
Transformer Dissection: A Unified Understanding of
Transformer’s Attention via the Lens of Kernel

Yao-Hung Hubert Tsai1 Shaojie Bai1 Makoto Yamada34

Louis-Philippe Morency2 Ruslan Salakhutdinov1

{1Machine Learning Department,2Language Technology Institute}, Carnegie Mellon University
3Kyoto University 4RIKEN AIP

{yaohungt, shaojieb, morency, rsalakhu}@cs.cmu.edu, myamada@i.kyoto-u.ac.jp

https://github.com/yaohungt/TransformerDissection

Abstract

Transformer is a powerful architecture that

achieves superior performance on various se-

quence learning tasks, including neural ma-

chine translation, language understanding, and

sequence prediction. At the core of the Trans-

former is the attention mechanism, which con-

currently processes all inputs in the streams.

In this paper, we present a new formulation

of attention via the lens of the kernel. To be

more precise, we realize that the attention can

be seen as applying kernel smoother over the

inputs with the kernel scores being the simi-

larities between inputs. This new formulation

gives us a better way to understand individ-

ual components of the Transformer’s attention,

such as the better way to integrate the posi-

tional embedding. Another important advan-

tage of our kernel-based formulation is that it

paves the way to a larger space of compos-

ing Transformer’s attention. As an example,

we propose a new variant of Transformer’s at-

tention which models the input as a product

of symmetric kernels. This approach achieves

competitive performance to the current state of

the art model with less computation. In our

experiments, we empirically study different

kernel construction strategies on two widely

used tasks: neural machine translation and se-

quence prediction.

1 Introduction

Transformer (Vaswani et al., 2017) is a relative

new architecture which outperforms tradi-

tional deep learning models such as Recurrent

Neural Networks (RNNs) (Sutskever et al.,

2014) and Temporal Convolutional Net-

works (TCNs) (Bai et al., 2018) for sequence

modeling tasks across neural machine trans-

lations (Vaswani et al., 2017), language un-

derstanding (Devlin et al., 2018), sequence

prediction (Dai et al., 2019), image genera-

tion (Child et al., 2019), video activity clas-

sification (Wang et al., 2018), music genera-

tion (Huang et al., 2018a), and multimodal

sentiment analysis (Tsai et al., 2019a). Instead of

performing recurrence (e.g., RNN) or convolution

(e.g., TCN) over the sequences, Transformer is a

feed-forward model that concurrently processes

the entire sequence. At the core of the Transformer

is its attention mechanism, which is proposed to

integrate the dependencies between the inputs.

There are up to three types of attention within the

full Transformer model as exemplified with neural

machine translation application (Vaswani et al.,

2017): 1) Encoder self-attention considers the

source sentence as input, generating a sequence

of encoded representations, where each encoded

token has a global dependency with other tokens

in the input sequence. 2) Decoder self-attention

considers the target sentence (e.g., predicted

target sequence for translation) as input, gener-

ating a sequence of decoded representations1 ,

where each decoded token depends on previous

decoded tokens. 3) Decoder-encoder attention

considers both encoded and decoded sequences,

generating a sequence with the same length as the

decoded sequence. It should be noted that some

applications has only the decoder self-attention

such as sequence prediction (Dai et al., 2019). In

all cases, the Transformer’s attentions follow the

same general mechanism.

At the high level, the attention can be seen

as a weighted combination of the input se-

quence, where the weights are determined by

the similarities between elements of the input se-

quence. We note that this operation is order-

agnostic to the permutation in the input se-

1The generated sequence can be regarded as a translated
sequence (i.e., translating from the encoded sequence), where
each generated token depends on all tokens in the encoded
sequence.

http://arxiv.org/abs/1908.11775v4
https://github.com/yaohungt/TransformerDissection

quence (order is encoded with extra positional em-

bedding (Vaswani et al., 2017; Shaw et al., 2018;

Dai et al., 2019)). The above observation inspires

us to connect Transformer’s attention to kernel

learning (Scholkopf and Smola, 2001): they both

concurrently and order-agnostically process all in-

puts by calculating the similarity between the

inputs. Therefore, in the paper, we present a

new formulation for Transformer’s attention via

the lens of kernel. To be more precise, the

new formulation can be interpreted as a kernel

smoother (Wasserman, 2006) over the inputs in

a sequence, where the kernel measures how sim-

ilar two different inputs are. The main advantage

of connecting attention to kernel is that it opens

up a new family of attention mechanisms that can

relate to the well-established literature in kernel

learning (Scholkopf and Smola, 2001). As a re-

sult, we develop a new variant of attention which

simply considers a product of symmetric kernels

when modeling non-positional and positional em-

bedding.

Furthermore, our proposed formulation high-

lights naturally the main components of Trans-

former’s attention, enabling a better understand-

ing of this mechanism: recent variants of Trans-

formers (Shaw et al., 2018; Huang et al., 2018b;

Dai et al., 2019; Child et al., 2019; Lee et al.,

2018; Wang et al., 2018; Tsai et al., 2019a) can

be expressed through these individual compo-

nents. Among all the components, we argue

that the most important one is the construc-

tion of the kernel function. We empirically

study multiple kernel forms and the ways to in-

tegrate positional embedding in neural machine

translation (NMT) using IWSLT’14 German-

English (De-En) dataset (Edunov et al., 2017)

and sequence prediction (SP) using WikiText-103

dataset (Merity et al., 2016).

2 Attention

This section aims at providing an understand-

ing of attention in Transformer via the lens of

kernel. The inspiration for connecting the ker-

nel (Scholkopf and Smola, 2001) and attention in-

stantiates from the observation: both operations

concurrently processes all inputs and calculate the

similarity between the inputs. We first introduce

the background (i.e., the original formulation) of

attention and then provide a new reformulation

within the class of kernel smoothers (Wasserman,

2006). Next, we show that this new formulation

allows us to explore new family of attention while

at the same time offering a framework to cate-

gorize previous attention variants (Vaswani et al.,

2017; Shaw et al., 2018; Huang et al., 2018b;

Dai et al., 2019; Child et al., 2019; Lee et al.,

2018; Wang et al., 2018; Tsai et al., 2019a). Last,

we present a new form of attention, which requires

fewer parameters and empirically reaches compet-

itive performance as the state-of-the-art models.

For notation, we use lowercase representing

a vector (e.g., x), bold lowercase representing

a matrix (e.g., x), calligraphy letter denoting a

space (e.g., X), and S denoting a set. To re-

late the notations in sequence to sequence learn-

ing (Vaswani et al., 2017), x represents a specific

element of a sequence, x = [x1, x2,⋯, xT] de-

notes a sequence of features, Sx = {x1, x2,⋯, xT }
represents the set with its elements being the fea-

tures in sequence x, and we refer the space of set

Sx as S .

2.1 Technical Background

Unlike recurrent computation (Sutskever et al.,

2014) (i.e., RNNs) and temporal convolutional

computation (Bai et al., 2018) (i.e., TCNs), Trans-

former’s attention is an order-agnostic opera-

tion given the order in the inputs (Vaswani et al.,

2017). Hence, in the presentation of the pa-

per, we consider the inputs as a set instead

of a sequence. When viewing sequence as a

set, we lose the temporal (positional) informa-

tion in inputs which is often crucial for se-

quence modeling (Sutskever et al., 2014). As a

result, Transformer (Vaswani et al., 2017) intro-

duced positional embedding to indicate the po-

sitional relation for the inputs. Formally, a se-

quence x = [x1, x2,⋯, xT] defines each element

as xi = (fi, ti) with fi ∈ F being the non-

temporal feature at time i and ti ∈ T as an tempo-

ral feature (or we called it positional embedding).

Note that fi can be the word representation (in

neural machine translation (Vaswani et al., 2017)),

a frame in a video (in video activity recogni-

tion (Wang et al., 2018)), or a music unit (in music

generation (Huang et al., 2018b)). ti can be a mix-

ture of sine and cosine functions (Vaswani et al.,

2017) or parameters that can be learned dur-

ing back-propagation (Dai et al., 2019; Ott et al.,

2019). The feature vector are defined over a joint

space X ∶= (F × T). The resulting permutation-

invariant set is: Sx = {x1, x2,⋯, xT } ={(f1, t1), (f2, t2),⋯, (fT , tT)}.
Followed the definition by Vaswani et al.

(2017), we use queries(q)/keys(k)/values(v) to

represent the inputs for the attention. To be

more precise, x{q/k/v} is used for denoting a

query/key/value data in the query/key/value

sequence x{q/k/v} (x{q/k/v} ∈ Sx{q/k/v}) with

Sx{q/k/v} being its set representation. We note

that the input sequences are the same (xq = xk)

for self-attention and are different (xq from de-

coder and xk from encoder) for encoder-decoder

attention.

Given the introduced notation, the at-

tention mechanism in original Trans-

former (Vaswani et al., 2017) can be presented as:

Attention(xq ; Sxk
)

= softmax(xqWq(xkWk)⊺√
dk

)xkWv

(1)

with xq = fq + tq, xk = fk + tk, Wq/k/v being

the weight, and dk being the feature dimension of

xkWk. Decoder self-attention further introduces a

mask to block the visibility of elements in Sxk
to

xq. Particularly, decoder self-attention considers

the decoded sequence as inputs (xk = xq), where

the decoded token at time t is not allowed to access

the future decoded tokens (i.e., tokens decoded at

time greater than t). On the contrary, encoder self-

attention and decoder-encoder attention consider

no additional mask to Eq. (1).

Recent work (Shaw et al., 2018; Dai et al.,

2019; Huang et al., 2018b; Child et al., 2019;

Lee et al., 2018; Parmar et al., 2018; Tsai et al.,

2019a) proposed modifications to the Transformer

for the purpose of better modeling inputs po-

sitional relation (Shaw et al., 2018; Huang et al.,

2018b; Dai et al., 2019), appending additional

keys in Sxk
(Dai et al., 2019), modifying the mask

applied to Eq. (1) (Child et al., 2019), or ap-

plying to distinct feature types (Lee et al., 2018;

Parmar et al., 2018; Tsai et al., 2019a). These

works adopt different designs of attention as com-

paring to the original form (Eq. (1)). In our paper,

we aim at providing an unified view via the lens of

kernel.

2.2 Reformulation via the Lens of Kernel

We now provide the intuition to reformulate Eq.

(1) via the lens of kernel. First, the softmax func-

tion can be realized as a probability function for

xq observing the keys {xk}s in Sxk
(Sxk

is the set

representation of sequence xk). The probability is

determined by the dot product between xq and xk
with additional mappings Wq/Wk and scaling by

dk, which we note the dot-product operation is an

instance of kernel function. We also introduce a

set filtering function M(xq, Sxk
) ∶ X × S → S

which returns a set with its elements that operate

with (or are connected/visible to) xq. The filtering

function M(⋅, ⋅) plays as the role of the mask in de-

coder self-attention (Vaswani et al., 2017). Putting

these altogether, we re-represent Eq. (1) into the

following definition.

Definition 1. Given a non-negative kernel func-

tion k(⋅, ⋅) ∶ X × X → R
+, a set filtering func-

tion M(⋅, ⋅) ∶ X × S → S , and a value function

v(⋅) ∶ X → Y , the Attention function taking the

input of a query feature xq ∈ X is defined as

Attention(xq ; M(xq, Sxk
))

= ∑
xk∈M(xq,Sxk

)

k(xq, xk)
∑xk

′∈M(xq,Sxk
) k(xq, xk′)v(xk).

(2)

The Definition 1 is a class of linear

smoothers (Wasserman, 2006) with kernel

smoothing:

∑
xk∈M(xq,Sxk

)

k(xq, xk)
∑xk

′∈M(xq,Sxk
) k(xq, xk′)v(xk)

= Ep(xk∣xq)[v(xk)],
where v(xk) outputs the “values” and

p(xk∣xq) = k(xq,xk)
∑xk

′∈M(xq,Sxk
) k(xq,xk

′) is a probability

function depends on k and N when k(⋅, ⋅) is

always positive. In the prior work (Vaswani et al.,

2017), k(xq, xk) = exp (⟨xqWq, xkWk⟩/√dk)
and v(xk) = xkWv. Note that the ker-

nel form k(xq, xk) in the original Trans-

former (Vaswani et al., 2017) is a asymmetric

exponential kernel with additional mapping Wq

and Wk (Wilson et al., 2016; Li et al., 2017)2.

The new formulation defines a larger space

for composing attention by manipulating its in-

dividual components, and at the same time it is

2We note that rigorous definition of kernel func-
tion (Scholkopf and Smola, 2001) requires the kernel to be
semi-positive definite and symmetric. While in the paper, the
discussion on kernel allows it to be non-semi-positive definite
and asymmetric. In Section 3, we will examine the kernels
which are semi-positive and symmetric.

able to categorize different variants of attention in

prior work (Shaw et al., 2018; Huang et al., 2018b;

Dai et al., 2019; Child et al., 2019; Lee et al.,

2018; Wang et al., 2018; Tsai et al., 2019a). In the

following, we study these components by dissect-

ing Eq. (2) into: 1) kernel feature space X , 2)

kernel construction k(⋅, ⋅), 3) value function v(⋅),
and 4) set filtering function M(⋅, ⋅).
2.2.1 Kernel Feature Space X
In Eq. (2), to construct a kernel on X , the

first thing is to identify the kernel feature spaceX . In addition to modeling sequences like

word sentences (Vaswani et al., 2017) or music

signals (Huang et al., 2018b), the Transformer

can also be applied to images (Parmar et al.,

2018), sets (Lee et al., 2018), and multimodal se-

quences (Tsai et al., 2019a). Due to distinct data

types, these applications admit various kernel fea-

ture space:

(i) Sequence Transformer (Vaswani et al., 2017;

Dai et al., 2019):

X ∶= (F × T)
with F being non-positional feature space and T
being the positional embedding space of the posi-

tion in the sequence.

(ii) Image Transformer (Parmar et al., 2018):

X ∶= (F ×H ×W)
with F being non-positional feature space, H be-

ing the positional space of the height in an image,

and W being the positional space of the width in

an image.

(iii) Set Transformer (Lee et al., 2018) and Non-

Local Neural Networks (Wang et al., 2018):

X ∶= (F)
with no any positional information present.

(iv) Multimodal Transformer (Tsai et al., 2019a):

X ∶= (F ℓ ×Fv ×Fa × T)
with F ℓ representing the language feature space,Fv representing the vision feature space, Fa rep-

resenting the audio feature space, and T represent-

ing the temporal indicator space.

For the rest of the paper, we will focus on the

setting for sequence Transformer X = (F × T)
and discuss the kernel construction on it.

2.2.2 Kernel Construction and the Role of

Positional Embedding k(⋅, ⋅)
The kernel construction on X = (F × T)
has distinct design in variants of Trans-

formers (Vaswani et al., 2017; Dai et al.,

2019; Huang et al., 2018b; Shaw et al., 2018;

Child et al., 2019). Since now the kernel feature

space considers a joint space, we will first discuss

the kernel construction on F (the non-positional

feature space) and then discuss how different

variants integrate the positional embedding (with

the positional feature space T) into the kernel.

Kernel construction on F . All the work con-

sidered the scaled asymmetric exponential kernel

with the mapping Wq and Wk (Wilson et al., 2016;

Li et al., 2017) for non-positional features fq and

fk:

kexp(fq, fk) = exp(⟨fqWq, fkWk⟩√
dk

) . (3)

Note that the usage of asymmetric kernel is

also commonly used in various machine learn-

ing tasks (Yilmaz, 2007; Tsuda, 1999; Kulis et al.,

2011), where they observed the kernel form can

be flexible and even non-valid (i.e., a kernel that is

not symmetric and positive semi-definite). In Sec-

tion 3, we show that symmetric design of the ker-

nel has similar performance for various sequence

learning tasks, and we also examine different ker-

nel choices (i.e., linear, polynomial, and rbf ker-

nel).

Kernel construction on X = (F × T). The de-

signs for integrating the positional embedding tq
and tk are listed in the following.

(i) Absolute Positional Embedding (Vaswani et al.,

2017; Dai et al., 2019; Ott et al., 2019): For the

original Transformer (Vaswani et al., 2017), each

ti is represented by a vector with each dimen-

sion being sine or cosine functions. For learned

positional embedding (Dai et al., 2019; Ott et al.,

2019), each ti is a learned parameter and is

fixed for the same position for different sequences.

These works defines the feature space as the di-

rect sum of its temporal and non-temporal space:X = F⊕T . Via the lens of kernel, the kernel sim-

ilarity is defined as

k(xq, xk) ∶= kexp(fq + tq, fk + tk). (4)

(ii) Relative Positional Embedding in Transformer-

XL (Dai et al., 2019): t represents the indicator of

the position in the sequence, and the kernel is cho-

sen to be asymmetric of mixing sine and cosine

functions:

k(xq, xk) ∶= kexp(fq, fk) ⋅ kfq(tq, tk) (5)

with kfq(tq, tk) being an asymmetric kernel with

coefficients inferred by fq: log kfq(tq, tk) =
∑⌊dk/2⌋−1p=0 c2p sin(tq−tk

10000
2p
512

)+ c2p+1 cos(tq−tk
10000

2p
512

)
with [c0,⋯, cdk−1] = fqWqWR where WR is

an learned weight matrix. We refer readers

to Dai et al. (2019) for more details.

(iii) Relative Positional Embedding of Shaw et al.

(2018) and Music Transformer (Huang et al.,

2018b): t
⋅

represents the indicator of the position

in the sequence, and the kernel is modified to be

indexed by a look-up table:

k(xq, xk) ∶= Ltq−tk ,fq ⋅ kexp(fq, fk), (6)

where Ltq−tk ,fq = exp(fqWqatq−tk) with a
⋅

be-

ing a learnable matrix having matrix width to

be the length of the sequence. We refer readers

to Shaw et al. (2018) for more details.

Dai et al. (2019) showed that the way to inte-

grate positional embedding is better through Eq.

(5) than through Eq. (6) and is better through Eq.

(6) than through Eq. (4). We argue the reason

is that if viewing fi and ti as two distinct spaces

(X ∶= (F × T)), the direct sum xi = fi + ti may

not be optimal when considering the kernel score

between xq and xk. In contrast, Eq. (5) represents

the kernel as a product of two kernels (one for fi
and another for ti), which is able to capture the

similarities for both temporal and non-temporal

components.

2.2.3 Value Function v(⋅)
The current Transformers consider two different

value function construction:

(i) Original Transformer (Vaswani et al., 2017)

and Sparse Transformer (Child et al., 2019):

v(xk) = v((fk, tk)) ∶= (fk + tk)Wv. (7)

(ii) Transformer-XL (Dai et al., 2019), Music

Transformer (Huang et al., 2018b), Self-Attention

with Relative Positional Embedding (Shaw et al.,

2018):

v(xk) = v((fk, tk)) ∶= fkWv. (8)

Compared Eq. (7) to Eq. (8), Eq. (7) takes

the positional embedding into account for con-

structing the value function. In Section 3, we em-

pirically observe that constructing value function

with Eq. (8) constantly outperforms the construc-

tion with Eq. (7), which suggests that we do not

need positional embedding for value function.

2.2.4 Set Filtering Function M(⋅, ⋅)
In Eq. (2), the returned set by the set filtering

function M(xq, Sxk
) defines how many keys and

which keys are operating with xq. In the follow-

ing, we itemize the corresponding designs for the

variants in Transformers:

(i) Encoder Self-Attention in original Trans-

former (Vaswani et al., 2017): For each query xq
in the encoded sequence, M(xq, Sxk

) = Sxk
con-

tains the keys being all the tokens in the encoded

sequence. Note that encoder self-attention consid-

ers xq = xk with xq being the encoded sequence.

(ii) Encoder-Decoder Attention in original Trans-

former (Vaswani et al., 2017): For each query xq
in decoded sequence, M(xq, Sxk

) = Sxk
contains

the keys being all the tokens in the encoded se-

quence. Note that encode-decoder attention con-

siders xq ≠ xk with xq being the decoded se-

quence and xk being the encoded sequence.

(iii) Decoder Self-Attention in original Trans-

former (Vaswani et al., 2017): For each query xq
in the decoded sequence, M(xq, Sxk

) returns a

subset of Sxk
(M(xq, Sxk

) ⊂ Sxk
). Note that

decoder self-attention considers xq = xk with xq

being the decoded sequence. Since the decoded

sequence is the output for previous timestep, the

query at position i can only observe the keys being

the tokens that are decoded with position < i. For

convenience, let us define S1 as the set returned by

original Transformer (Vaswani et al., 2017) from

M(xq, Sxk
), which we will use it later.

(iv) Decoder Self-Attention in Transformer-

XL (Dai et al., 2019): For each query xq in

the decoded sequence, M(xq, Sxk
) returns

a set containing S1 and additional memories

(M(xq, Sxk
) = S1 + Smem,M(xq, Sxk

) ⊃ S1).

Smem refers to additional memories.

(v) Decoder Self-Attention in Sparse Trans-

former (Child et al., 2019): For each query xq in

the decoded sentence, M(xq, Sxk
) returns a sub-

set of S1 (M(xq, Sxk
) ⊂ S1).

To compare the differences for various designs,

we see the computation time is inversely propor-

tional to the number of elements in M(xq, Sxk
).

For performance-wise comparisons, Transformer-

XL (Dai et al., 2019) showed that, the addi-

tional memories in M(xq, Sxk
) are able to cap-

ture longer-term dependency than the original

Transformer (Vaswani et al., 2017) and hence

results in better performance. Sparse Trans-

former (Child et al., 2019) showed that although

having much fewer elements in M(xq, Sxk
), if the

elements are carefully chosen, the attention can

still reach the same performance as Transformer-

XL (Dai et al., 2019).

2.3 Exploring the Design of Attention

So far, we see how Eq. (2) connects to the vari-

ants of Transformers. By changing the kernel con-

struction in Section 2.2.2, we can define a larger

space for composing attention. In this paper, we

present a new form of attention with a kernel that

is 1) valid (i.e., a kernel that is symmetric and pos-

itive semi-definite) and 2) delicate in the sense of

constructing a kernel on a joint space (i.e., X =(F × T)):
k(xq, xk) ∶= kF (fq, fk) ⋅ kT (tq, tk)
with kF (fq, fk) = exp(⟨fqWF , fkWF ⟩√

dk
)

and kT (tq, tk) = exp(⟨tqWT , tkWT ⟩√
dk

),
(9)

where WF and WT are weight matrices. The new

form considers product of kernels with the first

kernel measuring similarity between non-temporal

features and the second kernel measuring simi-

larity between temporal features. Both kernels

are symmetric exponential kernel. Note that ti
here is chosen as the mixture of sine and co-

sine functions as in the prior work (Vaswani et al.,

2017; Ott et al., 2019). In our experiment, we

find it reaching competitive performance as com-

paring to the current state-of-the-art designs (Eq.

(5) by Dai et al. (2019)). We fix the size of the

weight matrices W
⋅

in Eq. (9) and Eq. (5) which

means we save 33% of the parameters in attention

from Eq. (9) to Eq. (5) (Eq. (5) has weights

WQ/WK/WR and Eq. (9) has weights WF /WT).

3 Experiments

By viewing the attention mechanism with Eq. (2),

we aims at answering the following questions re-

garding the Transformer’s designs:

Q1. What is the suggested way for incorporating

positional embedding in the kernel function?

Q2. What forms of kernel are recommended to

choose in the attention mechanism? Can we re-

place the asymmetric kernel with the symmetric

version?

Q3. Is there any exception that the attention mech-

anism is not order-agnostic with respect to inputs?

If so, can we downplay the role of positional em-

bedding?

Q4. Is positional embedding required in value

function?

We conduct experiments on neural machine

translation (NMT) and sequence prediction (SP)

tasks since these two tasks are commonly chosen

for studying Transformers (Vaswani et al., 2017;

Dai et al., 2019). Note that NMT has three

different types of attentions (e.g., encoder self-

attention, decoder-encoder attention, decoder self-

attention) and SP has only one type of atten-

tion (e.g., decoder self-attention). For the choice

of datasets, we pick IWSLT’14 German-English

(De-En) dataset (Edunov et al., 2017) for NMT

and WikiText-103 dataset (Merity et al., 2016) for

SP as suggested by Edunov et al. (Edunov et al.,

2017) and Dai et al. (Dai et al., 2019). For fairness

of comparisons, we train five random initializa-

tions and report test accuracy with the highest val-

idation score. We fix the position-wise operations

in Transformer3 and only change the attention

mechanism. Similar to prior work (Vaswani et al.,

2017; Dai et al., 2019), we report BLEU score for

NMT and perplexity for SP.

3.1 Incorporating Positional Embedding

In order to find the best way to integrate positional

embedding (PE), we study different PE incorpora-

tion in the kernel function k(⋅, ⋅) in Eq. (2). Refer-

ring to Sections 2.2.2 and 2.3, we consider four

cases: 1) PE as direct sum in the feature space

(see Eq. (4)), 2) PE as a look-up table (see Eq.

(6)), 3) PE in product kernel with asymmetric ker-

nel (see Eq. (5)), and 4) PE in product kernel with

symmetric kernel (see Eq. (9)). We present the

results in Table 1.

First, we see that by having PE as a look-up

3The computation of Transformer can be categorized into
position-wise and inter-positions (i.e., the attention mecha-
nism) operations. Position-wise operations include layer nor-
malization, residual connection, and feed-forward mapping.
We refer the readers to Vaswani et al. (Vaswani et al., 2017)
for more details.

Table 1: Incorporating Positional Embedding (PE). NMT stands for neural machine translation on IWSLT’14

De-En dataset (Edunov et al., 2017) and SP stands for sequence prediction on WikiText-103 dataset (Merity et al.,

2016). ↑ means the upper the better and ↓ means the lower the better.

Approach PE Incorporation Kernel Form NMT (BLEU↑) SP (Perplexity↓)

Vaswani et al. (2017) (Eq. (4)) Direct-Sum kexp(fq + tq, fk + tk) 33.98 30.97

Shaw et al. (2018) (Eq. (6)) Look-up Table Ltq−tk,fq ⋅ kexp(fq, fk) 34.12 27.56

Dai et al. (2019) (Eq. (5)) Product Kernel kexp(fq, fk) ⋅ kfq(tq, tk) 33.62 24.10

Ours (Eq. (9)) Product Kernel kF (fq, fk) ⋅ kT (tq, tk) 34.71 24.28

Table 2: Kernel Types. Other than manipulating the kernel choice of the non-positional features, we fix the

configuration by Vaswani et al. (2017) for NMT and the configuration by Dai et al. (2019) for SP.

Type Kernel Form
NMT (BLEU↑) SP (Perplexity↓)

Asym. (Wq ≠Wk) Sym. (Wq =Wk) Asym. (Wq ≠Wk) Sym. (Wq =Wk)

Linear ⟨faWq, fbWk⟩ not converge not converge not converge not converge

Polynomial (⟨faWq, fbWk⟩)2 32.72 32.43 25.91 26.25

Exponential exp(⟨faWq,fbWk⟩√
dk

) 33.98 33.78 24.10 24.01

RBF exp(− ∥faWq−fbWk∥2√
dk

) 34.26 34.14 24.13 24.21

table, it outperforms the case with having PE as

direct-sum in feature space, especially for SP task.

Note that the look-up table is indexed by the rela-

tive position (i.e., tq − tk) instead of absolute posi-

tion. Second, we see that PE in the product kernel

proposed by Dai et al. (Dai et al., 2019) may not

constantly outperform the other integration types

(it has lower BLEU score for NMT). Our proposed

product kernel reaches the best result in NMT and

is competitive to the best result in SP.

3.2 Kernel Types

To find the best kernel form in the attention

mechanism, in addition to the exponential kernel

(see Eq. (3)), we compare different kernel forms

(i.e., linear, polynomial, and rbf kernel) for the

non-positional features. We also provide the re-

sults for changing asymmetric to the symmetric

kernel, when forcing Wq = Wk, so that the result-

ing kernel is a valid kernel (Scholkopf and Smola,

2001). The numbers are shown in Table 2. Note

that, for fairness, other than manipulating the ker-

nel choice of the non-positional features, we fix

the configuration by Vaswani et al. (Vaswani et al.,

2017) for NMT and the configuration by Dai et

al. (Dai et al., 2019) for SP.

We first observe that the linear kernel does not

converge for both NMT and SP. We argue the rea-

son is that the linear kernel may have negative

value and thus it violates the assumption in ker-

nel smoother that the kernel score must be pos-

itive (Wasserman, 2006). Next, we observe the

kernel with infinite feature space (i.e., exponen-

tial and rbf kernel) outperforms the kernel with fi-

nite feature space (i.e., polynomial kernel). And

we see rbf kernel performs the best for NMT and

exponential kernel performs the best for SP. We

conclude that the choice of kernel matters for the

design of attention in Transformer. Also, we see

no much performance difference when comparing

asymmetric to symmetric kernel. In the experi-

ment, we fix the size of W
⋅
in the kernel, and thus

adopting the symmetric kernel benefits us from

saving parameters.

3.3 Order-Invariance in Attention

The need of the positional embedding (PE) in the

attention mechanism is based on the argument that

the attention mechanism is an order-agnostic (or,

permutation equivariant) operation (Vaswani et al.,

2017; Shaw et al., 2018; Huang et al., 2018b;

Dai et al., 2019; Child et al., 2019). However, we

show that, for decoder self-attention, the opera-

tion is not order-agnostic. For clarification, we

are not attacking the claim made by the prior

work (Vaswani et al., 2017; Shaw et al., 2018;

Huang et al., 2018b; Dai et al., 2019; Child et al.,

2019), but we aim at providing a new look at the

Table 3: Order-Invariance in Attention. To save the space, we denote Encoder Self-Attention / Encoder-Decoder

Attention / Decoder Self-Attention as A/B/C. Note that SP only has decoder self-attention.

Approach Positional Embedding NMT (BLEU↑)

Ours (Eq. (9)) In A/B/C 34.71

Ours (Eq. (9)) In A/B 34.49

No Positional Embedding none 14.47

Approach Positional Embedding SP (Perplexity↓)

Vaswani et al. (2017) (Eq.

(4))

In C 30.97

Ours (Eq. (9) In C 24.28

No Positional Embedding none 30.92

Table 4: Positional Embedding in Value Function.

I: Value Function Considering Positional Embedding (Eq. (7)) / II: Value Function Considering no Positional Embedding (Eq. (8))

Approach
NMT (BLEU↑) SP (Perplexity↓)

I (v(xk) ∶= (fk + tk)WV) II (v(xk) ∶= fkWV) I (v(xk) ∶= (fk + tk)WV) II (v(xk) ∶= fkWV)
Vaswani et al. (2017) (Eq. (4)) 33.98 34.02 30.97 30.50

Shaw et al. (2018) (Eq. (6)) 34.04 34.12 27.56 27.45

Dai et al. (2019) (Eq. (5)) 33.32 33.62 24.18 24.10

Ours (Eq. (9)) 34.60 34.71 24.42 24.28

order-invariance problem when considering the at-

tention mechanism with masks (masks refer to the

set filtering function in our kernel formulation). In

other words, previous work did not consider the

mask between queries and keys when discussing

the order-invariance problem (Pérez et al., 2019).

To put it formally, we first present the definition

by Lee et al. (2018) for a permutation equivariance

function:

Definition 2. Denote Π as the set of all permu-

tations over [n] = {1,⋯, n}. A function func ∶X n → Yn is permutation equivariant iff for any

permutation π ∈ Π, func(πx) = πfunc(x).
Lee et al. (2018) showed that the standard atten-

tion (encoder self-attention (Vaswani et al., 2017;

Dai et al., 2019)) is permutation equivariant.

Here, we present the non-permutation-equivariant

problem on the decoder self-attention:

Proposition 1. Decoder self-

attention (Vaswani et al., 2017; Dai et al., 2019)

is not permutation equivariant.

To proceed the proof, we need the following def-

inition and propositions.

Definition 3. Denote Π as the set of all permuta-

tions over [n] = {1,⋯, n} and Sπ
xk

as performing

permutation π over Sxk
. Attention(xq;Sxk

) is

said to be permutation equivariant w.r.t. Sxk
if

and only if for any π ∈ Π, Attention(xq;Sπ
xk
) =

Attention(xq;Sxk
).

Proposition 2. Attention with the set filtering func-

tion M(xq, Sxk
) = Sxk

is permutation equivariant

w.r.t. Sxk
.

Proof. It is easy to show that if M(xq, Sxk
) =

Sxk
, Eq. (2) remains unchanged for any permu-

tation π performed on Sxk
. ∎

Proposition 3. Attention with the set difference

Sxk
∖M(xq, Sxk

) ≠ φ is not permutation equiv-

ariant w.r.t. Sxk
.

Proof. First, suppose that x̂ ∈ Sxk
∖M(xq, Sxk

).
Then, we construct a permutation π such that

x̂ ∈ M(xq, Sπ
xk
). It is obvious that Eq.

(2) changes after this permutation and thus

Attention(xq ; M(xq, Sxk
)) is not permutation

equivariant w.r.t. Sxk
. ∎

Proof. [Proof for Proposition 1] First, we have

xq ∼ Sxk
. Hence, showing Attention(xq;Sxk

)
not permutation equivariant w.r.t. Sxk

equals

to showing Attention not permutation equivari-

ant. Then, since the decoder self-attention consid-

ers masking (i.e., M(xq, Sxk
) returns a subset of

Sxk
), by Proposition 3, the decoder self-attention

is not permutation equivariant. ∎
In fact, not only being a permutation inequivari-

ant process, the decoding process in the decoder

self-attention already implies the order informa-

tion from the data. To show this, take the decoded

sequence y = [init, y1, y2, y3, y4] as an example.

init stands for the initial token. When determin-

ing the output y1 from init, the set filtering func-

tion is M(init, Sy) = {init}. Similarly, we will

have M(y1, Sy),M(y2, Sy),M(y3, Sy) to be{init, y1},{init, y1, y2},{init, y1, y2, y3}. Then,

it raises a concern: do we require PE in decoder

self-attention? By removing PE in decoder self-

attention, we present the results in Table 3. From

the table, we can see that, for NMT, removing PE

only in decoder self-attention results in slight per-

formance drop (from 34.71 to 34.49). However,

removing PE in the entire model greatly degrades

the performance (from 34.71 to 14.47). On the

other hand, for SP, removing PE from our pro-

posed attention variant dramatically degrades the

performance (from 24.28 to 30.92). Nonetheless,

the performance is slightly better than considering

PE from the original Transformer (Vaswani et al.,

2017).

3.4 Positional Embedding in Value Function

To determine the need of positional embedding

(PE) in value function, we conduct the experi-

ments by adopting Eq. (7) or Eq. (8) in the at-

tention mechanism. The results are presented in

Table 4. From the table, we find that considering

PE in value function (Eq. (7)) does not gain perfor-

mance as compared to not considering PE in value

function (Eq. (8)).

3.5 Take-Home Messages

Based on the results and discussions, we can now

answer the questions given at the beginning of this

section. The answers are summarized into the take-

home messages in the following.

A1. We show that integrating the positional em-

bedding in the form of product kernel (Eq. (5)

or Eq. (9)) gives us best performance.

A2. The kernel form does matter. Adopting ker-

nel form with infinite feature dimension (i.e., ex-

ponential kernel or rbf kernel) gives us best results.

The symmetric design of the kernel may benefit

us from saving parameters and barely sacrifice the

performance as compared to the non-symmetric

one.

A3. The decoder self-attention is not an order-

agnostic operation with respect to the order of in-

puts. However, incorporating positional embed-

ding into the attention mechanism may still im-

prove performance.

A4. We find that there is no much performance

difference by considering or not considering the

positional embedding in value function.

4 Related Work

Other than relating Transformer’s attention

mechanism with kernel methods, the prior

work (Wang et al., 2018; Shaw et al., 2018;

Tsai et al., 2019b) related the attention mecha-

nism with graph-structured learning. For example,

Non-Local Neural Networks (Wang et al., 2018)

made a connection between the attention and

the non-local operation in image process-

ing (Buades et al., 2005). Others (Shaw et al.,

2018; Tsai et al., 2019b) linked the attention to

the message passing in graphical models. In

addition to the fundamental difference between

graph-structured learning and kernel learning,

the prior work (Wang et al., 2018; Shaw et al.,

2018; Tsai et al., 2019b) focused on presenting

Transformer for its particular application (e.g.,

video classification (Wang et al., 2018) and

neural machine translation (Shaw et al., 2018)).

Alternatively, our work focuses on presenting

a new formulation of Transformer’s attention

mechanism that gains us the possibility for

understanding the attention mechanism better.

5 Conclusions

In this paper, we presented a kernel formulation

for the attention mechanism in Transformer, which

allows us to define a larger space for designing at-

tention. As an example, we proposed a new vari-

ant of attention which reaches competitive perfor-

mance when compared to previous state-of-the-art

models. Via the lens of the kernel, we were able

to better understand the role of individual com-

ponents in Transformer’s attention and categorize

previous attention variants in a unified formulation.

Among these components, we found the construc-

tion of the kernel function acts the most important

role, and we studied different kernel forms and the

ways to integrate positional embedding on neural

machine translation and sequence prediction. We

hope our empirical study may potentially allow

others to design better attention mechanisms given

their particular applications.

Acknowledgments

We thank Zhilin Yang for helpful discussion on

the positional encoding in Transformer’s Atten-

tion. This work was supported in part by the

DARPA grant FA875018C0150, Office of Naval

Research grant N000141812861, AFRL CogDe-

CON, NSF Awards #1734868 #1722822, National

Institutes of Health, JST PRESTO program JP-

MJPR165A, and Apple. We would also like to

acknowledge NVIDIA’s GPU support.

References

Shaojie Bai, J Zico Kolter, and Vladlen Koltun.
2018. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling.
arXiv preprint arXiv:1803.01271.

Antoni Buades, Bartomeu Coll, and J-M Morel. 2005.
A non-local algorithm for image denoising. In 2005
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), volume 2,
pages 60–65. IEEE.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Zihang Dai, Zhilin Yang, Yiming Yang, William W
Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-xl: Attentive lan-
guage models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’Aurelio Ranzato. 2017. Classical
structured prediction losses for sequence to se-
quence learning. arXiv preprint arXiv:1711.04956.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob
Uszkoreit, Noam Shazeer, Curtis Hawthorne, An-
drew M Dai, Matthew D Hoffman, and Douglas Eck.
2018a. An improved relative self-attention mecha-
nism for transformer with application to music gen-
eration. arXiv preprint arXiv:1809.04281.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob
Uszkoreit, Ian Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M Dai, Matthew D Hoffman, Mon-
ica Dinculescu, and Douglas Eck. 2018b. Music
transformer: Generating music with long-term struc-
ture.

Brian Kulis, Kate Saenko, and Trevor Darrell. 2011.
What you saw is not what you get: Domain adapta-
tion using asymmetric kernel transforms. In CVPR
2011, pages 1785–1792. IEEE.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R Ko-
siorek, Seungjin Choi, and Yee Whye Teh. 2018. Set
transformer. arXiv preprint arXiv:1810.00825.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yim-
ing Yang, and Barnabás Póczos. 2017. Mmd gan:
Towards deeper understanding of moment matching
network. In Advances in Neural Information Pro-
cessing Systems, pages 2203–2213.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer. arXiv preprint
arXiv:1802.05751.

Jorge Pérez, Javier Marinković, and Pablo Barceló.
2019. On the turing completeness of mod-
ern neural network architectures. arXiv preprint
arXiv:1901.03429.

Bernhard Scholkopf and Alexander J Smola. 2001.
Learning with kernels: support vector machines, reg-
ularization, optimization, and beyond. MIT press.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. arXiv preprint arXiv:1803.02155.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang,
Louis-Philippe Morency, and Ruslan Salakhutdinov.
2019a. Multimodal transformer for unaligned multi-
modal language sequences. ACL.

Yao-Hung Hubert Tsai, Santosh Divvala, Louis-
Philippe Morency, Ruslan Salakhutdinov, and Ali
Farhadi. 2019b. Video relationship reasoning using
gated spatio-temporal energy graph. CVPR.

Koji Tsuda. 1999. Support vector classifier with asym-
metric kernel functions. In in European Symposium
on Artificial Neural Networks (ESANN. Citeseer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and
Kaiming He. 2018. Non-local neural networks. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7794–7803.

Larry Wasserman. 2006. All of nonparametric statis-
tics. Springer Science & Business Media.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhut-
dinov, and Eric P Xing. 2016. Deep kernel learning.
In Artificial Intelligence and Statistics, pages 370–
378.

Alper Yilmaz. 2007. Object tracking by asymmetric
kernel mean shift with automatic scale and orienta-
tion selection. In 2007 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1–6.
IEEE.

