Updatable Oblivious Key Management for Storage Systems

Stanislav Jarecki
University of California, Irvine

ABSTRACT

We introduce Oblivious Key Management Systems (KMS) as a much
more secure alternative to traditional wrapping-based KMS that
form the backbone of key management in large-scale data storage
deployments. The new system, that builds on Oblivious Pseudoran-
dom Functions (OPRF), hides keys and object identifiers from the
KMS, offers unconditional security for key transport, provides key
verifiability, reduces storage, and more. Further, we show how to
provide all these features in a distributed threshold implementation
that enhances protection against server compromise.

We extend this system with updatable encryption capability that
supports key updates (known as key rotation) so that upon the peri-
odic change of OPRF keys by the KMS server, a very efficient update
procedure allows a client of the KMS service to non-interactively
update all its encrypted data to be decryptable only by the new
key. This enhances security with forward and post-compromise
security, namely, security against future and past compromises, re-
spectively, of the client’s OPRF keys held by the KMS. Additionally,
and in contrast to traditional KMS, our solution supports public
key encryption and dispenses with any interaction with the KMS
for data encryption (only decryption by the client requires such
communication).

Our solutions build on recent work on updatable encryption
but with significant enhancements applicable to the remote KMS
setting. In addition to the critical security improvements, our de-
signs are highly efficient and ready for use in practice. We report
on experimental implementation and performance.

CCS CONCEPTS

« Security and privacy — Key management.

KEYWORDS
key management, updatable encryption, Oblivious PRF, OPRF

ACM Reference Format:

Stanislav Jarecki, Hugo Krawczyk, and Jason Resch. 2019. Updatable Obliv-
ious Key Management for Storage Systems. In 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS’19), November 11—
15, 2019, London, United Kingdom. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/XXXXXX XXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11...$15.00

https://doi.org/10.1145/XXXXXX XXXXXX

Hugo Krawczyk

Algorand Foundation

Jason Resch
Independent

1 INTRODUCTION

The ever expanding cloud storage infrastructure is one of the pillars
of modern computing. Yet, the key management systems (KMS)
provisioning keys for the protection of the stored data have not
changed fundamentally in decades. This setting involves three sep-
arate parties: a client C, a remote storage server StS (e.g., a cloud
service) that stores client data in encrypted form, and a key man-
agement server KmS that stores cryptographic keys for the client.
The client uses the services of KmS each time it needs to encrypt or
decrypt the data. The idea is that KmS is better equipped to keep
keys secret and StS is better equipped to store large amounts of
data reliably. Thus, KmS is charged with protecting secrecy and
StS with protecting availability.

The typical deployment of such systems in practice (including
large cloud-based operations such as AWS [2], Microsoft [39], IBM
[27], Google [24]) uses the traditional wrap-unwrap approach for
managing data encryption keys (dek) as shown in Fig. 1. When
client C needs to encrypt a data object, it chooses a symmetric
key dek with which it encrypts the object, then sends dek to key
management server KmS who wraps (i.e., encrypts) dek under a
client-specific (master) key k. stored at KmS and returns the result,
called a wrap, to C. Finally, C stores wrap and the data encrypted
under dek at the storage server StS. When C needs to retrieve an
object, it gets the corresponding ciphertext from StS, sends the
attached wrap to KmS who unwraps (i.e., decrypts) it using k. and
sends dek back to C, who uses it for decryption.

This key encapsulation mechanism, while effective and widely
deployed, presents significant potential vulnerabilities. First, en-
cryption keys dek are exposed in the clear to KmS. Second, the
security of dek, hence the security of all encrypted data, relies
on the channel between the client and KmS. Such a channel, typ-
ically implemented by TLS, is vulnerable to a large class of at-
tacks, from implementation and configuration errors to certification
and man-in-the-middle attacks. Third, even in normal operation,
the key dek is visible to any middlebox and endpoint where TLS
traffic is decrypted. Additionally, KmS can trace objects being en-
crypted/decrypted via the wrap values. A further shortcoming is
the cost of rotating a client key by KmS: Changing the value k. for
anew k.’ requires the client (or StS) sending each wrap to KmS for
unwrapping under k. and re-wrapping under k.’. This is not only
a performance issue but a security one too (due to long period of
time till all wraps are updated and till k. can be safely erased).

Oblivious KMS. Our first contribution is a simple approach to key
management based on Oblivious Pseudorandom Functions (OPRF)
[22, 29, 41], that addresses the above vulnerabilities and offers addi-
tional features absent in traditional systems. OPRFs are interactive
schemes between a server holding a key to a PRF and a client
holding an input. At the end of the interaction the client learns
the output of the PRF on its input and the server learns nothing
(neither the input nor the output of the function). OPRFs have

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

Parties: key management server KmS, storage server StS,
client C (= data owner).
Functions: Symmetric authenticated encryption scheme
Enc; wrapping functions Wrap, Unwrap (used to to en-
crypt/decrypt data encryption keys).
Keys: KmS stores a client-specific wrapping key k. for each
client.
Encryption of object (Objld, Obj) by client C:

(1) C chooses random Enc key dek (data encryption key);

(2) C sends (Objld, dek) to KmS;

(3) KmS returns (Objld, wrap = Wrap;._(dek))

(Note: KmS authenticates C before using k);

(4) C sends (Objld, wrap, Encgel (Obj)) to StS for storage.

Decryption of object Objld by C:

(1) C retrieves (Objld, wrap, Encgel (Obj)) from StS;
(2) C sends (Objld, wrap) to KmS;

(3) KmS returns (Objld, dek = Unwrapy (wrap))
(4) C decrypts Encgel(Obj)) using dek.

Figure 1: Traditional Wrapping-based Key Management

found numerous applications and there are very efficient OPRF
implementations, e.g. based on the Diffie-Hellman (DH) problem in
regular elliptic curve groups [16, 21, 26, 40, 47] (see Fig. 3).

In our Oblivious Key Management System (OKMS) (see Fig. 2), a
client C who requires a data encryption key dek for encrypting a
data object interacts with the OKMS server in an OPRF protocol.
C’s input is an identifier for the data object while the server’s input
is an OPRF key (typically unique per client and denoted k), and
C uses the output from the OPRF as the dek!. In this way, the
OKMS server does not learn dek (or even the object identifier). The
system does not rely on an external secure channel (e.g., TLS) to
transport dek; instead dek is protected by the security properties
of the OPRF.?

This addresses two major vulnerabilities of traditional KMS sys-
tems: visibility of the dek to the server and potential exposure of
this key in transit between client and server. Moreover, using the
most efficient DH-based implementations of OPRFs, the protec-
tion against these threats is unconditional. Even a computationally
unbounded server (that knows the OPRF key) or a network eaves-
dropper cannot learn anything about the dek, or about the object
identifier input into the OPRF. Note that in OKMS, the only way for
an adversary to decrypt a ciphertext is by impersonating the legiti-
mate client or by learning the OPRF key k. and the corresponding
Objld value. In contrast, in traditional systems, data encryption
keys dek are potentially vulnerable even if the KmS key is well pro-
tected (e.g., inside a hardware module) as the dek are transmitted
outside the protected zone.

! Alternatively, the output of the OPRF can be used as a key-encrypting key (kek) to
locally encrypt dek.

2 A TLS connection can be used to transport auxiliary information or client credentials
but is not needed for transporting data encryption keys.

The OPRF approach supports additional properties that enhance
security even further and beyond anything offered by the tradi-
tional solutions. First, it provides verifiability, namely, the ability
of KmS to prove to C that the returned dek is indeed the value
that results from computing the OPRF on the client-provided object
identifier. This prevents data loss that occurs if the returned dek
is wrong (either due to computing error or to adversarial action);
indeed, encrypting data with an incorrect, or irrecoverable, key can
lead to irreparable data loss. Second, the DH-based OPRF, hence
also the OKMS using it, is amenable to distribution as a multi-server
threshold scheme where the OPRF key is protected as long as less
than a defined threshold of the servers is corrupted. Finally, the de-
scribed system can be adapted to also support updatability, namely,
periodic key rotation of the client master key k. by KmS with a
very efficient (non-interactive) procedure for updating ciphertexts
to be decryptable by the new key and not by previous ones. This
procedure does not endangered the secrecy of the data and there-
fore can be performed by the StS. The design of such system is the
main technical contribution of our work and is discused next.

Updatable Oblivious KMS. Traditional wrapping-based key man-
agement systems as those described above (and in Fig. 1) require
client keys k. to be updated periodically by the server KmS. Such
update, known as key rotation, is needed to limit the exposure of
data upon the exposure of k.. For traditional wrapping systems,
changing k. with a new k.’ involves unwrapping and re-wrapping
all of a client’s ciphertexts as well as transmitting all these wrap
values between the storage server and KMS server. Moreover, an
old key k. cannot be erased until all ciphertexts are updated to the
new key k.’, extending the exposure period of k. significantly.

This need to update clients’ keys in storage systems (and other
applications) has led to the notion of updatable encryption [9] whose
goal is to provide more efficient and more secure solutions to this
key rotation problem. Many flavors of updatable encryption have
been suggested [9, 10, 20, 36]. In this work we investigate this
notion in the context of our oblivious KMS approach leading to the
design of an Updatable Oblivious KMS (UOKMS).

In UOKMS, upon the rotation of a client’s key k., server Km$S
computes a short update token A as a function of the old and new
keys k¢, kc’, and transmits A to client C. Using A, C’s storage server
StS can transform all ciphertexts that were encrypted with keys
derived from k. into ciphertexts decryptable by the new k.’ but not
by the old k.. This operation preserves the security of the data, it is
performed locally at the storage server StS without any interaction
with KmS, and it only modifies a short component of the ciphertext
(independent of the length of the encrypted data) making the whole
operation highly efficient. Security-wise it protects against future
and past compromises of the client’s key k.

The above UOKMS scheme offers another major performance
advantage compared to traditional KMS and our own OKMS scheme:
Encryption of data requires no interaction with the KMS server, and
an interaction is only needed to decrypt data. More generally, our
UOKMS supports public key encryption, so everyone can encrypt
data for client C, but only C can decrypt it, via an interaction with
the KMS server.

Threshold Updatable OKMS. Both OKMS and UOKMS solutions
can be implemented via distributed servers so that clients’ OPRF

keys are secure for as long as no more than a threshold number of
servers are compromised. These systems inherit the high efficiency
of Threshold OPRF constructions [30] (also in the case of the OPRF
variant used in the UOKMS solution). In the UOKMS setting, the up-
date token A is computed distributively among the servers through
an efficient multi-party computation. These solutions preserve the
verifiability property of OPRFs and they can be implemented in
a client-transparent way, namely, the client’s operations and code
are identical regardless of the implementation as a single-server or
multi-server. See Section 5.

Formal model and analysis. We formally analyze our UOKMS
solution in an Updatable Oblivious KMS security model that shares
close similarities with recent models of updatable encryption (or
encryption with key rotation) [9, 10, 20, 36], but also has some
significant differences. One crucial difference comes from the key
management setting treated here where the client interacts with
two outsourced remote services KmS and StS. In particular, this raises
potential security vulnerabilities arising from the communication
channel between client and KmS. This major concern is absent
from previous updatable encryption models that treat the client
and KmS essentially as collocated entities. The other aspect that is
unique to our solution and formal treatment is the obliviousness of
computation on the side of KmS. Yet another difference is that while
the typical storage setting does not require public key encryption,
we naturally include this setting in our updatable model.

Our updatability model allows attacks on both KmS and StS,
including exposure of client keys k., update values A, and the at-
tacker’s ability to see and write ciphertexts into StS. Security is
provided against future and past attacks, namely, forward and post-
corruption security, with a simulation-based security model. Obvi-
ously, the model disallows attack combinations that would lead to
trivial wins for the attacker (e.g., decrypting a challenge ciphertext
in a period for which it learns the KMS key k). The model accom-
modates the oblivious setting where an attacker that communicates
with KmS (and is in possession of C’s credentials) can decrypt any q
ciphertexts after g interactions with KmS, but all other ciphertexts
remain secure. This, together with the attacker’s capability to access
a ciphertext-update oracle and the use of authenticated encryption,
achieves CCA-like security for oblivious and updatable encryption.
The security proof for our UOKMS scheme, presented in Section 4,
carries in the random oracle model under a strengthened variant
of the Gap One-More Diffie-Hellman assumption [5, 32] that we
show to hold in the generic group model.

Implementation and performance. In Section 6 we present per-
formance information from our implementation of both OKMS
and UOKMS solutions showing the practicality of our techniques,
in particular the ability of servers to support a large number of
operations and clients per second. In OKMS, client time is approx-
imately 0.4 msec for a wrap and 0.2 msec for an unwrap. For the
UOKMS system, performance is even better: a client can sustain
over 41000/6000/14000 for wrap/unwrap/update operations per sec-
ond respectively, with a single-thread and single CPU core, and
server operations are only needed for unwrapping. We also demon-
strate good throughput and latency results from a prototype im-
plementation of the (U)OKMS Server deployed to an Amazon EC2
instance. We find this implementation capable of answering over

30,000 requests per second in both single-server and multi-server
deployments. Finally, we discuss implementation experience man-
aging KmS keys in Hardware Security Modules (HSM).

1.1 Comparison to previous work

We are the first to present a comprehensive updatable solution
to the central problem of key management in cloud-based (and
other) storage systems that exploits the power of oblivious com-
putation, and the first to develop a security model for such setting.
Our motivation and modeling bear similarities with recent models
of Updatable Encryption (UE) [9, 10, 20, 34, 36], but also has some
significant differences. Most prominent is the use of obliviousness
as a way to address potential vulnerabilities arising from a remote
key management system, as opposed to one that is collocated with
the client as was asssumed in all the above works on updatable
encryption. Other novel features of our solution include uncondi-
tional hiding of data encryption keys and object identifiers from
KmsS, and building a distributed UOKMS service via a threshold im-
plementation. Our updatability solution is ciphertext-independent
(namely, the update token is of size independent from the number
of ciphertexts and size of data to be updated) as in several prior
UE schemes [9, 20, 34, 36]. Among those, our scheme is the most
efficient, requiring a single short update value A from the KmS$
server and a single exponentiation per object for the update opera-
tion, compared e.g. to two exponentiations per ciphertext block in
the schemes of [34, 36]. Our UOKMS scheme can be extended to
provide ciphertext indistinguishability and unlinkability similarly
to e.g. [34, 36], but it would inherit the inefficiency of such solution
making it impractical in any large-scale data storage deployment.3
Finally, our model and solution are the first to support public key
encryption, including CCA-like security in the setting of oblivious
encryption. We elaborate further on the relation to prior updatable
encryption work in Section 3.2.

Updatable encryption is closely related to proxy re-encryption
(PRE), in particular, the Diffie-Hellman techniques at the center of
our implementation directly relate to the PRE scheme of Blaze et
al. [7]. Recently, [17, 18] treat forward secrecy and post-corruption
security in the context of PRE for which they define evolutionary
keys as in our context. However, the requirements of PRE, particu-
larly as set forth in [17], are more stringent than needed in our case.
These include generating update values using the delegatee’s public
key rather than on input its secret key, achieving unidirectionality,
supporting general DAG delegation graphs, ensuring ciphertext
indistinguishability, and more. As a result, they require more in-
volved and less efficient techniques; in particular, [18] builds on
pairing-based constructions and HIBE [8, 14] while [17] uses lattice-
based fully-homomorphic techniques from [11, 46]. On the other
hand, in spite of their stronger properties, none of these schemes
support oblivious computation.

Our use of OPRF function can be seen as an “OPRF-as-a-service"
application, a term coined in [19]. We borrow the notion of up-
datable oblivious PRF from that work, but their application was

3 Several prior works, e.g. [34, 36], consider ciphertext unlinkability (over update
periods) as a major design goal, but achieve it at the cost of requiring O(n) exponenti-
ations to update a ciphertext of length n. We believe that in most practical settings,
linkability would still be possible via metadata, object identifiers, etc., hence not worth
the high computational cost it entails.

targeted to password verification protocols, while ours is a general
encrypted storage system. (Moreover, the protocol of [19] is signifi-
cantly less efficent as it uses groups with bilinear maps to obtain
the stronger notion of updatable “partially oblivious" PRF, which
we do not require.) OPRF’s are also used in “password-protected
secret sharing" [28] which can implement distributed password-
secured storage but without the ability to update the master en-
cryption key. Moreover, both of these solutions are specialized for
password-authenticated clients while UOKMS accommodates any
client-to-KMS or client-to-StS authentication mechanisms.

Comparison to U-PHE. The goals of UOKMS bear some similarity
to Updatable Password-Hardened Encryption (U-PHE) of [35]. In
the U-PHE setting a server S stores encrypted data on behalf of its
clients. The encryption and decryption of data require S to hold the
client’s password and involve an interaction of S with an additional
server R, called the rate limiter. In particular, an attacker who learns
S’s state (but not the stored client password), cannot decrypt client’s
data without guessing the client’s password and interacting with
the rate limiter R. The solution offers verifiability and updatability
similarly to our case, and in terms of our UOKMS model one can
think of S as the storage server StS and R as the key management
server KmS. However, in contrast to UOKMS, in U-PHE the server
S learns both the client’s decrypted message and the client’s pass-
word (in particular, one relies on TLS for transmitting the password),
while in UOKMS only the client encrypts and decrypts data and
neither server learns it. Moreover, the U-PHE decryption protocol
is not oblivious, i.e. server R, i.e., KmS, can identify the decrypted
ciphertext. Also, as in the case of [19, 28] above, PHE is specialized
to the password authentication case, while UOKMS is indepen-
dent of the means of authentication used by clients, allowing any
form of client authentication credentials. Additionally, the U-PHE
scheme of [35] is less efficient than our UOKMS, specifically their
encryption is interactive while ours is not, their decryption and
update are both roughly twice more expensive than ours, and a
threshold implementation of the rate-limiter server of [35] would
be significantly more expensive than our threshold KmS.

2 UPDATABLE OBLIVIOUS KMS

We present our main scheme, UOKMS (for Updatable Oblivious
KMS), that builds on the general approach to Oblivious KMS de-
scribed in the introduction and recalled next.

2.1 Oblivious Key Management System

Figure 2 specifies the Oblivious KMS (OKMS) protocol that serves
as a basis for our Updatable scheme in the next section. OKMS is
described and motivated in the Introduction as a much more secure
alternative to the wrapping-based approach (Fig. 1) in wide use
today in storage systems, particularly in large cloud deployments.
When implemented with the DH-based OPRF scheme dh-op from
Fig. 3, one obtains an OKMS that is highly efficient (see Sec. 6)
and accommodates extensions to verifiability and distributed im-
plementation (Sec. 5). The security of the OKMS scheme and its
implementation using dh-op follows from the OPRF properties (in
particular as studied in [28, 29]). We do not formally analyze the
OKMS scheme but rather do so in Sections 3 and 4 for its extension

Functions: OPRF F and symmetric authenticated encryption
scheme Enc.

OPRF Keys: KmS stores a client-specific OPRF key k. for
each client.

Encryption of object Obj by client C: C runs OPRF proto-
col with KmS where C inputs object identifier Objld and KmS
inputs key k. C sets dek = Fi_(Objld) and stores the pair
(Objld, Encgek(Obj)) at storage server StS.

Decryption of encrypted object Objld by client C:

As in the encryption case, C interacts with KmS to compute
dek = Fy_(Objld) and decrypts Obj using dek.

Verification of correct computation of dek: Use a verifi-
able OPRF [28].

Figure 2: Oblivious KMS (OKMS)

Components: G: group of prime order g; H, H’: hash func-
tions with ranges {0, 1} and G, respectively, where ¢ is a
security parameter.

PRF F}. Definition: For key k «— Zq and x € {0, 1}", define

Fie(x) = H(x, (H'(x))")

Oblivious Fj. Evaluation between client C and server S
(1) On input x, C picks re—Zg; sends a = (H'(x))" to S.
(2) S checks that the received a is in group G and if so it

responds with b = ak.
(3) C outputs Fi(x) = H(x, By,

Figure 3: DH-based OPRF function dh-op [29]

to the Updatable OKMS setting presented next. (A model and anal-
ysis of OKMS can be obtained by specializing the UOKMS model
to a single update period.)

2.2 Updatable OKMS

Key management systems are required, by regulations and best prac-
tices, to periodically update client keys k. (an operation known as
key rotation). The goal is to limit the negative effects of the compro-
mise of a key k¢ to a shorter period of time and to as little data as
possible. This is particularly important for keys that protect data
stored for long periods of time as it is common in many cloud stor-
age applications (anything from user photos to regulated financial
information). Upon the rotation by the KMS server KmS of a key k.
into a new key k.’, all ciphertexts protected with k. and held by the
storage server StS need to be updated too. The updated ciphertexts
should be decryptable by k.” but not by k.. The goal is that an
attacker that learns k. but only sees updated ciphertexts should
not be able to learn anything about the encrypted data in the new
period (while k.’ is unexposed). Similarly if the attacker has seen a
ciphertext encrypted using an unexposed k. and later learns k., it
still should not learn anything from that ciphertext. This provides
both forward security (security against future exposures) and post-
compromise security (security against past exposures). Obviously,

security parameter ¢; hash function H : G — {0, 1}¢.
public value y, = g¥¢ for client C.
ciphertext triple ¢ = (Objld, w, Encge(Obj)).

v =uke to C; (3) C outputs Obj = Decgek(e).

indicates an invalid ciphertext which can be removed.)

Setting: Generator g of group G of prime order g; symmetric authenticated encryption scheme Enc, Dec with keys of length
Client keys: KMS server KmS stores a client-specific random key k. € Z4 for each client; storage server StS stores certified
Encryption of object Obj: To encrypt Obj under key yc, pick r « Zg \ {0}, set w = g" and dek = H(y."), and output

Decryption of ciphertext ¢ = (Objld, w,e): (1) C sends u = w' forr’ Zq to KmS; (2) KmS checks if u € G and if so returns

(Note that C runs the decryption protocol only if ¢ is valid and we define ¢ = (Objld, w, e) as valid iff w € G and w # 1.)

Key rotation and update: To change client’s key from k. to k.’, KmS sends A = k. /k;" and y, = gkcl to StS. StS replaces
y. with y/, and replaces each ciphertext ¢ = (Objld, w, e) with ¢’ = (Objld, w’ = w2, e), provided that w € G. (Element w ¢ G

Figure 4: Updatable Oblivious KMS Scheme

one also requires that the update process itself does not reveal en-
crypted information to StS (e.g., decrypting and re-encrypting the
data by StS would not be considered secure).

In the traditional wrapping-based KMS of Fig. 1, such key ro-
tation operation requires interaction between the storage server
StS and KMS server KmS where StS sends every stored wrap to
KmS for unwrapping under k. and re-wrapping using k.’. This
requires the transmission of all wrap values between StS and KmS,
and the exposure of all dek values to KmS. In a large storage setting
such process can take very long time (particularly under the “lazy
evaluation" practice where a wrap held by StS is updated to k.’
only when the application requires a regular unwrap operation for
that object). During all this time the old and new keys k., k.” must
be stored at KmS thus extending the life and exposure period of
these keys.

In Fig. 4 we present an Updatable Oblivious KMS that adapts the
OKMS scheme from the previous section to the updatable setting.
Using techniques from updatable encryption [9, 20, 36] adapted to
the oblivious setting, we achieve some desirable properties, both in
terms of security and performance. First, upon the change of key
k¢ into a new key k.’, KMS server KmS can produce a short token A
with which all the ciphertexts of client C can be updated by StSin a
way that achieves the above security properties. Second, the update
operation is non-interactive: It is performed locally by StS with the
sole possession of A. Note that once KmS produces a new key k.’
and the corresponding update value A, KmS can immediately erase
the old key k¢, hence reducing the risk of exposure to only one key
at a time. Finally, the update operation at StS only requires a single
exponentiation per ciphertext independently of the ciphertext size,
compared to at least 2 exponenentiations per ciphertext in previous
updatable encryption schemes (see also footnote 3), leading to a
fast update of all ciphertexts that were encrypted under k.. Thus,
one obtains a very efficient update procedure that achieves better
security than in the wrapping-based KMS in many ways: dek keys
are never exposed to StS or to KmS during updates; old keys can
be erased immediately upon rotation; the interaction between StS
and KmS is minimal (only A is transmitted); and A can be erased
by StS as soon as it locally updates all ciphertexts.

The UOKMS scheme from Fig. 4 departs from the OKMS scheme
of Fig. 2 in some important ways. First, to allow for fast updates,
ciphertexts are composed of two parts, a wrap and a symmetri-
cally encrypted ciphertext that derives the encryption key from
wrap. For updates, only wrap is updated. Second, the encryption
operation is non-interactive, that is, C (or anyone else) can encrypt
data locally without interacting with KmS provided that it pos-
sesses the equivalent of a certified “public key" y. corresponding
to ke (yec = g¥e in our scheme). Decryption is only possible via
an oblivious interaction with KmS. As a “side effect” of the above
properties, the UOKMS scheme supports public key encryption,
meaning that anyone can produce ciphertexts but only C can de-
crypt them, thus expanding the use cases for such KMS solution.
Note that decryption requires interaction with KmS which we as-
sume has the means to authenticate decryption requests from C.
Third, the UOKMS scheme from Fig. 4 is presented in terms of a
specific instantiation rather than using generic tools like the OPRF
in OKMS. Indeed, the malleability properties required for the up-
date operations are not possible with a generic OPRF (but see below
about Weak OPRFs). Finally, verifiability of correct encryption by
KmS is not needed in UOKMS where encryption is non-interactive,
and verification of correct decryption can be done via the (symmet-
ric) authenticated decryption operation Dec. This saves the need to
verify the correct exponentiation by KmS, further improving the
performance of UOKMS.

Correctness of the UOKMS scheme is easy to validate. For en-
cryption, one sets w = g” for random r, then derives the encryp-
tion key dek from y’, encrypts the data and stores w. For decryp-
tion, C computes wke obliviously in interaction with KmS and
derives dek from this value. This recovers the original data as
yl = (gk)" = (¢")%e = wke. Regarding the update operation,
if we denote by w; and k; the values of w and ke, respectively, after
t updates (here wy denotes the original value of w computed at the
time of deriving dek, and ko denotes the client’s key k. as it existed
at that time), then one can see inductively that if wf’ = w(];" (the
latter is the value from which dek is derived), then this is also true
for t + 1, namely, (le)kf+1 = (wo)ko. Indeed, we have that wyyq =

WtAt+1 - Wft/kzﬂ, thus (WHl)ktﬂ — (Wft/kﬁrl)kz+1 - Wfr - W(])CO.

Security of the UOKMS scheme from Fig. 4 is proven in Section 4
based on the security model presented in Section 3.

In Section 5 we show how to distribute the KmS functionality of
UOKMS through a threshold scheme which includes the distributed
generation of the value A so only StS can learn it.

On Weak Oblivious PRF. The UOKMS scheme from Fig. 4 derives
symmetric encryption keys from a function Fj.(w) = H(wK) defined
over elements in a group G of prime order g (where the key k
is chosen at random in the set Zg). The function F has strong
similarities with the OPRF dh-op; (x) = H(x, (H’(x))k) from Fig. 3
that we use as the basis of the OKMS scheme from Fig. 2, as well
as some fundamental differences. First, the input to F is a group
element (rather than an arbitrary string mapped into the group by
the hash function H’ in dh-op). But more importantly, knowing wk
for any value w allows to compute the function on w’ for known t.
At the same time, computing F on a independently random group
element is hard under CDH hence F can be modeled as a Weak PRF
(as noted in [40]). In our application for UOKMS we also use the
fact that F can be computed obliviously and use its homomorphic
properties to support updatability. We leave as a future work item
the formalization of such “oblivious Weak OPRF" function in the UC
model, similarly to the treatment of OPRFs in [29]. For the purpose
of our use of F in the context of UOKMS, we carry the analysis
directly in a specialized UOKMS security model that we present in
Section 3.

3 SECURITY MODEL FOR UPDATABLE
OBLIVIOUS KMS

We introduce the security model for Updatable Oblivious KMS
which combines the elements and advantages of oblivious compu-
tation and updatable encryption in a single model. As in updatable
encryption, e.g. [9, 10, 20, 34, 36], we consider keys that evolve
over epochs, where at the beginning of a new epoch the encryp-
tion/decryption key is replaced with a fresh key. In our case, this
applies to client keys k. held by the Key Management server KmS.
The goal is to capture the security of key rotation both in the sense
of forward security and post-compromise security. That is, the com-
promise of a client key k. from a given epoch should not help in
exposing data encrypted either at a later epoch or in a previous
epoch. In the latter case, however, one needs to qualify this require-
ment. Suppose that a ciphertext e is generated using the key k. from
epoch t and later the key k.’ for epoch t’ > t is exposed; should
the data d encrypted under ciphertext e still be secure? Clearly, if
the attacker A sees e’, the updated version of ciphertext e in epoch
t’, then A can decrypt e’ and obtain d. However, if A possesses
k.’ and e but does not have the updated e’ then the security of d
needs to be fully preserved.

The above illustrates the intricacies of updatable encryption
models, which require careful bookkeeping of information avail-
able to the attacker: What ciphertexts it sees and when, for what
epochs it obtains the secret key k¢, and for which it receives update
information, etc. The goal is to prevent the attacker from learning
anything that is not trivially (and unavoidably) derivable from the
information it requests. In this section, we set these rules and goals
through a formal model of UOKMS security, and use it in Section 4
to prove the security of our UOKMS design from Fig. 4.

3.1 Formal UOKMS Scheme

Formally, an Updatable Oblivious KMS (UOKMS) scheme is a tuple
of algorithms KGen, Enc, UGen, UEnc, and a protocol Dec, intended
for a KMS server KmS, a storage server StS, and a client C, s.t.:

e KGen is a key generation algorithm, run by KmS, which
on input a security parameter { generates a public key pair
(sk, pk).

e Enc is an encryption algorithm, run by any party, which on
input key pk and plaintext m generates ciphertext c.

e Dec = (Dec.KmS, Dec.C) is an interactive decryption proto-
col between a client running Dec.C(pk, ¢) and KmS running
Dec.KmS(sk, pk), where Dec.C outputs m or L.

e UGen is an update generation algorithm, run by KmS, which

on input (sk, pk) generates a new key pair (sk’, pk”) together

with an update token A.

UEnc is a ciphertext update algorithm, run by StS, which on

input (c, pk, A) outputs an updated ciphertext ¢’.

An UOKMS scheme must satisfy the following correctness prop-
erty. First, the interactive decryption must recover the encrypted
plaintext, i.e. for any m, if (sk, pk) <« KGen(¢) and ¢ « Enc(pk, c)

then Dec.C(pk, ¢) outputs m after an interaction with Dec.KmS(sk, pk).

Furthermore, the same correctness property applies to keys and
ciphertexts produced and updated in later periods. That is, for ev-
ery m, if (sk,pk) « KGen({), ¢ « Enc(pk,m), (sk’, pk/,A) «
UGen(sk, pk), and ¢’ « UEnc(c, pk, A), then Dec.C(pk’,c’) out-
puts m after an interaction with Dec.KmS(sk’, pk’).

On public and private values. We model UOKMS as a public key
encryption scheme where any party in possession of the public key
pk can encrypt files for the client whose corresponding decryption
key sk is held by KmS. It is assumed that KmS has the means to
authenticate the client before engaging in a decryption operation
using key sk but a secret channel between client and KmS is not
needed. The update token A is assumed to be transmitted from Km$
to StS over a secure channel. No other party needs or should know
this value. In particular, the model does not guarantee secrecy of
sky+1 given sk; and A;4q or secrecy of sk given sky+1 and Azyq.
For example, in our UOKMS scheme of Figure 4 receiving A;41
allows one to derive both sk from sk;, and sk; from sk;41. In
this case, if A;+1 was leaked then a KmS corrupted in epoch ¢ would
be effectively also corrupted in epoch t+1, and vice versa.

3.2 UOKMS obliviousness and security

The definition below formalizes the notion of KMS obliviousness.

Definition 3.1. We say that a UOKMS scheme is oblivious if for
all efficient algorithms A the interaction of A with Dec.C(pk, o)
is indistinguishable from interaction with Dec.C(pk, ¢1), for any
(pk, co, c1) output by A s.t. ¢, c; are valid ciphertexts of the same
length and pk is a valid public key.”

4This is not a necessary feature of a UOKMS scheme, i.e. one could imagine that
At allows for updating ciphertexts (and the public key), but not for updating the
corresponding secret key. However, all existing ciphertext-independent updatable
encryption schemes, ours included, allow for updating sk given A.

5 The public key pk, normally chosen by KmS, can be chosen by A in this definition,
modeling a malicious KmS, but C can check some properties of the public key and
the ciphertext, e.g. that they contain expected group elements, before running Dec.

As noted above, defining security of UOKMS, and of updatable
encryption in general, requires establishing the rules of what in-
formation the adversary is entitled to receive and when, and what
constitutes a win relative to that information. In our model, time
is divided into epochs at the beginning of which a new key pair
(sk, pk) and an update token A are generated. For each epoch the
adversary A receives the new public key pk, and can request to see
either the new secret key sk or the update token A, which corre-
sponds to A compromising in that epoch, respectively either server
KmS or server StS. Algorithm A is also given oracle access to the
ciphertext-update function UEnc but it is not allowed to use it for
trivial wins, e.g., updating challenge ciphertexts to an epoch for
which it knows the secret key. Note that A learns the secret key
sk of epoch ¢t if A asks for it, but also if A asks for sk;—1 in epoch
t —1 and asks for A; in epoch ¢. This shows that what A can learn
in one epoch may depend on what it knew in the previous epoch,
and the UOKMS security game rules must reflect that.

We formalize these rules and the attacker goals via the real-ideal
experiments shown in Fig. 5. In each epoch t, the attacker receives
pk; and chooses to either corrupt KmS, hence obtaining sk;, or to
corrupt StS, hence obtaining the update token A;, except if KmS
was corrupted in epoch ¢ — 1 (otherwise the attacker could calculate
skt from sk;—1 and A, making this case equivalent to corrupting
both KmS and StS in epoch t). In addition, A obtains access to
oracles Enc, Dec, UEnc, depending on the compromised party. An
aspect of the definition that is specific to our oblivious setting is
that the attacker with access to the oblivious decryption oracle can
decrypt any ciphertext of its choice in a decryption call, but each
call can result in decryption of at most a single challenge ciphertext.
More generally, with g calls to the decryption oracle, A can decrypt
q messages but nothing more. Finally, we note that the ability of
the attacker to access a decryption oracle provides CCA security to
our public key scheme in the oblivious setting.

Figure 5 shows two experiments: Experiment ExpL‘;allms(ﬂ,)
which models an interaction of the real-world adversary A with the
real UOKMS scheme, and experiment EXPLd;IfLs(ﬂ’ SIM, £) which
models an interaction of a simulator SIM with an “ideal” UOKMS
scheme. We call a UOKMS scheme secure if the two interactions,
real and ideal, are indistinguishable. Formally:

Definition 3.2. Let Adv'®2 (A, €) be the probability that ex-

uokms

periment Exp'@ (A, ¢) outputs 1, and let Adviudea[(A,SIM, 0)

uokms okms

be the probability that experiment ExpLd:l:LS(ﬂ, SIM, ¢) outputs 1.

We say that UOKMS scheme is secure if for all efficient algorithms
A there exist an efficient algorithm SIM s.t. |AdeeE’II (A, L) -

. okms
Advided (A SIM,)| is negligible in £.

uokms

The real experiment Exp| eoak]ms(ﬂ, ¢) in Figure 5 models an in-

teraction of adversary A with a UOKMS scheme which progresses
through epochs t = 0, 1, ... where the flag corr; designates whether
A corrupts KmS (kms) or the storage server StS (sts) in epoch ¢.
After the initialization which generates the initial KMS key pair
(sko, pko) we give pk, to A and let A interact with the encryption,
decryption, and ciphertext update oracles. We model the progress
from one epoch to the next via “party corruption” oracle Corr which
uses A’s decision bit corr;41 to corrupt either KmS or StS in the

next epoch®. This oracle triggers a key update, i.e. a new KMS key
pair is created as (skz4+1, pk; 1. Ar+1) < UGen(sk;, pk;), and the
epoch counter ¢ is incremented. Adversary A then receives the new
public key pk,,; and possibly more, depending on the parties it
corrupts: Namely, if corry 41 = kms then A also gets the new secret
key sk+1, and if corry41 = corry, ie. if A corrupts the same party
in the two consecutive epochs, then A also gets the update token
At 1. Crucially, A does not get A;41 if corry4q1 # corry. (Indeed, as
mentioned above, in the UOKMS scheme of Figure 4, receiving the
update token would allow the adversary to effectively extend the
corruption of KmS from epoch t to epoch t+1 and vice versa.)

The security experiment assumes that KmS corruptions are pas-
sive in the sense that if corr; = kms we let A learn sk; (and Ay if
corrs—1 = kms), but we do not let A interfere in the update gen-
eration and/or the dissemination of the created update token and
a public key, or in the execution of the decryption protocol. (All
existing Updatable Encryption security notions make such choices,
e.g. assuming that even if the adversary compromises the entity
that stores the key, the key update is still generated honestly.)

We assume that StS corruptions are active in the sense that for
epochs where corr; = sts we not only let A learn A;, but we also
give A an access to the ciphertext update oracle UEnc which on
input (¢/, ¢), for t’<t and ¢ a ciphertext from epoch t’, outputs the
updated value of ¢ at epoch ¢t. That is, the oracle runs the update
algorithm on (supposed) ciphertext ¢,/ = ¢ using update tokens
Ap41, ..., Ar, and outputs the updated ciphertext c;. This models
the ability of the adversary to inject ciphertexts to StS in some
epoch - either by directly modifying these ciphertexts when StS is
corrupted, or by sending a ciphertext to the client who then stores
it at StS7 — and then having this ciphertext updated by the UEnc
oracle. Note that the Update protocol is not provided at epochs
where corr; = kms since this would allow A to decrypt challenge
ciphertexts using the compromised KmS key.

Our UOKMS models a public key encryption where adversary
A can encrypt any message at will, but the role of the encryption
oracle Enc in the UOKMS security game is to model the generation
of challenge ciphertexts. Namely, in the real game, oracle Enc on
A’s input m generates a ciphertext ¢ = Enc(pk;, m), but in the ideal
game the same ciphertext ¢ must be produced by the simulator
algorithm SIM given only |m| (and flag enc) as an input while the
plaintext m is added to the (secret) list L of encrypted challenge
plaintexts. Adversary A can decrypt any ciphertexts (or indeed any
ciphertext-like objects of its choice) using the decryption oracle
Dec. Because we aim to support oblivious decryption, the precise
ciphertext which A effectively enters into the decryption oracle
is hidden from the oracle, hence we must count each decryption
oracle access as an attempt to decrypt some challenge ciphertext.
We model this in the ideal game by giving SIM access to a single
location in list L of challenge plaintexts, per each Dec query of A.
Note that this technically implies that the simulator can extract the
unique ciphertext which A attempts to decrypt in this oblivious

® We assume w.l.o.g. that A corrupts exactly one of these parties in each epoch. In
particular, the real-world event when both S$tS and KmS are corrupted in epoch ¢ is
reflected in our model by KmS corrupted in two consecutive epochs t—1, ¢, because
this reveals both sk, and A; to A. On the other hand, the epoch without corruption
strictly weakens the adversary capabilities hence it is subsumed by the other cases.

7 Note that our treatment is of a public key encryption, so other parties can potentially
create ciphertexts which land in the StS storage.

Exprea[(A, 0)

uokms

interaction with the following oracles:

Enc: On A’s input m, if corr; = sts output Enc(pk,, m);
Dec: Let A interact with Dec.S(sk;);

UEnc: On A’s input (¢, ¢), if corry = sts and 0 < ¢’ < t then

If (corrg, correy1) = (kms, sts) output pk, ¢;

If (corrg, corry41) = (sts, kms) output (pk,, 1, sk+1);
If (corrg, corr41) = (sts, sts) output (pk, 1, Ar+1);
Increment epoch counter ¢ := t + 1.

Expideal (A SIM, ¢)

uokms

Set t «— 0 and corrg < sts. Generate (sko, pk,) < KGen(¢) and give pk, to A. The experiment output is the output of A after

setcy :=c;forj=t'+1tot set cj = UEnc(c]-_l, pkj, Aj); output cy;

Corr: On A’s input corryy1, set (skgy1, pkyyg, Arr1) < UGen(sky, pk,);
If (corrg, corry41) = (kms, kms) output (pk,, 1, ske+1, Ass1);

Set t «— 0 and corrg « sts. Initialize an empty challenge plaintext list L. Let a stateful algorithm SIM generate pk, on input £
and give pk, to A. Experiment output is the output of A after interaction with the following oracles:

Enc: On A’s input m, if corr; = sts add m to L and output SIM(enc,|m|);

Dec: Let A interact with SIM(dec) while letting SIM learn one chosen item in L;

UEnc: On A’s input (¢, ¢), if corr; = sts and 0 < ¢’ < t then output SIM(upd, ¢/, ¢);

Corr: On A’s input corr;41 output SIM(corrs4+1) and increment epoch counter ¢ := ¢ + 1.

Figure 5: Security Experiments for Updatable Oblivious KMS

decryption protocol instance, or otherwise the simulator wouldn’t
know which plaintext on list L it should access. Observe also that
we do not create challenge ciphertexts in an epoch where KmS is
corrupted, because knowledge of KmS’s private key makes all such
ciphertexts insecure.

We stress that the ExpL‘iﬁ(‘ms security game allows any pattern of
corruptions except corruption of both StS and KmS in a single epoch
(see footnote 6). However, our model of corruptions is static in the
sense that A must decide which party to corrupt at the beginning
of each epoch. (See also the discussion below.)

Prior Updatable Encryption Models. Our notion of Updatable
(Oblivious) KMS is related to Updatable Encryption (UE) or Encryp-
tion with Key Rotation, which was studied in several recent works
[9, 10, 20, 34, 36]. UOKMS extends the notion of UE by splitting
the UE’s client into two separate entities, the KMS server, which
holds the client’s decryption key and generates key updates, and
the client itself, who decrypts the ciphertexts retrieved from the
storage server via an interactive decryption protocol with the KMS.
The UOKMS model thus lifts the notion of Updatable Encryption to
the setting that reflects realistic large cloud storage deployments,
where the decryption keys of all clients are held by a specialized
Key Managment server. On the other hand, collapsing the client
and the KMS in the UOKMS model into a single entity gives exactly
the setting of UE, hence our UOKMS scheme and security notion
give rise to the corresponding UE scheme and notion.

Our security model corresponds to the ciphertext-independent
UE model of Lehmann et al. [36] (which refines the model of Ev-
erspaugh et al. [20]), where a single update message can be used to
update any number of ciphertexts. Of these only the recent work of

Klooss et al. [34] addresses CCA security, and lets the adversary ac-
cess a decryption oracle, as we do in our model. However, of the two
schemes shown secure in [34] the one whose efficiency is compara-
ble to ours does not allow the adversary an unrestricted access to
the Ciphertext Update oracle, while our model allows unrestricted
access to both Dec and UEnc oracles. The scheme of [34] which al-
lows such unrestricted oracle access relies heavily on pairing-based
NIZKs, using e.g. 22 pairings in decryption, in contrast to a single
standard group exponentiation used in decryption in our scheme.
However, our model of UOKMS security is specialized to the case of
oblivious interactive decryption where the decryption oracle, which
models the KMS server, runs on blinded ciphertexts. In such setting
a standard CCA notion, where the decryption oracle is restricted
from decrypting a challenge ciphertext, does not apply. Thus we
capture security with a “counting method” which enforces that any
Q accesses to the decryption oracle allow for learning plaintext
information in at most Q challenge ciphertexts. Ours is the first
treatment of Updatable Encryption with oblivious decryption pro-
cedure, and this setting necessitates a “counting-based” notion of
security in the presence of decryption oracle.

The UE schemes of [20, 34, 36] achieve update indistinguishabil-
ity, i.e. a ciphertext updated to the new epoch cannot be efficiently
linked to the original from the previous epoch. We do not consider
this property, although our scheme can be extended to support it,
because achieving this property requires update cost proportional
to the total size of the encrypted data, which we believe is impracti-
cal in large storage deployments (see footnote 3). The above UE

schemes also consider ciphertext integrity, but this notion is special-
ized to the case of symmetric key encryption, while our UOKMS
model treats the case of public key encryption.

Finally, we should point out that our security model is static in
the sense that an adversary must choose at the beginning of each
epoch whether it compromises the decryption key stored by the
KMS or the update token held by the storage server (or both). By
contrast, [34, 36] consider an adaptive model of corruptions, where
an adversary can request either the decryption key or the update to-
ken or both for any past epoch as well. The adaptive security model
is more general and less restrictive, but we analyze the security
of our scheme only in the static model because adaptive security
presents subtle technical challenges which we do not know how
to overcome.® Technically, the simulator would have to make bets
about past epochs, guessing whether an adverary will eventually
ask for a decryption key for some past epoch (in which case the sim-
ulator needs to know this epoch key), or whether an adversary will
ask for an update token which allows updating a challenge cipher-
text to that epoch (in which case the simulator needs to embed an
encryption challenge in that epoch key). Since the simulator needs
to make these bets with respect to polynomially-many past epochs,
the probability that its guesses are all correct will be negligible, and
it is not clear if such strategy can lead to efficient simulation. We
thus believe that security analysis in the fully adaptive model of
[34, 36] remains an open question.

4 SECURITY ANALYSIS OF THE UOKMS
SCHEME

The UOKMS scheme shown in Figure 4 is information-theoretic
oblivious, as is the OPRF protocol dh-op on which the Decryption
protocol in Fig. 4 is based, but the security of this scheme relies on
the OMDH-IO computational assumption and the (receiver) non-
committing property of symmetric encryption, both defined below:

One-More DH with Inverse Oracle (OMDH-IO) Assumption.
For any PPT A the following probability is negligible:

Nk (1K
Prob[A" (g,95, g1, .. gN) = {(g),- 95)}s=1,....041]

with the probability going over random k in Zg, random choice
of group elements gi,...,gn in G = (g), and A’s randomness,
and where (-)* and (-)1/ k are exponentiation oracles, and Q is the
number of A’s queries to the (-)¥ oracle.

Without access to oracle (-)1/ k, the above is identical to the
One-More DH (OMDH) assumption [6, 32], which was used e.g.
for proving the security of the practical OPRF schemes [28, 29],
particularly the one shown in Figure 3 in Section 2.1. Thus, OMDH-
IO is a strengthening of OMDH,; its security can be proven in the
Generic Group Model (GGM) as an extension to the proof of OMDH
in that model [31] and with a slight modification of the security
bounds. We sketch this adaptation in Appendix A.

Receiver Non-Committing Symmetric-Key Encryption. This
property of symmetric-key encryption (SKE) is used in our security
analysis to enable the simulation required by the security game in

8We stress that this is an issue in the proof only and not an explicit attack, and that
similar technical issues were observed regarding adaptive security in other contexts,
e.g. in proactive cryptosystems, see e.g. [1, 13, 37].

Fig. 5. Informally, it states that without knowledge of the encryption
key, ciphertexts do not commit to their underlying plaintexts, thus
allowing the simulator to “explain” a fixed ciphertext as the encryp-
ton of any plaintext. Formally, a symmetric encryption scheme
(Enc, Dec) is receiver non-committing (RNC) if for any PPT A there
exists PPT SIM s.t. A’s view in the following real and ideal games
is indistinguishable: (1) In the real game A interacts with oracles
Enc and Reveal, where Enc(i, m) picks random key k; and outputs
e = Enc(k;, m) while Reveal(i) reveals k;; (2) In the ideal game A
interacts with a stateful algorithm SIM, s.t. when A sends (i, m)
as an Enc query, SIM must return e on input (i, |m|), and when A
sends i as a Reveal query, SIM must output k; on input (i, m).

THEOREM 4.1. The UOKMS scheme in Figure 4 is unconditionally
oblivious and is secure under the OMDH-IO assumption in ROM if
the symmetric encryption scheme Enc is receiver non-committing.

Notes on the Proof. The proof of Theorem 4.1 is presented in Sec-
tion 4.1. We note that the inverse exponentiation oracle in OMDH-
10 is necessary to obtain the theorem as the protocol (in the context
of our model) provides an attacker A that corrupts KmS in epoch
t —1 and StS in period t with an oracle to the function (~)1/kf. In-
deed, in epoch t, A obtains access to UEnc which implements an
exponentiation oracle (-2 = (-)kH/ ki and together with knowl-
edge of k;—1, A can compute (-)V/kt on any value of its choice. The
RNC property of SKE Enc is likewise necessary. Consider an at-
tacker A making two queries: (a) an Enc query on some m, and (b) a
Dec query where A runs the Dec.C protocol on the received cipher-
text ¢ = (Objld, w,). By the UOKMS security game rules of Fig. 5
the simulator SIM has to simulate this as follows: (a) it produces ¢
on message length |m/|, and (b) on input m retrieved from list L, it
simulates protocol Dec.S so that ¢ decrypts to m. SIM’s response v
to A’s message u in the decryption protocol, see Fig. 4, defines the
effective KMS key as k = DL(u, v), and consequently defines the
data encryption key for (Objld, w, e) as dek = H(wK). Thus when
SIM defines the output dek of oracle H on input w¥ it must satisfy
that e = Encgex(m). In particular, SIM first creates ciphertext e
given just |m| and then, given m, it creates dek s.t. e = Encge(m),
wihch implies that SKE Enc satisfies the RNC property.

COROLLARY 4.2. The UOKMS scheme in Figure 4 is secure under
the OMDH-IO assumption in the Ideal Cipher Model and ROM if the
symmetric encryption is implemented using CTR or CBC modes.

The corollary follows because CTR and CBC encryption modes
satisfy the receiver non-committing property in the Ideal Cipher
model: If message length |m| defines n blocks for block cipher E
then SIM services Enc query on input (i, |m|) by setting cipher-
text e = (IV,eq,...,en) where IV and all ¢;’s are random blocks.
When SIM gets m = (my, ..., my) to service Reveal(i) query, values
(IV,e1,...,en, m1, ...,my) define n input/output pairs which SIM
needs to set for E(k, -) for random key k. For counter mode CTR,
SIM sets E(k,IV + j) = m; & ej for all j while for CBC mode, SIM
sets E(k,m; ® ej_1) = ej for all j where ¢9 = IV. Either way by
randomness of e;’s this sets E(k,) outputs on n given points to
n random values. The probability that this creates collisions in
E(k,-) is negligible, and by randomness of k there is a negligible
probability that any points of E(k, -) were queried before.

Note. The above argument can be expanded to include authenticated
encryption via encrypt-then-mac where the simulator chooses the
MAC key.

4.1 Proof of Theorem 4.1

Proor. Note first that the unconditional obliviousness of this
UOKMS scheme is immediate, because for any public key pk and any
two valid ciphertexts cg = (Objld,, wo, eg) and ¢; = (Objldy, w1, e1),
the interaction with Dec.C on (pk,cp) for b = 0 and b = 1is
identical: In either case C sends u = (wb)r' for r’ < Zg4, which
is a random group element if w, € G and w, # 1 because the
group order is prime. To argue UOKMS security we will first show
an efficient simulator algorithm SIM which having access to (any)
adversary algorithm A, interacts with the ideal UOKMS game
ExpLdoelfrlns. We will then re-write SIM as a reduction algorithm R s.t.
if A has € advantage in distinguishing an interaction with the real
UOKMS game Exp'e? ideal

and an interaction with SIM and Exp ,
e if uokms uokms
ie. i

€= Pl — Exp’® (A, 0)] - Pr[1 « Exp/dd (A,SIM,0)] |

uokms

then reduction R, given access to A, has the same probability € of
solving the OMDH-IO problem. It follows that under the OMDH-IO
assumption quantity e must be negligible, which implies that the
UOKMS scheme is secure. We note that in one step along these
SIM modifications we replace the real symmetric encryption Enc
with the simulator assumed by the RNC property of SKE Enc. We
provide the details of the proof now.

The proof relies on the ROM model for function H : G—{0, 1}
used in UOKMS scheme in Figure 4. Specifically, we treat H as an ex-
ternal entity A needs to query to compute H outputs, simulator SIM
and reduction R intercept A’s calls to H, and we measure probabili-

tiespo = Pr[l(—Exprea[(A, €)]andp; = Pr[l(—ExpLdoeI:_Ins(ﬂ,SlM,f)]

uokms
over the randomness of H. For simplicity of notation we assume

that group G is fixed for every security parameter € and we assume
a non-uniform security model both for the OMDH-IO assumption
and UOKMS security. To reduce visual clutter we denote plaintext
files as m instead of Obj and we omit idenfiers Objld in ciphertexts.

We will first describe game G, which reproduces the same dis-
tribution A sees in the real security game Explrjeoallms, but does it in
a way which makes it easier to understand simulator SIM which
we will describe next. Game G picks k € Z4 and sets the first
epoch key as (ko, o) = (k, g*). Game G also picks a list of random
group elements gy, ..., gn in G, where N is the upper-bound on the
number of Enc queries A makes. Then for every i > 0, G picks
the following values: If A corrupts KmS in epoch i then G picks
random k; < Z4 and outputs (k;, y;) for y; < gki. (If A corrupts
KmS for two epochs in the row G also outputs A; = kj—1/k;.) If A
corrupts StS in epoch i then G acts depending on which party A
corrupted in epoch i — 1: (case 1) If it was StS then G picks random
A; < Zgq and outputs y; « yi,ll/Ai; (case 2) If it was KmS then
G picks random Aj1,; < Z4 and outputs y; < yjl/AJ'+1~i where j
was the last epoch when A corrupted StS before A corrupted KmS
in epoch i — 1. Let Ex be the set of epochs when A corrupts Km$
and Eg the set of epochs when A corrupts StS. The above process
defines value §; for each i € Eg s.t. y; = y1/5i (hence k; = k/6;),
and G can compute this J; as either ;1 - A;, if (i — 1) € Eg, or as

6j-Aji1,i,if j € Esand {j+1,...,i — 1} C Eg. Given these values,
G services oracles Enc, Dec, and UEnc at epoch i € Eg (note that
these calls are disallowed if i € Ex) as follows:

o G replies to n-th call to Enc(m) with ¢ = (w, Encge(m))
where w = (gn)5i and dek = H(z) for z = (gn)k; (Note that
z = wk/%i hence c is distributed as in the real interaction.)

e G replies to message u to Dec with v = (u!/%)k;

e G replies to UEnc(t’, ¢) for ¢ = (w,) with (w’, e) for w’ =
wdildv ift' € Eg, and w’ = (woi k)UK if ¢/ € Ep.

The correctness of Enc and Dec responses follows because k; =
k/di, and as for UEnc, note that k; = k/J;, and the implicit update
from epoch t’ to epoch i is Ay ; = ks [k;, which together implies
that Ay ; = (k¢ - 8;)-(1/k). Thus game G reproduces the exact same

real
uokms®)
ideal

Simulator SIM interacts with an ideal experiment Exp|{ 37 and
executes the same algorithm as game G - including picking the ini-
tial key k and keys k; if i € Eg and update-related values ; and Aj,;
if i € Eg as described above (and defining corresponding d;’s and
ki’s). For handling oracles Enc and Dec, SIM resorts to the (stateful)
simulator SIMg assumed by the Receiver Non-Committing (RNC)
property of the symmetric encryption Enc. First, when A sends
t-th query m to oracle Enc in epoch i € Eg, we put m at position ¢
in list L, and SIM replies to A with ¢ = (w, e) for w = (gt)‘si and e
computed by SIMg on input (¢, |m|). Second, when A sends u to
Dec, SIM replies with v = (1!/%)¥ and then monitors A’s queries
to H: If A makes query z to H s.t. 2/ = g, for g; € {g1,....gN}
then SIM asks ExpLd:I?rLs to reveal message m at the t-th position in
list L, sends (¢, m) as the Reveal query to SIMg, and given key dek
as SIMg’s response, defines H(z) = dek. By the RNC property of
Enc, pairs (dek, e) produced by SIME are computationally indistin-
guishable from random dek and e = Encge|(m). (In particular, this
process sets H(z) to a value indistinguishable from random.)

The only difference between A’s interaction with G and A’s

interaction with SIM (which in turn interacts with ExpLdOelfrIns) is if

view as security game Exp

in the latter case A queries H on arguments (gi)k for more than
Q elements in {g1, ..., gn } where Q is the number of A’s decryp-
tion queries: Given Q decryption queries SIM is allowed to learn
only Q items in list L, so it can embed correct messages as de-
cryptions of Q challenge ciphertexts, involving Q challenge points
{9j, }s=1,...,0, but SIM will not be able to decrypt correctly the
(Q + 1)-st ciphertext (w, e) formed as w = (ngH)‘S" s.t. A queries
Honz= (ngH)k = wki_ In other words, if there is € difference be-
tween Pr(1 « Expreal (A, 0)] and Pr[1 « ExpLdoelf‘rLs(ﬂ, SIM, ¢)]

then € is upper—boﬂ%kdnzzsd by the probability that A queries H on
values (gj)k for Q + 1 points gj in {g1, ..., gn }. But by inspection
of SIM one can see that SIM can be readily changed to reduction
R against the OMDH-IO problem: R follows the algorithm of SIM
except that uses the OMDH-IO challenge key gk as y, it gets points
(91, - - - »gn) as part of the OMDH-IO challenge, and it uses OMDH-
IO oracles (-)k, (-)1/k instead of using exponent k directly. Note
that SIM uses (-)¥ only Q times, to service the Q decryption oracle
queries, and if A makes queries to H on Q + 1 arguments (gj)k with

probability €, then R will break OMDH-IO with probability € be-
cause R can identify such queries with oracle (-)Y/k This completes
the proof of Theorem 4.1. O

5 THRESHOLD OKMS AND UOKMS

The key management systems (particularly for storage applications)
that motivate our work are often characterized by the large amounts
of data they store as well as the value and long-lived nature of
this data. The whole security of such an operation depends on
the security of the KMS client keys, hence the importance of key
rotation (as addressed by UOKMS) as a way to limit the bad effects
of key exposure. Yet, the main priority is to prevent these keys from
leaking in the first place. Fortunately, all the schemes presented in
this paper lend themselves to efficient distributed implementations
via the very efficient Threshold OPRF tdh-op [30] shown in Figure 6.

In our application, client keys k. are shared among n KMS servers
S1,...,Sn, so that the cooperation of ¢ + 1 of these is needed to
compute the OPRF function with k. as the key, while the compro-
mise of ¢ servers provides no information to the attacker on k..
Moreover, the key k. is never reconstructed or exists in one place,
not even at generation (which is also performed distributively). In
addition, this scheme enjoys proactive security [25, 43], namely, the
sharing among the n servers can be refreshed periodically so that
the attacker needs to break into t + 1 servers during the same time
period to be able to compromise the key. Servers can be replaced
and shares recovered, protecting secrecy and integrity/availability
of the system as needed for long-lived keys.

The tdh-op function from Fig. 6 implements exactly the OPRF as
defined in the OKMS scheme from Fig. 2. For the UOKMS scheme of
Fig. 4, the only difference is in the input from the client (a random
group element rather than a hashed value).

Note on efficiency. The dominant cost of computation in tdh-op is
one exponentiation for each of the t + 1 servers and two exponenti-
ations for the client regardless of the values n and ¢. We note that
tdh-op is described in a simplified form in Figure 6 where the set of
reconstruction parties S&E is assumed to be known by C in advance.
If the reconstruction set S& is not known a-priori (i.e., more than
t + 1 servers are contacted), each S; would respond with aki and ¢
would compute the interpolation in the exponent at the cost of a
single multi-exponentiation (which can be further optimized when
the a;’s are small, e.g., @; = i, using a recent technique from [44]).
An additional important feature of the tdh-op solution is that the
aggregation of server values b; into the dh-op result can be done
by a proxy server (one of the threshold servers or a special purpose
one) so that the threshold implementation is transparent to the
client.

5.1 Distributed Updates

While a threshold solution greatly increases the security of the KMS
keys, one may still want to apply key rotation, particularly given
the efficiency of updates in our UOKMS solution. In the threshold
setting this means that at the beginning of a rotation epoch, the
servers, that have a sharing of a key k., need to choose a new
random client key k.’ and generate the value A = k. /k.’. However,
A should only be disclosed to the client C and the storage server

StS, calling for a distributed generation of A where no subset of ¢
or less servers learn anything about this value.

We show a procedure that given (n, t) Shamir sharing of a key k
generates (n, t) sharing of a new random key k’ and of the update
token A = k/k’. It uses two standard tools from multi-party com-
putation: (i) The joint generation of a Shamir sharing p1,. .., pp of
a uniformly random secret p over Zy, e.g., [45] or Fig. 7 of [23], and
(ii) a Distributed Multiplication protocol which given the sharings
of secret a and secret b generates a sharing of the product a - b
without learning anything about either secret, e.g., [23].

The distributed update protocol assumes that n servers Sy, . . ., Sp
have a sharing (k1, . . ., ky) of a key k. To produce a new key k’ the
servers jointly generate a sharing p1, . . ., p, of arandom secret p €
Zg and run distributed multiplication to generate shares k7, ...,k
of the new key defined as k” = p - k. Finally, each server S; sends
to C and/or StS its share p; from which the recipient reconstructs
p and sets A := p~ [= k" /k].

5.2 Verifiable Threshold (U)OKMS

As noted earlier, being able to verify the correctness of a data
encryption key dek before encrypting an object is an important fea-
ture of the OKMS solution and a major advantage over traditional
wrapping-based KM systems (Fig. 1). OKMS Verifiability requires
checking the correct OPRF operation by the KmS for which Veri-
fiable OPRFs [28] are available, assuming the client possesses the
authentic public key gkc corresponding to KmS key k.. As indi-
cated in Section 2.2, verifiability in the case of UOKMS can be done
directly via correct symmetric authenticated decryption, thus dis-
pensing with the need to check the oblivious operation by KmS. In
the threshold case, however, where multiple servers provide input
for decryption, it is necessary to identify misbehaving servers. Thus,
in the threshold case, verifiability is needed also for UOKMS.

Note that for the single-server dh-op scheme of Fig.3, verifiabil-
ity can be added via a simple non-interactive zero-knowledge proof
of equality of logarithms. For the threshold case, namely, tdh-op
scheme of Fig.6, if we assume that the client possesses the public
keys g&i corresponding to the shares k; of key k = ke, then zero-
knowledge proofs can be used too for verification. However, this
prevents the ability to have a “proxy" (e.g., any one of the n servers)
that does the aggregation of the b; values returned by the servers
into the OPRF result. With ZK verification, it is the client itself that
needs to do this aggregation. This loses the “client transparency”
property of tdh-op that has the important practical advantage that
the client (and its software) need not be aware of the implemen-
tation of the server, whether it is a single-server deployment or a
multi-server one.

Next, we present an alternative verification procedure that is
client transparent. The client only needs to have the certified public
key gk for key k (regardless of the number of servers). We first de-
scribe the scheme for the case of the single-server OPRF dh-op from
Fig. 3 and later extend it to the threshold case. (This works directly
for OKMS, the adaptation to UOKMS is immediate.) The procedure
is reminiscent of Chaum’s protocol for undeniable signatures [15]
but simplified by dispensing of zero-knowledge proofs that are
not needed here. It is easy to verify that the integrity guarantee is
unconditional, namely, against unbounded attackers.

Key and server initialization.

Server S;,i = 1,...,n, holds share k;.

Threshold Oblivious Computation of Fy (x).

each server S;,i € S&, the value a and the subset SE.

interpolation coefficient for index i and index set S&E.

Key k ¢y Zg is secret shared using Shamir’s scheme with parameters n, t;

e On input x, client C picks r < Zq and computes a := H’'(x)"; it chooses a subset S& of [n] of size ¢ + 1 and sends to
e Upon receiving a from C, server S; verifies that a € G and if so it responds with b; := a

e When C receives b; from each server S;,i € S&, C outputs as the result of Fi(x) the value H(x, ([T;csg bi)L/TY).

Aiki where A; is a Lagrange

Figure 6: Protocol tdh-op [30]: (n, t)-threshold computation of dh-op from Fig. 3

e On input x, C sets h = H'(x), sets r, ¢, d < Zg, and sends
to server S the pair of values a = h", b = h¢g4.

e Sresponds with A = ak, B = bk.

o C checks that

’ ’ ’

A" = B p7de (1)

where v’ = r7 ¢/ = ¢l (and v = gk). It rejects if the

equality does not hold, otherwise C sets the value of (H’ (x)k
to A” which it is already computed for equation (1).

This procedure involves running dh-op on two different values
and then verifying consistency via a single multi-exponentiation
by the client. The additional computational cost with respect to
the base dh-op is a single exponentiation for the server and two
multi-exponentiations for the client, essentially doubling the work
for the non-verified case.

We now adapt the scheme to the threshold OPRF tdh-op. The
client C sends the same pair of values (a, b) to each participant
server S; who responds with A; = aki B; = bki. Upon gather-
ing t + 1 responses, C interpolates in the exponent (one multi-
exponentiation) to obtain values A, B and checks the identity (1).
If it holds, C sets (H'(x))k to A, else it applies the check (1) to
each pair A;, B; received by participating server S; using v; = gki
instead of v.

The computational cost in the normal case, where the verifica-
tion against v = g¥ succeeds, is the same as in the single-server
case except for one additional interpolation in the exponent. If
verification against v = gk fails then the cost is an additional multi-
exponentiation per each participating server. As said, the special
feature of this procedure is that the client can interact with a proxy
(or gateway) in a way that all operations by the client are identical
to the single-server case. The proxy will send the values (a, b) gen-
erated by the client to the servers and will aggregate the responses
A!, B! into a single response that can be verified with the public
key gk. Before sending to the client, the proxy can verify if the ag-
gregation verifies correctly. If not, it needs to check the individual
values sent by each server and discard the bad ones - all of this is
done without any awareness by the client. Thus resulting in fully
client-transparent solution.

OKMS Client Operations (Single Thread)
Wrap | Unwrap
Hash to Curve 58.26 58.26
Generate Blind 1.58 1.58
Apply Blind 68.07 68.07
Create Challenge 83.27 -
Inverse Blind 16.95 16.95
Remove Blind 68.07 68.07
Verify Response 106.67 -
Total Time (ps) 402.86 | 212.92
Operations / Second | 2,482 4,696

Figure 7: Client operation time and Op/s in OKMS

6 IMPLEMENTATION AND PERFORMANCE

We report on implementation and performance of the OKMS and
UOKMS schemes from Section 2.1 (Fig. 2) and Section 2.2 (Fig. 4),
respectively.

Microbenchmarks. Implementations of all necessary client and
server operations were written in C++ using the OpenSSL library
(version 1.1.1-pre5) to provide cryptographic functionality. Perfor-
mance tests were conducted on a machine with an Intel(R) Xeon(R)
CPU E5-2666 v3 @ 2.90GHz having 15 GB of memory. The imple-
mentation was compiled with the gcc compiler with optimization
level 3.

The following tables detail the run times of each operation aver-
aged over 10,000 trials. These tests used only a single thread and
CPU core; results could be improved by performing these opera-
tions concurrently across multiple CPU cores.

In these tests, all elliptic curve operations were based on NIST
P-256. Field operations (for Shamir and blinding factors) were de-
fined over the prime order of NIST P-256. Hashing to the curve
(as required by the OPRF defined in Fig. 3) was performed using
SHA-256 and the constant time Simplified SWU algorithm [12].

Client operations in the OKMS scheme are shown in Fig. 7 for
both encryption (“wrapping”) and decryption (“unwrapping"). The
two operations differ only in that interactive verifiability is per-
formed for wrap operations, while for unwrapping (the more com-
mon operation) regular symmetric key verification suffices.

When the (U)OKMS servers are deployed in a threshold architec-
ture then some entity must perform polynomial interpolation “in
the exponent”. This can be implemented as a multi-exponentiation

Interpolation Layer Performance (Single Thread)
(t+1)-of-N | Time (us) Ops / Second
1-of-1 81.68 12,242

3-of-5 155.99 6,410

5-of-9 236.72 4,224

5-0f-15 236.66 4,225

6-of-11 280.04 3,570

Figure 8: Interpolation layer performance for various
threshold parameters

(U)OKMS Server Operations (Single Thread)
Time (us) Ops / Second

Wrap 136.13 7,345

Unwrap 68.07 14,691

Figure 9: (U)YOKMS Server performance for wrap and un-
wrap

UOKMS Operations (Single Thread)

Time (us) | Operations / Second
Wrap 24.24 41,261
Unwrap 162.33 6,160
Update 68.07 14,691

Figure 10: Client operation time and Op/s in UOKMS

of the individual server’s contributions together with the corre-
sponding Lagrange coefficients. This interpolation operation could
variously be performed by one of the servers, by the client, or by a
dedicated intermediate entity.

We observe that the multi-exponentiation time dominates the
cost of the interpolation (computing the Lagrange coefficients is
correspondingly cheap), and we find that the total cost depends on
the threshold rather than the total number of servers. We report
interpolation times in Fig. 8.

Server operations, measured for the single server and thresh-
old variants of this (U)OKMS scheme (implemented with protocol
tdh-pop) are shown in Fig. 9. This includes only performing an
exponentiation (EC scalar multiply) in the curve for each input pro-
vided by the client (the wrap operation is more costly as it includes
an additional exponentiation to support the interactive verification
procedure from Section 5.2).

Total time and operations per second is not significantly different
for the threshold case, as each of the involved servers computes the
same function in parallel.

Client performance in the UOKMS scheme (Sec. 2.2) is shown
in Fig. 10. This setting benefits from being able to perform wrap
operations without server involvement, and can further benefit
from precomputation tables for exponentiation of g and g*. In our
testing, precomputation provided more than a 600% speed up (11.33
vs. 68.20 is). We summarize the number of operations per second
the client can perform in the UOKMS.

(U)OKMS Server Throughput (8 CPU cores)
Scheme KeepAlive | No KeepAlive
Static Page 65,018 6,462
OPRF (Unwrap) 32,094 6,349

Figure 11: (U)YOKMS Server Requests/s on EC2 instance (LAN
setting)

(U)OKMS Server. To evaluate performance and scalability we
hosted our (U)OKMS server implementation on Amazon’s Elas-
tic Compute Cloud (EC2)[3] using a c4.2xlarge instance type. This
instance type provides 8 virtual CPUS with an Intel(R) Xeon(R)
CPU E5-2666 v3 @ 2.90GHz having 15 GB of memory and was the
same instance type used to obtain the microbenchmark numbers
above.

Requests to this server were issued over HTTP and the web
server, nginx, was configured with 8 worker processes (one per
CPU). OKMS functionality was added to this web server as a na-
tively compiled module which used the OpenSSL library (version
1.1.1-pre5) to provide cryptographic functionality. The server ran
Ubuntu 16.04 as its operating system.

Throughput. To measure throughput a client machine (also c4.2xlarge)

was deployed in the same Amazon Web Service (AWS) availability
zone as the server. We used the HTTP load generating tool hey to
measure the throughput for each scheme. hey was configured with
a concurrency level of 80 and all results were averaged over 50,000
requests. All requests were for an unwrap operation and were sent
over HTTPS using (TLS 1.2 with ECDHE-ECDSA-AES256-GCM-
SHA384). The server used a self-signed certificate with an EC key
on the NIST P-256 curve. Computation time dominates in the LAN
setting due to almost negligible network latency, with the CPU
cores reaching near 100% utilization during the LAN throughput
tests. To gauge the limits of the server performance, client-side
operations of blinding and verification were not performed by the
load generator.

For each scheme, we tested with session KeepAlive on and off.
When off, a new TCP connection and TLS session must be nego-
tiated for each request. When on, the connection setup costs are
amortized over all requests, which is in line with a client that must
unwrap many keys.

The table in Figure 11 details the observed throughput in re-
quests per second (RPS) for the various schemes and two KeepAlive
configurations (all over TLS). We compare these schemes to a static
page as a baseline.

We observe that for the No KeepAlive configuration, the cost of
creating the new connection and establishing the TLS session domi-
nates resulting in very little difference in RPS between the schemes.
For the KeepAlive configuration, throughput is significantly better,
achieving over 30,000 RPS for the OPRF/T-OPRF case. Thus our
(U)OKMS implementation can handle a large number of clients
with a single server. For comparison, Amazon’s object storage ser-
vice reported a peak load of 1.1 million requests per second [33].
If needed, the KMS implementation can be scaled with standard
techniques, such as deploying a greater number of servers. With a
few dozen servers in the KMS, a unique key could be supplied each
time an object is written to or read from Amazon’s service.

Hardware Security Modules. A best practice for securing master
keys is to keep them within Hardware Security Modules (HSMs)[4]
to prevent their export to less secure locations. Fortunately, the
methods described in this paper are supported by existing commer-
cial HSMs. Indeed, most HSMs support the PKCS#11 standard[42].
This specification defines an API method called CKM_ECDH1_DERIVE

which takes an arbitrary point as an input and returns the x-coordinate

of the point resulting from a scalar multiplication of the input point
using an HSM-held private key as the scalar.

We tested three HSM implementations and found all supported
the ECDH1 derive method. The returned x-coordinate is sufficient
to perform an oblivious key derivarion, and verification, but verifi-
cation (only needed in the OKMS setting and for threshold imple-
mentations of the OPRF) requires that both positive and negative
solutions for the y-coordinate be checked By importing an elliptic
curve private key computed as a Shamir share, existing HSMs can
be used as part of a threshold implementation. Due to oblivious-
ness, interpolating the result from a threshold of HSMs can be done
external to the HSM without sacrificing confidentiality.

We note two potential limitations of using an HSM to hold the
OPREF key. The first is that HSMs are often limited in the curves they
support. While all of the HSMs we evaluated supported standard
NIST curves, none supported Curve25519. The second limitation
is performance. While high end commercial HSMs can achieve
up to 22,000 scalar multiplications per second[48], this is roughly
equivalent to what a single core can achieve in a multi-core server
CPU.

While software implementations of symmetric key wrapping
algorithms can be several orders of magnitude faster than asym-
metric operations, we found HSMs often employ specialized hard-
ware to accelerate the normally slower asymmetric operations.
In some cases, HSMs[48] including those used by leading cloud
providers[38], the number of supported ECC operations per second
is comparable to that of supported symmetric encryption operations
per second.

In conclusion, while in the traditional key-wrapping approach
(Fig. 1) one can secure wrapping keys diligently e.g., in HSMs, the
plain data encryption keys (dek) travel over much less secure TLS
channels (sometimes ending or visible in multiple points outside
the HSM boundary), and are potentially exposed to rogue adminis-
trators, accidental logging, etc. In contrast, these vulnerabilities are
eliminated by the oblivious computation approach where as long
as the OPREF key is secure, nothing can be learned about the data
(other than by corrupting the client). Fortunately, securing these
OPRF keys in HSMs is practical today as noted above, and while
symmetric operations are less expensive than OPRF ones in general,
HSMs with 20,000 EC op/sec can hardly be the system’s bottleneck
(of course, in large operations multiple HSMs will be used). Impor-
tantly, in UOKMS encrypting data does not necesitate of interaction
with the KmS, further increasing performance. Additionally, the
UOKMS approach offers much more efficient key rotation than tra-
ditional systems where rotation requires communication with the
KMS for each key (dek or kek) to be updated. This slows down the
rotation process, resulting in longer rotation periods and reduced
security.

ACKNOWLEDGMENTS

We thank Anja Lehmann for very helpful discussions related to
security notions of Updatable Encryption schemes. We also thank
Martin Schmatz for sharing with us his expertise, particularly in the
area of HSMs, and we thank CCS reviewers who helped improving
the presentation of the paper.

REFERENCES

[1] J. F. Almansa, I. Damgérd, and J. B. Nielsen. Simplified threshold RSA with
adaptive and proactive security. In S. Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, pages 593-611, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[2] Amazon Web Services. Aws key management service cryptographic details, 2016.
https://d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf.

[3] Amazon Web Services. Aws elastic compute cloud, 2018. https://aws.amazon.
com/ec2/.

[4] E.Barker and W. Barker. Recommendation for key management, part 2: Best prac-
tices for key management organizations (2nd draft). Technical report, National
Institute of Standards and Technology, 2018.

[5] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-
RSA-inversion problems and the security of Chaum’s blind signature scheme.
Journal of Cryptology, 16(3):185-215, June 2003.

[6] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The One-More-
RSA-Inversion problems and the security of chaum’s blind signature scheme.
Journal of Cryptology, 16(3):185-215, 2003.

[7] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy
cryptography. In K. Nyberg, editor, EUROCRYPT 98, volume 1403 of LNCS, pages
127-144. Springer, Heidelberg, May / June 1998.

[8] D.Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41-55. Springer, Heidelberg,
Aug. 2004.

[9] D.Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic
prfs and their applications. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 410-428, 2013.

[10] D.Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic
prfs and their applications. IACR Cryptology ePrint Archive, 2015:220, 2015.

[11] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from

ring-LWE and security for key dependent messages. In P. Rogaway, editor,

CRYPTO 2011, volume 6841 of LNCS, pages 505-524. Springer, Heidelberg, Aug.

2011.

E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient

indifferentiable hashing into ordinary elliptic curves. Cryptology ePrint Archive,

Report 2009/340, 2009. http://eprint.iacr.org/2009/340.

R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security

for threshold cryptosystems. In M. Wiener, editor, Advances in Cryptology —

CRYPTO’ 99, pages 98-116, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.

In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 255-271.

Springer, Heidelberg, May 2003.

[15] D. Chaum. Zero-knowledge undeniable signatures. In I. Damgérd, editor, EU-
ROCRYPT 90, volume 473 of LNCS, pages 458-464. Springer, Heidelberg, May
1991.

[16] D.Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell,
editor, CRYPTO 92, volume 740 of LNCS, pages 89-105. Springer, Heidelberg, Aug.
1993.

[17] A. Davidson, A. Deo, E. Lee, and K. Martin. Strong post-compromise secure

proxy re-encryption. In Information Security and Privacy (ACISP) 2019, 2019.

D. Derler, S. Krenn, T. Loriinser, S. Ramacher, D. Slamanig, and C. Striecks. Revis-

iting proxy re-encryption: Forward secrecy, improved security, and applications.

In M. Abdalla and R. Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS,

pages 219-250. Springer, Heidelberg, Mar. 2018.

A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia PRF

service. In 24th USENIX Security Symposium (USENIX Security 15), pages 547-562,

Washington, D.C., 2015. USENIX Association.

A. Everspaugh, K. G. Paterson, T. Ristenpart, and S. Scott. Key rotation for

authenticated encryption. In Advances in Cryptology - CRYPTO 2017 - 37th

Annual International Cryptology Conference, Santa Barbara, CA, USA, August

20-24, 2017, Proceedings, Part III, pages 98-129, 2017.

[21] W.Ford and B. S. Kaliski Jr. Server-assisted generation of a strong secret from a
password. In 9th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE 2000), pages 176-180, Gaithersburg,
MD, USA, June 4-16, 2000. IEEE Computer Society.

[12

[13

=
et

[18

[19

™
=

https://d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
http://eprint.iacr.org/2009/340

[22]

[23]

[24]

[25

[26]

[27

[28]

[29

[30

(31

[32]

[33]

[34

[35]

[36]

[37

[38]

[39

[40]

[41]

[42

[43]

[44

[45]

[46

[47]

M.]J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious
pseudorandom functions. In J. Kilian, editor, TCC 2005, volume 3378 of LNCS,
pages 303-324. Springer, Heidelberg, Feb. 2005.

R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fact-track multiparty
computations with applications to threshold cryptography. In B. A. Coan and
Y. Afek, editors, 17th ACM PODC, pages 101-111. ACM, June / July 1998.
Google Cloud. Google cloud key management service, 2018. https://cloud.google.
com/kms/.

A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing
or: How to cope with perpetual leakage. In D. Coppersmith, editor, CRYPTO’95,
volume 963 of LNCS, pages 339-352. Springer, Heidelberg, Aug. 1995.

B. A. Huberman, M. K. Franklin, and T. Hogg. Enhancing privacy and trust in
electronic communities. In EC, 1999.

IBM. Ibm key protect, 2018. https://console. bluemix.net/catalog/services/key-
protect.

S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected
secret sharing and T-PAKE in the password-only model. In P. Sarkar and T. Iwata,
editors, ASTACRYPT 2014, Part II, volume 8874 of LNCS, pages 233-253. Springer,
Heidelberg, Dec. 2014.

S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly-efficient and composable
password-protected secret sharing (or: how to protect your bitcoin wallet online).
In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on, pages
276-291. IEEE, 2016.

S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-
protected secret sharing based on threshold OPRF. In D. Gollmann, A. Miyaji,
and H. Kikuchi, editors, ACNS 17, volume 10355 of LNCS, pages 39-58. Springer,
Heidelberg, July 2017.

S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-
protected secret sharing based on threshold OPRF. Cryptology ePrint Archive,
Report 2017/363, 2017. http://eprint.iacr.org/2017/363.

S. Jarecki and X. Liu. Fast secure computation of set intersection. In J. A. Garay
and R. D. Prisco, editors, SCN 10, volume 6280 of LNCS, pages 418-435. Springer,
Heidelberg, Sept. 2010.

Jeff Barr. Amazon S3 4AS Two Trillion Objects, 1.1 Million Requests / Second,
2013. https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-
million-requests-second/.

M. Kloof3, A. Lehmann, and A. Rupp. (R)CCA secure updatable encryption with
integrity protection. In Eurocrypt 2109, 2019.

R. Lai, C. Egger, M. Reinert, S. Chow, M. Maffei, and D. Schréder. Simple password-
hardened encryption services. In 27th USENIX Security Symposium (USENIX
Security 18), 2018.

A. Lehmann and B. Tackmann. Updatable encryption with post-compromise
security. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part III, pages 685-716, 2018.

A.Y. Lindell. Adaptively secure two-party computation with erasures. In M. Fis-
chlin, editor, Topics in Cryptology — CT-RSA 2009, pages 117-132, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

Microsoft. How many cryptographic operations are supported per second with
dedicated hsm?, 2019. https://docs.microsoft.com/en-us/azure/dedicated-hsm/
fag#performance-and-scale.

Microsoft Azure. Azure key vault, 2018. https://docs.microsoft.com/en-us/azure/
key-vault/key-vault-overview.

M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and
KDCs. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 327-346.
Springer, Heidelberg, May 1999.

M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS, pages 458-467. IEEE Computer Society Press,
Oct. 1997.

OASIS Open. PKCS #11 Cryptographic Token Interface Base Specification Ver-
sion 2.40, 2015. https://docs.oasis-open.org/pkes11/pkes11-base/v2.40/0s/pkes11-
base-v2.40-o0s.html.

R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended
abstract). In L. Logrippo, editor, 10th ACM PODC, pages 51-59. ACM, Aug. 1991.
A. Patel and M. Yung. Fully dynamic password protected secret sharing, 2017.
manuscript.

T. P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract) (rump session). In D. W. Davies, editor, EUROCRYPT 91, volume 547 of
LNCS, pages 522-526. Springer, Heidelberg, Apr. 1991.

Y. Polyakov, K. Rohloff, G. Sahu, and V. Vaikuntanathan. Fast proxy re-encryption
for publish/subscribe systems. ACM Transactions on Privacy and Security (TOPS),
20, 2017.

K. Sakurai and Y. Yamane. Blind decoding, blind undeniable signatures, and
their applications to privacy protection. In Proceedings of the First International
Workshop on Information Hiding, pages 257-264, London, UK, UK, 1996. Springer-
Verlag.

[48] Thales. SafeNet Luna Network HSM, 2019. https://safenet.gemalto.com/
resources/data-protection/luna- sa-network-attached-hsm-product-brief/.

A PROOF OF THE OMDH-IO ASSUMPTION
IN THE GENERIC GROUP MODEL

We sketch the steps for adapting the GGM proof of OMDH from [31]
to the OMDH-IO case. As argued in [31], it suffices to show OMDH
security for N = Q + 1, in which case the upper-bound on a proba-
bility that a GGM adversary solves the OMDH problem in a group
of prime order g while making r group operations and Q queries to
the exponentiation oracle (¥ is (Q(20 +r)?)/q. In a GGM proof,
see Theorem 6 in Appendix A in [31], every group element the
adversary obtains is represented with a (random string assigned to)
a polynomial in unknowns (us, ..., un, k) for u; = DL(g, g;). Group
multiplications or divisions correspond to, respectively, adding or
subtracting such polynomials, and querying oracle (Y*ona group
element corresponds to multiplying the corresponding polynomial
by k. The proof argues that the only way the adversary can win is
either if some two different polynomials it creates have equal val-
ues on random inputs (uy, ..., un, k), or that the group elements it
outputs correspond to polynomials k-uy, ..., k-un. The latter case
is easily seen as impossible for an adversary which can has only
Q=N —1 accesses to the “multiply-a-polynomial-by-k” oracle (-)¥,
while the upper-bound on the probability of the first case comes
from the fact that there are at most 2Q + r polynomials, each one
has at most degree Q in k (and linear in variables uy, ..., uy), and
the fact that a non-zero Q-degree polynomial can have at most Q
roots, hence each pair of different polynomials can evaluate to the
same value on random exponent (uy, ..., un, k) with probability at
most Q/q. If the GGM adversary in addition makes ¢ queries to the
inverse-exponentiation oracle ('K, each query multiplies the cor-
responding polynomial by k™!, and the resulting polynomials, after
multiplying all of them by k?, can be thought of as polynomials
of degree at most Q + t instead of Q. Thus by the same argument,
the upper-bound on the probability of GGM adversary to solve all
N = Q +1 challenges is bounded by (Q + £)(2Q + t + r)?/q. Note
that r >> max(Q, t) in typical applications, including our UOKMS
scheme, hence this bound can be approximated as (Q + t)r?/q.

https://cloud.google.com/kms/
https://cloud.google.com/kms/
https://console.bluemix.net/catalog/services/key-protect
https://console.bluemix.net/catalog/services/key-protect
http://eprint.iacr.org/2017/363
https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/
https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/
https://docs.microsoft.com/en-us/azure/dedicated-hsm/faq#performance-and-scale
https://docs.microsoft.com/en-us/azure/dedicated-hsm/faq#performance-and-scale
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://safenet.gemalto.com/resources/data-protection/luna-sa-network-attached-hsm-product-brief/
https://safenet.gemalto.com/resources/data-protection/luna-sa-network-attached-hsm-product-brief/

	Abstract
	1 Introduction
	1.1 Comparison to previous work

	2 Updatable Oblivious KMS
	2.1 Oblivious Key Management System
	2.2 Updatable OKMS

	3 Security Model for Updatable Oblivious KMS
	3.1 Formal UOKMS Scheme
	3.2 UOKMS obliviousness and security

	4 Security Analysis of the UOKMS Scheme
	4.1 Proof of Theorem 4.1

	5 Threshold OKMS and UOKMS
	5.1 Distributed Updates
	5.2 Verifiable Threshold (U)OKMS

	6 Implementation and Performance
	References
	A Proof of the OMDH-IO Assumption in the Generic Group Model

