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Abstract

There has been an increased interest in mul-
timodal language processing including multi-
modal dialog, question answering, sentiment
analysis, and speech recognition. However,
naturally occurring multimodal data is often
imperfect as a result of imperfect modalities,
missing entries or noise corruption. To ad-
dress these concerns, we present a regulariza-
tion method based on tensor rank minimiza-
tion. Our method is based on the observation
that high-dimensional multimodal time series
data often exhibit correlations across time and
modalities which leads to low-rank tensor rep-
resentations. However, the presence of noise
or incomplete values breaks these correlations
and results in tensor representations of higher
rank. We design a model to learn such ten-
sor representations and effectively regularize
their rank. Experiments on multimodal lan-
guage data show that our model achieves good
results across various levels of imperfection.

1 Introduction

Analyzing multimodal language sequences spans
various fields including multimodal dialog (Das
et al., 2017; Rudnicky, 2005), question answer-
ing (Antol et al., 2015; Tapaswi et al., 2015;
Das et al., 2018), sentiment analysis (Morency
et al,, 2011), and speech recognition (Palaskar
et al., 2018). Generally, these multimodal se-
quences contain heterogeneous sources of infor-
mation across the language, visual and acous-
tic modalities. For example, when instructing
robots, these machines have to comprehend our
verbal instructions and interpret our nonverbal be-
haviors while grounding these inputs in their vi-
sual sensors (Schmerling et al., 2017; Iba et al.,
2005). Likewise, comprehending human inten-
tions requires integrating human language, speech,
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Figure 1: Clean multimodal time series data (in shades
of green) exhibits correlations across time and across
modalities, leading to redundancy in low rank tensor
representations. On the other hand, the presence of
imperfect entries (in gray, blue, and red) breaks these
correlations and leads to higher rank tensors. In these
scenarios, we use tensor rank regularization to learn
tensors that more accurately represent the true correla-
tions and latent structures in multimodal data.

facial behaviors, and body postures (Mihalcea,
2012; Rossiter, 2011). However, as much as more
modalities are required for improved performance,
we now face a challenge of imperfect data where
data might be 1) incomplete due to mismatched
modalities or sensor failure, or 2) corrupted with
random or structured noise. As a result, an im-
portant research question involves learning robust
representations from imperfect multimodal data.
Recent research in both unimodal and multi-
modal learning has investigated the use of tensors
for representation learning (Anandkumar et al.,
2014). Given representations hy, ..., hy; from M
modalities, the order-M outer product tensor 7 =
h; ® hy ® ... ® hyy is a natural representation for
all possible interactions between the modality di-
mensions (Liu et al., 2018). In this paper, we
propose a model called the Temporal Tensor Fu-
sion Network (T2FN) that builds tensor represen-
tations from multimodal time series data. T2FN



learns a tensor representation that captures mul-
timodal interactions across time. A key observa-
tion is that clean data exhibits tensors that are low-
rank since high-dimensional real-world data is of-
ten generated from lower dimensional latent struc-
tures (Lakshmanan et al., 2015). Furthermore,
clean multimodal time series data exhibits corre-
lations across time and across modalities (Yang
et al., 2017; Hidaka and Yu, 2010). This leads
to redundancy in these overparametrized tensors
which explains their low rank (Figure 1). On the
other hand, the presence of noise or incomplete
values breaks these natural correlations and leads
to higher rank tensor representations. As a re-
sult, we can use tensor rank minimization to learn
tensors that more accurately represent the true
correlations and latent structures in multimodal
data, thereby alleviating imperfection in the input.
With these insights, we show how to integrate ten-
sor rank minimization as a simple regularizer for
training in the presence of imperfect data. As com-
pared to previous work on imperfect data (Sohn
et al., 2014; Srivastava and Salakhutdinov, 2014;
Pham et al., 2019), our model does not need to
know which of the entries or modalities are imper-
fect beforehand. Our model combines the strength
of temporal non-linear transformations of multi-
modal data with a simple regularization technique
on tensor structures. We perform experiments on
multimodal video data consisting of humans ex-
pressing their opinions using a combination of lan-
guage and nonverbal behaviors. Our results back
up our intuitions that imperfect data increases ten-
sor rank. Finally, we show that our model achieves
good results across various levels of imperfection.

2 Related Work

Tensor Methods: Tensor representations have
been used for learning discriminative representa-
tions in unimodal and multimodal tasks. Tensors
are powerful because they can capture important
higher order interactions across time, feature di-
mensions, and multiple modalities (Kossaifi et al.,
2017). For unimodal tasks, tensors have been used
for part-of-speech tagging (Srikumar and Man-
ning, 2014), dependency parsing (Lei et al., 2014),
word segmentation (Pei et al., 2014), question
answering (Qiu and Huang, 2015), and machine
translation (Setiawan et al., 2015). For multimodal
tasks, Huang et al. (2017) used tensor products be-
tween images and text features for image caption-
ing. A similar approach was proposed to learn

representations across text, visual, and acoustic
features to infer speaker sentiment (Liu et al.,
2018; Zadeh et al., 2017). Other applications in-
clude multimodal machine translation (Delbrouck
and Dupont, 2017), audio-visual speech recogni-
tion (Zhang et al., 2017), and video semantic anal-
ysis (Wu et al., 2009; Gao et al., 2009).
Imperfect Data: In order to account for imper-
fect data, several works have proposed generative
approaches for multimodal data (Sohn et al., 2014;
Srivastava and Salakhutdinov, 2014). Recently,
neural models such as cascaded residual autoen-
coders (Tran et al., 2017), deep adversarial learn-
ing (Cai et al., 2018), or translation-based learn-
ing (Pham et al., 2019) have also been proposed.
However, these methods often require knowing
which of the entries or modalities are imperfect
beforehand. While there has been some work on
using low-rank tensor representations for imper-
fect data (Chang et al., 2017; Fan et al., 2017;
Chen et al., 2017; Long et al., 2018; Nimishakavi
et al.,, 2018), our approach is the first to inte-
grate rank minimization with neural networks for
multimodal language data, thereby combining the
strength of non-linear transformations with the
mathematical foundations of tensor structures.

3 Proposed Method

In this section, we present our method for learning
representations from imperfect human language
across the language, visual, and acoustic modal-
ities. In §3.1, we discuss some background on
tensor ranks. We outline our method for learn-
ing tensor representations via a model called Tem-
poral Tensor Fusion Network (T2FN) in §3.2. In
§3.3, we investigate the relationship between ten-
sor rank and imperfect data. Finally, in §3.4, we
show how to regularize our model using tensor
rank minimization.

We use lowercase letters € R to denote
scalars, boldface lowercase letters x € RY to de-
note vectors, and boldface capital letters X ¢
R%1*42 to denote matrices. Tensors, which we de-
note by calligraphic letters X, are generalizations
of matrices to multidimensional arrays. An order-
M tensor has M dimensions, X € R4x-xdm  We
use ® to denote outer product between vectors.

3.1 Background: Tensor Rank

The rank of a tensor measures how many vectors
are required to reconstruct the tensor. Simple ten-
sors that can be represented as outer products of
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Figure 2: The Temporal Tensor Fusion Network
(T2FN) creates a tensor M from temporal data. The
rank of M increases with imperfection in data so we
regularize our model by minimizing an upper bound on
the rank of M.

vectors have lower rank, while complex tensors
have higher rank. To be more precise, we de-
fine the rank of a tensor using Canonical Polyadic
(CP)-decomposition (Carroll and Chang, 1970).
For an order-M tensor X € R%%*dM there exists
an exact decomposition into vectors w:

r M )
X=-Y @ w,. (1)
i=1m=1
The minimal r for exact decomposition is called
the rank of the tensor. The vectors {{w’ }M_ 1
are called the rank r decomposition factors of X',

3.2 Multimodal Tensor Representations

Our model for creating tensor representations
is called the Temporal Tensor Fusion Network
(T2FN), which extends the model in Zadeh et al.
(2017) to include a temporal component. We
show that T2FN increases the capacity of TFN
to capture high-rank tensor representations, which
itself leads to improved prediction performance.
More importantly, our knowledge about tensor
rank properties allows us to regularize our model
effectively for imperfect data.

We begin with time series data from the lan-
guage, visual and acoustic modalities, denoted
as [x},....,x} |, [xb,...,x0], and [x},...,x]] re-
spectively. We first use Long Short-term Mem-
ory (LSTM) networks (Hochreiter and Schmid-
huber, 1997) to encode the temporal information

from each modality, resulting in a sequence of hid-
den representations [h},...,h7 ], [h!,...,hT], and
[hl,....hT]. Similar to prior work which found
tensor representations to capture higher-order in-
teractions from multimodal data (Liu et al., 2018;
Zadeh et al., 2017; Fukui et al., 2016), we form
tensors via outer products of the individual repre-
sentations through time (as shown in Figure 2):

iR o

where we append a 1 so that unimodal, bimodal,
and trimodal interactions are all captured as de-
scribed in Zadeh et al. (2017). M is our multi-
modal representation which can then be used to
predict the label y using a fully connected layer.
Observe how the construction of M closely re-
sembles equation (1) as the sum of vector outer
products. As compared to TFN which uses a sin-
gle outer product to obtain a multimodal tensor of
rank one, T2FN creates a tensor of high rank (up-
per bounded by 7). As a result, the notion of rank
naturally emerges when we reason about the prop-
erties of M.

3.3 How Does Imperfection Affect Rank?

We first state several observations about the rank
of multimodal representation M:
1) Tnoisy: The rank of M is maximized when data
entries are sampled from i.i.d. noise (e.g. Gaus-
sian distributions). This is because this setting
leads to no redundancy at all between the feature
dimensions across time steps.
2) Telean < Tnoisy: Clean real-world data is of-
ten generated from lower dimensional latent struc-
tures (Lakshmanan et al., 2015). Furthermore,
multimodal time series data exhibits correlations
across time and across modalities (Yang et al.,
2017; Hidaka and Yu, 2010). This redundancy
leads to low-rank tensor representations.
3) Telean < Timperfect < Tnoisy: If the data is im-
perfect, the presence of noise or incomplete val-
ues breaks these natural correlations and leads to
higher rank tensor representations.

These intuitions are also backed up by several
experimental results which are presented in §4.2.

3.4 Tensor Rank Regularization

Given our intuitions above, it would then seem
natural to augment the discriminative objective
function with a term to minimize the rank of M.



In practice, the rank of an order-M tensor is com-
puted using the nuclear norm |X'||. which is de-
fined as (Friedland and Lim, 2014),

T T M i X
[« :inf{2|)\i|:X:Z/\i(®wﬁn),\|wﬁn\\ :I,TEN}.
i=1 i=1 m=1

3)
When M = 2, this reduces to the matrix nuclear
norm (sum of singular values). However, com-
puting the rank of a tensor or its nuclear norm is
NP-hard for tensors of order > 3 (Friedland and
Lim, 2014). Fortunately, there exist efficiently
computable upper bounds on the nuclear norm and
minimizing these upper bounds would also mini-
mize the nuclear norm | M|.. We choose the up-
per bound as presented in Hu (2014), which upper
bounds the nuclear norm with the tensor Frobenius
norm scaled by the tensor dimensions:

1Y d;
« < . 4
”M” <\} maX{dl,...,dM}HMHF ( )

where the Frobenius norm | M || is defined as the
sum of squared entries in M which is easily com-
putable and convex. Since | M| is easily com-
putable and convex, including this term adds neg-
ligible computational cost to the model. We will
use this upper bound as a surrogate for the nu-
clear norm in our objective function. Our objec-
tive function is therefore a weighted combination
of the prediction loss and the tensor rank regular-
izer in equation (4).

4 Experiments

Our experiments are designed with two research
questions in mind: 1) What is the effect of various
levels of imperfect data on tensor rank in T2FN?
2) Does T2FN with rank regularization perform
well on prediction with imperfect data? We an-
swer these questions in §4.2 and §4.3 respectively.

4.1 Datasets

We experiment with real video data consisting of
humans expressing their opinions using a com-
bination of language and nonverbal behaviors.
We use the CMU-MOSI dataset which contains
2199 videos annotated for sentiment in the range
[-3,+3] (Zadeh et al., 2016). CMU-MOSI and
related multimodal language datasets have been
studied in the NLP community (Gu et al., 2018;
Liu et al., 2018; Liang et al., 2018) from fully
supervised settings but not from the perspective
of supervised learning with imperfect data. We

use 52 segments for training, 10 for validation
and 31 for testing. GloVe word embeddings (Pen-
nington et al., 2014), Facet (iMotions, 2017), and
COVAREP (Degottex et al., 2014) features are
extracted for the language, visual and acoustic
modalities respectively. Forced alignment is per-
formed using P2FA (Yuan and Liberman, 2008) to
align visual and acoustic features to each word, re-
sulting in a multimodal sequence. Our data splits,
features, alignment, and preprocessing steps are
consistent with prior work on the CMU-MOSI
dataset (Liu et al., 2018).

4.2 Rank Analysis

We first study the effect of imperfect data on the
rank of tensor M. We introduce the following
types of noises parametrized by noise_level =
[0.0,0.1,...,1.0]. Higher noise levels implies
more imperfection: 1) clean: no imperfection,
2) random drop: each entry is dropped inde-
pendently with probability p € noise_level,
and 3) structured drop: independently for each
modality, each time step is chosen with probabil-
ity p € noise_level. If a time step is cho-
sen, all feature dimensions at that time step are
dropped. For all imperfect settings, features are
dropped during both training and testing.

We would like to show how the tensor ranks
vary under different imperfection settings. How-
ever, as is mentioned above, determining the exact
rank of a tensor is an NP-hard problem (Friedland
and Lim, 2014). In order to analyze the effect of
imperfections on tensor rank, we perform CP de-
composition (equation (5)) on the tensor represen-
tations under different rank settings r and measure
the reconstruction error ¢,

o)

€ = min
Wi

(S@w)-x

i=1m=1

F

Given the true rank r*, € will be high at ranks
r < r”*, while e will be approximately zero at ranks
r > r* (for example, a rank 3 tensor would display
a large reconstruction error with CP decomposi-
tion at rank 1, but would show almost zero error
with CP decomposition at rank 3). By analyzing
the effect of r on €, we are then able to derive a
surrogate 7 to the true rank r*.

Using this approach, we experimented on
CMU-MOSI and the results are shown in Fig-
ure 3(a). We observe that imperfection leads to an
increase in (approximate) tensor rank as measured
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(b) Sentiment classification accuracy un-
der random drop (i.e. dropping en-
tries randomly with probability p €
noise_level). T2FN with rank reg-
ularization (green) performs well.
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der structured drop (dropping entire time
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noise_level). T2FN with rank reg-
ularization (green) performs well.

Figure 3: (a) Effect of imperfect data on tensor rank. (b) and (c): CMU-MOSI test accuracy under imperfect data.

by reconstruction error (the graph shifts outwards
and to the right), supporting our hypothesis that
imperfect data increases tensor rank (§3.3).

4.3 Prediction Results

Our next experiment tests the ability of our model
to learn robust representations despite data im-
perfections. We use the tensor M for predic-
tion and report binary classification accuracy on
CMU-MOSI test set. We compare to several
baselines: Early Fusion (EF)-LSTM, Late Fusion
(LF)-LSTM, TEN, and T2FN without rank regu-
larization. These results are shown in Figure 3(b)
for random drop and Figure 3(c) for structured
drop. T2FN with rank regularization maintains
good performance despite imperfections in data.
We also observe that our model’s improvement is
more significant on random drop settings, which
results in a higher tensor rank as compared to
structured drop settings (from Figure 3(a)). This
supports our hypothesis that our model learns ro-
bust representations when imperfections that in-
crease tensor rank are introduced. On the other
hand, the existing baselines suffer in the presence
of imperfect data.

5 Discussion and Future Work

We acknowledge that there are other alternative
methods to upper bound the true rank of a ten-
sor (Alexeev et al., 2011; Atkinson and Lloyd,
1980; Ballico, 2014). From a theoretical perspec-
tive, there exists a trade-off between the cost of
computation and the tightness of approximation.
In addition, the tensor rank can (far) exceed the
maximum dimension, and a low-rank approxima-
tion for tensors may not even exist (de Silva and
Lim, 2008). While our tensor rank regulariza-
tion method seems to work well empirically, there

is definitely room for a more thorough theoreti-
cal analysis of constructing and regularizing ten-
sor representations for multimodal learning.

6 Conclusion

This paper presented a regularization method
based on tensor rank minimization. We observe
that clean multimodal sequences often exhibit cor-
relations across time and modalities which leads
to low-rank tensors, while the presence of imper-
fect data breaks these correlations and results in
tensors of higher rank. We designed a model, the
Temporal Tensor Fusion Network, to learn such
tensor representations and effectively regularize
their rank. Experiments on multimodal language
data show that our model achieves good results
across various levels of imperfections. We hope
to inspire future work on regularizing tensor rep-
resentations of multimodal data for robust predic-
tion in the presence of imperfect data.
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