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Abstract. We introduce password-authenticated public-key encryption
(PAPKE), a new cryptographic primitive. PAPKE enables secure end-
to-end encryption between two entities without relying on a trusted third
party or other out-of-band mechanisms for authentication. Instead, resis-
tance to man-in-the-middle attacks is ensured in a human-friendly way
by authenticating the public key with a shared password, while prevent-
ing offline dictionary attacks given the authenticated public key and/or
the ciphertexts produced using this key.

Our contributions are three-fold. First, we provide property-based and
universally composable (UC) definitions for PAPKE, with the result-
ing primitive combining CCA security of public-key encryption (PKE)
with password authentication. Second, we show that PAPKE implies
Password-Authenticated Key Exchange (PAKE), but the reverse impli-
cation does not hold, indicating that PAPKE is a strictly stronger prim-
itive than PAKE. Indeed, PAPKE implies a two-flow PAKE which re-
mains secure if either party re-uses its state in multiple sessions, e.g. due
to communication errors, thus strengthening existing notions of PAKE
security. Third, we show two highly practical UC PAPKE schemes: a
generic construction built from CCA-secure and anonymous PKE and
an ideal cipher, and a direct construction based on the Decisional Diffie-
Hellman assumption in the random oracle model.

Finally, applying our PAPKE-to-PAKE compiler to the above PAPKE
schemes we exhibit the first 2-round UC PAKE’s with efficiency compa-
rable to (unauthenticated) Diffie-Hellman Key Exchange.

1 Introduction

A well-known Achilles’ heel of end-to-end encryption is the distribution and
trustworthiness of long-term cryptographic keys [27]. In particular, it is ex-
tremely hard for end users to judge the authenticity of public keys. They can
therefore easily be tricked into encrypting the data under a wrong key and
thereby lose all security. If the exchange of keys is facilitated by a third party
such as a certificate authority or a service provider, as is the case for most public-
key infrastructures (PKIs) as well as for end-to-end encrypted messengers such

* Full version of this paper appears in [12].



as Signal, WhatsApp, or iMessage, users need to trust that third party to provide
the correct keys. Indeed, if a service provider is able to substitute its own keys
for those of the intended recipients, it can mount a man-in-the-middle (MITM)
attack and decrypt all subsequent communication.

An article in The Guardian [18] describes this trust required in the service
provider and its capability of striking MITM attacks as a “backdoor” and a
“security loophole” in the encryption scheme used by WhatsApp. This charac-
terization was repudiated in an open letter signed by over seventy cryptogra-
phers and security experts [26], stating that this is not a “backdoor”, but simply
how cryptography works. While technically correct, this explanation is not very
satisfactory from an end-user’s perspective and prompts the question: should
cryptography work like that? Is there really no way to protect encrypted com-
munication between end users from such MITM and key substitution attacks?

Ad-hoc solutions against MITM attacks. Many approaches to preventing man-
in-the-middle attacks in the context of secure end-to-end communication exist,
but they either rely on trusted third parties, or on mostly ad-hoc solutions built
on top of conventional encryption schemes, aiming to allow end-users to verify
the correctness of public keys. None of these approaches provides the degree of
usability and security that one can hope for, and which our solution provides.

Trust-on-first-use, as commonly used by Secure Shell (SSH), reduces the
likelihood of MITM attacks, but cannot completely prevent them. The web of
trust [24] as used e.g. in Pretty Good Privacy (PGP), establishes a distributed
trust model via individual vetting: it requires users to endorse associations of
public keys to specific people, and to endorse other people as trusted endorsers.
Even though this approach was popular in the early days of cryptography, it
was never widely adopted, possibly because of the strong level of involvement it
requires from users to inspect each others’ keys and to issue endorsements.

Today, the most common method to establish trust in end users’ public keys
is to let users manually verify a hash value of keys, known as a key fingerprint, us-
ing an out-of-band channel. Fingerprints are often represented in human-friendly
formats to ease verification, e.g., as digits [28], pronounceable strings [20], ASCII
art [23], or QR codes [28], but they require either physical proximity of commu-
nication partners (QR codes) or they are tedious to verify.* A crucial problem
with key fingerprints is the far-from-optimal trade-off between security and us-
ability: Strong fingerprints with 60 decimal or 32 hexadecimal digits are simply
too long to verify by hand. Shorter fingerprints are more human-friendly but are
vulnerable to preimage attacks, allowing an adversary to generate a key with
the same fingerprint. A recent study comparing different manual key verification
mechanisms found that all were subject to attacks whose success rates ranged
between 6% and 72% [25].

Introducing a New Tool. We propose a new cryptographic primitive, Password-
Authenticated Public-Key Encryption (PAPKE), which authenticates an encryp-

4 Users also struggle with the notion of key fingerprints, e.g. all Telegram users in one
study [5] believed the fingerprint to be either the encryption key or a ciphertext.



tion public key using human-memorable passwords, but does so in a way which
is not subject to offline dictionary attacks given the authenticated public key or
the ciphertexts encrypted using that key.

More precisely, PAPKE modifies the notion of public-key encryption so that
both the key generation and the encryption algorithms take as an additional in-
put @ password, i.e. an arbitrary human-memorable string. The semantics of this
password input is that Alice, when generating her public key, implicitly authenti-
cates and “locks” this key with a password, and to encrypt a message, Bob must
use a matching password to “unlock” the authenticated public key correctly.
The correctness guarantee is that Alice decrypts the message encrypted by Bob
if Bob encrypted it using the same password that Alice used in key generation.
The notion of password-authentication of the public key which PAPKE enforces
is the following: If a man-in-the-middle attacker substitutes Alice’s public key
with its own, the confidentiality of messages which Bob encrypts under this key
is guaranteed as long as the adversary fails to guess the password shared by
Alice and Bob. Crucially, the attacker must guess this password at the time it
creates the substituted public key, and the eventual leakage of the password after
generation of the adversarial key has no impact on encryption security.

PAPKE thus enables end-to-end secure communication without relying on
a trusted party or exchanging long fingerprints on an out-of-band channel, and
instead it bootstraps security from a short human-memorizable password.

PAPKE and Offline Dictionary Attacks. The challenge of password-based schemes
is obtaining strong security based on weak secrets. In particular, such a scheme
must be resilient against offline password attacks. For PAPKE this means that
an adversary who receives an authenticated public key and the ciphertexts cre-
ated using this key cannot use offline computation to find the passwords used
to create either object. In other words, the adversary cannot use the public key
or the intercepted ciphertexts to locally test password guesses. Otherwise, the
low entropy of passwords would hardly provide any extra security: according to
NIST [13] even a 16-character human-memorizable password has only 30 bits of
entropy on average, and hence can easily be brute-forced.

To illustrate this challenge, consider a few simple but failed attempts at
constructing a secure PAPKE scheme. A natural way to password-authenticate
any information, including a public key, would be to MAC it using the (hashed)
password as a MAC key. This, however, would be subject to an offline dictionary
attack, as the attacker can locally test password guesses until it finds the one
for which the MAC verifies. More generally, any procedure which allows for
explicit verification of the authenticated public key under a password would be
subject to an offline attack. What if the key was not authenticated itself but the
encrypting party included the password in the plaintext? This would be insecure
against a man-in-the-middle attack which sends its public key to the encryptor
and decrypts it to read the encryptor’s password.

Indeed, in a secure PAPKE the authenticated public key must commit the
receiver Alice to the password used in the key generation, and the sender Bob
cannot verify this commitment explicitly, but it can create a ciphertext such



that (1) it is correct if Bob’s and Alice’s passwords match, (2) the plaintext is
undecryptable if the two passwords differ, (3) the encryptor cannot tell which is
the case, and (4) if the two passwords do not match then no one, including Alice
who created the public key, can learn anything about Bob’s password beyond
the fact that it does not match the unique password she used to generate her
public key.

We stress that PAPKE uses passwords to strictly enhance encryption secu-
rity, i.e., for non-substituted keys, PAPKE provides standard CCA security that
does not depend on the strength of the user’s password. Thus the purpose of
the password is solely to hedge security in case the encryptor uses a substituted
key, but we stress that this hedging is applicable only if the encryptor shares a
password with the party who generates the public key.

Our Contribution. We provide a thorough study of the proposed PAPKE
primitive, and our contributions fall into the following three categories:

(Ia) Strong security notions for PAPKE. First, we formally introduce the con-
cept of password-authenticated public key encryption, and define the desired
security properties both via a universally composable (UC) functionality [14]
and a set of property-based definitions. While property-based definitions are of-
ten more intuitive, a formalization in the UC framework provides stronger and
more realistic security guarantees because it does not require any assumptions
on the password distribution and correctly models real-world phenomena such
as password reuse and making typing mistakes when entering the password. We
prove that our UC security definition implies our property-based ones, hence
proving a scheme secure in the UC setting implies its security under the more
intuitive property-based notions.

(Ib) Relation to PAKE. To better understand the strength of the PAPKE prim-
itive we compare it to the well-studied primitive of Password-Authenticated Key
Exchange (PAKE) [7, 11, 15] The relation between PAPKE and PAKE is two-
fold. First, PAPKE immediately implies a two-round PAKE: Alice and Bob can
perform password-authenticated key exchange if Alice sends to Bob a PAPKE
public key authenticated by her password, and Bob encrypts a session key using
the received key and his password. Indeed, we show that if this simple proto-
col is instantiated with any scheme satisfying our UC PAPKE notion then the
resulting protocol satisfies the strong UC notion of PAKE [15].

Regarding the other direction it might seem at first glance that any 2-round
PAKE protocol, e.g. [8, 7, 4], can generically imply a PAPKE scheme as follows:
The PAKE requester’s flow can define a PAPKE public key, and the PAKE
responder’s flow, together with an encryption of the plaintext under the estab-
lished session key, can define a PAPKE ciphertext. However, we show that this
intuition is in fact incorrect, as the non-interactive usage of encryption that is
required by PAPKE is not compatible with standard PAKE security notions. In-
deed, as we discuss below, the two-round PAKE implied by PAPKE has stronger
security than what is implied by standard PAKE notions because it remains se-
cure (and robust) even if either party re-uses its state. Summing up, the relation



of PAPKE and PAKE is that PAPKE implies a 2-round PAKE with a (novel)
property of security under session state re-use.

(I1I) Efficient PAPKE constructions. We show two very practical constructions
that securely realize the UC PAPKE functionality. Our first construction gener-
ically builds a PAPKE scheme from a public-key encryption (PKE) scheme and
an ideal cipher: The authenticated public key is an encryption of the PKE public
key under the password, with the encryption implemented using an ideal cipher
over the space of PKE public keys. To obtain the desired UC-security, the PKE
scheme must satisfy a number of properties beyond standard CCA security, such
as key-anonymity [6] and strong robustness [1]. We show a concrete instantia-
tion of this scheme using a variant of DHIES [2] which satisfies these properties
under the so-called Oracle Diffie-Hellman (ODH) assumption. This results in a
highly-efficient construction secure under ODH in the Ideal Cipher model, which
uses 1 exponentiation for key generation, 2 for encryption, and 1 for decryption.
However, ideal ciphers over arbitrary cyclic groups, e.g. an elliptic curve,
are not so easy to implement. While generic constructions for ideal ciphers from
random oracles exist [19, 16], implementing ideal ciphers over a specific algebraic
group is not straightforward, and if not done carefully can result in timing and /or
offline password guessing attacks. Thus we also provide an alternative concrete
construction that does not rely on ideal ciphers and therefore might be easier
to implement. It uses the Fujisaki-Okamoto transform [17] of a twisted “twin-
key” ElGamal construction of independent interest. This construction uses 2
exponentiations for key generation, 2 multi-exponentiations for encryption, and
1 exponentiation and 1 multi-exponentiation in decryption, and relies on the
Decisional Diffie-Hellman (DDH) assumption in the Random Oracle Model.

(Illa) Efficient 2-Round UC PAKE schemes. Our generic PAPKE-to-PAKE
compiler discussed above implies two highly efficient UC PAKE protocols when
instantiated with the above two PAPKE schemes. To the best of our knowledge
these are the first two-round UC-secure PAKE’s which rely on standard cyclic
groups, i.e., do not use groups with bilinear maps or other trapdoor structure,
and which resort instead to either the Ideal Cipher (IC) or the Random Oracle
Model (ROM) to achieve practical efficiency. Specifically, our results imply a UC
PAKE which uses 2 expentiations per party but relies on an ideal cipher over a
group, and a UC PAKE which uses 4 (multi)-exponentiations for the requester
and 2 exponentiations for the responder and relies on a random oracle model for
hash functions. Note that the first scheme matches and the second scheme comes
very close to the 2 exponentiations/party cost of unauthenicated Diffie-Hellman
Key Exchange, with is the minimum cost for PAKE one can reasonably expect.
The closest efficiency-wise UC PAKE we know of is by Abdalla et al. [3], which
was shown secure under comparable assumptions, but which requires 3 message

flows while our UC PAKE’s use only 2 flows.

(IIIb) PAKE’s with session re-use security. As we argued in (Ib) above, the
PAPKE-to-PAKE compiler results in a 2-round PAKE which has novel secu-
rity and reliability properties which follow from the fact that PAPKE enforces



ciphertext security when the same public key is used to encrypt multiple mes-
sages. Recall that the PAKE requester message is a PAPKE public key, and the
PAKE responder message is a PAPKE ciphertext encrypting a random session
key under this public key, and both the public key and the ciphertext are created
using the passwords of resp. the requester and the responder. (See Section 3 for
the full description of this PAKE.) The novel security property of this PAKE is
that each of these keys is secure even though all sessions re-use the same session
state and the first message flow of the requester. The standard model of PAKE
security does not guarantee security in this case, but a PAKE which is secure in
this way can be beneficial to higher-level applications. For example it can help
handle communication faults: A responder session which believes that its re-
sponse has not been delivered correctly can safely respond to the same requester
message again, and a requester who gets multiple responses can securely spin off
a subprocess for each of them without re-starting a new session from scratch.

Roadmap. In Section 2 we define PAPKE as a strengthened version of public-
key encryption. Section 3 discusses the relation between PAKE and PAPKE, and
shows a generic compiler from any UC PAPKE to UC PAKE. Section 4 presents
our two highly efficient UC PAPKE schemes. In Appendix A we exemplify one
highly-efficient concrete 2-round UC PAKE protocol obtained via the generic
compiler of Section 3 applied to one of the PAPKE schemes of Section 4.

2 Security Model for PAPKE

In this section we introduce our security models for password-authenticated en-
cryption. A peculiarity of formal security definitions for password-based primi-
tives is that they must model the inherent probability of an adversary correctly
guessing the low-entropy password. Property-based definitions [7] (sometimes
also called game-based definitions) typically do so by requiring that the ad-
versary’s probability of winning the security game is negligibly more than a
(non-negligible) threshold determined by its number of online queries and the
entropy of the distribution from which the password is chosen. Composable se-
curity definitions [15] such as those in Canetti’s Universal Composability (UC)
framework [14], on the other hand, model the possibility of guessing the password
directly into the ideal behavior of the primitive.

As argued by Canetti et al. [15], composable definitions provide stronger and
more realistic security guarantees than property-based ones, because they do not
make any implicit assumptions about the password distribution and correctly
model real-world phenomena such as password reuse and typos while entering
the password. Nevertheless, property-based definitions are often more intuitive
and easier to understand than UC definitions. Below we present the property-
based PAPKE security notions, and in the full version [12] we define UC notion
of PAPKE and show that it implies the property-based notion.



Definition 1 (PAPKE). Let D be a dictionary of possible passwords, and M
be a message space. A password-authenticated public-key encryption scheme is a
tuple of algorithms PAPKE = (KGen, Enc, Dec) with the following behavior:

KGen(k, pwd) —5 (apk,sk): on input a security parameter k and password
pwd € D, output an authenticated public key apk and a secret key sk.

Enc(apk, pwd, m) —x c: on input an authenticated public key apk, password
pwd and a message m € M, output a ciphertext c.

Dec(sk,c) — m: on input a secret key sk and ciphertext ¢, output a message
m € MU{L} where L indicates that the ciphertext is invalid.

For correctness we require that for any password pwd € D, key pair (apk, sk) +x
KGen(k, pwd), and ciphertexts ¢ < Enc(apk, pwd, m), we have that m = Dec(sk, ¢).

Informally, the desired security properties of PAPKE schemes are:

Resistance against Offline-Attacks: None of the values that are (partially)
derived from a password allows offline dictionary attacks on the passwords
that were used to generate them: The authenticated public key apk does
not leak anything about the setup password pwd, and ciphertexts ¢ formed
under apk do not leak any information about the password attempt pwd’
that was used in the encryption. The only and inevitable information leaked
is that the party who holds the secret key sk corresponding to apk learns
whether pwd’ = pwd, because that holds if and only if Dec(sk,c) # L.

CCA Security: Ciphertexts encrypted under an honestly generated authenti-
cated public key apk hide the encrypted message from any adversary who
doesn’t know the secret key. This property is modeled in the standard CCA
setting, and it holds even if the adversary knows all passwords used.

Security against Man-in-the-Middle (MITM) Attacks: The choice of an
authenticated public key apk™ commits the adversary to some single pass-
word guess pwd®, and all ciphertexts encrypted under apk™ using any pass-
word pwd # pwd™ hide the encrypted message. The only available attack is
an online attack, where the adversary guesses password pwd used by the hon-
est encryptor and generates apk™ so that it commits to pwd™ = pwd. Thus
the MITM attack gains effectively one password guess per each adversarial
public key apk™ which the honest party uses in encryption.

Long-Term Security: The security of encryptions under an adversarially cho-
sen key apk™ is preserved in a forward-secure manner because it holds even
if the adversary (eventually) learns the encryptor’s password pwd # pwd™.

Ciphertext Authenticity: The password also guarantees authenticity of ci-
phertexts. That is, an adversary who knows an honestly generated key apk,
but not the password pwd (or the secret key sk), cannot create valid cipher-
texts, i.e., ciphertexts that decrypt under sk into some message m # L.

2.1 Property-Based Security Definition

We formalize the above intuitive security requirements using two game-based
definitions, namely indistinguishability against chosen-ciphertext and chosen-
key attack (IND-CCKA), and ciphertext authenticity (AUTH-CTXT). For the



sake of brevity, we will refer to property IND-CCKA as the privacy property.
The privacy experiment formalizes the first four properties listed above:

Experiment Expm%;\cpcKKEA (k)

pwd < D, L+ 0, (apk, sk) < KGen(k, pwd)
b+y {0,1}, revealed <+ 0
y “n ALOR(b,pwd,<,-,-),Dec(sk,-),Reveal(pwd)(apk,)

oracle LoR on input a public key apk™ and
two messages mg and my where |mg| = |m;|
if apk™ # apk and revealed = 1, return L
else, compute C < Enc(apk™, pwd, my),
if apk™ = apk add C to L
return C'
oracle Dec on input a ciphertext C ¢ L :
return m < Dec(sk,C) where m € MU {1}
oracle Reveal: return pwd and set revealed < 1
return 1 if ¥’ =b

Definition 2 (IND-CCKA). A PAPKE scheme is called indistinguishable under
chosen-ciphertext and key attacks if for all efficient adversaries A, and any
password space D it holds that

IND-CCKA
Pr[Exp 4 papke (k) = 1] <

| —
S

for a negligible function negl, where qopi+ denotes the number of public keys
apk™ # apk that A used in its queries to the LoR oracle, and where:

— if Gapkx > 0, then gpec is the number of A’s queries to the Dec oracle while
revealed =0 (active/MITM security)
— if gapkr =0, then gpec +— 0 (passive/CCA security)

In the IND-CCKA definition above we set gpec = 0 for passive attacks, i.e. if
dapk= = 0, then the security bound is 1/2 + negl(x). In other words, if A does
not stage any MITM attack, i.e. it never substitutes the challenge public key
apk with apk™ # apk, then IND-CCKA is like standard CCA-security of PKE,
i.e. A can make any number of encryption and decryption queries and they will
not impact its success probability.

Authenticity (AUTH-CTXT). The ciphertext authenticity property (Def. 3)
formalizes that the adversary A, given apk generated for password pwd chosen
at random in dictionary D, cannot create a valid ciphertext except for proba-
bility (1 + gapk= + gpec)/|D|, Where gqpi+ is the number of encryption queries A
makes under bad and distinct keys apk™ # apk, and gpec is the number of de-
cryption queries. (See [12] for full discussion of these definitional choices.) Note
that here we do not let A learn pwd because knowing pwd suffices to form a
valid ciphertext. The password-guessing count is qapr* + gpec Plus 1 because the
final ciphertext A creates can itself be used to guess a password.

The authenticity experiment is defined as follows:



Experiment ExpﬁlfPTA'_'P’&EXT( ):

pwd < D, L < 0, (apk, sk) <+ KGen(k, pwd)
C* +p AEnc(pwd,-,~),Dec(slc,-)(apk)
oracle Enc on input a key apk™ and message m :
compute C < Enc(apk™, pwd, m)
if apk™ = apk add C to L
return C'
oracle Dec on input a ciphertext C' :
return m < Dec(sk, C), where m € MU {1}
return 1 if Dec(sk,C*) # L and C* ¢ L

Definition 3 (AUTH-CTXT). A PAPKE scheme provides authenticity of ci-
phertexts if for all efficient adversaries A, and any password space D it holds

that Gapk* + GDec + 1

D]
for a negligible function negl, where qqpi- is the number of bad keys apk™ # apk
in A’s Enc oracle queries and qpec s the number of A’s Dec oracle queries.

PrExpliparke  (5) = 1] < + negl(x)

3 Relation between PAPKE and PAKE

PAPKE, the new cryptographic primitive we propose, is closely related to Pass-
word Authenticated Key Agreement (PAKE) [7, 11, 15]. Specifically, we show
that it is easy to build a (UC-secure) two-round PAKE scheme from a (UC-
secure) PAPKE scheme, but that while the converse looks like it should be true
at first sight, it is not true in general, because PAPKE has stricter properties
than a standard PAKE. In particular, we give a counterexample of a secure
two-round PAKE scheme that, when converted into a PAPKE scheme in the
straightforward fashion, yields an insecure PAPKE scheme. Indeed, PAPKE can
be thought of as a two-round PAKE with a novel property of security under
session state re-use, which to the best of our knowledge has not been observed
and provably realized before.

Constructing PAKE from PAPKE. We show that any UC-secure PAPKE
can be converted into a two-round UC-secure PAKE. This construction is shown
in Figure 1, and it is fairly simple: The initiator P; generates an authenticated
public key apk from the input password pwd and sends it to P;. The responder
P;, given its password pwd’ and the received public key apk, picks a random
session key k <5 {0,1}", and responds to P; with an encryption of k under apk
and pwd’. P; receives key k by decrypting the received ciphertext, or outputs
L if the decryption fails. Note that all communication is done over an insecure
channel, fully controlled by the adversary. In particular, an adversary can replace
P;’s public key and/or P;’s ciphertext. However, PAPKE security implies that
neither P;’s public key nor P;’s ciphertext reveal anything about passwords, resp.
pwd and pwd’, and the only attack the adversary can stage is an on-line guessing



attack, because each substituted public key apk™ or ciphertext ¢* commits the
adversary to a single password guess pwd”, and is guaranteed to fail (e.g. P;
fails to encrypt anything useful under apk™ or P; fails to decrypt ¢*) unless the
guessed password pwd” matches the password of resp. P; or P;.

Party P; on input (P;, P;, pwd, client) Party P; on input (P;, P;, pwd’, server)

(sk, apk) < PAPKE.KGen(x, pwd)
[P; can re-use (sk, apk) created for the same pwd before]

apk

choose k < {0,1}"
¢ + PAPKE.Enc(apk, pwd’, k)
output k

m < PAPKE.Dec(sk, ¢)
if m# L, set k < m; else k <—r {0,1}"
output k&

Fig. 1. Two-round PAKE protocol PAPKE-2-PAKE given PAPKE = (KGen, Enc, Dec).

The proof of Theorem 1 is included in the full version [12]. Note that if the PAKE
initiator P; chooses to re-use its state (sk, apk) across protocol instances which
share the same input pwd then P; reveals that all these instances share the same
input, hence such protocol can only realize functionality Fpake modified so that
a party can choose to reveal that two of its sessions run on the same password.

Theorem 1. If PAPKE realizes the UC PAPKE functionality Fpapke, defined in
[12], then the PAPKE-2-PAKE scheme shown in Figure 1 realizes the UC PAKE
functionality Feake [15].

An intuitive PAKE-2-PAPKE compiler, and why it doesn’t work. It turns
out that the intuitive approach of building PAPKE from two-round PAKE does
not work due to subtle differences in the security notions of both primitives.
Indeed, PAPKE has some security properties which are stronger than PAKE,
and this in particular implies that the PAPKE-to-PAKE compiler shown above
adds a new security property to the resulting PAKE. (We discuss that PAKE
security property below.) For the ease of exposition, we state our results for
the game-based representations of PAKE and PAPKE instead of using their
UC variants, and refer to parties P; and P; as A and B respectively. On a first
glance, it seems reasonable to generically build a PAPKE scheme from any two-
round PAKE protocol, e.g. [8, 7, 4]. Specifically, any two-round PAKE protocol
((A1,A2) = (B1,Bz)) can be abstracted as follows:

10



Party A (input pwd ) Party B (input pwd’)

(statea,ma) < A1(k, pud) oA

(stateg,mp) <5 Bi(k, pwd")
ka < Ay(statea,mp) kp < Ba(statep,ma)

The natural approach to constructing PAPKE would combine a two-round
PAKE with an authenticated encryption scheme AE: The PAKE message m 4
from A would be A’s static authenticated public key apk, and to encrypt message
m under A’s key apk = m any party could complete the two-round PAKE
protocol in the role of B and append the AE encryption of m under the derived
session key kp to B’s PAKE message mpg. For decryption, A uses mp to complete
her side of the PAKE protocol to derive the same session key k4 = kp (if
pwd = pwd") and uses k4 to decrypt the attached ciphertext. More formally,
given a 2-round PAKE = ((A1,A2) = (B1,B2)) and authenticated encryption
AE = (AE.Enc, AE.Dec) sharing the same key space K, one could consider the
following PAPKE construction:

PAPKE.KGen(k, pwd):

run (statea, ma) <—r A1(K, pwd), return (sk < state, apk < m4)
PAPKE.Enc(apk, pwd’, m):

run (stateg, mp) < Bi(k, pwd’) and kp < Ba(statep, apk)

encrypt ¢ < AE.Enc(kp, m) and return ¢’ + (mp,c)
PAPKE.Dec(sk, ¢'):

parse ¢ = (mp,c) and sk = state

get ka « Aq(states, mp) and return m < AE.Dec(k4, )

Intuitively, this should yield a secure PAPKE if PAKE is secure. However,
this generic construction uses PAKE in a way that is not covered by its security
definition: Whenever party A decrypts a PAPKE ciphertext it effectively re-uses
the same local PAKE session state state 4 (and the same first-round message m 4)
across multiple PAKE sessions. Indeed, this gap can be exploited to craft special
PAKE and AE schemes that are secure by themselves but result in an insecure
PAPKE when used in this natural compiler. (The full formal description of this
counterexample is included in [12].)

Implications for UC PAKE protocols. We discuss the main conclusions we
draw from the two technical facts above.

First 2-round UC PAKE’s competitive with game-based PAKE’s. In Appendix A
we include two highly efficient UC PAKE protocols by instantiating the PAPKE-
2-PAKE compiler with the PAPKE constructions of Section 4. To the best of our
knowledge these are the first 2-round UC PAKE’s which rely on standard cyclic
groups with efficiency comparable to the Diffie-Hellman key exchange in the 1C
or RO model. While UC PAKE can be achieved using even 1 (simultaneous)
round of communication, all 1-round UC PAKEs we know, e.g. [22, 21], use
groups with bilinear maps and are significantly costlier. Thus practitioners are
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likely to resort to constructions which require IC or ROM models but give much
better concrete efficiency.

Concretely, we show two 2-round UC PAKE protocols: PAKE-IC-DHIES, se-
cure under Oracle Diffie-Hellman (ODH) [2] in the IC model which uses 2 expo-
nentiations per party, and PAKE-FO, secure under DDH in ROM which uses 4
(multi-)exps for the requester and 2 for the responder. The Universally Com-
posable notion of PAKE security [15] has long been recognized as stronger than
the game-based notions [7, 11], not only because it implies concurrent security
and can be used in protocol composition, but also because, unlike the game-
based notions, the UC PAKE implies security for non-uniform password distri-
butions, password re-use, correlated passwords, misstyped passwords, and any
other forms of information leakage. However, there has been an efficiency and
round-complexity gap between UC PAKE’s and PAKE’s shown secure under
game-based notions with the 3-round 2-exp/party UC PAKE of Abdalla et al.
[3], which assumes DDH in IC model, coming closest to the 2-round 2-exp/party
game-based PAKE of Abdalla-Pointcheval [4], which assumes DDH in ROM.
Our UC PAKE constructions match [4] in round complexity, and our IC model
construction also matches [4] in the number of exponentiation operations.®

PAKE with security on session re-use. As we argued above, the reason the
compiler from 2-round PAKE to PAPKE does not work is that a standard PAKE
security model does not extend to the case of the requester party, A, re-using
the local state state4 of a single PAKE session across many sessions, each of
which would derive a session key k4 from same state k4 but potentially different
responder messages mp. By contrast, PAKE created from the secure PAPKE
in Figure 1 does have this property: The requester party P; can use the same
local state, which is the PAPKE secret key sk, across many sessions, deriving
ka < PAPKE.Dec(sk,c) on any number of responder messages ¢. By the same
token, the responder P; in this PAKE protocol is free to re-use P;’s first-round
message apk in multiple sessions, because PAPKE ciphertexts created in each
such session are all secure, and their plaintexts can all be used as session keys.

Indeed, this shows that protocol PAPKE-2-PAKE is a secure 2-round PAKE
with security under re-use of requester’s session state across multiple sessions.
This can improve efficiency in PAKE applications where the initiator re-uses
same password across multiple sessions (and does not mind revealing that fact),
and it can also make it easier to handle communication faults, because both
parties can keep their session information, the session state statey, = sk for P;
and the requester’s first message ma = apk for P;, and re-use them in case of
communication faults instead of re-starting from scratch.

4 Efficient & UC-Secure PAPKE Constructions

First attempts to construct PAPKE schemes that authenticate public keys and
plaintexts with a password would probably involve message authentication codes

5 However, our local computation cost also includes Ideal Cipher operations.
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(MACs) of the public key and /or the enrypted plaintext under a key derived from
the password. Such solutions, however, fall prey to offline dictionary attacks,
either given just the authenticated public key, or by substituting the real public
key with an adversarial one and testing the decrypted MAC. Thus the challenge
is to devise schemes that withstand offline attacks and achieve the strong security
guarantees formalized in our UC and property-based definitions. We present two
very practical PAPKE constructions that achieve this goal.

The first construction, PAPKE-IC in Section 4.1, combines any CCA secure
public-key encryption and an ideal cipher, using the ideal cipher to encrypt the
public key with the password as a key. We prove this PAPKE scheme secure in
the ideal-cipher model if the PKE scheme satisfies a number of properties that
go beyond the standard CCA security, namely key anonymity, robustness, and
the requirement that public keys are uniform in the (ideal) cipher domain.

While the PAPKE-IC construction is conceptually simple, instantiating the
combination of ideal ciphers and public-key encryption requires some care, and
subtle implementation mistakes could render the PAPKE-IC construction inse-
cure (see the discussion in Section 4.1 below). Hence we propose a second PAPKE
construction, PAPKE-FO in Section 4.2, which is not generic, but it does not need
an ideal cipher and therefore might be easier to implement. It is based on a twin-
key version of the Fujisaki-Okamoto transform of ElGamal encryption, and it is
secure under the DDH assumption in ROM.

4.1 PAPKE-IC: Generic Construction from PKE and Ideal Cipher

Our first construction, protocol PAPKE-IC in Figure 2, builds PAPKE generically
from a public-key encryption PKE and an ideal cipher IC = (IC.Enc, |C.Dec).
The basic idea of the construction is simple and similar to the Encrypted Key
Exchange (EKE) PAKE of Bellovin and Merritt [8]: The receiver generates a key
pair for the PKE scheme and encrypts the public key under the ideal cipher using
the password as a key. The resulting encrypted public key is used as PAPKE
authenticated public key apk. To encrypt a message, the sender decrypts apk
under the ideal cipher using the password as a key, and encrypts the message
under the resulting public key. Our PAPKE-IC shares this basic design with EKE,
except that we use a CCA-secure encryption while EKE implicitely uses a version
of (CPA-secure) ElGamal whose security as encryption is less clear.

Protocol PAPKE-IC requires a number of properties of the PKE scheme that
go beyond the standard notion of CCA security. First, its public keys must be
uniformly distributed over the domain of the ideal cipher, because otherwise an
attacker can test passwords offline by trying to decrypt apk. Second, ciphertexts
of the PKE cannot reveal under which public key they were encrypted, as that
would allow offline attacks as well. The second property is known as key privacy
or anonymity [6]. Third, and perhaps a bit harder to see, is that an adversary
should be unable to construct ciphertexts that decrypt correctly under multiple
secret keys, but such ciphertext would allow the adversary to test multiple pass-
word guesses in one query to the decryption oracle. This property is known as
strong robustness [1]. The latter two properties are formalized as, respectively,
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Setup: Let PKE = (KGen, Enc, Dec) be a public-key encryption scheme with uniform
public-key space PK and let IC = (IC.Enc, IC.Dec) be an ideal cipher over PK.

PAPKE.KGen(x, pwd):

Generate (pk, sk) < PKE.KGen(x) and apk < IC.Enc(pwd, pk) and output (sk, apk).
PAPKE.Enc(apk, pwd’, m):

Decrypt the public key, pk < IC.Dec(pwd, apk) and output ¢ +—r PKE.Enc(pk, m).
PAPKE.Dec(sk, c':

Decrypt m < PKE.Dec(sk, ¢’) and output m.

Fig. 2. The generic PAPKE scheme PAPKE-IC.

Al-CCA and SROB-CCA (see [12]). Finally, PKE and IC have to be “compatible”
in the sense that IC is an ideal cipher over the key space PK of PKE.

The proof of the following theorem appears in the full version [12]:

Theorem 2. Protocol PAPKE-IC in Figure 2 securely realizes functionality Fpapke
in the Fic-hybrid model, if the public key encryption PKE has uniform public-key
space PK and is AI-CCA and SROB-CCA-secure.

Implementing Ideal Ciphers over Groups. Our PAPKE-IC construction assumes
an ideal cipher over a key space PK that for many PKE schemes will be a
cyclic group G. We stress that such an assumption is also used in several PAKE
schemes, beginning from the Bellare et al. analysis [7] of the Encrypted Key
Exchange (EKE) PAKE scheme of Bellovin and Merritt [8]. Ideal ciphers over
variable domains can be implemented for a variety of domains, e.g. [10]. However,
for many groups implementing an ideal cipher is somewhat cumbersome and can
introduce possibilities for offline and/or timing attacks. Simply applying a block
cipher to the public key doesn’t work as not all strings of the same length are
valid group elements, and an adversary could offline tests by decrypting the
authenticated public key under a guessed password and testing if the decryption
yields a valid group element. If PIC = G is any elliptic curve group, there are
deterministic methods that map any string onto a group element [9] and hence
offline and timing attacks are not a concern. The opposite direction can be
implemented as in [9], but that encoding works only for subspace S of roughly 1/2
of G elements. This slows down key generation, i.e. pair (pk, sk) < PKE.KGen
has to be chosen s.t. pk € S, but it does not lead to timing attacks on passwords.
Still, these mappings complicate key generation and are non-trivial to implement,
which motivates searching for alternative solutions that do not rely on ideal
ciphers over arbitrary groups.

DHIES-based Instantiation. In Appendix A, we specify an efficient concrete in-
stantiation of PAPKE-IC, called PAPKE-IC-DHIES, which uses a variant of DHIES
as the robust and anonymous PKE. Scheme PAPKE-IC-DHIES is as efficient as
one could hope for in a DH-based cryptosystem, i.e. it uses 1 exponentiation
in key generation, 2 exponentiations in encryption, and 1 in decryption. The
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DHIES variant we use (DHIES™) was shown to satisfy the required properties
under the Oracle-Diffie-Hellman assumption (ODH), using a collision-resistant
hash function and a secure authenticated encryption scheme [1]. The authen-
ticated encryption (or rather the combination of symmetric encryption and a
MAC) needs to satisfy some additional, non-standard properties, and the ODH
assumption also has an impact on the choice of the hash function. We refer to
Appendix A for a more detailed discussion. Thus, similar to the challenges that
arise when securely instantiating the ideal cipher, implementing DHIES™ also re-
quires some care in the implementation and choice of its underlying primitives.

4.2 PAPKE-FO: Concrete Construction from DDH and ROM

Our second PAPKE construction, protocol PAPKE-FO in Figure 3, does not
require an ideal cipher over a group of PKE public keys,and may thus be eas-
ier to implement. It is however slightly more costly, with 2 exponentiations for
key generation, 2 multi-exponentiations (with two bases) for encryption, and 1
exponentiation and 1 (two base) multi-exponentiation for decryption. This con-
struction is built using the Fujisaki-Okamoto (FO) transform [17] for ElGamal
encryption but with a “twin” Diffie-Hellman key instead of a single key.

The high-level idea is to derive the authenticated public key apk by “blind-
ing” the public key g” of the ElGamal encryption scheme with the hash of the
password as apk < g* - Ho(pwd), where Hg is a hash function onto G, which can
be implemented in deterministic way (to avoid timing attacks) using e.g. [9]. To
encrypt message m under password pwd’ and key apk, the encryptor “unblinds”
the public key as y < apk - Ho(pwd’) ™! and then encrypts m under y using FO-
ElGamal, i.e. the Fujisaki-Okamoto transform applied to ElGamal which lifts its
security from CPA to CCA, required to achieve the CCA-security and ciphertext
authenticity properties of PAPKE.

None of the password-derived values apk or c¢ allows an offline attack: Any
“unblinding” of apk would yield a valid public key g* for some z, and ElGamal
ciphertexts are known to guarantee key anonymity [6], meaning that ciphertexts
do not leak information about the public key used in encryption. (Note that
the leakage of the unblinded public key y = ¢® used in encryption would allow
an adversary who sees apk = y - Ho(pwd) to mount an offline attack on pwd.)
The scheme is correct because if pwd’ = pwd then the hash values cancel and
encryption is done under the “original” public key y = ¢”. However, if the
passwords do not match then encryption is done under an effectively random
public key y <—r G. The latter gives us the desired security against active attacks:
If an honest party is tricked into encryption under a malicious apk™ but uses a
different password than the one which was used to blind apk™, then the ciphertext
will be indistinguishable from random, even if A knows the secret key to apk™.
Note, however, that unlike the ideal cipher encryption of apk under pwd used in
PAPKE-IC, the method used here to blind key ¢* and form the authenticated key
apk is essentially a one-time pad over G, and thus is not by itself a commitment
to password pwd. Below we discuss how we modify the above sketch and in
particular make this blinding password-committing.
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Note that in Figure 3 the message space is M = {0, 1}" for fixed n but it can
be extended to arbitrary messages e.g. using Ho(R) as a key in symmetric-key
encryption instead of as a one-time pad.

Setup: Let G be a group of prime order p such that 2571 < p < 2%, and let g1, g2 be
two random generators in G. We use three hash functions modeled as random oracles:
Ho: {0,1}* = G, H1: G® x {0,1}" — Z2 and H2 : G — {0, 1}™.

PAPKE.KGen(k, pwd):

— Choose z <—r Z, and compute y1 < g7, y2 < g5, Y2 < y2 - Ho(pwd).

— Output (sk, apk) for sk < (z,y1,y2) and apk < (y1, Y2).

PAPKE.Enc(apk, pwd’, m):

Abort if [m| > n.

Parse (y1,Y2) < apk, and “unblind” the second public key, y2 < Ya - Ho(pwd)™*.
Generate randomness via the RO: compute (r1,72)  Hi(R,y1,y2,m) for R +=x G.
Encrypt R under y1 and ya: c1 < g1 952, €2 < Y1 Y2 - R, cs + Ha(R) D m .

— Output ¢ + (c1, ¢2,¢3).

PAPKE.Dec(sk, c'):

— Parse (z,y1,y2) « sk.

Decrypt ¢ = (c1,c¢2,¢3): R < c2/cf, m < ¢3 @ Ha2(R), and (r1,72) < Hi(R, y1, Y2, m).
Ty T2

Verify the correctness of decryption: if ¢c1 = g;'gs? set m’ < m, else set m’ + L.
Output m’

Fig. 3. Our DDH-based PAPKE scheme PAPKE-FO.

Achieving UC-Security via “Twin” Keys. To achieve UC security we have to
ensure that both the key apk and the ciphertext ¢ commit each party to a well-
defined password choice. Technically, the simulator SIM must be able to extract
(i) pwd from an adversarial apk™ and (ii) pwd’ and m from an adversarial cipher-
text ¢. While (ii) can be realized via the Fujisaki-Okamoto transform, case (i)
requires more care. We need (i) for the reasons outlined above, i.e. a ciphertext
encrypted by an honest party under an adversarial key apk™ must be decrypt-
able only if apk® commits to the encryptor’s password. In the UC functionality
Fpapke this is enforced by SIM having to pass a single password guess pwd™ cor-
responding to the real-life adversary’s choice of apk™, and if pwd* # pwd’, i.e.,
the guess does not match the encryptor’s password pwd’, then the encryption
must reveal no information on the encrypted plaintext.

We achieve this by generating a “twin” public key using two generators g1, g2
in the CRS. The apk then consists of y; < g7 and Y3 « ¢5 - Ho(pwd), i.e., we
keep one public key in the clear and the other one is blinded with the pass-
word hash. In the security proof we set ga < g7, which allows the simulator to
decrypt Ho(pwd) from apk, and look up pwd from the random oracle queries.
Further, encryption is done under both public keys: y; and the “unblinded”
Yo = Ya - Ho(pwd)~!. This double encryption under the plain and derived key is
crucial, as it prevents an adversary A from providing a malformed apk™ which
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would allow A to still decrypt, but from which SIM cannot extract a password.
Thus, our “twin” key construction enforces that only a well-formed apk can lead
to decryptable ciphertexts (if the passwords match), without requiring heavy
tools such as zero-knowledge proofs.

For space-saving reasons the proof of the following theorem is relegated to
the full version of the paper. Functionalities Fcrs and Fro are UC models for
resp. the CRS string and the RO hash functions we assume in this construction.

Theorem 3. Protocol PAPKE-FO in Figure 8 securely realizes functionality Fpapke
under the DDH assumption in group G in the Fcrs, Fro-hybrid model.
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A Concrete PAPKE and PAKE Instantiation Example

Here we show particular instantiations of some of our results, a PAPKE scheme
PAPKE-IC-DHIES and a PAKE protocol PAKE-IC-DHIES. PAPKE-IC-DHIES is a
particular instantiation of the generic PAPKE-IC scheme of Section 4.1 based on
the DHIES® PKE by Abdalla et el. [1], and protocol PAKE-IC-DHIES is derived
via the PAPKE-2-PAKE compiler of Section 3 applied to PAPKE-IC-DHIES.

Setup: G is a cyclic group of prime order p with generator g; IC = (IC.Enc, IC.Dec) is an
Ideal Cipher over G with key space {0,1}"; AE = (AE.Enc, AE.Dec) is an authenticated
encryption with key space {0,1}"; H: G — {0, 1}" is a collision-resistant hash function.

PAPKE.KGen(k, pwd):

— Pick © +—r Zp, compute y + g® and apk < IC.Enc(pwd, y).
— Assign sk < x and output (sk, apk).

PAPKE.Enc(apk, pwd’, m):

— Compute y < IC.Dec(pwd, apk), r <—r Zyp, k < H(y"), c1 < g", c2 < AE.Enc(k, m).
— Output ¢ = (c1, c2).

PAPKE.Dec(sk, c):

— Parse (c1,¢2) < ¢, compute k < H(¢®).
— If ¢; =1 set m + L otherwise set m + AE.Dec(k, c2), and output m.

Fig. 4. Concrete PAPKE instantiation PAPKE-IC-DHIES.

Concrete Instantiation of PAPKE-IC Using DHIES. In Section 4.1 we show a
generic UC-secure PAPKE scheme that relies on an ideal cipher and a public-key
encryption scheme that is both AI-CCA and SROB-CCA-secure. Abdalla et al. [1]
show that these properties can be realized by DHIES™, a simple modification of
DHIES [2] which excludes zero randomness at encryption, i.e., samples r from
Z,, instead of Z,, and rejects ciphertexts that have 1 as first component. We
specify DHIES™ below relying on authenticated encryption AE, a hash function
H and a cyclic group (G,p,g) of prime order p. Scheme PAPKE-IC-DHIES in
Figure 4 is a (semi) concrete instantiation of PAPKE-IC using DHIES™, which
uses 2 exponentiations for encryption and 1 for decryption, as well as an ideal
cipher over group G and hashing onto G.

DHIES* . KGen(k): = g Zy, y < g%, set pk < y, sk < x and return (pk, sk)

DHIES™.Enc(pk, m): parse pk = y, get r < Z5, k « H(y"), c1 + g7, co
AE.Enc(k,m) and return ¢ = (c1, ¢2).

DHIES™.Dec(sk, c): parse ¢ = (c1,c2) and sk = z, get k < H(c}). If ¢; = 1
output m < L and m < AE.Dec(k, c3) else.

Concrete PAKE Protocols. We specify an example of a concrete UC PAKE
instantiation obtained by applying the generic PAPKE-2-PAKE compiler shown
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in Figure 1 to the PAPKE scheme PAPKE-IC-DHIES shown in Figure 4. In [12]
we also specify PAKE protocol PAKE-FO implied by our second PAPKE con-
struction, PAPKE-FO of Figure 3. To the best of our knowledge, these are the
first two-round UC-secure PAKE’s which rely on standard groups, i.e. no bi-
linear maps, but resort to the IC and/or ROM model to achieve practical effi-
ciency. Concretely, PAKE-IC-DHIES uses from 2 exponentiations per party and
PAKE-FO uses 4 (multi-)exponentiations for one party and 2 for the other. This
almost matches the efficiency and assumptions used by two-round PAKE’s which
were shown secure under only game-based security notions, e.g. [7, 11, 4], and
it reduces from 3 to 2 the rounds of previously known UC PAKE secure under
comparable assumptions of Abdalla et al. [3].

Protocol PAKE-IC-DHIES shown in Figure 5 requires the same setup as the
PAPKE scheme PAPKE-IC-DHIES in Figure 4, i.e. G is a cyclic group of prime
order p with generator g , IC = (IC.Enc,IC.Dec) is an ideal cipher over group
G with key space {0,1}*, AE = (AE.Enc, AE.Dec) is an authenticated encryp-
tion with key space {0,1}", and H : G — {0,1}" is a collision-resistant hash.
The following security statement for PAKE-IC-DHIES follows from Theorem 1,
Theorem 2, and the security properties of DHIES™ [1]:

Corollary 1. The PAKE-IC-DHIES scheme described in Figure 5 securely real-
izes Fpake n the Fcrs, Fic-hybrid model if the Oracle-Diffie-Hellman assump-
tion is hard for G, H is a collision-resistant hash, and AE is a secure, strongly
unforgeable and collision-resistant authenticated encryption scheme.

Party P;, upon input Party P;, upon input
(NEWSESSION, sid’, P;, P;, pwd, client): (NEWSESSION, sid’, P;, P;, pwd’, server):
get T g Zp, y + g° wait for message with prefix sid’

set apk < IC.Enc(pwd,y), store sk <z
sid’, apk

choose k <—r {0,1}"

get y < IC.Dec(pwd’, apk), r <= Zy, k' + H(y"),
c1 4+ g",co < AE.Enc(k’, k), set ¢ < (c1,¢2)
output (NEWKEY, sid’, k)

sid’, c

parse ¢ = (c1,c2), get k' < H(cf)

if c1 =1 set m <+ L; else m < AE.Dec(k’, c2)
if m# L, set k < m; else k <—r {0,1}"
output (NEWKEY, sid’, k)

Fig. 5. Two-round PAKE protocol PAKE-IC-DHIES.
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