the degree of homogeneity of i, and the
Fourier transform is considered with respect to —(n + 1)-homogenous extensions of oy i
and o 1.

Note that P, x(8) = P, () implies Py x(0) = Py 1(8) for every 6. By Fourier
inversion formula, we get that o; x = 0,1, everywhere on the sphere. By Theorem 1.2
we conclude that K and L coincide up to a set of p-measure zero. O

5.2. Uniqueness of solutions for certain PDE’s in the class of support functions

Proposition 5.2. Let K and L be two symmetric C>t convex bodies in R™ with support
functions hx and hy, and curvature functions fx and fr such that

for everyu € S, Then K = L.

Proof. Let g : R” — R™ be given via

9(x) = |z1|.
Then, for every x € R,
BhK(u)
hig) = |——+2|.
9(Vhi) ‘ 02,

By the symmetry, the Proposition 3.4 and the condition of the Corollary,

ou i = [k(u)g(Vhk(uw) = fo(w)g(Vhr(uw) = o, 1 (37)

for every u € S™!. Observe that the restriction of g onto {x € R™ : z; > 0} is
1-homogenous and 1-concave. Therefore, it satisfies the condition of Theorem 4.2, and
thus, by (37), K = L p-almost everywhere. In this case it means that K = L coincide
almost everywhere with respect to Lebesgue measure, and as they are also convex bodies,
it means that K = L. O



26 G.V. Livshyts / Advances in Mathematics 356 (2019) 106803

We remark that the curvature function fx can be written in the Aleksandrov’s form
as det(d;;h + hi;), where h is the support function of K, h,; are derivatives of it taken
with respect to an orthonormal frame on S™~!, and d;; is the usual Kroneker symbol.
Therefore, Proposition 5.2 implies that a PDE

oh

781'1 det(émh -+ hz]) =F
has a unique solution in the class of even support functions of convex bodies. The ex-
istence of such solution for even continuous function F' which is not supported on any

great subsphere can be derived from Theorem 1.2.

Remark 5.3. Observe that

a(hK(ggK(u)) _ 611@1;5@&) Frew) + %xi“)fm(u).

Hence, by Proposition 5.2, the following pair of conditions guarantee equality of smooth
symmetric sets K and L:

(1) hsc(u)frc(u) = hi(u) fic (u) at every u € S*~1;

(2) afaK—z(lth(“) = aJ;L—m(l“)hL(u) at every u € S"71,

Remark 5.4. Instead of requiring the condition of Proposition 5.2 it is in fact enough to
require that there exists a vector v such that for every u € S*~1,

fr(u)(Vhi(u),v) = frL(u){Vhr(u),v).
In this case we still conclude that K = L.

Remark 5.5. The Log-Minkowski problem (see e.g. Boroczky, Lutwak, Yang, Zhang [8],
[9], [10], Lutwak, Yang, Zhang [43], Lutwak, Oliker [39], Stancu [53], Huang, Liu, Xu
[21]) asks whether a symmetric convex body K is uniquely defined by its cone volume
measure L (u) fx(u), where u € S*~1,

Suppose that symmetric convex bodies K and L satisfy

hi (u) fi(u) = hr(u) fr(u), (38)
for every u € S*~1. Consider a vector field
a(u) = Vhg(u) fx(u) = Vhy(u) fr(u).

Note that by (7), (38) is equivalent to the fact that a(u) is a tangent field, that is
a(u) L u.
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In view of Corollary 5.2, unique determination of a smooth convex body would follow
if one could show that in fact a(u) has to be identically zero. Moreover, in view of the
previous remark it would suffice to show that there exists a vector v € S~ ! such that
{a(u),v) = 0 for all u € S*~ 1.

6. Extensions of the solution to Shephard’s problem

We shall follow the scheme of the proof for the classical Shephard problem (see
Koldobsky [26]), which suggests glueing together harmonic-analytic results with the
Brunn-Minkowski theory.

6.1. General preparatory lemmas
To prove Theorem 1.4, we first need the following Lemma.

Lemma 6.1. Let u be a measure with continuous density g, and let K, L be symmetric
convez bodies. Assume additionally that L is a projection body. Assume that for a given
t €[0,1] and for every § € S"~1 we have

pu,K(ea t) S p,u,L(e’ t)~
Then
M1 (tKa L) S Hl(tLa L)

Proof. Without loss of generality we may assume that K and L are infinitely smooth
strictly convex bodies; the general case then follows via standard approximation argu-
ment (see, e.g., Koldobsky [26] Section 8).

Consider a symmetrization of u. Let fi be the measure with density

oy g(@) +g(—z)
g(z) = ===

Since K and L are symmetric, we have for all # € S"~! and ¢ € [0, 1]:

Pk (0,t) = pur(0,t);
pﬁ,L(07 t) = p;L,L(97 t)v

and hence

P,k (0,t) < pp.r(0,1). (39)

Assume for a moment that K and L are strictly convex and infinitely smooth. By (16),
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— ™
OuerL(0) = = pur(0,1).
Hence, by Proposition 3.4,
n, ——
Pk (0,t) = _;ftKg(VhtK)(e)'
By (39), we get

[tk G(Vhe)(0) > ferg(Vher)(6),

for every 6 € S"~! and for every ¢ € [0,1]. As L is a projection body, we have f/LZ(H) <0.
Thus

R (0) foxcG(Vher ) (0) < hp(0) fr.G(Vher)(6), (40)

for every § € S~ and for every t € [0, 1]. Integrating (40) over the unit sphere, and
applying Parseval’s identity (13) on both sides of the inequality, we get

/ hi(0) forc (0)F(Vhac (0))d0 < / hi(0) f11.(0)3(V Rz, (6))dO. (41)

Sn-1 sn-1
Lemma 3.3 applied along with (41) implies that

i1 (tK, L) < iy (tL, L).
Using symmetry of K and L once again, we note that

i (tK, L) = i (tK, L);
ﬂl(tLa L) = /“Ll(tLa L)a

and the lemma follows. O

Via the same scheme as above, invoking Lemma 3.6 along with the fact that
Vi (L, L) = p(L), we get the following

Lemma 6.2. Let i be a measure with continuous density g, and let K, L be symmetric
convex bodies. Assume additionally that L is a projection body. Assume that for every
0 € S*1 we have

P k() < P,r(0).

Then
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6.2. Proof of the Theorem 1./

Proof. As is shown in Proposition A.2 of the Appendix, if a non-negative function has a
positive degree of homogeneity and a positive degree of concavity, then there exists p > 0
such that ¢ is p-concave and %—homogenous. Additionally, such function is necessarily
supported on a convex cone.

The assumptions of the Theorem allow us to apply Lemma 6.2 and obtain:

Viu(K, L) < (L), (42)
On the other hand, we apply part (26) of Corollary 3.10 and write
(L) > Vi, (K, L) > p(K) ™ u(L)f,

where ¢ = . Hence p(L) =2 p(K). O

Remark 6.3. Theorem 1.4 does not hold for all measures. Indeed, consider measure p
with density 1py and convex bodies L = rB3, K = RBy such that r < 1 < R and
R > r~#1. Then P, k(0) < P, p(0) for all @ € S™! but u(K) > u(L). However,
requiring the inequality p, x(0,t) < p,.r(0,t) for all § € S*~1 and for all ¢t € [0,1]
may suffice to conclude that u(K) < p(L) for a wide class of measures with some basic
concavity properties.

6.3. A general statement

Finally, we present a measure comparison-type result for a more general class of
measures. It may prove useful for considering this problem in greater generality.

Proposition 6.4. Let p be an absolutely continuous measure on R™. Suppose that p is
F(t)-concave for some invertible C1 function F : RT — R. Let K and L be convex
symmetric bodies, and let L in addition be a projection body. Assume that for every
6 € S*! and for every t € [0,1] we have

pu,L(oa t) 2> pu,K(a) t)'
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Proof. By Lemma 6.1, we get that p(tK, L) < pi(tL, L) for every t € [0, 1], and there-
fore

Applying (43) along with Theorem 3.8 we get

F(u(tl)) - F(u(tK))

tui(tL, L) > tu (K, K 44

After dividing both sides by t and integrating we get

1 1 1 Flu X
w(t
0 0 0
hence (i) follows from (19) and (45).
Next, we integrate by parts:

1 1
/t,ul (tL,L)d — /,u(tL)dt. (46)

0 0

Thus (44) and (46) imply (ii). O
6.4. Proof of Theorem 1.5

Proof. Without loss of generality we may assume that the boundary of L is infinitely
smooth (see the approximation argument in Koldobsky [26], Section 8). Inasmuch as L
is not a projection body we have that f/L; is positive on an open set 8 C S™"!; recall as
well that, per our assumptions, the curvature function f;, is positive everywhere on the
sphere, and L is symmetric. Let v : S”"! — R be a non-negative infinitely smooth even
function supported on Q. Let §(z) be the restriction of g(x) on the half space where is
had positive homogeneity, and let i be the measure with density §. Since we assume
that g is supported on the whole space, g is fully supported on a half space.
Define a symmetric convex body K via the relation

doy, ik (u) = doy, 1 (u) — ev(u) (47)

for every u € S”!. Here ¢ > 0 is chosen small enough so that the right hand side of
(47) stays non-negative. Theorem 4.2 guarantees that such convex body exists. Applying
Fourier transform to —(n + 1)-homogenous extensions of both sides of (47), we get

™ ™
_’n,_qpﬁ’K(a) = —n—qPﬂ’L(Q) — 61)(9),
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and hence, by symmetry of K and L,

n

—P,x(0) =—P,.(0) - ?qev(e). (48)

Recall that

Vi (K, L) = / / Dt () e () g (Ve (u))dudt,
0

Sn—1
and that P, x(6) is the Fourier transform of the —(n + 1)-homogenous extension of

1
™

= [ facCwyg(Thac )t

0

Note that }/LZ(U)U(U) is positive for all u € . Therefore, by Parseval’s type formula (13),

le(K,L):VM(K,L):42@%% / hop (1) Py g (w)du

Snfl
- _(2@*”% / hi (W) Py, (u)du — (2) "qe / hi (u)o(u)du
sn—1 Q
<=0 % [ B@PL)de = (L),
Sn—l

Using the above along with Corollary 3.10 we get that
W(L) > Via (K, L) = u(K) (L)Y,

and hence p(L) > p(K). On the other hand, (48) implies that P, (0) < P, x(0) for
every # € S""1. O

7. Stability and separation for Shephard’s problem extension
7.1. Separation result for Theorem 1./

Theorem 7.1. Fiz n > 1, p € [0,00) and consider a measure p on R™ whose density
g:R™ = R™T is p-concave and %-homogenous function. Set g = nppﬂ.
Let K and L be symmetric convex bodies, and let L additionally be a projection body.

Fiz € > 0. Assume that for every 6 € S*~1 we have

PM,K(O) < PM,L(H) — €.
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Then
p(K)'1 < (L) 79 = Cpe,
where C'(p) s a constant which only depends on the measure p.
We formulate the following notable corollary of Theorem 7.1.

Corollary 7.2. Fiz n > 1, p € [0,00) and consider a measure p on R™ whose density

g:R™ = RT is p-concave and %-homogenous function. Set g = #.

Let L be a strictly convexr symmetric projection body. Then

(L)' 2 Cn) min, P, (),

where C(u) is a constant which only depends on the measure p.

Corollary 7.2 is an analogue of a hyperplane inequality for Lebesgue measure of pro-
jections (see Gadrner [15], or Koldobsky [27]).

Proof of Theorem 7.1. Let i be, as before, the symmetrization of pu, i.e. the measure
with the density g(z) = W.

Assume without loss of generality that K and L are infinitely smooth. The assump-
tions Ez <0 and

PM,K(9> S PM,L(G) — €,

lead to the following chain of inequalities:

V[Ml(K,L) = —(27‘(’)7”% / E(U)Pﬁ7]((u)du
§n—1

< —(2m) =
n

/ hr(w) Py (u)du + e(2m) ™" / hr(u)du

Sn—1 Sn—1

:ﬂ(L)—i—e(Qw)‘"% / f/LZ(u)du
Sn71

313

By Corollary 3.10, we have
AL+ ez [ i) ()AL (49)
Sn—l

Let S = S™ ! N supp(g). By Theorem 4.2 there exists a symmetric convex body Q
(depending on the measure p) with
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1~
dop,q = 5157

and therefore satisfying

Pu(0) =15(0).

We then estimate

§n—1 S §n—1
— Vi1 (Q, L) < —(@Q) Ta(L)". (50)

Letting C(u) = a(Q)9, by (49) and (50), we get
(L) = eC(pu)a(L)? > a(K) (L),

which implies the statement of the Theorem for f in place of u, and hence the Theorem
follows for p as well. O

7.2. Stability for Theorem 1.

Finally, we prove the stability result.

Theorem 7.3. Fiz n > 1, p € [0,00) and consider a measure p on R™ whose density

g:R™ = R™T s p-concave and %—homogenous function. Set q = npp+l'

Let K and L be symmetric convex bodies, and let L additionally be a projection body.
Let € > 0. Assume that for every 6 € S*~! we have

PM,K(Q) < PM,L(Q) + €.

Then u(K)*=9 < u(L)*=9+ C(u, L)e, where C(u, L) is a constant which depends on the
measure p and the body L.

Proof. Suppose that
P,u.,K(e) S Pﬂ’L(ﬂ) +e.

Assume without loss of generality that K and L are infinitely smooth. Then, similarly
to the proof of Theorem 7.1, we have

u(L) — e(2m) / o (w)du > p(K)"4u(L)e.
Snfl
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For the unit ball BY we have
—nT 7 -1 n
(2m) - hp(uw)du = —v, 2 V1(Bg, L).

Sn—1

Let R(L) be the smallest positive number such that L C R(L)BY. Note that

BY L|— |BY 1 Ly)y®—1
e—0 ne ne

= v, R(L).

Letting C(L, u) = 22~ R(L)pu(L) ™%, we get the statement of the Theorem. O

Vn—1

Appendix A

Lemma A.1. Given convex bodies K and L containing the origin, and a measure p with
continuous density g on R™, we have

(K, L) = / o () dor g (1),
S‘nfl

Here hy, is the support function of L and o, i is the surface area measure of K.

Proof. Consider a convex compact set K. Recall that a unit normal n, is well defined,
continuous and differentiable H,,_i-almost everywhere for y € 0K; we shall denote the
set where it happens by OK.Let X : 0K x (0,00) = R™\ K be the map X (y,t) = y+tn,.
Let D(y,t) be the Jacobian of this map. Then

ehr(ny)
S e k) = [ [ Dltgly -+ on, )i, ).
K 0

First, we show that X (y,t) is an expanding map. Let y1,y2 € OK and t1,t5 € [0, 00).
Then

1X (y1,t1) — X (y2, t2)|° = |y1 + ting — yo — tanal?
=y — y2|2 + |ting — t2n2|2 + t1{y1 — y2,n1) + t2(y2 — y1,n2).

(51)

By convexity,

<y17n1> 2 <y2a n1>7
>

(y2,n2) > (y1,712).
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Hence (51) is greater than or equal to
1 — o|” + [tinn — tanal® > |y1 — 2l + [t — taof.
This implies that X (y,t) is expanding, and hence D(y,t) > 1. Therefore,
ehr (ny)

1
oK. L) 2 timint+ [ [ gly+ tn,)dedH, ()

e—0 €
oK 0

= [ hum)gls)aH, 1), (52)
0K
Using the fact that H,_;(0K \ 571?) = 0, and applying the Gauss map to pass the
integration on the sphere, we get
D = [ huu)do,w.
Snfl

Next, for an arbitrary § > 0, consider a set
(0K)s ={y € OK : Ja € R"s.t.y € B(a,0) C K},

where B(a, d) stands for a ball of radius ¢ centered at a. It was shown by Hug [22] (see
Besau, Werner [5] for more details), that the Gauss map is Lipschitz for y € (9K)s.

For a (small) € > 0, assume that 0 < ¢1,t2 < ¢, and y1,y2 € (OK)s. Then (51) is
smaller than or equal to

lyr — ya2l® + [t1 — tao|* + €*[n1 — nal? + €(yr — y2,n1 — na).
Denote by L(0) the Lipschitz constant of the Gauss map on (0K)s. Then

ly1 — 2| + [t1 — t2|* + €2n1 — na® + €(y1 — y2,m1 — n2)
ly1 — y2|? + [t1 — t2]?

< 1+ L(8)e + L(0)%€.
Therefore,

D(y,t) < (1 + L(8)e + L(8)?¢*)" !t <14 C(K,n,d)e.
Hence, in view of (52), the limit in € exists, and

ehr(ny)
1

it [ [ Dgt+maat, @) = [ h)g)am )

e—0 €
(SK){; 0 (8K)5
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and by dominated convergence theorem and lower-semi continuity,

ehr (ny)
1
(1) =timint - [ [ D t)gly+ tny a0
OK 0
1 shL(ny)
zlg%glir(l)z / / D(y,t)g(y + tny)dtdH, 1 (y)
(0K)s 0
1 ehr(ny)
— lim lim - D H,_
it > [ [ D@09l + tn,)dtdH, ()
(0K)s 0

— lim hi(ny)g(y)dHn-1(y)

6—0
(0K)s
= [ helewiittna) = [ hn)ew)dH, )
oK 0K
= /hL(u)dcrmK(u).
S‘nfl

The last equation is obtained via the application of the Gauss map. O

Proposition A.2. Forp >0 andr >0, let g : R® — R™ be p-concave and r-homogenous.
Then g s also %—concave,

Proof. The proof splits in two cases. Firstly, if % < p, then the statement follows auto-
matically by the standard inequality for g-averages

Mq()\7 a, b) S Mq’ ()\7 a, b)7

whenever ¢ < ¢’ (see the definition (5) and Gardner [15] for more details).
Secondly, let 0 < r < %. Observe, that in the presence of r-homogeneity it is sufficient
to show that for every =,y € R™ one has

3=

gl +y) = (9()7 +9)7) (53)

By p-concavity, we have for every A € [0, 1]:

s =0 (509 25) = (w G o (25))

= (NPT g(@)P + (1= W) Pg(y)P) 7 (54)
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Observe that for

N @ et

S

the expression in (54) is exactly equal to the right hand side of (53), which concludes
the proof. O

We remark that Ag in the proof above is found as the maximizer for the function from
(54).

Proposition A.3. Let K and L be convex bodies within Hausdorff distance € from each
other, € > 0. Let p be a measure on R™ with continuous density g(x). Then for every
Lipschitz function a(u),

/a(u)damK(u)f / a(u)do, (uw)| < Ce),
Sn—1 Sn—1

where the constant C(e) > 0 depends on a(u), g(x), K and L, and tends to zero when
€ — 0.

Proof. We write

/a(u)daH,K(u)— / a(u)doy,, 1 (u)

Sn—1 Sn—1

/ a(u)g (v (u))dox (u) — / a(u)g(vy () do ()

§n—1 §n—1
< / la(u)| [g(vi' (w) — g(v* (w))] dox (u) (55)
Sn—1

+] [ atwgtr @)doxw ~ [ el @)dost].  (56)

Sn—1 Sn—1

Since K and L are convex bodies, and hence are bounded, g(z) is uniformly continuous
on both 9K and JL. Hence, as the Hausdorff distance between K and L is bounded by e,

l9(v' (W) = g(vy* (w))] < O’ (u) — v (u),

and thus, by the weak convergence of the inverse Gauss maps of convex bodies converging
in Hausdorff distance (see, e.g. Schneider [51]),
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/ la(u)| [g(v' (w) = g(vi ™ (u))] dox (u) < C'(e),
§n—1

where C’(e) — 0 as € — 0. As a(u) is a continuous function on S™7!, it attains its
maximum. Hence there exists a constant C”(€), depending on a(u), g(x), K and L such
that (55) is bounded from above by C”(¢), and C”(¢) tends to zero as € — 0.

Next, (56) is bounded from above by

¢| [ atwdor(w - [ atwdontw).

Sn—1 Sn—1

which in turn is bounded by C’(€) =0 0, since classical (Lebesgue) surface area mea-
sures of convex bodies, which converge in Hausdorff' distance, do converge weakly (see,
e.g. Schneider [51]). The proposition follows. O

Proposition A.4. If a body K is C?-smooth and strictly convex then its surface area
measure with respect to a measure p with continuous density g, has representation

do, i (u) = frx(u)g(Vhk(u))du.

Proof. Under the assumptions of the proposition, the Gauss map vk of K is a bijection,
and v (u) = Vhy (u) for every u € S"~1. Therefore, for every Q C S"~1,

0 (Q) = / 9(e)do ()

v (Q)

- / 9 (i () frc (u) s = / fre(Wg(Vhg(w)du. O
Q

Q

Proposition A.5. The surface area measure of a convexr polytope P with respect to a
measure (i has representation

N
doy,p(u) = Z O n—1(F3),
i=1

where u;, 1 = 1,..., N are the normals to the faces of the polytope, F; are the corresponding
faces, and pi,_1(F;) stands for [, du(x).

Proof. For a polytope P with faces F; and corresponding normals u;, Gauss map v is
defined everywhere in the interior of the faces, and for x € int(F;), vi(x) = u;. Hence,
for a Borel set Q C S,
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k() = / g(@)dow(z) = > / i1 (2). O

VI_(l(Q) i “ieQFi
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