
Updatable Oblivious Key Management for Storage Systems
Stanislav Jarecki

University of California, Irvine

Hugo Krawczyk

Algorand Foundation

Jason Resch

Independent

ABSTRACT
We introduce Oblivious Key Management Systems (KMS) as a much

more secure alternative to traditional wrapping-based KMS that

form the backbone of key management in large-scale data storage

deployments. The new system, that builds on Oblivious Pseudoran-

dom Functions (OPRF), hides keys and object identifiers from the

KMS, offers unconditional security for key transport, provides key

verifiability, reduces storage, and more. Further, we show how to

provide all these features in a distributed threshold implementation

that enhances protection against server compromise.

We extend this system with updatable encryption capability that

supports key updates (known as key rotation) so that upon the peri-

odic change of OPRF keys by the KMS server, a very efficient update

procedure allows a client of the KMS service to non-interactively
update all its encrypted data to be decryptable only by the new

key. This enhances security with forward and post-compromise

security, namely, security against future and past compromises, re-

spectively, of the client’s OPRF keys held by the KMS. Additionally,

and in contrast to traditional KMS, our solution supports public

key encryption and dispenses with any interaction with the KMS

for data encryption (only decryption by the client requires such

communication).

Our solutions build on recent work on updatable encryption

but with significant enhancements applicable to the remote KMS

setting. In addition to the critical security improvements, our de-

signs are highly efficient and ready for use in practice. We report

on experimental implementation and performance.

CCS CONCEPTS
• Security and privacy→ Key management.

KEYWORDS
key management, updatable encryption, Oblivious PRF, OPRF

ACM Reference Format:
Stanislav Jarecki, Hugo Krawczyk, and Jason Resch. 2019. Updatable Obliv-

ious Key Management for Storage Systems. In 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS’19), November 11–
15, 2019, London, United Kingdom. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/XXXXXX.XXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
The ever expanding cloud storage infrastructure is one of the pillars

of modern computing. Yet, the key management systems (KMS)

provisioning keys for the protection of the stored data have not

changed fundamentally in decades. This setting involves three sep-

arate parties: a client C, a remote storage server StS (e.g., a cloud

service) that stores client data in encrypted form, and a key man-
agement server KmS that stores cryptographic keys for the client.
The client uses the services of KmS each time it needs to encrypt or

decrypt the data. The idea is that KmS is better equipped to keep

keys secret and StS is better equipped to store large amounts of

data reliably. Thus, KmS is charged with protecting secrecy and

StS with protecting availability.

The typical deployment of such systems in practice (including

large cloud-based operations such as AWS [2], Microsoft [39], IBM

[27], Google [24]) uses the traditional wrap-unwrap approach for

managing data encryption keys (dek) as shown in Fig. 1. When

client C needs to encrypt a data object, it chooses a symmetric

key dek with which it encrypts the object, then sends dek to key

management server KmS who wraps (i.e., encrypts) dek under a

client-specific (master) key kc stored at KmS and returns the result,

called a wrap, to C. Finally, C stores wrap and the data encrypted

under dek at the storage server StS. When C needs to retrieve an

object, it gets the corresponding ciphertext from StS, sends the
attached wrap to KmS who unwraps (i.e., decrypts) it using kc and

sends dek back to C, who uses it for decryption.

This key encapsulation mechanism, while effective and widely

deployed, presents significant potential vulnerabilities. First, en-

cryption keys dek are exposed in the clear to KmS. Second, the
security of dek, hence the security of all encrypted data, relies

on the channel between the client and KmS. Such a channel, typ-

ically implemented by TLS, is vulnerable to a large class of at-

tacks, from implementation and configuration errors to certification

and man-in-the-middle attacks. Third, even in normal operation,

the key dek is visible to any middlebox and endpoint where TLS

traffic is decrypted. Additionally, KmS can trace objects being en-

crypted/decrypted via the wrap values. A further shortcoming is

the cost of rotating a client key by KmS: Changing the value kc for

a new kc
′
requires the client (or StS) sending each wrap to KmS for

unwrapping under kc and re-wrapping under kc
′
. This is not only

a performance issue but a security one too (due to long period of

time till all wraps are updated and till kc can be safely erased).

Oblivious KMS. Our first contribution is a simple approach to key

management based on Oblivious Pseudorandom Functions (OPRF)
[22, 29, 41], that addresses the above vulnerabilities and offers addi-

tional features absent in traditional systems. OPRFs are interactive

schemes between a server holding a key to a PRF and a client

holding an input. At the end of the interaction the client learns

the output of the PRF on its input and the server learns nothing

(neither the input nor the output of the function). OPRFs have

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

Parties: key management server KmS, storage server StS,
client C (= data owner).

Functions: Symmetric authenticated encryption scheme

Enc; wrapping functions Wrap, Unwrap (used to to en-

crypt/decrypt data encryption keys).

Keys: KmS stores a client-specific wrapping key kc for each
client.

Encryption of object (ObjId,Obj) by client C:
(1) C chooses random Enc key dek (data encryption key);

(2) C sends (ObjId, dek) to KmS;
(3) KmS returns (ObjId,wrap =Wrapkc (dek))

(Note: KmS authenticates C before using kc);
(4) C sends (ObjId,wrap, Encdek(Obj)) to StS for storage.

Decryption of object ObjId by C:
(1) C retrieves (ObjId,wrap, Encdek(Obj)) from StS;
(2) C sends (ObjId,wrap) to KmS;
(3) KmS returns (ObjId, dek = Unwrapkc (wrap))
(4) C decrypts Encdek(Obj)) using dek.

Figure 1: Traditional Wrapping-based Key Management

found numerous applications and there are very efficient OPRF

implementations, e.g. based on the Diffie-Hellman (DH) problem in

regular elliptic curve groups [16, 21, 26, 40, 47] (see Fig. 3).

In our Oblivious Key Management System (OKMS) (see Fig. 2), a
client C who requires a data encryption key dek for encrypting a
data object interacts with the OKMS server in an OPRF protocol.

C’s input is an identifier for the data object while the server’s input

is an OPRF key (typically unique per client and denoted kc), and
C uses the output from the OPRF as the dek1. In this way, the

OKMS server does not learn dek (or even the object identifier). The

system does not rely on an external secure channel (e.g., TLS) to

transport dek; instead dek is protected by the security properties

of the OPRF.
2

This addresses two major vulnerabilities of traditional KMS sys-

tems: visibility of the dek to the server and potential exposure of

this key in transit between client and server. Moreover, using the

most efficient DH-based implementations of OPRFs, the protec-

tion against these threats is unconditional. Even a computationally

unbounded server (that knows the OPRF key) or a network eaves-

dropper cannot learn anything about the dek, or about the object
identifier input into the OPRF. Note that in OKMS, the only way for

an adversary to decrypt a ciphertext is by impersonating the legiti-

mate client or by learning the OPRF key kc and the corresponding

ObjId value. In contrast, in traditional systems, data encryption

keys dek are potentially vulnerable even if the KmS key is well pro-
tected (e.g., inside a hardware module) as the dek are transmitted

outside the protected zone.

1
Alternatively, the output of the OPRF can be used as a key-encrypting key (kek) to
locally encrypt dek.
2
A TLS connection can be used to transport auxiliary information or client credentials

but is not needed for transporting data encryption keys.

The OPRF approach supports additional properties that enhance

security even further and beyond anything offered by the tradi-

tional solutions. First, it provides verifiability, namely, the ability

of KmS to prove to C that the returned dek is indeed the value

that results from computing the OPRF on the client-provided object

identifier. This prevents data loss that occurs if the returned dek
is wrong (either due to computing error or to adversarial action);

indeed, encrypting data with an incorrect, or irrecoverable, key can

lead to irreparable data loss. Second, the DH-based OPRF, hence

also the OKMS using it, is amenable to distribution as a multi-server

threshold scheme where the OPRF key is protected as long as less

than a defined threshold of the servers is corrupted. Finally, the de-

scribed system can be adapted to also support updatability, namely,

periodic key rotation of the client master key kc by KmS with a

very efficient (non-interactive) procedure for updating ciphertexts

to be decryptable by the new key and not by previous ones. This

procedure does not endangered the secrecy of the data and there-

fore can be performed by the StS. The design of such system is the

main technical contribution of our work and is discused next.

Updatable Oblivious KMS. Traditional wrapping-based key man-

agement systems as those described above (and in Fig. 1) require

client keys kc to be updated periodically by the server KmS. Such
update, known as key rotation, is needed to limit the exposure of

data upon the exposure of kc . For traditional wrapping systems,

changing kc with a new kc
′
involves unwrapping and re-wrapping

all of a client’s ciphertexts as well as transmitting all these wrap
values between the storage server and KMS server. Moreover, an

old key kc cannot be erased until all ciphertexts are updated to the

new key kc
′
, extending the exposure period of kc significantly.

This need to update clients’ keys in storage systems (and other

applications) has led to the notion of updatable encryption [9] whose
goal is to provide more efficient and more secure solutions to this

key rotation problem. Many flavors of updatable encryption have

been suggested [9, 10, 20, 36]. In this work we investigate this

notion in the context of our oblivious KMS approach leading to the

design of an Updatable Oblivious KMS (UOKMS).
In UOKMS, upon the rotation of a client’s key kc , server KmS

computes a short update token ∆ as a function of the old and new

keys kc ,kc
′
, and transmits ∆ to client C. Using ∆, C’s storage server

StS can transform all ciphertexts that were encrypted with keys

derived from kc into ciphertexts decryptable by the new kc
′
but not

by the old kc . This operation preserves the security of the data, it is

performed locally at the storage server StS without any interaction
with KmS, and it only modifies a short component of the ciphertext

(independent of the length of the encrypted data) making the whole

operation highly efficient. Security-wise it protects against future

and past compromises of the client’s key kc .
The above UOKMS scheme offers another major performance

advantage compared to traditional KMS and our ownOKMS scheme:

Encryption of data requires no interaction with the KMS server, and

an interaction is only needed to decrypt data. More generally, our

UOKMS supports public key encryption, so everyone can encrypt

data for client C, but only C can decrypt it, via an interaction with

the KMS server.

Threshold Updatable OKMS. Both OKMS and UOKMS solutions

can be implemented via distributed servers so that clients’ OPRF

keys are secure for as long as no more than a threshold number of

servers are compromised. These systems inherit the high efficiency

of Threshold OPRF constructions [30] (also in the case of the OPRF

variant used in the UOKMS solution). In the UOKMS setting, the up-

date token ∆ is computed distributively among the servers through

an efficient multi-party computation. These solutions preserve the

verifiability property of OPRFs and they can be implemented in

a client-transparent way, namely, the client’s operations and code

are identical regardless of the implementation as a single-server or

multi-server. See Section 5.

Formal model and analysis. We formally analyze our UOKMS

solution in an Updatable Oblivious KMS security model that shares

close similarities with recent models of updatable encryption (or

encryption with key rotation) [9, 10, 20, 36], but also has some

significant differences. One crucial difference comes from the key

management setting treated here where the client interacts with

two outsourced remote services KmS and StS. In particular, this raises
potential security vulnerabilities arising from the communication

channel between client and KmS. This major concern is absent

from previous updatable encryption models that treat the client

and KmS essentially as collocated entities. The other aspect that is

unique to our solution and formal treatment is the obliviousness of

computation on the side of KmS. Yet another difference is that while
the typical storage setting does not require public key encryption,

we naturally include this setting in our updatable model.

Our updatability model allows attacks on both KmS and StS,
including exposure of client keys kc , update values ∆, and the at-

tacker’s ability to see and write ciphertexts into StS. Security is

provided against future and past attacks, namely, forward and post-

corruption security, with a simulation-based security model. Obvi-

ously, the model disallows attack combinations that would lead to

trivial wins for the attacker (e.g., decrypting a challenge ciphertext

in a period for which it learns the KMS key kc). The model accom-

modates the oblivious setting where an attacker that communicates

with KmS (and is in possession of C’s credentials) can decrypt any q
ciphertexts after q interactions with KmS, but all other ciphertexts
remain secure. This, together with the attacker’s capability to access

a ciphertext-update oracle and the use of authenticated encryption,

achieves CCA-like security for oblivious and updatable encryption.

The security proof for our UOKMS scheme, presented in Section 4,

carries in the random oracle model under a strengthened variant

of the Gap One-More Diffie-Hellman assumption [5, 32] that we

show to hold in the generic group model.

Implementation and performance. In Section 6 we present per-

formance information from our implementation of both OKMS

and UOKMS solutions showing the practicality of our techniques,

in particular the ability of servers to support a large number of

operations and clients per second. In OKMS, client time is approx-

imately 0.4 msec for a wrap and 0.2 msec for an unwrap. For the

UOKMS system, performance is even better: a client can sustain

over 41000/6000/14000 for wrap/unwrap/update operations per sec-

ond respectively, with a single-thread and single CPU core, and

server operations are only needed for unwrapping. We also demon-

strate good throughput and latency results from a prototype im-

plementation of the (U)OKMS Server deployed to an Amazon EC2

instance. We find this implementation capable of answering over

30,000 requests per second in both single-server and multi-server

deployments. Finally, we discuss implementation experience man-

aging KmS keys in Hardware Security Modules (HSM).

1.1 Comparison to previous work
We are the first to present a comprehensive updatable solution

to the central problem of key management in cloud-based (and

other) storage systems that exploits the power of oblivious com-

putation, and the first to develop a security model for such setting.

Our motivation and modeling bear similarities with recent models

of Updatable Encryption (UE) [9, 10, 20, 34, 36], but also has some

significant differences. Most prominent is the use of obliviousness

as a way to address potential vulnerabilities arising from a remote
key management system, as opposed to one that is collocated with

the client as was asssumed in all the above works on updatable

encryption. Other novel features of our solution include uncondi-

tional hiding of data encryption keys and object identifiers from

KmS, and building a distributed UOKMS service via a threshold im-

plementation. Our updatability solution is ciphertext-independent

(namely, the update token is of size independent from the number

of ciphertexts and size of data to be updated) as in several prior

UE schemes [9, 20, 34, 36]. Among those, our scheme is the most

efficient, requiring a single short update value ∆ from the KmS
server and a single exponentiation per object for the update opera-

tion, compared e.g. to two exponentiations per ciphertext block in
the schemes of [34, 36]. Our UOKMS scheme can be extended to

provide ciphertext indistinguishability and unlinkability similarly

to e.g. [34, 36], but it would inherit the inefficiency of such solution

making it impractical in any large-scale data storage deployment.
3

Finally, our model and solution are the first to support public key

encryption, including CCA-like security in the setting of oblivious

encryption. We elaborate further on the relation to prior updatable

encryption work in Section 3.2.

Updatable encryption is closely related to proxy re-encryption
(PRE), in particular, the Diffie-Hellman techniques at the center of

our implementation directly relate to the PRE scheme of Blaze et

al. [7]. Recently, [17, 18] treat forward secrecy and post-corruption

security in the context of PRE for which they define evolutionary

keys as in our context. However, the requirements of PRE, particu-

larly as set forth in [17], are more stringent than needed in our case.

These include generating update values using the delegatee’s public

key rather than on input its secret key, achieving unidirectionality,

supporting general DAG delegation graphs, ensuring ciphertext

indistinguishability, and more. As a result, they require more in-

volved and less efficient techniques; in particular, [18] builds on

pairing-based constructions and HIBE [8, 14] while [17] uses lattice-

based fully-homomorphic techniques from [11, 46]. On the other

hand, in spite of their stronger properties, none of these schemes

support oblivious computation.

Our use of OPRF function can be seen as an “OPRF-as-a-service"

application, a term coined in [19]. We borrow the notion of up-

datable oblivious PRF from that work, but their application was

3
Several prior works, e.g. [34, 36], consider ciphertext unlinkability (over update

periods) as a major design goal, but achieve it at the cost of requiringO (n) exponenti-
ations to update a ciphertext of length n. We believe that in most practical settings,

linkability would still be possible via metadata, object identifiers, etc., hence not worth

the high computational cost it entails.

targeted to password verification protocols, while ours is a general

encrypted storage system. (Moreover, the protocol of [19] is signifi-

cantly less efficent as it uses groups with bilinear maps to obtain

the stronger notion of updatable “partially oblivious" PRF, which

we do not require.) OPRF’s are also used in “password-protected

secret sharing" [28] which can implement distributed password-

secured storage but without the ability to update the master en-

cryption key. Moreover, both of these solutions are specialized for

password-authenticated clients while UOKMS accommodates any

client-to-KMS or client-to-StS authentication mechanisms.

Comparison to U-PHE. The goals of UOKMS bear some similarity

to Updatable Password-Hardened Encryption (U-PHE) of [35]. In

the U-PHE setting a server S stores encrypted data on behalf of its

clients. The encryption and decryption of data require S to hold the

client’s password and involve an interaction of S with an additional

server R, called the rate limiter. In particular, an attacker who learns

S ’s state (but not the stored client password), cannot decrypt client’s
data without guessing the client’s password and interacting with

the rate limiter R. The solution offers verifiability and updatability

similarly to our case, and in terms of our UOKMS model one can

think of S as the storage server StS and R as the key management

server KmS. However, in contrast to UOKMS, in U-PHE the server

S learns both the client’s decrypted message and the client’s pass-

word (in particular, one relies on TLS for transmitting the password),

while in UOKMS only the client encrypts and decrypts data and

neither server learns it. Moreover, the U-PHE decryption protocol

is not oblivious, i.e. server R, i.e., KmS, can identify the decrypted

ciphertext. Also, as in the case of [19, 28] above, PHE is specialized

to the password authentication case, while UOKMS is indepen-

dent of the means of authentication used by clients, allowing any

form of client authentication credentials. Additionally, the U-PHE

scheme of [35] is less efficient than our UOKMS, specifically their

encryption is interactive while ours is not, their decryption and

update are both roughly twice more expensive than ours, and a

threshold implementation of the rate-limiter server of [35] would

be significantly more expensive than our threshold KmS.

2 UPDATABLE OBLIVIOUS KMS
We present our main scheme, UOKMS (for Updatable Oblivious

KMS), that builds on the general approach to Oblivious KMS de-

scribed in the introduction and recalled next.

2.1 Oblivious Key Management System
Figure 2 specifies the Oblivious KMS (OKMS) protocol that serves

as a basis for our Updatable scheme in the next section. OKMS is

described and motivated in the Introduction as a much more secure

alternative to the wrapping-based approach (Fig. 1) in wide use

today in storage systems, particularly in large cloud deployments.

When implemented with the DH-based OPRF scheme dh-op from

Fig. 3, one obtains an OKMS that is highly efficient (see Sec. 6)

and accommodates extensions to verifiability and distributed im-

plementation (Sec. 5). The security of the OKMS scheme and its

implementation using dh-op follows from the OPRF properties (in

particular as studied in [28, 29]). We do not formally analyze the

OKMS scheme but rather do so in Sections 3 and 4 for its extension

Functions: OPRF F and symmetric authenticated encryption

scheme Enc.
OPRF Keys: KmS stores a client-specific OPRF key kc for

each client.

Encryption of object Obj by client C: C runs OPRF proto-

col with KmSwhere C inputs object identifierObjId and KmS
inputs key kc . C sets dek = Fkc (ObjId) and stores the pair

(ObjId, Encdek(Obj)) at storage server StS.
Decryption of encrypted object ObjId by client C:
As in the encryption case, C interacts with KmS to compute

dek = Fkc (ObjId) and decrypts Obj using dek.

Verification of correct computation of dek: Use a verifi-

able OPRF [28].

Figure 2: Oblivious KMS (OKMS)

Components: G: group of prime order q; H ,H ′: hash func-

tions with ranges {0, 1}ℓ and G, respectively, where ℓ is a
security parameter.

PRF Fk Definition: For key k ←
R
Zq and x ∈ {0, 1}∗, define

Fk (x) = H (x , (H ′(x))k)

Oblivious Fk Evaluation between client C and server S
(1) On input x , C picks r←

R
Zq ; sends a = (H

′(x))r to S .
(2) S checks that the received a is in group G and if so it

responds with b = ak .

(3) C outputs Fk (x) = H (x ,b1/r).

Figure 3: DH-based OPRF function dh-op [29]

to the Updatable OKMS setting presented next. (A model and anal-

ysis of OKMS can be obtained by specializing the UOKMS model

to a single update period.)

2.2 Updatable OKMS
Keymanagement systems are required, by regulations and best prac-

tices, to periodically update client keys kc (an operation known as

key rotation). The goal is to limit the negative effects of the compro-

mise of a key kc to a shorter period of time and to as little data as

possible. This is particularly important for keys that protect data

stored for long periods of time as it is common in many cloud stor-

age applications (anything from user photos to regulated financial

information). Upon the rotation by the KMS server KmS of a key kc
into a new key kc

′
, all ciphertexts protected with kc and held by the

storage server StS need to be updated too. The updated ciphertexts

should be decryptable by kc
′
but not by kc . The goal is that an

attacker that learns kc but only sees updated ciphertexts should

not be able to learn anything about the encrypted data in the new

period (while kc
′
is unexposed). Similarly if the attacker has seen a

ciphertext encrypted using an unexposed kc and later learns kc
′
, it

still should not learn anything from that ciphertext. This provides

both forward security (security against future exposures) and post-

compromise security (security against past exposures). Obviously,

Setting: Generator д of group G of prime order q; symmetric authenticated encryption scheme Enc,Dec with keys of length

security parameter ℓ; hash function H : G → {0, 1}ℓ .

Client keys: KMS server KmS stores a client-specific random key kc ∈ Zq for each client; storage server StS stores certified
public value yc = д

kc
for client C.

Encryption of object Obj: To encrypt Obj under key yc , pick r ←
R
Zq \ {0}, set w = дr and dek = H (yc

r), and output

ciphertext triple c = (ObjId,w, Encdek(Obj)).

Decryption of ciphertext c = (ObjId,w, e): (1) C sends u = wr ′
for r ′ ←

R
Zq to KmS; (2) KmS checks if u ∈ G and if so returns

v = ukc to C; (3) C outputs Obj = Decdek(e).
(Note that C runs the decryption protocol only if c is valid and we define c = (ObjId,w, e) as valid iffw ∈ G andw , 1.)

Key rotation and update: To change client’s key from kc to kc
′
, KmS sends ∆ = kc/kc

′
and y′c = дkc

′

to StS. StS replaces

yc with y
′
c and replaces each ciphertext c = (ObjId,w, e) with c ′ = (ObjId,w ′ = w∆, e), provided that w ∈ G. (Element w < G

indicates an invalid ciphertext which can be removed.)

Figure 4: Updatable Oblivious KMS Scheme

one also requires that the update process itself does not reveal en-

crypted information to StS (e.g., decrypting and re-encrypting the

data by StS would not be considered secure).

In the traditional wrapping-based KMS of Fig. 1, such key ro-

tation operation requires interaction between the storage server

StS and KMS server KmS where StS sends every stored wrap to

KmS for unwrapping under kc and re-wrapping using kc
′
. This

requires the transmission of all wrap values between StS and KmS,
and the exposure of all dek values to KmS. In a large storage setting

such process can take very long time (particularly under the “lazy

evaluation" practice where a wrap held by StS is updated to kc
′

only when the application requires a regular unwrap operation for

that object). During all this time the old and new keys kc ,kc
′
must

be stored at KmS thus extending the life and exposure period of

these keys.

In Fig. 4 we present an Updatable Oblivious KMS that adapts the
OKMS scheme from the previous section to the updatable setting.

Using techniques from updatable encryption [9, 20, 36] adapted to

the oblivious setting, we achieve some desirable properties, both in

terms of security and performance. First, upon the change of key

kc into a new key kc
′
, KMS server KmS can produce a short token ∆

with which all the ciphertexts of client C can be updated by StS in a

way that achieves the above security properties. Second, the update

operation is non-interactive: It is performed locally by StS with the

sole possession of ∆. Note that once KmS produces a new key kc
′

and the corresponding update value ∆, KmS can immediately erase

the old key kc , hence reducing the risk of exposure to only one key

at a time. Finally, the update operation at StS only requires a single

exponentiation per ciphertext independently of the ciphertext size,

compared to at least 2 exponenentiations per ciphertext in previous

updatable encryption schemes (see also footnote 3), leading to a

fast update of all ciphertexts that were encrypted under kc . Thus,
one obtains a very efficient update procedure that achieves better

security than in the wrapping-based KMS in many ways: dek keys

are never exposed to StS or to KmS during updates; old keys can

be erased immediately upon rotation; the interaction between StS
and KmS is minimal (only ∆ is transmitted); and ∆ can be erased

by StS as soon as it locally updates all ciphertexts.

The UOKMS scheme from Fig. 4 departs from the OKMS scheme

of Fig. 2 in some important ways. First, to allow for fast updates,

ciphertexts are composed of two parts, a wrap and a symmetri-

cally encrypted ciphertext that derives the encryption key from

wrap. For updates, only wrap is updated. Second, the encryption
operation is non-interactive, that is, C (or anyone else) can encrypt

data locally without interacting with KmS provided that it pos-

sesses the equivalent of a certified “public key" yc corresponding

to kc (yc = дkc in our scheme). Decryption is only possible via

an oblivious interaction with KmS. As a “side effect" of the above
properties, the UOKMS scheme supports public key encryption,

meaning that anyone can produce ciphertexts but only C can de-

crypt them, thus expanding the use cases for such KMS solution.

Note that decryption requires interaction with KmS which we as-

sume has the means to authenticate decryption requests from C.

Third, the UOKMS scheme from Fig. 4 is presented in terms of a

specific instantiation rather than using generic tools like the OPRF

in OKMS. Indeed, the malleability properties required for the up-

date operations are not possible with a generic OPRF (but see below

about Weak OPRFs). Finally, verifiability of correct encryption by

KmS is not needed in UOKMS where encryption is non-interactive,

and verification of correct decryption can be done via the (symmet-

ric) authenticated decryption operation Dec. This saves the need to
verify the correct exponentiation by KmS, further improving the

performance of UOKMS.

Correctness of the UOKMS scheme is easy to validate. For en-

cryption, one sets w = дr for random r , then derives the encryp-

tion key dek from yrc , encrypts the data and storesw . For decryp-

tion, C computes wkc
obliviously in interaction with KmS and

derives dek from this value. This recovers the original data as

yrc = (д
kc)r = (дr)kc = wkc

. Regarding the update operation,

if we denote bywt and kt the values ofw and kc , respectively, after
t updates (herew0 denotes the original value ofw computed at the

time of deriving dek, and k0 denotes the client’s key kc as it existed
at that time), then one can see inductively that if wkt

t = wk0
0

(the

latter is the value from which dek is derived), then this is also true

for t + 1, namely, (wt+1)
kt+1 = (w0)

k0
. Indeed, we have thatwt+1 =

w∆t+1
t = w

kt /kt+1
t , thus (wt+1)

kt+1 = (w
kt /kt+1
t)kt+1 = wkt

t = w
k0
0
.

Security of the UOKMS scheme from Fig. 4 is proven in Section 4

based on the security model presented in Section 3.

In Section 5 we show how to distribute the KmS functionality of

UOKMS through a threshold scheme which includes the distributed

generation of the value ∆ so only StS can learn it.

OnWeakOblivious PRF. The UOKMS scheme from Fig. 4 derives

symmetric encryption keys from a function Fk (w) = H (wk) defined

over elements in a group G of prime order q (where the key k
is chosen at random in the set Zq). The function F has strong

similarities with the OPRF dh-opk (x) = H (x , (H ′(x))k) from Fig. 3

that we use as the basis of the OKMS scheme from Fig. 2, as well

as some fundamental differences. First, the input to F is a group

element (rather than an arbitrary string mapped into the group by

the hash functionH ′ in dh-op). But more importantly, knowingwk

for any valuew allows to compute the function onwt
for known t .

At the same time, computing F on a independently random group

element is hard under CDH hence F can be modeled as a Weak PRF

(as noted in [40]). In our application for UOKMS we also use the

fact that F can be computed obliviously and use its homomorphic

properties to support updatability. We leave as a future work item

the formalization of such “obliviousWeak OPRF" function in the UC

model, similarly to the treatment of OPRFs in [29]. For the purpose

of our use of F in the context of UOKMS, we carry the analysis

directly in a specialized UOKMS security model that we present in

Section 3.

3 SECURITY MODEL FOR UPDATABLE
OBLIVIOUS KMS

We introduce the security model for Updatable Oblivious KMS

which combines the elements and advantages of oblivious compu-

tation and updatable encryption in a single model. As in updatable

encryption, e.g. [9, 10, 20, 34, 36], we consider keys that evolve

over epochs, where at the beginning of a new epoch the encryp-

tion/decryption key is replaced with a fresh key. In our case, this

applies to client keys kc held by the Key Management server KmS.
The goal is to capture the security of key rotation both in the sense

of forward security and post-compromise security. That is, the com-

promise of a client key kc from a given epoch should not help in

exposing data encrypted either at a later epoch or in a previous

epoch. In the latter case, however, one needs to qualify this require-

ment. Suppose that a ciphertext e is generated using the key kc from
epoch t and later the key kc

′
for epoch t ′ > t is exposed; should

the data d encrypted under ciphertext e still be secure? Clearly, if
the attackerA sees e ′, the updated version of ciphertext e in epoch

t ′, then A can decrypt e ′ and obtain d . However, if A possesses

kc
′
and e but does not have the updated e ′ then the security of d

needs to be fully preserved.

The above illustrates the intricacies of updatable encryption

models, which require careful bookkeeping of information avail-

able to the attacker: What ciphertexts it sees and when, for what

epochs it obtains the secret key kc , and for which it receives update

information, etc. The goal is to prevent the attacker from learning

anything that is not trivially (and unavoidably) derivable from the

information it requests. In this section, we set these rules and goals

through a formal model of UOKMS security, and use it in Section 4

to prove the security of our UOKMS design from Fig. 4.

3.1 Formal UOKMS Scheme
Formally, an Updatable Oblivious KMS (UOKMS) scheme is a tuple

of algorithmsKGen, Enc,UGen,UEnc, and a protocolDec, intended
for a KMS server KmS, a storage server StS, and a client C, s.t.:

• KGen is a key generation algorithm, run by KmS, which
on input a security parameter ℓ generates a public key pair

(sk, pk).
• Enc is an encryption algorithm, run by any party, which on

input key pk and plaintextm generates ciphertext c .
• Dec = (Dec.KmS,Dec.C) is an interactive decryption proto-

col between a client running Dec.C(pk, c) and KmS running

Dec.KmS(sk, pk), where Dec.C outputsm or ⊥.

• UGen is an update generation algorithm, run by KmS, which
on input (sk, pk) generates a new key pair (sk′, pk′) together
with an update token ∆.
• UEnc is a ciphertext update algorithm, run by StS, which on

input (c, pk,∆) outputs an updated ciphertext c ′.

An UOKMS scheme must satisfy the following correctness prop-
erty. First, the interactive decryption must recover the encrypted

plaintext, i.e. for anym, if (sk, pk) ← KGen(ℓ) and c ← Enc(pk, c)
thenDec.C(pk, c) outputsm after an interactionwithDec.KmS(sk, pk).
Furthermore, the same correctness property applies to keys and

ciphertexts produced and updated in later periods. That is, for ev-

ery m, if (sk, pk) ← KGen(ℓ), c ← Enc(pk,m), (sk′, pk′,∆) ←
UGen(sk, pk), and c ′ ← UEnc(c, pk,∆), then Dec.C(pk′, c ′) out-
putsm after an interaction with Dec.KmS(sk′, pk′).

On public and private values.We model UOKMS as a public key
encryption scheme where any party in possession of the public key

pk can encrypt files for the client whose corresponding decryption

key sk is held by KmS. It is assumed that KmS has the means to

authenticate the client before engaging in a decryption operation

using key sk but a secret channel between client and KmS is not

needed. The update token ∆ is assumed to be transmitted from KmS
to StS over a secure channel. No other party needs or should know

this value. In particular, the model does not guarantee secrecy of

skt+1 given skt and ∆t+1 or secrecy of skt given skt+1 and ∆t+1.
For example, in our UOKMS scheme of Figure 4 receiving ∆t+1
allows one to derive both skt+1 from skt , and skt from skt+1. In
this case, if ∆t+1 was leaked then a KmS corrupted in epoch t would
be effectively also corrupted in epoch t+1, and vice versa.

4

3.2 UOKMS obliviousness and security
The definition below formalizes the notion of KMS obliviousness.

Definition 3.1. We say that a UOKMS scheme is oblivious if for
all efficient algorithms A the interaction of A with Dec.C(pk, c0)
is indistinguishable from interaction with Dec.C(pk, c1), for any
(pk, c0, c1) output by A s.t. c0, c1 are valid ciphertexts of the same

length and pk is a valid public key.
5

4
This is not a necessary feature of a UOKMS scheme, i.e. one could imagine that

∆t+1 allows for updating ciphertexts (and the public key), but not for updating the

corresponding secret key. However, all existing ciphertext-independent updatable

encryption schemes, ours included, allow for updating sk given ∆.
5
The public key pk, normally chosen by KmS, can be chosen by A in this definition,

modeling a malicious KmS, but C can check some properties of the public key and

the ciphertext, e.g. that they contain expected group elements, before running Dec.

As noted above, defining security of UOKMS, and of updatable

encryption in general, requires establishing the rules of what in-

formation the adversary is entitled to receive and when, and what

constitutes a win relative to that information. In our model, time

is divided into epochs at the beginning of which a new key pair

(sk, pk) and an update token ∆ are generated. For each epoch the

adversaryA receives the new public key pk, and can request to see

either the new secret key sk or the update token ∆, which corre-

sponds toA compromising in that epoch, respectively either server

KmS or server StS. Algorithm A is also given oracle access to the

ciphertext-update function UEnc but it is not allowed to use it for

trivial wins, e.g., updating challenge ciphertexts to an epoch for

which it knows the secret key. Note that A learns the secret key

skt of epoch t ifA asks for it, but also ifA asks for skt−1 in epoch

t − 1 and asks for ∆t in epoch t . This shows that what A can learn

in one epoch may depend on what it knew in the previous epoch,

and the UOKMS security game rules must reflect that.

We formalize these rules and the attacker goals via the real-ideal

experiments shown in Fig. 5. In each epoch t , the attacker receives
pkt and chooses to either corrupt KmS, hence obtaining skt , or to
corrupt StS, hence obtaining the update token ∆t , except if KmS
was corrupted in epoch t −1 (otherwise the attacker could calculate
skt from skt−1 and ∆t , making this case equivalent to corrupting

both KmS and StS in epoch t). In addition, A obtains access to

oracles Enc,Dec,UEnc, depending on the compromised party. An

aspect of the definition that is specific to our oblivious setting is

that the attacker with access to the oblivious decryption oracle can

decrypt any ciphertext of its choice in a decryption call, but each

call can result in decryption of at most a single challenge ciphertext.
More generally, with q calls to the decryption oracle,A can decrypt

q messages but nothing more. Finally, we note that the ability of

the attacker to access a decryption oracle provides CCA security to

our public key scheme in the oblivious setting.

Figure 5 shows two experiments: Experiment Exprealuokms(A, ℓ)

which models an interaction of the real-world adversaryA with the

real UOKMS scheme, and experiment Expidealuokms(A, SIM, ℓ) which
models an interaction of a simulator SIM with an “ideal” UOKMS

scheme. We call a UOKMS scheme secure if the two interactions,

real and ideal, are indistinguishable. Formally:

Definition 3.2. Let Advrealuokms(A, ℓ) be the probability that ex-

periment Exprealuokms(A, ℓ) outputs 1, and let Advidealuokms(A, SIM, ℓ)

be the probability that experiment Expidealuokms(A, SIM, ℓ) outputs 1.
We say that UOKMS scheme is secure if for all efficient algorithms

A there exist an efficient algorithm SIM s.t. |Advrealuokms(A, ℓ) −

Advidealuokms(A, SIM, ℓ)| is negligible in ℓ.

The real experiment Exprealuokms(A, ℓ) in Figure 5 models an in-

teraction of adversary A with a UOKMS scheme which progresses

through epochs t = 0, 1, ... where the flag corrt designates whether
A corrupts KmS (kms) or the storage server StS (sts) in epoch t .
After the initialization which generates the initial KMS key pair

(sk0, pk0) we give pk0 toA and letA interact with the encryption,

decryption, and ciphertext update oracles. We model the progress

from one epoch to the next via “party corruption” oracleCorrwhich
uses A’s decision bit corrt+1 to corrupt either KmS or StS in the

next epoch
6
. This oracle triggers a key update, i.e. a new KMS key

pair is created as (skt+1, pkt+1,∆t+1) ← UGen(skt , pkt), and the

epoch counter t is incremented. AdversaryA then receives the new

public key pkt+1 and possibly more, depending on the parties it

corrupts: Namely, if corrt+1 = kms thenA also gets the new secret

key skt+1, and if corrt+1 = corrt , i.e. if A corrupts the same party

in the two consecutive epochs, then A also gets the update token

∆t+1. Crucially, A does not get ∆t+1 if corrt+1 , corrt . (Indeed, as
mentioned above, in the UOKMS scheme of Figure 4, receiving the

update token would allow the adversary to effectively extend the

corruption of KmS from epoch t to epoch t+1 and vice versa.)

The security experiment assumes that KmS corruptions are pas-

sive in the sense that if corrt = kms we let A learn skt (and ∆t if
corrt−1 = kms), but we do not let A interfere in the update gen-

eration and/or the dissemination of the created update token and

a public key, or in the execution of the decryption protocol. (All

existing Updatable Encryption security notions make such choices,

e.g. assuming that even if the adversary compromises the entity

that stores the key, the key update is still generated honestly.)

We assume that StS corruptions are active in the sense that for

epochs where corrt = sts we not only let A learn ∆t , but we also
give A an access to the ciphertext update oracle UEnc which on

input (t ′, c), for t ′<t and c a ciphertext from epoch t ′, outputs the
updated value of c at epoch t . That is, the oracle runs the update
algorithm on (supposed) ciphertext ct ′ = c using update tokens

∆t ′+1, ...,∆t , and outputs the updated ciphertext ct . This models

the ability of the adversary to inject ciphertexts to StS in some

epoch – either by directly modifying these ciphertexts when StS is

corrupted, or by sending a ciphertext to the client who then stores

it at StS7 – and then having this ciphertext updated by the UEnc
oracle. Note that the Update protocol is not provided at epochs

where corrt = kms since this would allow A to decrypt challenge

ciphertexts using the compromised KmS key.

Our UOKMS models a public key encryption where adversary

A can encrypt any message at will, but the role of the encryption

oracle Enc in the UOKMS security game is to model the generation

of challenge ciphertexts. Namely, in the real game, oracle Enc on
A’s inputm generates a ciphertext c = Enc(pkt ,m), but in the ideal

game the same ciphertext c must be produced by the simulator

algorithm SIM given only |m | (and flag enc) as an input while the

plaintextm is added to the (secret) list L of encrypted challenge

plaintexts. AdversaryA can decrypt any ciphertexts (or indeed any

ciphertext-like objects of its choice) using the decryption oracle

Dec. Because we aim to support oblivious decryption, the precise
ciphertext which A effectively enters into the decryption oracle

is hidden from the oracle, hence we must count each decryption

oracle access as an attempt to decrypt some challenge ciphertext.

We model this in the ideal game by giving SIM access to a single
location in list L of challenge plaintexts, per each Dec query of A.

Note that this technically implies that the simulator can extract the

unique ciphertext which A attempts to decrypt in this oblivious

6
We assume w.l.o.g. that A corrupts exactly one of these parties in each epoch. In

particular, the real-world event when both StS and KmS are corrupted in epoch t is
reflected in our model by KmS corrupted in two consecutive epochs t−1, t , because
this reveals both skt and ∆t to A. On the other hand, the epoch without corruption

strictly weakens the adversary capabilities hence it is subsumed by the other cases.

7
Note that our treatment is of a public key encryption, so other parties can potentially

create ciphertexts which land in the StS storage.

Exprealuokms(A, ℓ)

Set t ← 0 and corr0 ← sts. Generate (sk0, pk0) ← KGen(ℓ) and give pk
0
to A. The experiment output is the output of A after

interaction with the following oracles:

Enc: On A’s inputm, if corrt = sts output Enc(pkt ,m);
Dec: Let A interact with Dec.S(skt);
UEnc: On A’s input (t ′, c), if corrt = sts and 0 ≤ t ′ < t then

set ct ′ := c; for j = t ′+1 to t set c j := UEnc(c j−1, pkj ,∆j); output ct ;

Corr: On A’s input corrt+1, set (skt+1, pkt+1,∆t+1) ← UGen(skt , pkt);
If (corrt , corrt+1) = (kms, kms) output (pkt+1, skt+1,∆t+1);
If (corrt , corrt+1) = (kms, sts) output pkt+1;
If (corrt , corrt+1) = (sts, kms) output (pkt+1, skt+1);
If (corrt , corrt+1) = (sts, sts) output (pkt+1,∆t+1);
Increment epoch counter t := t + 1.

Expidealuokms(A, SIM, ℓ)
Set t ← 0 and corr0 ← sts. Initialize an empty challenge plaintext list L. Let a stateful algorithm SIM generate pk

0
on input ℓ

and give pk
0
to A. Experiment output is the output of A after interaction with the following oracles:

Enc: On A’s inputm, if corrt = sts addm to L and output SIM(enc,|m |);
Dec: Let A interact with SIM(dec) while letting SIM learn one chosen item in L;

UEnc: On A’s input (t ′, c), if corrt = sts and 0 ≤ t ′ < t then output SIM(upd, t ′, c);
Corr: On A’s input corrt+1 output SIM(corrt+1) and increment epoch counter t := t + 1.

Figure 5: Security Experiments for Updatable Oblivious KMS

decryption protocol instance, or otherwise the simulator wouldn’t

know which plaintext on list L it should access. Observe also that

we do not create challenge ciphertexts in an epoch where KmS is
corrupted, because knowledge of KmS’s private key makes all such

ciphertexts insecure.

We stress that the Exprealuokms security game allows any pattern of

corruptions except corruption of both StS andKmS in a single epoch
(see footnote 6). However, our model of corruptions is static in the

sense that A must decide which party to corrupt at the beginning

of each epoch. (See also the discussion below.)

Prior Updatable Encryption Models. Our notion of Updatable

(Oblivious) KMS is related to Updatable Encryption (UE) or Encryp-

tion with Key Rotation, which was studied in several recent works

[9, 10, 20, 34, 36]. UOKMS extends the notion of UE by splitting

the UE’s client into two separate entities, the KMS server, which

holds the client’s decryption key and generates key updates, and

the client itself, who decrypts the ciphertexts retrieved from the

storage server via an interactive decryption protocol with the KMS.

The UOKMS model thus lifts the notion of Updatable Encryption to

the setting that reflects realistic large cloud storage deployments,

where the decryption keys of all clients are held by a specialized

Key Managment server. On the other hand, collapsing the client

and the KMS in the UOKMS model into a single entity gives exactly

the setting of UE, hence our UOKMS scheme and security notion

give rise to the corresponding UE scheme and notion.

Our security model corresponds to the ciphertext-independent
UE model of Lehmann et al. [36] (which refines the model of Ev-

erspaugh et al. [20]), where a single update message can be used to

update any number of ciphertexts. Of these only the recent work of

Klooss et al. [34] addresses CCA security, and lets the adversary ac-

cess a decryption oracle, as we do in our model. However, of the two

schemes shown secure in [34] the one whose efficiency is compara-

ble to ours does not allow the adversary an unrestricted access to

the Ciphertext Update oracle, while our model allows unrestricted

access to both Dec and UEnc oracles. The scheme of [34] which al-

lows such unrestricted oracle access relies heavily on pairing-based

NIZKs, using e.g. 22 pairings in decryption, in contrast to a single

standard group exponentiation used in decryption in our scheme.

However, our model of UOKMS security is specialized to the case of

oblivious interactive decryption where the decryption oracle, which

models the KMS server, runs on blinded ciphertexts. In such setting

a standard CCA notion, where the decryption oracle is restricted

from decrypting a challenge ciphertext, does not apply. Thus we

capture security with a “counting method” which enforces that any

Q accesses to the decryption oracle allow for learning plaintext

information in at most Q challenge ciphertexts. Ours is the first

treatment of Updatable Encryption with oblivious decryption pro-

cedure, and this setting necessitates a “counting-based” notion of

security in the presence of decryption oracle.

The UE schemes of [20, 34, 36] achieve update indistinguishabil-
ity, i.e. a ciphertext updated to the new epoch cannot be efficiently

linked to the original from the previous epoch. We do not consider

this property, although our scheme can be extended to support it,

because achieving this property requires update cost proportional

to the total size of the encrypted data, which we believe is impracti-

cal in large storage deployments (see footnote 3). The above UE

schemes also consider ciphertext integrity, but this notion is special-

ized to the case of symmetric key encryption, while our UOKMS

model treats the case of public key encryption.

Finally, we should point out that our security model is static in

the sense that an adversary must choose at the beginning of each

epoch whether it compromises the decryption key stored by the

KMS or the update token held by the storage server (or both). By

contrast, [34, 36] consider an adaptive model of corruptions, where

an adversary can request either the decryption key or the update to-

ken or both for any past epoch as well. The adaptive security model

is more general and less restrictive, but we analyze the security

of our scheme only in the static model because adaptive security

presents subtle technical challenges which we do not know how

to overcome.
8
Technically, the simulator would have to make bets

about past epochs, guessing whether an adverary will eventually

ask for a decryption key for some past epoch (in which case the sim-

ulator needs to know this epoch key), or whether an adversary will

ask for an update token which allows updating a challenge cipher-

text to that epoch (in which case the simulator needs to embed an

encryption challenge in that epoch key). Since the simulator needs

to make these bets with respect to polynomially-many past epochs,

the probability that its guesses are all correct will be negligible, and

it is not clear if such strategy can lead to efficient simulation. We

thus believe that security analysis in the fully adaptive model of

[34, 36] remains an open question.

4 SECURITY ANALYSIS OF THE UOKMS
SCHEME

The UOKMS scheme shown in Figure 4 is information-theoretic

oblivious, as is the OPRF protocol dh-op on which the Decryption

protocol in Fig. 4 is based, but the security of this scheme relies on

the OMDH-IO computational assumption and the (receiver) non-
committing property of symmetric encryption, both defined below:

One-More DH with Inverse Oracle (OMDH-IO) Assumption.
For any PPT A the following probability is negligible:

Prob[A(·)
k ,(·)1/k (д,дk ,д1, . . . ,дN) = {(дjs ,д

k
js)}s=1, ...,Q+1]

with the probability going over random k in Zq , random choice

of group elements д1, . . . ,дN in G = ⟨д⟩, and A’s randomness,

and where (·)k and (·)1/k are exponentiation oracles, and Q is the

number of A’s queries to the (·)k oracle.

Without access to oracle (·)1/k , the above is identical to the

One-More DH (OMDH) assumption [6, 32], which was used e.g.

for proving the security of the practical OPRF schemes [28, 29],

particularly the one shown in Figure 3 in Section 2.1. Thus, OMDH-

IO is a strengthening of OMDH; its security can be proven in the

Generic Group Model (GGM) as an extension to the proof of OMDH

in that model [31] and with a slight modification of the security

bounds. We sketch this adaptation in Appendix A.

Receiver Non-Committing Symmetric-Key Encryption. This
property of symmetric-key encryption (SKE) is used in our security

analysis to enable the simulation required by the security game in

8
We stress that this is an issue in the proof only and not an explicit attack, and that

similar technical issues were observed regarding adaptive security in other contexts,

e.g. in proactive cryptosystems, see e.g. [1, 13, 37].

Fig. 5. Informally, it states that without knowledge of the encryption

key, ciphertexts do not commit to their underlying plaintexts, thus

allowing the simulator to “explain" a fixed ciphertext as the encryp-

ton of any plaintext. Formally, a symmetric encryption scheme

(Enc,Dec) is receiver non-committing (RNC) if for any PPTA there

exists PPT SIM s.t. A’s view in the following real and ideal games

is indistinguishable: (1) In the real game A interacts with oracles

Enc and Reveal, where Enc(i,m) picks random key ki and outputs

e = Enc(ki ,m) while Reveal(i) reveals ki ; (2) In the ideal game A

interacts with a stateful algorithm SIM, s.t. when A sends (i,m)
as an Enc query, SIM must return e on input (i, |m |), and when A

sends i as a Reveal query, SIM must output ki on input (i,m).

Theorem 4.1. The UOKMS scheme in Figure 4 is unconditionally
oblivious and is secure under the OMDH-IO assumption in ROM if
the symmetric encryption scheme Enc is receiver non-committing.

Notes on the Proof. The proof of Theorem 4.1 is presented in Sec-

tion 4.1. We note that the inverse exponentiation oracle in OMDH-

IO is necessary to obtain the theorem as the protocol (in the context

of our model) provides an attacker A that corrupts KmS in epoch

t − 1 and StS in period t with an oracle to the function (·)1/kt . In-

deed, in epoch t , A obtains access to UEnc which implements an

exponentiation oracle (·)∆t = (·)kt−1/kt , and together with knowl-

edge of kt−1,A can compute (·)1/kt on any value of its choice. The

RNC property of SKE Enc is likewise necessary. Consider an at-

tackerA making two queries: (a) an Enc query on somem, and (b) a

Dec query whereA runs theDec.C protocol on the received cipher-

text c = (ObjId,w, e). By the UOKMS security game rules of Fig. 5

the simulator SIM has to simulate this as follows: (a) it produces c
on message length |m |, and (b) on inputm retrieved from list L, it
simulates protocol Dec.S so that c decrypts tom. SIM’s response v
to A’s message u in the decryption protocol, see Fig. 4, defines the

effective KMS key as k = DL(u,v), and consequently defines the

data encryption key for (ObjId,w, e) as dek = H (wk). Thus when

SIM defines the output dek of oracle H on inputwk
it must satisfy

that e = Encdek(m). In particular, SIM first creates ciphertext e
given just |m | and then, givenm, it creates dek s.t. e = Encdek(m),
wihch implies that SKE Enc satisfies the RNC property.

Corollary 4.2. The UOKMS scheme in Figure 4 is secure under
the OMDH-IO assumption in the Ideal Cipher Model and ROM if the
symmetric encryption is implemented using CTR or CBC modes.

The corollary follows because CTR and CBC encryption modes

satisfy the receiver non-committing property in the Ideal Cipher

model: If message length |m | defines n blocks for block cipher E
then SIM services Enc query on input (i, |m |) by setting cipher-

text e = (IV , e1, ..., en) where IV and all ei ’s are random blocks.

When SIM getsm = (m1, ...,mn) to service Reveal(i) query, values
(IV , e1, ..., en ,m1, ...,mn) define n input/output pairs which SIM
needs to set for E(k, ·) for random key k . For counter mode CTR,

SIM sets E(k, IV + j) =mj ⊕ ej for all j while for CBC mode, SIM
sets E(k,mj ⊕ ej−1) = ej for all j where e0 = IV . Either way by

randomness of ei ’s this sets E(k, ·) outputs on n given points to

n random values. The probability that this creates collisions in

E(k, ·) is negligible, and by randomness of k there is a negligible

probability that any points of E(k, ·) were queried before.

Note. The above argument can be expanded to include authenticated

encryption via encrypt-then-mac where the simulator chooses the

MAC key.

4.1 Proof of Theorem 4.1
Proof. Note first that the unconditional obliviousness of this

UOKMS scheme is immediate, because for any public key pk and any
two valid ciphertexts c0 = (ObjId0,w0, e0) and c1 = (ObjId1,w1, e1),
the interaction with Dec.C on (pk, cb) for b = 0 and b = 1 is

identical: In either case C sends u = (wb)
r ′
for r ′ ←

R
Zq , which

is a random group element if wb ∈ G and wb , 1 because the

group order is prime. To argue UOKMS security we will first show

an efficient simulator algorithm SIM which having access to (any)

adversary algorithm A, interacts with the ideal UOKMS game

Expidealuokms. We will then re-write SIM as a reduction algorithm R s.t.

if A has ϵ advantage in distinguishing an interaction with the real

UOKMS game Exprealuokms and an interaction with SIM and Expidealuokms,

i.e. if

ϵ = | Pr[1← Exprealuokms(A, ℓ)] − Pr[1← Expidealuokms(A, SIM, ℓ)] |

then reduction R, given access to A, has the same probability ϵ of

solving the OMDH-IO problem. It follows that under the OMDH-IO

assumption quantity ϵ must be negligible, which implies that the

UOKMS scheme is secure. We note that in one step along these

SIM modifications we replace the real symmetric encryption Enc
with the simulator assumed by the RNC property of SKE Enc. We

provide the details of the proof now.

The proof relies on the ROM model for function H : G→{0, 1}ℓ

used in UOKMS scheme in Figure 4. Specifically, we treatH as an ex-

ternal entityA needs to query to computeH outputs, simulator SIM
and reduction R interceptA’s calls toH , and we measure probabili-

tiesp0 = Pr[1←Exprealuokms(A, ℓ)] andp1 = Pr[1←Expidealuokms(A, SIM, ℓ)]
over the randomness of H . For simplicity of notation we assume

that groupG is fixed for every security parameter ℓ and we assume

a non-uniform security model both for the OMDH-IO assumption

and UOKMS security. To reduce visual clutter we denote plaintext

files asm instead of Obj and we omit idenfiers ObjId in ciphertexts.

We will first describe game G, which reproduces the same dis-

tribution A sees in the real security game Exprealuokms, but does it in

a way which makes it easier to understand simulator SIM which

we will describe next. Game G picks k ∈ Zq and sets the first

epoch key as (k0,y0) = (k,д
k). Game G also picks a list of random

group elements д1, ...,дN inG , where N is the upper-bound on the

number of Enc queries A makes. Then for every i > 0, G picks

the following values: If A corrupts KmS in epoch i then G picks

random ki ← Zq and outputs (ki ,yi) for yi ← дki . (If A corrupts

KmS for two epochs in the row G also outputs ∆i = ki−1/ki .) If A
corrupts StS in epoch i then G acts depending on which party A

corrupted in epoch i − 1: (case 1) If it was StS then G picks random

∆i ← Zq and outputs yi ← yi−1
1/∆i

; (case 2) If it was KmS then

G picks random ∆j+1,i ← Zq and outputs yi ← yj
1/∆j+1,i

where j
was the last epoch whenA corrupted StS beforeA corrupted KmS
in epoch i − 1. Let EK be the set of epochs when A corrupts KmS
and ES the set of epochs when A corrupts StS. The above process
defines value δi for each i ∈ ES s.t. yi = y1/δi (hence ki = k/δi),
and G can compute this δi as either δi−1 · ∆i , if (i − 1) ∈ ES , or as

δj · ∆j+1,i , if j ∈ ES and {j + 1, ..., i − 1} ⊆ EK . Given these values,

G services oracles Enc, Dec, and UEnc at epoch i ∈ ES (note that

these calls are disallowed if i ∈ EK) as follows:

• G replies to n-th call to Enc(m) with c = (w, Encdek(m))
wherew = (дn)

δi
and dek = H (z) for z = (дn)

k
; (Note that

z = wk/δi
, hence c is distributed as in the real interaction.)

• G replies to message u to Dec with v = (u1/δi)k ;
• G replies to UEnc(t ′, c) for c = (w, e) with (w ′, e) for w ′ =
wδi /δt ′ if t ′ ∈ ES , andw

′ = (wδi ·kt ′)1/k if t ′ ∈ EK .

The correctness of Enc and Dec responses follows because ki =
k/δi , and as for UEnc, note that ki = k/δi , and the implicit update

from epoch t ′ to epoch i is ∆t ′,i = kt ′/ki , which together implies

that ∆t ′,i = (kt ·δi) · (1/k). Thus gameG reproduces the exact same

view as security game Exprealuokms.

Simulator SIM interacts with an ideal experiment Expidealuokms and

executes the same algorithm as game G – including picking the ini-

tial keyk and keyski if i ∈ EK and update-related values δi and ∆j,i
if i ∈ ES as described above (and defining corresponding δi ’s and
ki ’s). For handling oracles Enc andDec, SIM resorts to the (stateful)

simulator SIME assumed by the Receiver Non-Committing (RNC)

property of the symmetric encryption Enc. First, when A sends

t-th querym to oracle Enc in epoch i ∈ ES , we putm at position t

in list L, and SIM replies to A with c = (w, e) forw = (дt)
δi

and e
computed by SIME on input (t , |m |). Second, when A sends u to

Dec, SIM replies with v = (u1/δi)k and then monitors A’s queries

to H : If A makes query z to H s.t. z1/k = дt for дt ∈ {д1, ...,дN }

then SIM asks Expidealuokms to reveal messagem at the t-th position in

list L, sends (t ,m) as the Reveal query to SIME , and given key dek
as SIME ’s response, defines H (z) = dek. By the RNC property of

Enc, pairs (dek, e) produced by SIME are computationally indistin-

guishable from random dek and e = Encdek(m). (In particular, this

process sets H (z) to a value indistinguishable from random.)

The only difference between A’s interaction with G and A’s

interaction with SIM (which in turn interacts with Expidealuokms) is if

in the latter case A queries H on arguments (дi)
k
for more than

Q elements in {д1, ...,дN } where Q is the number of A’s decryp-

tion queries: Given Q decryption queries SIM is allowed to learn

only Q items in list L, so it can embed correct messages as de-

cryptions of Q challenge ciphertexts, involving Q challenge points

{дjs }s=1, ...,Q , but SIM will not be able to decrypt correctly the

(Q + 1)-st ciphertext (w, e) formed asw = (дjQ+1)
δi

s.t. A queries

H on z = (дjQ+1)
k = wki

. In other words, if there is ϵ difference be-

tween Pr [1← Exprealuokms(A, ℓ)] and Pr[1← Expidealuokms(A, SIM, ℓ)]
then ϵ is upper-bounded by the probability that A queries H on

values (дj)
k
for Q + 1 points дj in {д1, ...,дN }. But by inspection

of SIM one can see that SIM can be readily changed to reduction

R against the OMDH-IO problem: R follows the algorithm of SIM
except that uses the OMDH-IO challenge key дk as y, it gets points
(д1, . . . ,дN) as part of the OMDH-IO challenge, and it uses OMDH-

IO oracles (·)k , (·)1/k instead of using exponent k directly. Note

that SIM uses (·)k only Q times, to service the Q decryption oracle

queries, and ifA makes queries toH onQ +1 arguments (дj)
k
with

probability ϵ , then R will break OMDH-IO with probability ϵ be-

cause R can identify such queries with oracle (·)1/k . This completes

the proof of Theorem 4.1. �

5 THRESHOLD OKMS AND UOKMS
The key management systems (particularly for storage applications)

that motivate our work are often characterized by the large amounts

of data they store as well as the value and long-lived nature of

this data. The whole security of such an operation depends on

the security of the KMS client keys, hence the importance of key

rotation (as addressed by UOKMS) as a way to limit the bad effects

of key exposure. Yet, the main priority is to prevent these keys from

leaking in the first place. Fortunately, all the schemes presented in

this paper lend themselves to efficient distributed implementations
via the very efficient Threshold OPRF tdh-op [30] shown in Figure 6.

In our application, client keyskc are shared amongn KMS servers

S1, . . . , Sn , so that the cooperation of t + 1 of these is needed to

compute the OPRF function with kc as the key, while the compro-

mise of t servers provides no information to the attacker on kc .
Moreover, the key kc is never reconstructed or exists in one place,

not even at generation (which is also performed distributively). In

addition, this scheme enjoys proactive security [25, 43], namely, the

sharing among the n servers can be refreshed periodically so that

the attacker needs to break into t + 1 servers during the same time

period to be able to compromise the key. Servers can be replaced

and shares recovered, protecting secrecy and integrity/availability

of the system as needed for long-lived keys.

The tdh-op function from Fig. 6 implements exactly the OPRF as

defined in the OKMS scheme from Fig. 2. For the UOKMS scheme of

Fig. 4, the only difference is in the input from the client (a random

group element rather than a hashed value).

Note on efficiency. The dominant cost of computation in tdh-op is

one exponentiation for each of the t + 1 servers and two exponenti-
ations for the client regardless of the values n and t . We note that

tdh-op is described in a simplified form in Figure 6 where the set of

reconstruction parties SE is assumed to be known by C in advance.

If the reconstruction set SE is not known a-priori (i.e., more than

t + 1 servers are contacted), each Si would respond with aki and C
would compute the interpolation in the exponent at the cost of a

single multi-exponentiation (which can be further optimized when

the αi ’s are small, e.g., αi = i , using a recent technique from [44]).

An additional important feature of the tdh-op solution is that the

aggregation of server values bi into the dh-op result can be done

by a proxy server (one of the threshold servers or a special purpose

one) so that the threshold implementation is transparent to the

client.

5.1 Distributed Updates
While a threshold solution greatly increases the security of the KMS

keys, one may still want to apply key rotation, particularly given

the efficiency of updates in our UOKMS solution. In the threshold

setting this means that at the beginning of a rotation epoch, the

servers, that have a sharing of a key kc , need to choose a new

random client key kc
′
and generate the value ∆ = kc/kc

′
. However,

∆ should only be disclosed to the client C and the storage server

StS, calling for a distributed generation of ∆ where no subset of t
or less servers learn anything about this value.

We show a procedure that given (n, t) Shamir sharing of a key k
generates (n, t) sharing of a new random key k ′ and of the update

token ∆ = k/k ′. It uses two standard tools from multi-party com-

putation: (i) The joint generation of a Shamir sharing ρ1, . . . , ρn of

a uniformly random secret ρ over Zq , e.g., [45] or Fig. 7 of [23], and
(ii) a Distributed Multiplication protocol which given the sharings

of secret a and secret b generates a sharing of the product a · b
without learning anything about either secret, e.g., [23].

The distributed update protocol assumes thatn servers S1, . . . , Sn
have a sharing (k1, . . . ,kn) of a key k . To produce a new key k ′ the
servers jointly generate a sharing ρ1, . . . , ρn of a random secret ρ ∈
Zq and run distributed multiplication to generate shares k ′

1
, . . . ,k ′n

of the new key defined as k ′ = ρ · k . Finally, each server Si sends
to C and/or StS its share ρi from which the recipient reconstructs

ρ and sets ∆ := ρ−1 [= k ′/k].

5.2 Verifiable Threshold (U)OKMS
As noted earlier, being able to verify the correctness of a data

encryption key dek before encrypting an object is an important fea-

ture of the OKMS solution and a major advantage over traditional

wrapping-based KM systems (Fig. 1). OKMS Verifiability requires

checking the correct OPRF operation by the KmS for which Veri-

fiable OPRFs [28] are available, assuming the client possesses the

authentic public key дkc corresponding to KmS key kc . As indi-
cated in Section 2.2, verifiability in the case of UOKMS can be done

directly via correct symmetric authenticated decryption, thus dis-

pensing with the need to check the oblivious operation by KmS. In
the threshold case, however, where multiple servers provide input

for decryption, it is necessary to identify misbehaving servers. Thus,

in the threshold case, verifiability is needed also for UOKMS.

Note that for the single-server dh-op scheme of Fig.3, verifiabil-

ity can be added via a simple non-interactive zero-knowledge proof

of equality of logarithms. For the threshold case, namely, tdh-op
scheme of Fig.6, if we assume that the client possesses the public

keys дki corresponding to the shares ki of key k = kc , then zero-

knowledge proofs can be used too for verification. However, this

prevents the ability to have a “proxy" (e.g., any one of the n servers)

that does the aggregation of the bi values returned by the servers

into the OPRF result. With ZK verification, it is the client itself that

needs to do this aggregation. This loses the “client transparency"

property of tdh-op that has the important practical advantage that

the client (and its software) need not be aware of the implemen-

tation of the server, whether it is a single-server deployment or a

multi-server one.

Next, we present an alternative verification procedure that is

client transparent. The client only needs to have the certified public

key дk for key k (regardless of the number of servers). We first de-

scribe the scheme for the case of the single-server OPRF dh-op from
Fig. 3 and later extend it to the threshold case. (This works directly

for OKMS, the adaptation to UOKMS is immediate.) The procedure

is reminiscent of Chaum’s protocol for undeniable signatures [15]

but simplified by dispensing of zero-knowledge proofs that are

not needed here. It is easy to verify that the integrity guarantee is

unconditional, namely, against unbounded attackers.

Key and server initialization.
Key k ←

R
Zq is secret shared using Shamir’s scheme with parameters n, t ;

Server Si , i = 1, . . . ,n, holds share ki .

Threshold Oblivious Computation of Fk (x).
• On input x , client C picks r ←

R
Zq and computes a := H ′(x)r ; it chooses a subset SE of [n] of size t + 1 and sends to

each server Si , i ∈ SE, the value a and the subset SE.

• Upon receiving a from C, server Si verifies that a ∈ G and if so it responds with bi := aλi ·ki where λi is a Lagrange
interpolation coefficient for index i and index set SE.

• When C receives bi from each server Si , i ∈ SE, C outputs as the result of Fk (x) the value H (x , (
∏

i ∈SE bi)
1/r)).

Figure 6: Protocol tdh-op [30]: (n, t)-threshold computation of dh-op from Fig. 3

• On input x , C sets h = H ′(x), sets r , c,d ←
R
Zq , and sends

to server S the pair of values a = hr , b = hcдd .

• S responds with A = ak ,B = bk .
• C checks that

Ar
′

= Bc
′

v−dc
′

(1)

where r ′ = r−1, c ′ = c−1 (and v = дk). It rejects if the

equality does not hold, otherwiseC sets the value of (H ′(x))k

to Ar
′

which it is already computed for equation (1).

This procedure involves running dh-op on two different values

and then verifying consistency via a single multi-exponentiation

by the client. The additional computational cost with respect to

the base dh-op is a single exponentiation for the server and two

multi-exponentiations for the client, essentially doubling the work

for the non-verified case.

We now adapt the scheme to the threshold OPRF tdh-op. The
client C sends the same pair of values (a,b) to each participant

server Si who responds with Ai = aki ,Bi = bki . Upon gather-

ing t + 1 responses, C interpolates in the exponent (one multi-

exponentiation) to obtain values A,B and checks the identity (1).

If it holds, C sets (H ′(x))k to Ar
′

, else it applies the check (1) to

each pair Ai ,Bi received by participating server Si using vi = д
ki

instead of v .
The computational cost in the normal case, where the verifica-

tion against v = дk succeeds, is the same as in the single-server

case except for one additional interpolation in the exponent. If

verification against v = дk fails then the cost is an additional multi-

exponentiation per each participating server. As said, the special

feature of this procedure is that the client can interact with a proxy

(or gateway) in a way that all operations by the client are identical

to the single-server case. The proxy will send the values (a,b) gen-
erated by the client to the servers and will aggregate the responses

Ai ,Bi into a single response that can be verified with the public

key дk . Before sending to the client, the proxy can verify if the ag-

gregation verifies correctly. If not, it needs to check the individual

values sent by each server and discard the bad ones – all of this is

done without any awareness by the client. Thus resulting in fully

client-transparent solution.

OKMS Client Operations (Single Thread)

Wrap Unwrap

Hash to Curve 58.26 58.26

Generate Blind 1.58 1.58

Apply Blind 68.07 68.07

Create Challenge 83.27 -

Inverse Blind 16.95 16.95

Remove Blind 68.07 68.07

Verify Response 106.67 -

Total Time (µs) 402.86 212.92

Operations / Second 2,482 4,696

Figure 7: Client operation time and Op/s in OKMS

6 IMPLEMENTATION AND PERFORMANCE
We report on implementation and performance of the OKMS and

UOKMS schemes from Section 2.1 (Fig. 2) and Section 2.2 (Fig. 4),

respectively.

Microbenchmarks. Implementations of all necessary client and

server operations were written in C++ using the OpenSSL library

(version 1.1.1-pre5) to provide cryptographic functionality. Perfor-

mance tests were conducted on a machine with an Intel(R) Xeon(R)

CPU E5-2666 v3 @ 2.90GHz having 15 GB of memory. The imple-

mentation was compiled with the gcc compiler with optimization

level 3.

The following tables detail the run times of each operation aver-

aged over 10,000 trials. These tests used only a single thread and

CPU core; results could be improved by performing these opera-

tions concurrently across multiple CPU cores.

In these tests, all elliptic curve operations were based on NIST

P-256. Field operations (for Shamir and blinding factors) were de-

fined over the prime order of NIST P-256. Hashing to the curve

(as required by the OPRF defined in Fig. 3) was performed using

SHA-256 and the constant time Simplified SWU algorithm [12].

Client operations in the OKMS scheme are shown in Fig. 7 for

both encryption (“wrapping") and decryption (“unwrapping"). The

two operations differ only in that interactive verifiability is per-

formed for wrap operations, while for unwrapping (the more com-

mon operation) regular symmetric key verification suffices.

When the (U)OKMS servers are deployed in a threshold architec-

ture then some entity must perform polynomial interpolation “in

the exponent”. This can be implemented as a multi-exponentiation

Interpolation Layer Performance (Single Thread)

(t+1)-of-N Time (µs) Ops / Second

1-of-1 81.68 12,242

3-of-5 155.99 6,410

5-of-9 236.72 4,224

5-of-15 236.66 4,225

6-of-11 280.04 3,570

Figure 8: Interpolation layer performance for various
threshold parameters

(U)OKMS Server Operations (Single Thread)

Time (µs) Ops / Second

Wrap 136.13 7,345

Unwrap 68.07 14,691

Figure 9: (U)OKMS Server performance for wrap and un-
wrap

UOKMS Operations (Single Thread)

Time (µs) Operations / Second

Wrap 24.24 41,261

Unwrap 162.33 6,160

Update 68.07 14,691

Figure 10: Client operation time and Op/s in UOKMS

of the individual server’s contributions together with the corre-

sponding Lagrange coefficients. This interpolation operation could

variously be performed by one of the servers, by the client, or by a

dedicated intermediate entity.

We observe that the multi-exponentiation time dominates the

cost of the interpolation (computing the Lagrange coefficients is

correspondingly cheap), and we find that the total cost depends on

the threshold rather than the total number of servers. We report

interpolation times in Fig. 8.

Server operations, measured for the single server and thresh-

old variants of this (U)OKMS scheme (implemented with protocol

tdh-pop) are shown in Fig. 9. This includes only performing an

exponentiation (EC scalar multiply) in the curve for each input pro-

vided by the client (the wrap operation is more costly as it includes

an additional exponentiation to support the interactive verification

procedure from Section 5.2).

Total time and operations per second is not significantly different

for the threshold case, as each of the involved servers computes the

same function in parallel.

Client performance in the UOKMS scheme (Sec. 2.2) is shown

in Fig. 10. This setting benefits from being able to perform wrap

operations without server involvement, and can further benefit

from precomputation tables for exponentiation of д and дk . In our

testing, precomputation provided more than a 600% speed up (11.33

vs. 68.20 µs). We summarize the number of operations per second

the client can perform in the UOKMS.

(U)OKMS Server Throughput (8 CPU cores)

Scheme KeepAlive No KeepAlive

Static Page 65,018 6,462

OPRF (Unwrap) 32,094 6,349

Figure 11: (U)OKMS Server Requests/s on EC2 instance (LAN
setting)

(U)OKMS Server. To evaluate performance and scalability we

hosted our (U)OKMS server implementation on Amazon’s Elas-

tic Compute Cloud (EC2)[3] using a c4.2xlarge instance type. This
instance type provides 8 virtual CPUS with an Intel(R) Xeon(R)

CPU E5-2666 v3 @ 2.90GHz having 15 GB of memory and was the

same instance type used to obtain the microbenchmark numbers

above.

Requests to this server were issued over HTTP and the web

server, nginx, was configured with 8 worker processes (one per

CPU). OKMS functionality was added to this web server as a na-

tively compiled module which used the OpenSSL library (version

1.1.1-pre5) to provide cryptographic functionality. The server ran

Ubuntu 16.04 as its operating system.

Throughput.Tomeasure throughput a clientmachine (also c4.2xlarge)
was deployed in the same Amazon Web Service (AWS) availability

zone as the server. We used the HTTP load generating tool hey to

measure the throughput for each scheme. hey was configured with

a concurrency level of 80 and all results were averaged over 50,000

requests. All requests were for an unwrap operation and were sent

over HTTPS using (TLS 1.2 with ECDHE-ECDSA-AES256-GCM-

SHA384). The server used a self-signed certificate with an EC key

on the NIST P-256 curve. Computation time dominates in the LAN

setting due to almost negligible network latency, with the CPU

cores reaching near 100% utilization during the LAN throughput

tests. To gauge the limits of the server performance, client-side

operations of blinding and verification were not performed by the

load generator.

For each scheme, we tested with session KeepAlive on and off.

When off, a new TCP connection and TLS session must be nego-

tiated for each request. When on, the connection setup costs are

amortized over all requests, which is in line with a client that must

unwrap many keys.

The table in Figure 11 details the observed throughput in re-

quests per second (RPS) for the various schemes and two KeepAlive

configurations (all over TLS). We compare these schemes to a static

page as a baseline.

We observe that for the No KeepAlive configuration, the cost of
creating the new connection and establishing the TLS session domi-

nates resulting in very little difference in RPS between the schemes.

For the KeepAlive configuration, throughput is significantly better,

achieving over 30,000 RPS for the OPRF/T-OPRF case. Thus our

(U)OKMS implementation can handle a large number of clients

with a single server. For comparison, Amazon’s object storage ser-

vice reported a peak load of 1.1 million requests per second [33].

If needed, the KMS implementation can be scaled with standard

techniques, such as deploying a greater number of servers. With a

few dozen servers in the KMS, a unique key could be supplied each

time an object is written to or read from Amazon’s service.

Hardware Security Modules. A best practice for securing master

keys is to keep them within Hardware Security Modules (HSMs)[4]

to prevent their export to less secure locations. Fortunately, the

methods described in this paper are supported by existing commer-

cial HSMs. Indeed, most HSMs support the PKCS#11 standard[42].

This specification defines an API method called CKM_ECDH1_DERIVE
which takes an arbitrary point as an input and returns the x-coordinate

of the point resulting from a scalar multiplication of the input point

using an HSM-held private key as the scalar.

We tested three HSM implementations and found all supported

the ECDH1 derive method. The returned x-coordinate is sufficient

to perform an oblivious key derivarion, and verification, but verifi-

cation (only needed in the OKMS setting and for threshold imple-

mentations of the OPRF) requires that both positive and negative

solutions for the y-coordinate be checked By importing an elliptic

curve private key computed as a Shamir share, existing HSMs can

be used as part of a threshold implementation. Due to oblivious-

ness, interpolating the result from a threshold of HSMs can be done

external to the HSM without sacrificing confidentiality.

We note two potential limitations of using an HSM to hold the

OPRF key. The first is that HSMs are often limited in the curves they

support. While all of the HSMs we evaluated supported standard

NIST curves, none supported Curve25519. The second limitation

is performance. While high end commercial HSMs can achieve

up to 22,000 scalar multiplications per second[48], this is roughly

equivalent to what a single core can achieve in a multi-core server

CPU.

While software implementations of symmetric key wrapping

algorithms can be several orders of magnitude faster than asym-

metric operations, we found HSMs often employ specialized hard-

ware to accelerate the normally slower asymmetric operations.

In some cases, HSMs[48] including those used by leading cloud

providers[38], the number of supported ECC operations per second

is comparable to that of supported symmetric encryption operations

per second.

In conclusion, while in the traditional key-wrapping approach

(Fig. 1) one can secure wrapping keys diligently e.g., in HSMs, the

plain data encryption keys (dek) travel over much less secure TLS

channels (sometimes ending or visible in multiple points outside

the HSM boundary), and are potentially exposed to rogue adminis-

trators, accidental logging, etc. In contrast, these vulnerabilities are

eliminated by the oblivious computation approach where as long

as the OPRF key is secure, nothing can be learned about the data

(other than by corrupting the client). Fortunately, securing these

OPRF keys in HSMs is practical today as noted above, and while

symmetric operations are less expensive than OPRF ones in general,

HSMs with 20,000 EC op/sec can hardly be the system’s bottleneck

(of course, in large operations multiple HSMs will be used). Impor-

tantly, in UOKMS encrypting data does not necesitate of interaction

with the KmS, further increasing performance. Additionally, the

UOKMS approach offers much more efficient key rotation than tra-

ditional systems where rotation requires communication with the

KMS for each key (dek or kek) to be updated. This slows down the

rotation process, resulting in longer rotation periods and reduced

security.

ACKNOWLEDGMENTS
We thank Anja Lehmann for very helpful discussions related to

security notions of Updatable Encryption schemes. We also thank

Martin Schmatz for sharing with us his expertise, particularly in the

area of HSMs, and we thank CCS reviewers who helped improving

the presentation of the paper.

REFERENCES
[1] J. F. Almansa, I. Damgård, and J. B. Nielsen. Simplified threshold RSA with

adaptive and proactive security. In S. Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, pages 593–611, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[2] Amazon Web Services. Aws key management service cryptographic details, 2016.

https://d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf.

[3] Amazon Web Services. Aws elastic compute cloud, 2018. https://aws.amazon.

com/ec2/.

[4] E. Barker andW. Barker. Recommendation for key management, part 2: Best prac-

tices for key management organizations (2nd draft). Technical report, National

Institute of Standards and Technology, 2018.

[5] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-

RSA-inversion problems and the security of Chaum’s blind signature scheme.

Journal of Cryptology, 16(3):185–215, June 2003.
[6] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The One-More-

RSA-Inversion problems and the security of chaum’s blind signature scheme.

Journal of Cryptology, 16(3):185–215, 2003.
[7] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy

cryptography. In K. Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages
127–144. Springer, Heidelberg, May / June 1998.

[8] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,

editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg,
Aug. 2004.

[9] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic

prfs and their applications. InAdvances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 410–428, 2013.

[10] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic

prfs and their applications. IACR Cryptology ePrint Archive, 2015:220, 2015.
[11] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from

ring-LWE and security for key dependent messages. In P. Rogaway, editor,

CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer, Heidelberg, Aug.
2011.

[12] E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient

indifferentiable hashing into ordinary elliptic curves. Cryptology ePrint Archive,

Report 2009/340, 2009. http://eprint.iacr.org/2009/340.

[13] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security

for threshold cryptosystems. In M. Wiener, editor, Advances in Cryptology —
CRYPTO’ 99, pages 98–116, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[14] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.

In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 255–271.
Springer, Heidelberg, May 2003.

[15] D. Chaum. Zero-knowledge undeniable signatures. In I. Damgård, editor, EU-
ROCRYPT’90, volume 473 of LNCS, pages 458–464. Springer, Heidelberg, May

1991.

[16] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell,

editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, Aug.
1993.

[17] A. Davidson, A. Deo, E. Lee, and K. Martin. Strong post-compromise secure

proxy re-encryption. In Information Security and Privacy (ACISP) 2019, 2019.
[18] D. Derler, S. Krenn, T. Lorünser, S. Ramacher, D. Slamanig, and C. Striecks. Revis-

iting proxy re-encryption: Forward secrecy, improved security, and applications.

In M. Abdalla and R. Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS,
pages 219–250. Springer, Heidelberg, Mar. 2018.

[19] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia PRF

service. In 24th USENIX Security Symposium (USENIX Security 15), pages 547–562,
Washington, D.C., 2015. USENIX Association.

[20] A. Everspaugh, K. G. Paterson, T. Ristenpart, and S. Scott. Key rotation for

authenticated encryption. In Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part III, pages 98–129, 2017.

[21] W. Ford and B. S. Kaliski Jr. Server-assisted generation of a strong secret from a

password. In 9th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE 2000), pages 176–180, Gaithersburg,
MD, USA, June 4–16, 2000. IEEE Computer Society.

https://d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
http://eprint.iacr.org/2009/340

[22] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious

pseudorandom functions. In J. Kilian, editor, TCC 2005, volume 3378 of LNCS,
pages 303–324. Springer, Heidelberg, Feb. 2005.

[23] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fact-track multiparty

computations with applications to threshold cryptography. In B. A. Coan and

Y. Afek, editors, 17th ACM PODC, pages 101–111. ACM, June / July 1998.

[24] Google Cloud. Google cloud key management service, 2018. https://cloud.google.

com/kms/.

[25] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing

or: How to cope with perpetual leakage. In D. Coppersmith, editor, CRYPTO’95,
volume 963 of LNCS, pages 339–352. Springer, Heidelberg, Aug. 1995.

[26] B. A. Huberman, M. K. Franklin, and T. Hogg. Enhancing privacy and trust in

electronic communities. In EC, 1999.
[27] IBM. Ibm key protect, 2018. https://console.bluemix.net/catalog/services/key-

protect.

[28] S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected

secret sharing and T-PAKE in the password-only model. In P. Sarkar and T. Iwata,

editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 233–253. Springer,
Heidelberg, Dec. 2014.

[29] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly-efficient and composable

password-protected secret sharing (or: how to protect your bitcoin wallet online).

In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on, pages
276–291. IEEE, 2016.

[30] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-

protected secret sharing based on threshold OPRF. In D. Gollmann, A. Miyaji,

and H. Kikuchi, editors, ACNS 17, volume 10355 of LNCS, pages 39–58. Springer,
Heidelberg, July 2017.

[31] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-

protected secret sharing based on threshold OPRF. Cryptology ePrint Archive,

Report 2017/363, 2017. http://eprint.iacr.org/2017/363.

[32] S. Jarecki and X. Liu. Fast secure computation of set intersection. In J. A. Garay

and R. D. Prisco, editors, SCN 10, volume 6280 of LNCS, pages 418–435. Springer,
Heidelberg, Sept. 2010.

[33] Jeff Barr. Amazon S3 âĂŞ Two Trillion Objects, 1.1 Million Requests / Second,

2013. https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-

million-requests-second/.

[34] M. Klooß, A. Lehmann, and A. Rupp. (R)CCA secure updatable encryption with

integrity protection. In Eurocrypt 2109, 2019.
[35] R. Lai, C. Egger, M. Reinert, S. Chow, M. Maffei, and D. Schröder. Simple password-

hardened encryption services. In 27th USENIX Security Symposium (USENIX
Security 18), 2018.

[36] A. Lehmann and B. Tackmann. Updatable encryption with post-compromise

security. InAdvances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part III, pages 685–716, 2018.

[37] A. Y. Lindell. Adaptively secure two-party computation with erasures. In M. Fis-

chlin, editor, Topics in Cryptology – CT-RSA 2009, pages 117–132, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

[38] Microsoft. How many cryptographic operations are supported per second with

dedicated hsm?, 2019. https://docs.microsoft.com/en-us/azure/dedicated-hsm/

faq#performance-and-scale.

[39] Microsoft Azure. Azure key vault, 2018. https://docs.microsoft.com/en-us/azure/

key-vault/key-vault-overview.

[40] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and

KDCs. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 327–346.
Springer, Heidelberg, May 1999.

[41] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-

random functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press,

Oct. 1997.

[42] OASIS Open. PKCS #11 Cryptographic Token Interface Base Specification Ver-

sion 2.40, 2015. https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-

base-v2.40-os.html.

[43] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended

abstract). In L. Logrippo, editor, 10th ACM PODC, pages 51–59. ACM, Aug. 1991.

[44] A. Patel and M. Yung. Fully dynamic password protected secret sharing, 2017.

manuscript.

[45] T. P. Pedersen. A threshold cryptosystem without a trusted party (extended

abstract) (rump session). In D. W. Davies, editor, EUROCRYPT’91, volume 547 of

LNCS, pages 522–526. Springer, Heidelberg, Apr. 1991.
[46] Y. Polyakov, K. Rohloff, G. Sahu, and V. Vaikuntanathan. Fast proxy re-encryption

for publish/subscribe systems. ACM Transactions on Privacy and Security (TOPS),
20, 2017.

[47] K. Sakurai and Y. Yamane. Blind decoding, blind undeniable signatures, and

their applications to privacy protection. In Proceedings of the First International
Workshop on Information Hiding, pages 257–264, London, UK, UK, 1996. Springer-
Verlag.

[48] Thales. SafeNet Luna Network HSM, 2019. https://safenet.gemalto.com/

resources/data-protection/luna-sa-network-attached-hsm-product-brief/.

A PROOF OF THE OMDH-IO ASSUMPTION
IN THE GENERIC GROUP MODEL

We sketch the steps for adapting the GGMproof of OMDH from [31]

to the OMDH-IO case. As argued in [31], it suffices to show OMDH

security for N =Q + 1, in which case the upper-bound on a proba-

bility that a GGM adversary solves the OMDH problem in a group

of prime order q while making r group operations andQ queries to

the exponentiation oracle (·)k is (Q(2Q + r)2)/q. In a GGM proof,

see Theorem 6 in Appendix A in [31], every group element the

adversary obtains is represented with a (random string assigned to)

a polynomial in unknowns (u1, ...,uN ,k) for ui = DL(д,дi). Group
multiplications or divisions correspond to, respectively, adding or

subtracting such polynomials, and querying oracle (·)k on a group

element corresponds to multiplying the corresponding polynomial

by k . The proof argues that the only way the adversary can win is

either if some two different polynomials it creates have equal val-

ues on random inputs (u1, ...,uN ,k), or that the group elements it

outputs correspond to polynomials k ·u1, . . . ,k ·uN . The latter case

is easily seen as impossible for an adversary which can has only

Q =N − 1 accesses to the “multiply-a-polynomial-by-k” oracle (·)k ,
while the upper-bound on the probability of the first case comes

from the fact that there are at most 2Q + r polynomials, each one

has at most degree Q in k (and linear in variables u1, . . . ,uN), and

the fact that a non-zero Q-degree polynomial can have at most Q
roots, hence each pair of different polynomials can evaluate to the

same value on random exponent (u1, ...,uN ,k) with probability at

most Q/q. If the GGM adversary in addition makes t queries to the

inverse-exponentiation oracle (·)1/k , each query multiplies the cor-

responding polynomial by k−1, and the resulting polynomials, after

multiplying all of them by kt , can be thought of as polynomials

of degree at most Q + t instead of Q . Thus by the same argument,

the upper-bound on the probability of GGM adversary to solve all

N = Q + 1 challenges is bounded by (Q + t)(2Q + t + r)2/q. Note
that r >> max(Q, t) in typical applications, including our UOKMS

scheme, hence this bound can be approximated as (Q + t)r2/q.

https://cloud.google.com/kms/
https://cloud.google.com/kms/
https://console.bluemix.net/catalog/services/key-protect
https://console.bluemix.net/catalog/services/key-protect
http://eprint.iacr.org/2017/363
https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/
https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/
https://docs.microsoft.com/en-us/azure/dedicated-hsm/faq#performance-and-scale
https://docs.microsoft.com/en-us/azure/dedicated-hsm/faq#performance-and-scale
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://safenet.gemalto.com/resources/data-protection/luna-sa-network-attached-hsm-product-brief/
https://safenet.gemalto.com/resources/data-protection/luna-sa-network-attached-hsm-product-brief/

	Abstract
	1 Introduction
	1.1 Comparison to previous work

	2 Updatable Oblivious KMS
	2.1 Oblivious Key Management System
	2.2 Updatable OKMS

	3 Security Model for Updatable Oblivious KMS
	3.1 Formal UOKMS Scheme
	3.2 UOKMS obliviousness and security

	4 Security Analysis of the UOKMS Scheme
	4.1 Proof of Theorem 4.1

	5 Threshold OKMS and UOKMS
	5.1 Distributed Updates
	5.2 Verifiable Threshold (U)OKMS

	6 Implementation and Performance
	References
	A Proof of the OMDH-IO Assumption in the Generic Group Model

