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Abstract

Despite the recent success of deep learning, it is generally diffi-
cult to apply end-to-end deep neural networks to small datasets,
such as those from the health domain, due to the tendency of
neural networks to over-fit. In addition, how neural models
reach their decisions is not well understood. In this paper, we
present a two-stage approach to acoustic-based classification
of behavior markers related to mental health disorders: first,
a dictionary and the mapping from speech signals to the dictio-
nary are learned jointly by a deep autoencoder, then the bag-
of-words representation of speech is used for classification, us-
ing classifiers with simple decision boundaries. This deep bag-
of-features approach has the advantage of offering more inter-
pretability, while the use of deep autoencoder gains improve-
ments in prediction by learning higher level features with long
range dependencies, comparing to previous work using only
low-level descriptors. In addition, we demonstrate the use of
labeled emotion recognition data from other domains to super-
vise acoustic word encoding in order to help predict psycholog-
ical traits. Experiments are conducted on audio recordings of
65 clinically recorded interviews with the self-reported level of
post-traumatic stress disorder (PTSD), depression, and rapport
with the interviewers.
Index Terms: acoustic word, deep learning, affective comput-
ing, social interaction, behavior markers

1. Introduction
Automated assessment of mental distress and disorders from
nonverbal behaviours has shown promise in recent years [1]
[2]. Prior work has make the case for speech to be a key objec-
tive for pathological traits such as depression and post-traumatic
stress disorder (PTSD) [3]. The goal of this work is to find bet-
ter way to predict both mental disorders of patients and their
rapport with therapists in clinical sessions from audio record-
ings, as well as discover cues that help understand the acous-
tic behaviours of patients in dyadic interactions [4]. With the
success of machine learning, we are particularly interested in
data-driven approaches to mental assessment with an eye on the
interpretability of the model used.

Bag-of-acoustic-words is an established method in acous-
tic modelling and classification tasks, such as event detection
[5, 6, 7] and emotion recognition [8]. It relies on clustering
to construct a codebook of acoustic words, and use the quanti-
zation of audios for classification. It earned its popularity for
it extracts features in an unsupervised manner without human
knowledge, while still performs reasonably well. Represent-
ing utterances and interview sessions as bag-of-words has sev-
eral advantages for our specific problem. First, the extraction of
acoustic words may capture localized features in human speech

that are indicative of pathological behaviours. Second, com-
bined with linear classifiers, bag-of-word representation offers
more interpretability, since the importance of each word is mea-
sured by its weight. Consequently, it helps pinpoint the most
informative moments in speech.

Prior work [9] has shown deep neural networks may learn
useful representation of acoustic units or segments. Recently,
there has been interests among deep learning community in
combining bag-of-features methods with neural models. Pas-
salis et al.[10] proposed a bag-of-features layer to perform k-
means clustering of feature maps with gradient descent, and use
the Gaussian encodings of features for final classification. Bren-
del et al.[11] proposed an architecture in which image classifi-
cation is performed on small local patches, and the heat maps
of local patches are aggregated for final prediction.

We believe using deep autoencoder for learning representa-
tions of acoustic words has the following advantages. First, in-
corporated with recurrent neural networks (RNN), neural mod-
els can potentially capture long range dependencies and embed
contextual information into acoustic words. Second, the con-
struction of codebook and the quantization of speech signals are
unified in an end-to-end framework. Third, it is easy to lever-
age labeled data to supervise the encoding of acoustic words.
The novelty of our work is two-fold: to our knowledge, we are
the first to combine the bag-of-words method with deep autoen-
coders; and a transfer learning technique through acoustic units
to make the task of mental health assessment benefit from re-
lated emotion recognition tasks.

2. Dataset
Our experiments are performed on the Distress Assessment In-
terview Corpus [12]. There are 65 human-to-human sessions
in total. PTSD and depression are assessed with PTSD Check-
list Civilian version (PCL-C) and the Patient Health Question-
naire, depression module (PHQ-9) [13]. PCL and PHQ are dis-
cretized, and the thresholds are set to be 34 and 9, respectively.
Scores above the thresholds are considered positive. The cor-
relation between PTSD and depression is 0.62. Rapport is esti-
mated from a questionnaire as described by Gratch et al. [14].
Answers are weighted according to the nature of the questions
and summed up. The median of the scores is set as threshold,
and participants with scores above the threshold is treated as
positive, otherwise negative. Among the 65 participants, 27
have PTSD and 21 have depression.

We use IEMOCAP [15] dataset as the source to transfer
emotion recognition knowledge. 10 actors were recorded in 5
sessions (2 actors each). They were asked to perform hypotheti-
cal scenarios, both scripted and improvised, with elicit emotion
contents. The emotions were annotated by 4-6 native speakers
with majority vote. We adjust the labels by randomly choosing



from one annotator if there is no label prevails (cannot decide),
or if the label is “other”. Again, only audio recordings are used
for training.

3. Methodology
3.1. Feature Extraction

We consider three sets of features. Spectral: 39 dimensional
Mel-Fourier Cepstral Coefficients (MFCC) consisting of 12
MFCC and raw energy, their deltas and delta-deltas. Prosodic:
3 dimensional features including fundamental frequency, voic-
ing probability and loudness. These two sets are extracted us-
ing openSMILE [16] with 25 ms long frames and 10 ms frame
rate. Voice quality: 75 dimensional features extracted using
COVAREP [17], including spectral envelope, sinusoidal, glottal
flow, and phase-based features.

3.2. Architecture

The architecture of the encoder is similar to the common ones
used in speech recognition [18] at a high level. A convolutional
neural net is first introduced to downsample and transform the
signals, X ∈ Rc×l. It outputs a sequence of feature maps,
each of which corresponds to a fixed-sized segment in the input
audio:

fcnn = CNNenc(X)

Then a recurrent layer is used to incorporate contextual infor-
mation into each feature map. A linear map is used to reduce the
dimension of input feature maps before feeding into the RNN:

frnn = RNNenc(Wefcnn)

Then the hidden states of the RNN is projected onto the prob-
ability simplex with softmax function to obtain the distribution
of acoustic words:

W = σ(Pfrnn)

The decoder is mostly the “reverse” of the encoder. Acoustic
words are embedded and fed into another RNN:

grnn = RNNdec(EW)

The hidden states of the decoder RNN is then linearly projected
and fed into a deconvolutional neural network:

Y = CNNdec(Wdgrnn)

The final output, Y, is the reconstruction of the input signal.
The autoencoder is trained by minimizing the squared l2 recon-
struction loss, i.e. ||X−Y||22.

We now elaborate on the details of the convolutional and
deconvolutional networks. We use 1d convolution over time
domain in both encoder and decoder. We use strided convolu-
tion in encoder and transposed strided convolution in decoder,
as in [19]. We do not use any pooling operation, as strided
convolution can achieve similar downsampling effect, with less
memory usage. Rectified Linear Unit is applied after each con-
volutional layer, before batch normalization [20]. More details
of the architecture are listed in Table 1.

In our approach, segmentation of audio signals is realized
through the convolutional neural network. At layer i, the length
li and step size ti of the corresponding audio segment of each
feature map are decided by the sizes of filters k and stride s of

previous convolutional layers, and are given by the following
recurrences:

li = li−1 + (ki − 1) ∗ ti−1 (1)

ti = ti−1 ∗ si (2)

with starting conditions l0 = 1 and t0 = 1.

Table 1: Architecture of the autoencoder. K is the vocabulary
size. D is the dimension of data. At each layer, the first parame-
ter is the input dimension and the second the output dimension.
Dropout [21] is applied to the inputs of the convolutional layers
and both the inputs and outputs of the recurrent layers.

Encoder Decoder

Linear(256, K) Linear(K, 128)
GRU(128, 256) GRU(128, 128)
Linear(256, 128) Linear(128, 256)
BatchNorm()
Conv(128, 256, k=5, s=2) TransConv(256, 128, k=5, s=2)
BatchNorm() BatchNorm()
Conv(64, 128, k=5, s=2) TransConv(128, 64, k=5, s=2)
BatchNorm() BatchNorm()
Conv(32, 64, k=5, s=2) TransConv(64, 32, k=5, s=2)
BatchNorm() BatchNorm()
Conv(D, 32, k=5, s=2) TransConv(32, D, k=5, s=2)

3.3. Transfer Learning

To leverage labeled data, we add a classifier to the top of the
encoder. More specifically, for each audio signal, we sum up
the distribution of acoustic words of all its segments (i.e. sum
up W along time axis), and use the resulting bag-of-words rep-
resentation, w, to classify its emotion label, L.

P (L(X)) = σ(Lcw)

The rest part of the model shares parameters with that trained on
the interview sessions. The model is trained with the sum of the
reconstruction loss and weighted cross entropy loss with respect
to labels. To avoid being dominated by the external domain,
data from the labeled domain are sampled with smaller batch
size than the local domain during mini-batching.

3.4. Training Details

All models are implemented in PyTorch [22]. Half of the data
from each speaker are held out for validation during training the
autoencoder. We use Adam optimization algorithm [23] with
learning rate 0.0001 and exponential decay rate of 0.9. We use
dropout rate of 0.5. The training stops after 30 epochs. We use
batch size of 16. For transfer learning, IEMOCAP data are sam-
pled with batch size of 8. The reconstruction and classification
loss of IEMOCAP data are down-weighted with 0.1.

4. Experiments
4.1. Main Results

We now describe the baselines. The first baseline is simply av-
eraging all the frames in each session. The other baselines use
k-means clustering to construct the codebook. In addition to
frame-level (LLD) acoustic words, we also consider windowed
acoustic words. 10 consecutive frames of features are concate-
nated as a window and clustered, and we set the step size of



Table 2: Main results at vocabulary size of 25.

PTSD Depression Rapport
Accuracy F1 Accuracy F1 Accuracy F1

MFCC

Averaging Frames 0.6250 0.5200 0.6094 0.4186 0.5000 0.5000
LLD Acoustic Words 0.5000 0.5294 0.5781 0.5263 0.3667 0.4722
Windowed LLD Acoustic Words 0.4844 0.5823 0.5156 0.5231 0.3667 0.4412
Neural Acoustic Words 0.6563 0.6207 0.6719 0.5333 0.5000 0.5714
Supervised Neural Acoustic Words 0.6563 0.6452 0.6563 0.5600 0.5238 0.5714

Prosodic

Averaging Frames 0.5156 0.2791 0.6094 0.5098 0.5667 0.1333
LLD Acoustic Words 0.5156 0.4918 0.4844 0.5479 0.3666 0.5000
Windowed LLD Acoustic Words 0.5781 0.5263 0.4688 0.5405 0.4167 0.5205
Neural Acoustic Words 0.5781 0.5091 0.5625 0.5000 0.4333 0.5278
Supervised Neural Acoustic Words 0.5625 0.5172 0.5781 0.5263 0.4167 0.5070

Voice Quality

Averaging Frames 0.4531 0.4068 0.5781 0.4906 0.6167 0.4103
LLD Acoustic Words 0.5938 0.5806 0.6094 0.5283 0.5167 0.4727
Windowed LLD Acoustic Words 0.5938 0.5667 0.6406 0.5818 0.5000 0.4444
Neural Acoustic Words 0.6094 0.5614 0.6250 0.5200 0.4167 0.5205
Supervised Neural Acoustic Words 0.6563 0.6071 0.6406 0.5106 0.4667 0.5428

windows to 5. As for quantization method, hard assignment
has been previously shown to often yield inferior results [24].
Since our deep autoencoding approach inherently learns soft as-
signment of words, for the sake of fair comparison, we exper-
imented with two alternative assignment methods for the base-
lines: (i) soft assignment, in which scaled squared Euclidean
distances to centroids mi are normalized using softmax:

hi =
exp(−||x−mi||2/τ)∑
i exp(−||x−mi||2/τ)

and (ii) multiple assignment, in which the top few closest words
are assigned. In our experiments, we found that soft assignment
generally works better, so we use it in all our baselines. τ is set
to be the square root of vocabulary size.

For all the methods based on bag-of-words, we tried two
types of featurization and report the best results: one is using
raw count of acoustic words, and one is using log smoothed
count: log(1 + x). We use Gaussian Naive Bayes for classi-
fication, and we found it generally performs better than sup-
port vector machine on our dataset. Prediction performances
are evaluated using held-one-speaker-out training and testing.
All input features are z-normalized. When extracting acous-
tic words (both clustering and autoencoding), audios from both
participants and interviewers are used. Audios from participants
only are used for classification. The initialization of k-means
clustering is done through k-means++ [25]. The full algorithm
is implemented using scikit-learn [26].

The main results are shown in Table 2. For each set of
features and task, the best results are highlighted. We con-
sider F1 score the most important and accuracy as secondary.
The overall best results are given by our neural acoustic words
from MFCC features, supervised or unsupervised. Generally
speaking, supervision can improve the performance regardless
of the features used, except in one case where it hurts predict-
ing rapport using prosodic words. In some cases, LLD acous-
tic words can perform better than or comparably well as neural
acoustic words, but we notice that in such cases the LLD words
usually are much worse on other tasks. In other words, neu-
ral acoustic words are more well-rounded than LLD acoustic
words. The other thing worth noting is that for bag-of-words

approaches, MFCC are generally better than voice quality fea-
tures, and voice quality in turn better than prosodic features.

To study the effect of length and step size of acoustic words
without changing the architecture, we drop every nth frame in
the data. As a results, the length and step size of words increase
by 1

n−1
. We experimented with n = 2 and 3 for each set of

features. As shown in Table 3, longer words and steps do not
help prediction in general.

We also studied the effect of vocabulary size for clustering
and autoencoding methods, and the results are plotted in Figure
1. Acoustic words from voice quality features see significant
drop in F1 scores when the vocabulary size reaches 100. In
the case of depression, prosodic words (both clustering and au-
toencoding) perform the best when the vocabulary size is the
smallest (10), and degrade when the size becomes larger.

Table 3: F1 scores when varying length and step size at vocab-
ulary size of 25 for each set of features.

PTSD Depression Rapport

MFCC 0.6207 0.5333 0.5714
MFCC (half longer) 0.5902 0.5490 0.5634
MFCC (double) 0.5455 0.5405 0.5321

Prosodic 0.5091 0.5 0.5278
Prosodic (half longer) 0.5091 0.4912 0.5505
Prosodic (double) 0.5091 0.5 0.5143

VQ 0.5614 0.52 0.5205
VQ (half longer) 0.5667 0.5385 0.4262
VQ (double) 0.5455 0.4898 0.5507

4.2. Ablation Study

To study how useful contextual information is, we replace the
recurrent layers with a linear layer with tanh activation, so
acoustic words are learned without contexts. As can be seen
in Table 4, performance is slightly worse than using RNN for
MFCC, but marginally better for prosodic features. As for voice
qualities, removing RNN hurts the prediction of PTSD and de-



(a) PTSD (b) Depression (c) Rapport

Figure 1: F1 scores when varying vocabulary size for bag-of-acoustic-words methods.

pression while helping rapport. In summary, the usefulness
of modelling context is not only feature-specific but also task-
specific.

Table 4: Model ablation studies with RNN taken out. Vocabu-
lary size is 25. F1 scores are listed in the table.

PTSD Depression Rapport

MFCC 0.6207 0.5333 0.5714
- RNN 0.5574 0.5106 0.5333

Prosodic 0.5091 0.5 0.5278
- RNN 0.5283 0.5263 0.5333

VQ 0.5614 0.52 0.5205
- RNN 0.5490 0.3256 0.6000

4.3. Qualitative Analysis

To understand what the deep autoencoder is discovering about
the ways of people speaking, we investigate what linguistic
words and phrases are associated with those acoustic words
predictive of mental disorders and rapport. We use Montreal
Forced Aligner [27] with transcriptions to obtain the word
boundaries. We align the boundaries of acoustic words to
the closest boundary of linguistic words in utterances, so that
acoustic words are aligned with the n-grams in transcriptions.
We perform one tailed t-test on bag-of-acoustic-words represen-
tations of sessions to decide the most predictive acoustic word
for depression, PTSD, and rapport separately. We then list the
linguistic n-grams that have most of these acoustic words on
average and are spoken by at least two speakers.

The top 20 words for each psychological trait is listed in
Table 5. The most representative phrases are highlighted. The
phrases under PTSD has more first pronoun and fillers; nega-
tive tones are common. The phrases under depression share a
large subset with PTSD and have a similar nature. The expres-
sions under rapport tend to be more about specific things and
activities, and less self-referential.

5. Conclusion
We studied automated assessment of mental disorders and rap-
port of humans from acoustics. We developed a novel deep
learning approach for feature extraction and representation,
combined with bag-of-words approach for classification. The
deep autoencoding approach is shown to be competitive to pre-

Table 5: Top linguistic n-grams that most often coincide with
the most predictive acoustic words of different sets of features.

PTSD

i’ve never, south, happened i, and they have,
should, i actually, just uh, alive, and i didn’t,
uh i have, i made a, stuff to, hmm, it was in,

i don’t know i, but it was, no i have, yeah she,
i did a, where would i

Depression

i’ve never, happened i, and they have, south,
yeah she, and i think that’s, i actually,

and i didn’t, i hate, i made a, stuff to, it was in,
i learned, no i have, a man, uh huh, yeah so,

well i’m, i mean she, oh that

Rapport

there’s two, it i mean, i just wanna, they’d,
look for, my sister, to school, and stuff and,
seeing a, his face, says she, to him, drunk,

got some, michigan, and got, the help, i was still

vious clustering-based approaches. We also showed the possi-
bility of leveraging emotion labels from other dyadic interaction
data to help predicting mental distress and rapport. In our quan-
titative analysis, we found that MFCC features work the best
together with bag-of-words method, while prosodic and voice
quality features are proven to be useful as well. One future di-
rection would be finding a better fusion method for combining
features. In our preliminary qualitative analysis, we showed
that the acoustic words learned from the deep autoencoding ap-
proach exhibited interesting patterns and correlation with lin-
guistic cues for each of the mental assessment traits, thus pro-
viding insights on the link between human acoustic behaviours
and psychology. Our quantitative evaluation also shows that au-
tomated mental state assessment from acoustics is a challenging
task and there is still plenty of room for improvement.
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