Transformer Dissection: A Unified Understanding of
Transformer’s Attention via the Lens of Kernel

Yao-Hung Hubert Tsai' Shaojie Bai' Makoto Yamada3*
Louis-Philippe Morency? Ruslan Salakhutdinov!
{!Machine Learning Department,?Language Technology Institute}, Carnegie Mellon University
3Kyoto University ‘RIKEN AIP
{yaohungt, shaojieb, morency, rsalakhu } @cs.cmu.edu, myamada@i.kyoto-u.ac.jp
https://github.com/yaocohungt/TransformerDissection

Abstract

Transformer is a powerful architecture that
achieves superior performance on various se-
quence learning tasks, including neural ma-
chine translation, language understanding, and
sequence prediction. At the core of the Trans-
former is the attention mechanism, which con-
currently processes all inputs in the streams.
In this paper, we present a new formulation
of attention via the lens of the kernel. To be
more precise, we realize that the attention can
be seen as applying kernel smoother over the
inputs with the kernel scores being the simi-
larities between inputs. This new formulation
gives us a better way to understand individ-
ual components of the Transformer’s attention,
such as the better way to integrate the posi-
tional embedding. Another important advan-
tage of our kernel-based formulation is that it
paves the way to a larger space of compos-
ing Transformer’s attention. As an example,
we propose a new variant of Transformer’s at-
tention which models the input as a product
of symmetric kernels. This approach achieves
competitive performance to the current state of
the art model with less computation. In our
experiments, we empirically study different
kernel construction strategies on two widely
used tasks: neural machine translation and se-
quence prediction.

1 Introduction

Transformer (Vaswani et al., 2017) is a relative
new architecture which outperforms tradi-
tional deep learning models such as Recurrent
Neural Networks (RNNs) (Sutskever et al.,
2014) and Temporal Convolutional Net-
works (TCNs) (Baietal.,, 2018) for sequence
modeling tasks across neural machine trans-

lations (Vaswani etal., 2017), language un-
derstanding (Devlinetal., 2018), sequence
prediction (Daietal., 2019), image genera-

tion (Child etal.,, 2019), video activity clas-
sification (Wangetal.,, 2018), music genera-
tion (Huangetal.,, 2018a), and multimodal
sentiment analysis (Tsai et al., 2019a). Instead of
performing recurrence (e.g., RNN) or convolution
(e.g., TCN) over the sequences, Transformer is a
feed-forward model that concurrently processes
the entire sequence. At the core of the Transformer
is its attention mechanism, which is proposed to
integrate the dependencies between the inputs.
There are up to three types of attention within the
full Transformer model as exemplified with neural
machine translation application (Vaswani et al.,
2017): 1) Encoder self-attention considers the
source sentence as input, generating a sequence
of encoded representations, where each encoded
token has a global dependency with other tokens
in the input sequence. 2) Decoder self-attention
considers the target sentence (e.g., predicted
target sequence for translation) as input, gener-
ating a sequence of decoded representations',
where each decoded token depends on previous
decoded tokens. 3) Decoder-encoder attention
considers both encoded and decoded sequences,
generating a sequence with the same length as the
decoded sequence. It should be noted that some
applications has only the decoder self-attention
such as sequence prediction (Dai et al., 2019). In
all cases, the Transformer’s attentions follow the
same general mechanism.

At the high level, the attention can be seen
as a weighted combination of the input se-
quence, where the weights are determined by
the similarities between elements of the input se-
quence. We note that this operation is order-
agnostic to the permutation in the input se-

'The generated sequence can be regarded as a translated
sequence (i.e., translating from the encoded sequence), where
each generated token depends on all tokens in the encoded
sequence.

http://arxiv.org/abs/1908.11775v4
https://github.com/yaohungt/TransformerDissection

quence (order is encoded with extra positional em-
bedding (Vaswani et al., 2017; Shaw et al., 2018;
Dai et al., 2019)). The above observation inspires
us to connect Transformer’s attention to kernel
learning (Scholkopf and Smola, 2001): they both
concurrently and order-agnostically process all in-
puts by calculating the similarity between the
inputs. Therefore, in the paper, we present a
new formulation for Transformer’s attention via
the lens of kernel. To be more precise, the
new formulation can be interpreted as a kernel
smoother (Wasserman, 2006) over the inputs in
a sequence, where the kernel measures how sim-
ilar two different inputs are. The main advantage
of connecting attention to kernel is that it opens
up a new family of attention mechanisms that can
relate to the well-established literature in kernel
learning (Scholkopf and Smola, 2001). As a re-
sult, we develop a new variant of attention which
simply considers a product of symmetric kernels
when modeling non-positional and positional em-
bedding.

Furthermore, our proposed formulation high-
lights naturally the main components of Trans-
former’s attention, enabling a better understand-
ing of this mechanism: recent variants of Trans-
formers (Shaw et al., 2018; Huang et al., 2018b;
Daietal.,, 2019; Child etal., 2019; Leeetal.,
2018; Wang et al., 2018; Tsai et al., 2019a) can
be expressed through these individual compo-
nents. Among all the components, we argue
that the most important one is the construc-
tion of the kernel function. We empirically
study multiple kernel forms and the ways to in-
tegrate positional embedding in neural machine
translation (NMT) using IWSLT’ 14 German-
English (De-En) dataset (Edunov etal., 2017)
and sequence prediction (SP) using WikiText-103
dataset (Merity et al., 2016).

2 Attention

This section aims at providing an understand-
ing of attention in Transformer via the lens of
kernel. The inspiration for connecting the ker-
nel (Scholkopf and Smola, 2001) and attention in-
stantiates from the observation: both operations
concurrently processes all inputs and calculate the
similarity between the inputs. We first introduce
the background (i.e., the original formulation) of
attention and then provide a new reformulation
within the class of kernel smoothers (Wasserman,

2006). Next, we show that this new formulation
allows us to explore new family of attention while
at the same time offering a framework to cate-
gorize previous attention variants (Vaswani et al.,
2017; Shawetal., 2018; Huangetal., 2018b;
Daietal.,, 2019; Child etal., 2019; Leeetal.,
2018; Wang et al., 2018; Tsai et al., 2019a). Last,
we present a new form of attention, which requires
fewer parameters and empirically reaches compet-
itive performance as the state-of-the-art models.

For notation, we use lowercase representing
a vector (e.g., x), bold lowercase representing
a matrix (e.g., x), calligraphy letter denoting a
space (e.g., X), and S denoting a set. To re-
late the notations in sequence to sequence learn-
ing (Vaswani et al., 2017), x represents a specific
element of a sequence, x = [x1,29,--, 7] de-
notes a sequence of features, Sx = {1, 22, -, T}
represents the set with its elements being the fea-
tures in sequence x, and we refer the space of set
Sy as S.

2.1 Technical Background

Unlike recurrent computation (Sutskever et al.,
2014) (i.e., RNNs) and temporal convolutional
computation (Bai et al., 2018) (i.e., TCNs), Trans-
former’s attention is an order-agnostic opera-
tion given the order in the inputs (Vaswani et al.,
2017). Hence, in the presentation of the pa-
per, we consider the inputs as a set instead
of a sequence. When viewing sequence as a
set, we lose the temporal (positional) informa-
tion in inputs which is often crucial for se-
quence modeling (Sutskever et al., 2014). As a
result, Transformer (Vaswani et al., 2017) intro-
duced positional embedding to indicate the po-
sitional relation for the inputs. Formally, a se-
quence x = [x1,x2,--, 7] defines each element
as x; = (fi,t;) with f; € F being the non-
temporal feature at time ¢ and ¢; € T as an tempo-
ral feature (or we called it positional embedding).
Note that f; can be the word representation (in
neural machine translation (Vaswani et al., 2017)),
a frame in a video (in video activity recogni-
tion (Wang et al., 2018)), or a music unit (in music
generation (Huang et al., 2018b)). ¢; can be a mix-
ture of sine and cosine functions (Vaswani et al.,
2017) or parameters that can be learned dur-
ing back-propagation (Dai et al., 2019; Ottet al.,
2019). The feature vector are defined over a joint
space X := (F x T). The resulting permutation-

invariant set is: Sx = {x1,x9,-,xp} =
{(f17t1)7(f27t2)7'"7(fT7tT)}'

Followed the definition by Vaswani et al.
(2017), we use queries(q)/keys(k)/values(v) to
represent the inputs for the attention. To be
more precise, yq/r/vy is used for denoting a
query/key/value data in the query/key/value
sequence Xiq/k/v} (m{q/k/v} € SX{(]/IC/'U}) with
Sx{q/k/v} being its set representation. We note
that the input sequences are the same (x; = Xj)
for self-attention and are different (x, from de-
coder and x;, from encoder) for encoder-decoder
attention.

Given the introduced notation, the at-
tention mechanism in original = Trans-
former (Vaswani et al., 2017) can be presented as:

Attention(z, ; Sx,)
2gWo(xx W)
Vi,

with z, = fo + 1g, x = £ + tg, Wy, being
the weight, and dj, being the feature dimension of
x3 Wp.. Decoder self-attention further introduces a
mask to block the visibility of elements in Sk, to
x4. Particularly, decoder self-attention considers
the decoded sequence as inputs (x; = X4), where
the decoded token at time ¢ is not allowed to access
the future decoded tokens (i.e., tokens decoded at
time greater than ¢). On the contrary, encoder self-
attention and decoder-encoder attention consider
no additional mask to Eq. (1).

Recent work (Shaw etal., 2018; Daiet al.,
2019; Huangetal.,, 2018b; Childetal., 2019;
Lee et al., 2018; Parmar et al., 2018; Tsai et al.,
2019a) proposed modifications to the Transformer
for the purpose of better modeling inputs po-
sitional relation (Shaw et al., 2018; Huang et al.,
2018b; Daietal.,, 2019), appending additional
keys in Sk, (Dai et al., 2019), modifying the mask
applied to Eq. (1) (Child et al., 2019), or ap-
plying to distinct feature types (Lee et al., 2018;
Parmar et al., 2018; Tsai et al., 2019a). These
works adopt different designs of attention as com-
paring to the original form (Eq. (1)). In our paper,
we aim at providing an unified view via the lens of
kernel.

(1)

=softmax () X Wy

2.2 Reformulation via the Lens of Kernel

We now provide the intuition to reformulate Eq.
(1) via the lens of kernel. First, the softmax func-
tion can be realized as a probability function for

x4 observing the keys {xj }s in Sk, (Sx, is the set
representation of sequence xj). The probability is
determined by the dot product between x, and xy,
with additional mappings W,/W}, and scaling by
dy,, which we note the dot-product operation is an
instance of kernel function. We also introduce a
set filtering function M (z4,5%,) : X xS - S
which returns a set with its elements that operate
with (or are connected/visible to) x,. The filtering
function M (-,) plays as the role of the mask in de-
coder self-attention (Vaswani et al., 2017). Putting
these altogether, we re-represent Eq. (1) into the
following definition.

Definition 1. Given a non-negative kernel func-
tion k(-,-) : X x X —» R", a set filtering func-
tion M(-,-) : X xS - S, and a value function
v(-) : X = Y, the Attention function taking the
input of a query feature x4 € X is defined as

Attention(xq ; M(mq,Sxk))

_ Z k(xqvwk)

v
!/
wpeM (q,5%;,) Zxk'eM(:cq,Sxk) k(xqaﬁﬂk)

().
()

The Definition 1 is

smoothers (Wasserman,
smoothing:

a class of linear
2006) with kernel

k(xqvxk)
1M (S,) LM (2,55,) B (T TH')

v(zy)

= Ep(aglag) V(1)],

where outputs the “values” and

v(zr) uiputs |

Tq, Tk
p(aplrg) = zzk%huzm;;k)k(xm
function depends on k£ and N when k(-,-) is
always positive. In the prior work (Vaswani et al.,
2017), k(zq,2x) = exp ((zgWq, 2 Wi)/V/di)
and v(xg) = xpW,. Note that the Kker-
nel form k(x4 x;) in the original Trans-
former (Vaswani et al., 2017) is a asymmetric
exponential kernel with additional mapping W,

and W), (Wilson et al., 2016; Li et al., 2017)2.
The new formulation defines a larger space
for composing attention by manipulating its in-
dividual components, and at the same time it is

o7y 182 probability

We note that rigorous definition of kernel func-
tion (Scholkopf and Smola, 2001) requires the kernel to be
semi-positive definite and symmetric. While in the paper, the
discussion on kernel allows it to be non-semi-positive definite
and asymmetric. In Section 3, we will examine the kernels
which are semi-positive and symmetric.

able to categorize different variants of attention in
prior work (Shaw et al., 2018; Huang et al., 2018b;
Daietal.,, 2019; Childetal., 2019; Leeetal.,
2018; Wang et al., 2018; Tsai et al., 2019a). In the
following, we study these components by dissect-
ing Eq. (2) into: 1) kernel feature space X, 2)
kernel construction k(-,-), 3) value function v(-),
and 4) set filtering function M (,-).

2.2.1 Kernel Feature Space X

In Eq. (2), to construct a kernel on X, the
first thing is to identify the kernel feature space
X. In addition to modeling sequences like
word sentences (Vaswani et al., 2017) or music
signals (Huang et al., 2018b), the Transformer
can also be applied to images (Parmar et al.,
2018), sets (Lee et al., 2018), and multimodal se-
quences (Tsai et al., 2019a). Due to distinct data
types, these applications admit various kernel fea-
ture space:

(i) Sequence Transformer (Vaswani et al., 2017;
Dai et al., 2019):

X:=(FxT)

with F being non-positional feature space and 7
being the positional embedding space of the posi-
tion in the sequence.

(ii) Image Transformer (Parmar et al., 2018):
X:=(FxHxW)

with F being non-positional feature space, H be-
ing the positional space of the height in an image,
and WV being the positional space of the width in
an image.

(iii) Set Transformer (Lee et al., 2018) and Non-
Local Neural Networks (Wang et al., 2018):

X :=(F)

with no any positional information present.
(iv) Multimodal Transformer (Tsai et al., 2019a):

X::(fgvaxfax’r)

with F* representing the language feature space,
FV representing the vision feature space, F¢ rep-
resenting the audio feature space, and 7 represent-
ing the temporal indicator space.

For the rest of the paper, we will focus on the
setting for sequence Transformer X = (F x T)
and discuss the kernel construction on it.

2.2.2 Kernel Construction and the Role of
Positional Embedding % (-, -)

The kernel construction on X = (F x T)
has distinct design in variants of Trans-
formers (Vaswani et al., 2017; Daietal.,

2019; Huangetal.,, 2018b; Shawetal., 2018;
Child et al., 2019). Since now the kernel feature
space considers a joint space, we will first discuss
the kernel construction on JF (the non-positional
feature space) and then discuss how different
variants integrate the positional embedding (with
the positional feature space 7) into the kernel.

Kernel construction on F. All the work con-
sidered the scaled asymmetric exponential kernel
with the mapping W, and W, (Wilson et al., 2016;
Liet al., 2017) for non-positional features f, and

Jr:

kexp(fmfk):exp(M)- (3)

Vi

Note that the usage of asymmetric kernel is
also commonly used in various machine learn-
ing tasks (Yilmaz, 2007; Tsuda, 1999; Kulis et al.,
2011), where they observed the kernel form can
be flexible and even non-valid (i.e., a kernel that is
not symmetric and positive semi-definite). In Sec-
tion 3, we show that symmetric design of the ker-
nel has similar performance for various sequence
learning tasks, and we also examine different ker-
nel choices (i.e., linear, polynomial, and rbf ker-
nel).

Kernel construction on X = (F x 7). The de-
signs for integrating the positional embedding ¢,
and ¢y, are listed in the following.

(i) Absolute Positional Embedding (Vaswani et al.,
2017; Dai et al., 2019; Ott et al., 2019): For the
original Transformer (Vaswani et al., 2017), each
t; is represented by a vector with each dimen-
sion being sine or cosine functions. For learned
positional embedding (Dai et al., 2019; Ott et al.,
2019), each t; is a learned parameter and is
fixed for the same position for different sequences.
These works defines the feature space as the di-
rect sum of its temporal and non-temporal space:
X = F@®T. Viathe lens of kernel, the kernel sim-
ilarity is defined as

k(quk) = kexp(fq +tg, fi +tk). (4)

(ii) Relative Positional Embedding in Transformer-
XL (Dai et al., 2019): t represents the indicator of

the position in the sequence, and the kernel is cho-
sen to be asymmetric of mixing sine and cosine
functions:

k(g 1) = kop(far fi) K, (tasth) ()

with kg, (tq, tk) being an asymmetric kernel with

coefficients inferred by f;: logqu(tq,tk) =

I_dk/QJ—l . tq—tg 3 tg—tg
Yoo o C2p Sin(—"5) +copi1 cos(— %)
10000512 10000512

with [co, - cq,-1] = fqWyWR where Wg is
an learned weight matrix. = We refer readers
to Dai et al. (2019) for more details.

(iii) Relative Positional Embedding of Shaw et al.
(2018) and Music Transformer (Huang et al.,
2018b): t. represents the indicator of the position
in the sequence, and the kernel is modified to be
indexed by a look-up table:

k(-%'q,xk) = Ltqftk,fq : kexp(fm fk)v (6)

where Ly, 4, 5, = exp(fyWqas,-+,) with a. be-
ing a learnable matrix having matrix width to
be the length of the sequence. We refer readers
to Shaw et al. (2018) for more details.

Dai et al. (2019) showed that the way to inte-
grate positional embedding is better through Eq.
(5) than through Eq. (6) and is better through Eq.
(6) than through Eq. (4). We argue the reason
is that if viewing f; and ¢; as two distinct spaces
(X = (F x T)), the direct sum z; = f; + t; may
not be optimal when considering the kernel score
between x4 and . In contrast, Eq. (5) represents
the kernel as a product of two kernels (one for f;
and another for ¢;), which is able to capture the
similarities for both temporal and non-temporal
components.

2.2.3 Value Function v(-)

The current Transformers consider two different
value function construction:

(i) Original Transformer (Vaswani et al., 2017)
and Sparse Transformer (Child et al., 2019):

v(zg) = v((fe, te)) = (fe +) Wo. (7)

(ii) Transformer-XL (Dai et al., 2019), Music
Transformer (Huang et al., 2018b), Self-Attention
with Relative Positional Embedding (Shaw et al.,
2018):

v(zy) = v((fr,tr)) = frWo. ®)

Compared Eq. (7) to Eq. (8), Eq. (7) takes
the positional embedding into account for con-
structing the value function. In Section 3, we em-
pirically observe that constructing value function
with Eq. (8) constantly outperforms the construc-
tion with Eq. (7), which suggests that we do not
need positional embedding for value function.

2.2.4 Set Filtering Function 1/ (-,)

In Eq. (2), the returned set by the set filtering
function M (x4, Sk,) defines how many keys and
which keys are operating with x,. In the follow-
ing, we itemize the corresponding designs for the
variants in Transformers:

(i) Encoder Self-Attention in original Trans-
former (Vaswani et al., 2017): For each query z,
in the encoded sequence, M (x4, Sk,) = Sx, con-
tains the keys being all the tokens in the encoded
sequence. Note that encoder self-attention consid-
ers X, = X, with x, being the encoded sequence.

(ii) Encoder-Decoder Attention in original Trans-
former (Vaswani et al., 2017): For each query z,
in decoded sequence, M (x4, Sx,) = Sx, contains
the keys being all the tokens in the encoded se-
quence. Note that encode-decoder attention con-
siders x, # xj; with x, being the decoded se-
quence and xj, being the encoded sequence.

(iii) Decoder Self-Attention in original Trans-
former (Vaswani et al., 2017): For each query x,
in the decoded sequence, M (x4, Sk,) returns a
subset of Sy, (M(xq4,S%,) c Sx,). Note that
decoder self-attention considers x, = x;, with x,
being the decoded sequence. Since the decoded
sequence is the output for previous timestep, the
query at position 7 can only observe the keys being
the tokens that are decoded with position < 4. For
convenience, let us define S; as the set returned by
original Transformer (Vaswani et al., 2017) from
M (x4, Sx,,), which we will use it later.

(iv) Decoder Self-Attention in Transformer-
XL (Daietal., 2019): For each query z, in
the decoded sequence, M/(z,,S%,) returns
a set containing S; and additional memories
(M(xq, Sxk) = Sl + Smem, M(xq, Sxk) D Sl)
Smem refers to additional memories.
(v) Decoder Self-Attention in Sparse Trans-
former (Child et al., 2019): For each query x, in
the decoded sentence, M (x4, Sx,) returns a sub-
set of S1 (M (x4, Sk,) € S1).

To compare the differences for various designs,
we see the computation time is inversely propor-

tional to the number of elements in M (x4, Sx,)-
For performance-wise comparisons, Transformer-
XL (Daietal.,, 2019) showed that, the addi-
tional memories in M (x4, Sx,) are able to cap-
ture longer-term dependency than the original
Transformer (Vaswanietal., 2017) and hence
results in better performance. Sparse Trans-
former (Child et al., 2019) showed that although
having much fewer elements in M (x4, Sx,), if the
elements are carefully chosen, the attention can
still reach the same performance as Transformer-
XL (Dai et al., 2019).

2.3 Exploring the Design of Attention

So far, we see how Eq. (2) connects to the vari-
ants of Transformers. By changing the kernel con-
struction in Section 2.2.2, we can define a larger
space for composing attention. In this paper, we
present a new form of attention with a kernel that
is 1) valid (i.e., a kernel that is symmetric and pos-
itive semi-definite) and 2) delicate in the sense of
constructing a kernel on a joint space (i.e., X =

(FxT)):

k(g 2x) = ke (fo, 1) - br (ta: te)

with ke (o, fi) = exp(%

(thT,tkWT))
Vi, ’

where Wr and W are weight matrices. The new
form considers product of kernels with the first
kernel measuring similarity between non-temporal
features and the second kernel measuring simi-
larity between temporal features. Both kernels
are symmetric exponential kernel. Note that ¢;
here is chosen as the mixture of sine and co-
sine functions as in the prior work (Vaswani et al.,
2017; Ottet al.,, 2019). In our experiment, we
find it reaching competitive performance as com-
paring to the current state-of-the-art designs (Eq.
(5) by Dai et al. (2019)). We fix the size of the
weight matrices W. in Eq. (9) and Eq. (5) which
means we save 33% of the parameters in attention
from Eq. (9) to Eq. (5) (Eq. (5) has weights
Wq /Wi /Wg and Eq. (9) has weights Wg/Wr).

) €))

and kr(ty,tx) = exp(

3 Experiments

By viewing the attention mechanism with Eq. (2),
we aims at answering the following questions re-
garding the Transformer’s designs:

Q1. What is the suggested way for incorporating
positional embedding in the kernel function?

Q2. What forms of kernel are recommended to
choose in the attention mechanism? Can we re-
place the asymmetric kernel with the symmetric
version?

Q3. Is there any exception that the attention mech-
anism is not order-agnostic with respect to inputs?
If so, can we downplay the role of positional em-
bedding?
Q4. Is positional embedding required in value
function?

We conduct experiments on neural machine
translation (NMT) and sequence prediction (SP)
tasks since these two tasks are commonly chosen
for studying Transformers (Vaswani et al., 2017;
Daietal.,, 2019). Note that NMT has three
different types of attentions (e.g., encoder self-
attention, decoder-encoder attention, decoder self-
attention) and SP has only one type of atten-
tion (e.g., decoder self-attention). For the choice
of datasets, we pick IWSLT 14 German-English
(De-En) dataset (Edunov et al., 2017) for NMT
and WikiText-103 dataset (Merity et al., 2016) for
SP as suggested by Edunov et al. (Edunov et al.,
2017) and Dai et al. (Dai et al., 2019). For fairness
of comparisons, we train five random initializa-
tions and report test accuracy with the highest val-
idation score. We fix the position-wise operations
in Transformer’ and only change the attention
mechanism. Similar to prior work (Vaswani et al.,
2017; Dai et al., 2019), we report BLEU score for
NMT and perplexity for SP.

3.1 Incorporating Positional Embedding

In order to find the best way to integrate positional
embedding (PE), we study different PE incorpora-
tion in the kernel function k(-,-) in Eq. (2). Refer-
ring to Sections 2.2.2 and 2.3, we consider four
cases: 1) PE as direct sum in the feature space
(see Eq. (4)), 2) PE as a look-up table (see Eq.
(6)), 3) PE in product kernel with asymmetric ker-
nel (see Eq. (5)), and 4) PE in product kernel with
symmetric kernel (see Eq. (9)). We present the
results in Table 1.

First, we see that by having PE as a look-up

3>The computation of Transformer can be categorized into
position-wise and inter-positions (i.e., the attention mecha-
nism) operations. Position-wise operations include layer nor-
malization, residual connection, and feed-forward mapping.
We refer the readers to Vaswani et al. (Vaswani et al., 2017)
for more details.

Table 1: Incorporating Positional Embedding (PE). NMT stands for neural machine translation on IWSLT’ 14
De-En dataset (Edunov et al., 2017) and SP stands for sequence prediction on WikiText-103 dataset (Merity et al.,
2016). 1t means the upper the better and | means the lower the better.

Approach PE Incorporation Kernel Form NMT (BLEU?) SP (Perplexityl)
Vaswani et al. (2017) (Eq. (4)) Direct-Sum /cexp(fq +tg, fr+ tk) 33.98 30.97
Shaw et al. (2018) (Eq. (6)) Look-up Table Lty t, k@(p(fq7 fk) 34.12 27.56
Dai et al. (2019) (Eq. (5)) Product Kemnel ke (fo» /i) - o, (s) 33.62 24.10
Ours (Eq. (9)) Product Kernel kF(fm fk) . kT(tlp tk) 3471 24.28

Table 2: Kernel Types. Other than manipulating the kernel choice of the non-positional features, we fix the
configuration by Vaswani et al. (2017) for NMT and the configuration by Dai et al. (2019) for SP.

NMT (BLEU?) SP (Perplexityl)
Type Kernel Form
Asym. (W, # W) Sym. (W, = Wp) Asym. (W, # W) Sym. (W, = Wy)
Linear (faWq, fuWi) not converge not converge not converge not converge
2
Polynomial ((faW,y, bek)) 32.72 32.43 2591 2625
Exponential exp(%) 33.98 33.78 24.10 24.01
I Wom g W2
RBF exp(ol) 34.26 34.14 24.13 2421

table, it outperforms the case with having PE as
direct-sum in feature space, especially for SP task.
Note that the look-up table is indexed by the rela-
tive position (i.e., t, — t;) instead of absolute posi-
tion. Second, we see that PE in the product kernel
proposed by Dai et al. (Dai et al., 2019) may not
constantly outperform the other integration types
(it has lower BLEU score for NMT). Our proposed
product kernel reaches the best result in NMT and
is competitive to the best result in SP.

3.2 Kernel Types

To find the best kernel form in the attention
mechanism, in addition to the exponential kernel
(see Eq. (3)), we compare different kernel forms
(i.e., linear, polynomial, and rbf kernel) for the
non-positional features. We also provide the re-
sults for changing asymmetric to the symmetric
kernel, when forcing W, = W, so that the result-
ing kernel is a valid kernel (Scholkopf and Smola,
2001). The numbers are shown in Table 2. Note
that, for fairness, other than manipulating the ker-
nel choice of the non-positional features, we fix
the configuration by Vaswani et al. (Vaswani et al.,
2017) for NMT and the configuration by Dai et
al. (Dai et al., 2019) for SP.

We first observe that the linear kernel does not
converge for both NMT and SP. We argue the rea-
son is that the linear kernel may have negative

value and thus it violates the assumption in ker-
nel smoother that the kernel score must be pos-
itive (Wasserman, 2006). Next, we observe the
kernel with infinite feature space (i.e., exponen-
tial and rbf kernel) outperforms the kernel with fi-
nite feature space (i.e., polynomial kernel). And
we see rbf kernel performs the best for NMT and
exponential kernel performs the best for SP. We
conclude that the choice of kernel matters for the
design of attention in Transformer. Also, we see
no much performance difference when comparing
asymmetric to symmetric kernel. In the experi-
ment, we fix the size of W. in the kernel, and thus
adopting the symmetric kernel benefits us from
saving parameters.

3.3 Order-Invariance in Attention

The need of the positional embedding (PE) in the
attention mechanism is based on the argument that
the attention mechanism is an order-agnostic (or,
permutation equivariant) operation (Vaswani et al.,
2017; Shaw et al., 2018; Huang et al., 2018b;
Dai et al., 2019; Child et al., 2019). However, we
show that, for decoder self-attention, the opera-
tion is not order-agnostic. For clarification, we
are not attacking the claim made by the prior
work (Vaswani et al., 2017; Shaw et al., 2018;
Huang et al., 2018b; Dai et al., 2019; Child et al.,
2019), but we aim at providing a new look at the

Table 3: Order-Invariance in Attention. To save the space, we denote Encoder Self-Attention / Encoder-Decoder
Attention / Decoder Self-Attention as A/B/C. Note that SP only has decoder self-attention.

Approach Positional Embedding NMT (BLEU?)
Ours (Eq. (9)) In A/B/C 34.71
Ours (Eq. (9)) In A/B 34.49
No Positional Embedding none 14.47

Approach Positional Embedding SP (Perplexity|)
Vaswani et al. (2017) (Eq. InC 30.97
“)
Ours (Eq. (9) InC 24.28
No Positional Embedding none 30.92

Table 4: Positional Embedding in Value Function.

I: Value Function Considering Positional Embedding (Eq. (7)) / II: Value Function Considering no Positional Embedding (Eq. (8))

SP (Perplexity|)

I ('L'(l‘k) = (fr +tk)‘/Vv) i (’U(l‘k) = ka\ff') I (’U(Ik) = (fr +tk)W\~') i (’U(Ik) = kav)

Approach NMT (BLEU?)
Vaswani et al. (2017) (Eq. (4)) 33.98
Shaw et al. (2018) (Eq. (6)) 34.04
Dai et al. (2019) (Eq. (5)) 33.32
Ours (Eq. (9)) 34.60

34.02 30.97 30.50
34.12 27.56 27.45
33.62 24.18 24.10
34.71 24.42 24.28

order-invariance problem when considering the at-
tention mechanism with masks (masks refer to the
set filtering function in our kernel formulation). In
other words, previous work did not consider the
mask between queries and keys when discussing
the order-invariance problem (Pérez et al., 2019).

To put it formally, we first present the definition
by Lee et al. (2018) for a permutation equivariance
function:

Definition 2. Denote 11 as the set of all permu-
tations over [n] = {1,---,n}. A function func :
X" - Y" is permutation equivariant iff for any
permutation 7 € I, func(rx) = w func(x).

Lee et al. (2018) showed that the standard atten-
tion (encoder self-attention (Vaswani et al., 2017,
Daietal.,, 2019)) is permutation equivariant.
Here, we present the non-permutation-equivariant
problem on the decoder self-attention:

Proposition 1. Decoder self-
attention (Vaswani et al., 2017; Dai et al., 2019)
is not permutation equivariant.

To proceed the proof, we need the following def-
inition and propositions.

Definition 3. Denote 11 as the set of all permuta-
tions over [n] = {1,---,n} and S5, as performing
permutation w over Sx,. Attention(xy;Sx,) is
said to be permutation equivariant w.rt. Sy, if
and only if for any 7 € 11, Attention(zy; Sy,) =
Attention (z4; Sx,).

Proposition 2. Attention with the set filtering func-
tion M (x4, Sx,) = Sx, is permutation equivariant
w.rt. Sx,.

Proof. 1t is easy to show that if M (z4,Sx,) =
Sx,» Eq. (2) remains unchanged for any permu-
tation 7 performed on S, . []

Proposition 3. Attention with the set difference
Sxp N\ M(xq,5%,) # ¢ is not permutation equiv-
ariant w.r.t. Sx,.

Proof. First, suppose that & € Sx, \ M (x4, S,)-
Then, we construct a permutation 7 such that
T e M(xg, S5,). It is obvious that Eq.
(2) changes after this permutation and thus
Attention(acq ; M(:cq,Sxk)) is not permutation
equivariant w.r.t. Sy, . [|

Proof. [Proof for Proposition 1] First, we have
x,- Hence, showing Attention(z,; Sx,)
not permutation equivariant w.r.t. Sy, equals
to showing Attention not permutation equivari-
ant. Then, since the decoder self-attention consid-
ers masking (i.e., M (x4, Sx,) returns a subset of
Sx,.), by Proposition 3, the decoder self-attention
is not permutation equivariant. [

Tg ~

In fact, not only being a permutation inequivari-
ant process, the decoding process in the decoder
self-attention already implies the order informa-
tion from the data. To show this, take the decoded
sequence y = [init,y1,¥2,¥ys3,y4] as an example.
init stands for the initial token. When determin-
ing the output y; from init, the set filtering func-
tion is M (init, Sy) = {init}. Similarly, we will
have M (y1,Sy), M (y2,Sy), M(y3,Sy) to be

{init, y1 }, {init, y1,y2}, {init, y1,92,93}. Then,
it raises a concern: do we require PE in decoder

self-attention? By removing PE in decoder self-
attention, we present the results in Table 3. From
the table, we can see that, for NMT, removing PE
only in decoder self-attention results in slight per-
formance drop (from 34.71 to 34.49). However,
removing PE in the entire model greatly degrades
the performance (from 34.71 to 14.47). On the
other hand, for SP, removing PE from our pro-
posed attention variant dramatically degrades the
performance (from 24.28 to 30.92). Nonetheless,
the performance is slightly better than considering
PE from the original Transformer (Vaswani et al.,
2017).

3.4 Positional Embedding in Value Function

To determine the need of positional embedding
(PE) in value function, we conduct the experi-
ments by adopting Eq. (7) or Eq. (8) in the at-
tention mechanism. The results are presented in
Table 4. From the table, we find that considering
PE in value function (Eq. (7)) does not gain perfor-
mance as compared to not considering PE in value
function (Eq. (8)).

3.5 Take-Home Messages

Based on the results and discussions, we can now
answer the questions given at the beginning of this
section. The answers are summarized into the take-
home messages in the following.

Al. We show that integrating the positional em-
bedding in the form of product kernel (Eq. (5)
or Eq. (9)) gives us best performance.

A2. The kernel form does matter. Adopting ker-
nel form with infinite feature dimension (i.e., ex-
ponential kernel or rbf kernel) gives us best results.
The symmetric design of the kernel may benefit
us from saving parameters and barely sacrifice the
performance as compared to the non-symmetric
one.

A3. The decoder self-attention is not an order-
agnostic operation with respect to the order of in-
puts. However, incorporating positional embed-
ding into the attention mechanism may still im-
prove performance.

Ad4. We find that there is no much performance
difference by considering or not considering the
positional embedding in value function.

4 Related Work

Other than relating Transformer’s
mechanism with kernel methods,

attention
the prior

work (Wangetal., 2018; Shawetal., 2018;
Tsai et al., 2019b) related the attention mecha-
nism with graph-structured learning. For example,
Non-Local Neural Networks (Wang et al., 2018)
made a connection between the attention and
the non-local operation in image process-
ing (Buades et al., 2005). Others (Shaw et al.,
2018; Tsai et al., 2019b) linked the attention to
the message passing in graphical models. In
addition to the fundamental difference between
graph-structured learning and kernel learning,
the prior work (Wang etal., 2018; Shaw et al.,
2018; Tsai et al., 2019b) focused on presenting
Transformer for its particular application (e.g.,
video classification (Wangetal., 2018) and
neural machine translation (Shaw et al., 2018)).
Alternatively, our work focuses on presenting
a new formulation of Transformer’s attention
mechanism that gains us the possibility for
understanding the attention mechanism better.

5 Conclusions

In this paper, we presented a kernel formulation
for the attention mechanism in Transformer, which
allows us to define a larger space for designing at-
tention. As an example, we proposed a new vari-
ant of attention which reaches competitive perfor-
mance when compared to previous state-of-the-art
models. Via the lens of the kernel, we were able
to better understand the role of individual com-
ponents in Transformer’s attention and categorize
previous attention variants in a unified formulation.
Among these components, we found the construc-
tion of the kernel function acts the most important
role, and we studied different kernel forms and the
ways to integrate positional embedding on neural
machine translation and sequence prediction. We
hope our empirical study may potentially allow
others to design better attention mechanisms given
their particular applications.

Acknowledgments

We thank Zhilin Yang for helpful discussion on
the positional encoding in Transformer’s Atten-
tion. This work was supported in part by the
DARPA grant FA875018C0150, Office of Naval
Research grant N0O00141812861, AFRL CogDe-
CON, NSF Awards #1734868 #1722822, National
Institutes of Health, JST PRESTO program JP-
MIJPR165A, and Apple. We would also like to
acknowledge NVIDIA’s GPU support.

References

Shaojie Bai, J Zico Kolter, and Vladlen Koltun.
2018. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling.
arXiv preprint arXiv:1803.01271.

Antoni Buades, Bartomeu Coll, and J-M Morel. 2005.
A non-local algorithm for image denoising. In 2005
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), volume 2,
pages 60-65. IEEE.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Zihang Dai, Zhilin Yang, Yiming Yang, William W
Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-x1: Attentive lan-
guage models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’Aurelio Ranzato. 2017. Classical
structured prediction losses for sequence to se-
quence learning. arXiv preprint arXiv:1711.04956.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob
Uszkoreit, Noam Shazeer, Curtis Hawthorne, An-
drew M Dai, Matthew D Hoffman, and Douglas Eck.
2018a. An improved relative self-attention mecha-
nism for transformer with application to music gen-
eration. arXiv preprint arXiv:1809.04281.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob
Uszkoreit, Ian Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M Dai, Matthew D Hoffman, Mon-
ica Dinculescu, and Douglas Eck. 2018b. Music
transformer: Generating music with long-term struc-
ture.

Brian Kulis, Kate Saenko, and Trevor Darrell. 2011.
What you saw is not what you get: Domain adapta-
tion using asymmetric kernel transforms. In CVPR
2011, pages 1785-1792. IEEE.

Juho Lee, Yoonho Lee, Jungtack Kim, Adam R Ko-
siorek, Seungjin Choi, and Yee Whye Teh. 2018. Set
transformer. arXiv preprint arXiv:1810.00825.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yim-
ing Yang, and Barnabds Péczos. 2017. Mmd gan:
Towards deeper understanding of moment matching
network. In Advances in Neural Information Pro-
cessing Systems, pages 2203-2213.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer. arXiv preprint
arXiv:1802.05751.

Jorge Pérez, Javier Marinkovi¢, and Pablo Barceld.
2019. On the turing completeness of mod-
ern neural network architectures. arXiv preprint
arXiv:1901.03429.

Bernhard Scholkopf and Alexander J Smola. 2001.
Learning with kernels: support vector machines, reg-
ularization, optimization, and beyond. MIT press.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. arXiv preprint arXiv:1803.02155.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104-3112.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang,
Louis-Philippe Morency, and Ruslan Salakhutdinov.
2019a. Multimodal transformer for unaligned multi-
modal language sequences. ACL.

Yao-Hung Hubert Tsai, Santosh Divvala, Louis-
Philippe Morency, Ruslan Salakhutdinov, and Ali
Farhadi. 2019b. Video relationship reasoning using
gated spatio-temporal energy graph. CVPR.

Koji Tsuda. 1999. Support vector classifier with asym-
metric kernel functions. In in European Symposium
on Artificial Neural Networks (ESANN. Citeseer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998-6008.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and
Kaiming He. 2018. Non-local neural networks. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7794-7803.

Larry Wasserman. 2006. All of nonparametric statis-
tics. Springer Science & Business Media.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhut-
dinov, and Eric P Xing. 2016. Deep kernel learning.
In Artificial Intelligence and Statistics, pages 370—
378.

Alper Yilmaz. 2007. Object tracking by asymmetric
kernel mean shift with automatic scale and orienta-
tion selection. In 2007 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1-6.
IEEE.

