
To React or not to React: End-to-End Visual Pose
Forecasting for Personalized Avatar during Dyadic

Conversations
Chaitanya Ahuja

cahuja@andrew.cmu.edu
Carnegie Mellon University

Shugao Ma
shugao@fb.com

Facebook Reality Labs, Pittsburgh

Louis-Philippe Morency
morency@cs.cmu.edu

Carnegie Mellon University

Yaser Sheikh
yasers@fb.com

Facebook Reality Labs, Pittsburgh

ABSTRACT
Non verbal behaviours such as gestures, facial expressions,
body posture, and para-linguistic cues have been shown to
complement or clarify verbal messages. Hence to improve
telepresence, in form of an avatar, it is important to model
these behaviours, especially in dyadic interactions. Creat-
ing such personalized avatars not only requires to model
intrapersonal dynamics between a avatar’s speech and their
body pose, but it also needs to model interpersonal dynamics
with the interlocutor present in the conversation. In this
paper, we introduce a neural architecture named Dyadic
Residual-Attention Model (DRAM), which integrates intrap-
ersonal (monadic) and interpersonal (dyadic) dynamics using
selective attention to generate sequences of body pose con-
ditioned on audio and body pose of the interlocutor and
audio of the human operating the avatar. We evaluate our
proposed model on dyadic conversational data consisting
of pose and audio of both participants, confirming the im-
portance of adaptive attention between monadic and dyadic
dynamics when predicting avatar pose. We also conduct a
user study to analyze judgments of human observers. Our
results confirm that the generated body pose is more natural,
models intrapersonal dynamics and interpersonal dynamics
better than non-adaptive monadic/dyadic models.
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Figure 1: Overview of the visual pose forecasting task, which
takes avatar’s audio and predicted pose history along with
human’s audio and pose to forecast the avatar’s future pose
and generate a natural looking avatar animation. Themodel
dynamically decides which of monadic or dyadic dynamics
to focus to make the prediction.
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1 INTRODUCTION
Telepresence has the potential to evolve the way people
communicate. With the application of immersion theory,
stereoscopic vision and spatial audio, a 3D virtual space has
characteristics inspired from the real world [36]. Communi-
cating in a virtual world poses some interesting challenges.
A person sitting thousands of miles away, where only speech
signals are available, an avatar will need to represent not
only his/her facial expressions [30], but also produce realistic
non verbal body cues.

Non verbal behaviours such as hand gestures, head nods,
body posture and para-linguistic cues play a crucial role in
human communication [42]. These can range from simple
actions like pointing at objects, head nod agreement, to body
pose mirroring. Consider a person giving a monologue. Bar-
ring the minimal reaction of the audience (e.g. laughing on
a joke he/she made), the speaker relies on his/her audio and
his/her hand gestures, head motions and body posture to
convey a message to the audience. These behaviours can
be combined under the umbrella term of intrapersonal be-
haviours. Realism in intrapersonal behaviours is crucial to
communication in the virtual world [5]. People can display
different kind of gesture patterns, hence there is a need of
driving the body pose of personalized avatars using the audio
as input.

During dyadic interaction, behaviours of a person will be
influenced by the behaviour of the interlocutor [37]. In other
words, forecasting an avatar’s pose should take interpersonal
dynamics into consideration. This brings an interesting chal-
lenge on how to integrate back channel feedback [43] and
other interpersonal dynamics while animating the avatar’s
behaviour. Examples of such behaviour can be seen in situ-
ations where people mimic head nods in agreement [8] or
mirroring a posture shift at the end of conversation turn.
Modeling such interpersonal behaviour can aid in building a
more realistic avatar.
Speaker and listener roles, in a dyadic conversation, can

change multiple times during the course of the conversa-
tion. A speaker’s behaviour is affected by a combination of
their non verbal signatures and interpersonal feedback from
the listener. Similarly, a listener’s behaviour is affected by
a combination of some non verbal signatures and mostly
providing feedback to the speaker in form of head nods, pose
changes and short utterances (like ‘yes’, ‘ya’, ‘ah’ and so on).

Figure 2: Overview of the proposed model Dyadic Residual-
Attention Model (DRAM) designed to model the end-to-end
visual pose forecasting task. Avatar’s monadic pose forecast
along with human’s audio and pose history forecasts the
next dyadic pose conditioned on dyadic (or interpersonal)
dynamics. Avatar’smonadic and dyadic pose predictions are
inputs to DRAM which first calculates the dyadic residual
attention vector (∆t ) followed by an attention layer over
monadic and dyadic pose predictions to make the final fore-
cast ŷt .

Hence, to produce avatars capable of dyadic interactions
with a human interlocutor, pose forecasting models need to
anthropomorphise the character based on two facets of a
conversation: interpersonal and intrapersonal dynamics.

In this paper, we learn to predict non verbal behaviours (i.e
body pose) of an avatar1 conditioned on the para-linguistic
cues extracted from input audio and behaviours of the inter-
locutor as described in Figure 1. Central to our approach is a
dynamic attention module that can toggle between monadic-
focused (e.g. speaking with limited input from the listener)
and dyadic-focused (e.g. interacting with the interlocutor)
where interpersonal dynamics are also integrated. Our model
Dyadic Residual-Attention Model (or DRAM) allows us to
dynamically integrate intrapersonal (a.k.a monadic) and in-
terpersonal (a.k.a dyadic) dynamics by attending to the in-
terlocutor as and when needed. We present two variants of

1Project webpage: http://chahuja.com/trontr/
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our model based on recurrent neural networks and tempo-
ral convolutional networks. These models are trained on a
dataset consisting of conversations between two people. We
study the avatar pose forecasting of one participant gener-
ated by these models on three challenges (1) Naturalness,
(2) Intrapersonal Dynamics, and (3) Interpersonal Dynamics,
by analyzing the effects of missing audio or pose information.
Finally, we conduct a user study to get an overall human
evaluation of the generated avatar pose sequences.

2 RELATEDWORK
Pose forecasting has been previously studiedwith approaches
ranging from goal conditioned forecasting [1, 32], image [10]
and video [19] conditioned forecasting to pose synthesis us-
ing high-level control parameters [22, 31]. These vision-only
approaches do not make use of audio signals from the speech.

It has been shown that fusing audio and visual information
can give more robust predictions hence leading to improved
performance [6, 26] especially for emotion modeling [44, 45].
Emotions are correlated to body motions [34] implying that
audio is also correlated to body pose. Earlier work directly
studied rhythm relationships of audio with body pose [15],
correlation of head motion and speech disfluencies [23] and
influence of audio on gestures in a dyadic setting [42].
In context of audio conditioned generation of facial ex-

pression and head pose, previous work includes creating
voice driven puppets [7] and more recently deep learning
approaches have improved the quality of lip-movement gen-
eration [38], facial expression generation [18, 28, 40] and
facial expression generation in a conversation setting [13].
A related topic is generating speech by measuring vibrations
in a video [14]. Follow up works include separating input
audio signals into a set of components that corresponds to
different objects in the given video [20], and separating audio
corresponding to each pixel [46].
Cassell et al. [9] created the Behavior Expression Anima-

tion Toolkit (BEAT), which takes text as input to generate
synthesized speech along with gestures and other nonverbal
behaviors such as gaze and facial expression. The assign-
ment is done on the linguistic and contextual analysis of the
input text, relying on rules predefined based on evidence
from previous research on human conventional behavior.
Scherer et al. [33] proposes a markup language for gener-
alizing perceptual features and show its effectiveness by
integrating it into an automated virtual agent. Non verbal
behaviours generated in this approach constructs a fixed set
of body gestures[11, 12, 29], hence posing it as a classifica-
tion problem. Fixed set of gestures cannot generalize to new
behaviours, which is a drawback to this approach.
Parameterizing avatars with joint angles instead can al-

leviate this shortcoming. Extending this idea to audio con-
ditioned pose forecasting, Takeuchi et al. [39] use linguistic

features extracted from audio to predict future body poses
using a bi-directional LSTM. As this method uses audio infor-
mation from the future, it cannot be used for pose forecasting
in real-time. In comparison, our models are auto-regressive
in nature, using only information from the past. We note that
our focus is on scenarios where manual text transcription
may not be available, so our focus stays on the non-linguistic
components of audio signals.
To our knowledge, our proposed work is the first to in-

tegrate both intrapersonal and interpersonal dynamics for
body pose forecasting. Our aim is to generate natural look-
ing sequence of body poses which correlate with audio sig-
nals driving the avatar as well as paralinguistic cues and
behaviour of the interlocutor.

3 PROBLEM STATEMENT
Consider a conversation between two human participants,
one of which is interacting remotely (henceforth referred as
avatar) and only the audio is available. For the local par-
ticipant (henceforth referred as human/interlocutor), we
have pose and audio information. The goal of the forecast-
ing task is to model future body pose of the avatar. For-
mally, given sequence of local human audio features XH

t =[
xHt ,x

H
t−1, . . . ,x

H
t−k−1

]
, human poseYH

t =
[
yHt ,y

H
t−1, . . . ,y

H
t−k−1

]
,

avatar’s audio features Xt = [xt ,xt−1, . . . ,xt−k−1] and his-
tory of avatar’s pose Ŷt = [ŷt , ŷt−1, . . . ,yt−k−1], we want
to predict avatar’s next pose ŷt+1. Let xt ,xHt be vectors of
dimension a, and yt ,yHt be vectors of dimension p for all t .
k is the size of feature history used by the model. Hence,
XH
t ,Xt ∈ Ra×k and YH

t , Ŷt ∈ Rp×k are matrices.
This is equivalent to modeling the probability distribution

P(ŷt+1 |X
H
t ,Y

H
t ,Xt , Ŷt ). Concatenating all input features

XH
t ,Xt ,Y

H
t , Ŷt , we define a joint model f : R2(a+p)×k → Rp

which predicts the future pose ŷt+1

ŷt+1 = f
(
XH
t ,Y

H
t ,Xt , Ŷt ;θ

)
(1)

whereθ are trainable parameters of function f . As the history
of avatar’s previously predicted pose sequence Ŷt is used to
predict the future pose, f is an autoregressive model.
In this section we discuss challenges of jointly modeling

interpersonal and intrapersonal dynamics. We propose our
model Dyadic Residual-Attention Model (DRAM) to tackle
these challenges in the next Section while maintaining the
generalizability of the model.

Challenges of Jointly Modeling Interpersonal and
Intrapersonal Dynamics
Interpersonal dynamics are important in providing a realistic
social experience in a virtual environment. Ignoring verbal
or non-verbal cues from the interlocutor may result in gen-
erating avatar body-poses which are not synchronous with
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Figure 3: An example demonstrating a hybrid of Intrapersonal and Intrapersonal dynamics in predictions made by DRAM.
For the avatar, the black skeleton is the current pose and the red skeleton is the pose from one second in the past. Similarly for
the interlocutor, the black skeleton is the current pose and the purple skeleton is the pose from one second in the past. For the
first 3 seconds, the avatar focusses on words ’Next Month’ and DRAM forecasts hand raises denoting emphasis.mean(∆t ) is
moslty less than 0.5. As soon as the interlocuter chimes in with an exclaimation ’Oh!’, mean(∆t ) rises up implying more focus
on the interlocutor. DRAM forecasts head nods denoting agreement with the interlocuter. Beat motions are also predicted by
the model which is probably due to emphasis on the words ’Um Hum’.

the interlocutor[27]. Given enough dyadic conversation data,
the function in Equation 1 has the capacity to jointly model
interpersonal and intrapersonal dynamics.

However, an imbalance between interpersonal and intrap-
ersonal dynamics in dyadic conversations is common, with
generally more instances of the intrapersonal dynamics (e.g.
between speech and gestures of the same person). This natu-
rally occurring imbalance ends up treating Xt and Yt from
intrapersonal dynamics as the stronger prior than signals
from the interlocutor (XH

t and YH
t ) while solving the opti-

mization problem,

minθ
∑
t

∥ f
(
XH
t ,Y

H
t ,Xt ,Yt ;θ

)
− ŷt+1∥

2
2 (2)

where ∥.∥2 is L2 Norm.
Hence, interpersonal dynamics could end up getting ig-

nored, leaving the pose generation largely monadic and in-
trapersonal.

4 DYADIC RESIDUAL-ATTENTION MODEL
To combat the imbalance in dyadic conversations, our pro-
posed approach shown in Figure 2 decomposes pose gen-
eration of the avatar to monadic function (fm) and dyadic
function (fd ), which model Intrapersonal and Interpersonal
dynamics respectively.
We propose a model Dyadic Residual-Attention Model

(DRAM)with∆t ∈ Rp as a time-continuous vector.∆t allows
for smooth transitions between monadic and dyadic models
and it is a vector with the same dimensions as the pose of
the avatar/interlocutor. We use ∆t like an attention vector
which attends to different joints at different points in time.

Hence, our proposed model
fDRAM

(
Xt−1,Yt−1,X

H
t−1,Y

H
t−1;θDRAM

)
can be written as

fDRAM = (1 − ∆t ) ⊙ fm + ∆t ⊙ fd (3)

where fDRAM : R2(a+p)×k → Rp and ∆t is the Dyadic Resid-
ual Vector. ∆t can be used as a trainable parameter which
enables the model to implicitly learn attention weights for
each joint at each time-step.

In this section, we describe the formulation of the Dyadic
Residual Vector (∆t ) which is further used as soft-attention
weights on Dyadic (fd ) and Monadic (fm) models resulting
in the formation of DRAM. We end the section by explaining
the loss function and the training curriculum for the model.

Dyadic Residual Vector
Monadic model fm : R(a+p)×k → Rp learns the intrapersonal
dynamics (i.e. demonstrating emphasis using head nods or
hand gestures etc.) of the avatar. This is equivalent to the
avatar giving a monologue without any ineterlocutor,

ẑmt = fm (Xt−1,Yt−1;θm) (4)

Dyadic model fd : R(a+2p)×k → Rp can be written as,

ẑdt = fd

(
XH
t−1,Y

H
t−1, Ẑ

m
t ;θd

)
(5)

where Ẑm
t−1 =

[
ẑmt−1, ẑ

m
t−2 . . . , ẑ

m
t−k−1

]
.

Dyadic model fd depends on the Monadic dynamic Ẑm
t

and features of the interlocutor2. Hence, it learns to model
2For computational efficiency, we use Ẑmt as an input for the dyadic network.
An alternative equivalent model is where raw avatar features (Xt−1, Yt−1)
are used as one of the inputs.
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the interpersonal dynamics (i.e. head nods, pose switches,
interruptions etc.) between the avatar and interlocutor.
The absolute difference between Monadic and Dyadic

Models | fd − fm |, or the residual, is representative of the
joints that were affected by interpersonal dynamics3. If, at
a given time t , the residual for some joints is high, the in-
terlocutor is influencing those joints, while if the residual is
low, the avatar’s audio and pose-history is dominating the
avatar’s current pose behaviour.

The residual for all joints is always positive, so to compress
all dimensions of the residual vector ∆t between 0 and 1, we
use tanh non-linearity to get the dyadic residual vector ∆t ,

∆t = tanh | fd
(
XH
t−1,Y

H
t−1, Ẑ

m
t−1;θd

)
− fm (Xt−1,Yt−1;θm) |

(6)
The interpretability of the Dyadic Residual Vector is an

added advantage. We know which joint has the maximum
influence at every time t , and hence can estimate whether the
non-verbal behaviours of the avatar are due to interpersonal
or intrapersonal dynamics.
Using Equations 3, 4, 5 and 6, the predicted pose of our

proposed DRAM can be re-written as:

ŷt = (1 − ∆t ) ⊙ Ẑm
t + ∆t ⊙ Ẑd

t (7)

Loss Function
Pose is a continuous variable, hence we use Mean Squared
Error (or L2) loss. Based on predicted pose in Equation 7, the
loss function is

L =
∑
t

∥ŷt − yt ∥
2
2 (8)

=
∑
t

∥ (1 − ∆t ) ⊙ Ẑm
t + ∆t ⊙ Ẑd

t − yt ∥
2
2 (9)

Design Choices for fd and fm

The prediction functions fm (for monadic) and fd (for dyadic)
of our proposed model can work with any autoregressive
temporal network that depends only on features from the
past. This gives our model the flexibilty of incorporating tem-
poral models that may be domain dependent or pre-trained
on some other dataset.
Recurrent neural architectures have been shown to per-

form very well in such autoregressive tasks [2, 21, 25], espe-
cially for pose forecasting algorithms [10, 31]. Recent work
demonstrates the utility of bi-directional LSTMs to model
speech signals to forecast body pose [39]. One weakness
of this approach is the dependency of the pose prediction

3It may be possible to use a separate network to model the attention vector.
Our proposed network Dyadic Residual-Attention Model , in a manner of
speaking, shares weights with existing networks fm and fd to estimate the
attention vector ∆t . This helps us limit the number of trainable parameters.

on future speech input, hence making it unusable for real-
time applications. A uni-directional LSTM model is used as
a baseline model [39].
Temporal convolutional networks (TCNs) work just as

well in many practical applications [4]. It was shown that
adding residual connections and dilation layers [41] can
boost the empirical performance of TCNs equal to, if not
better than, LSTM and GRU based models.
In our experiments, both TCNs and LSTMs are used as

temporal models for fd and fm , which demonstrates the
versatility of our proposed approach.

5 EXPERIMENTS
Visual pose-forecasting of an avatar during dyadic conversa-
tions can be broken down into three core challenges,

(1) Naturalness: How natural is the flow of poses and
how close are they to the ground truth?

(2) Intrapersonal Dynamics: How correlated is the gen-
erated pose sequence with avatar’s speech?

(3) Interpersonal Dynamics: Is the generated pose se-
quence reacting realistically to the interlocutor’s be-
haviour and speech?

Experiments, both subjective and objective are designed to
evaluate there 3 aspects of pose forecasting.

In the following subsections, we describe the dataset and
have a short discussion on pre-processing of audio and pose
features. This is followed by constructing a set of competitive
baseline models to compare our own proposed DRAM model.

Dataset
Ourmodels are trained and evaluated on a previously recorded
dataset of dyadic face-to-face interactions. The dataset con-
tains one person who is the same across all conversations.
This person interacts with 11 different participants for around
1 hour each. The participants were given different topics (like
sports, school, hobbies etc.) to choose from and the conver-
sation was guided by these topics. No script were given to
either of the participants. The capture system included 24
OptiTrack Prime 17W cameras surrounding a capture area
of approximately 3 m × 3 m and two directional microphone
headsets. Twelve of the 24 cameras were placed at 1.6 m
height. Participants wear marker-attached suits and gloves.
The standard marker arrangement provided by OptiTrack
for body capture and glove marker arrangement suggested
in Han et al. [24] was followed.

For each conversation, there are separate channels of audio
signals for each person with a sampling rate of 44.1 kHz.
Body pose was collected at a frequency of 90 Hz using a
Motion-Capture (MoCap) setup, and gives 12 joint positions
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Table 1: ObjectiveMetric Average Position Error (APE) for DRAM is comparedwith all baselinemodels. Lower values are better.
The first row networks, Human Audio Only and Human Monadic Only, model Intrapersonal dynamics, while the second row
networks, Avatar Audio Only and Avatar Monadic only, model Intrapersonal Dynamics. The third row networks, Early Fusion
and DRAM w/o attention, non-adaptively model Interpersonal and Intrapersonal dynamics jointly. Fourth row networks,
DRAM, adaptively choose from Interpersonal and Intrapersonal dynamics. Two-tailed pairwise t-test between all TCNmodels
and DRAM-TCN where ∗∗- p<0.01, and ∗- p<0.05

Average Position Error (APE) in cms

Dynamics Models Avg. Torso Head Neck RArm LArm RWrist LWrist

Human Audio
Only (fm )

LSTM 4.9 0.2 1.1 0.4 0.2 0.2 14.4 21.3

Interpersonal TCN 3.3∗∗ 0.2 1.2 0.5 0.2 0.3 9.5 13.8

Human Monadic
Only (fm )

LSTM 3.6 0.2 1.1 0.4 0.2 0.2 13.2 12.5

TCN 3.3∗ 0.2 1.1 0.4 0.2 0.2 9.3 13.8

Avatar Audio
Only (fm )

LSTM 3.9 0.6 1.5 1.4 1.0 0.5 10.7 15.0

Intrapersonal TCN 3.5∗∗ 0.2 1.1 0.5 0.3 0.3 9.3 15.5

Avatar Monadic
Only (fm )

LSTM 3.4 0.2 1.3 0.4 0.3 0.2 9.5 14.4

TCN 3.0∗ 0.2 1.4 0.5 0.2 0.3 8.8 12.1

Early Fusion
(f )

LSTM 3.0 0.2 1.1 0.5 0.3 0.2 9.3 11.7

Interpersonal
and Intrapersonal

TCN 3.2∗ 0.2 1.1 0.4 0.2 0.3 10.5 12.2

DRAM
w/o Attention (fd )

LSTM 3.1 0.2 1.8 0.4 0.2 0.2 9.7 12.1

TCN 3.0 0.1 1.0 0.4 0.2 0.2 8.8 12.6

Adaptive Interpersonal
and Intrapersonal

DRAM
(fDRAM )

LSTM 2.8 0.1 1.0 0.4 0.2 0.2 9.0 10.8

TCN 2.8 0.2 1.1 0.4 0.2 0.2 8.8 11.1

of the upper body including which can be grouped4 into
Torso, Head, Neck, RArm (Right Arm), LArm (Left Arm),
RWrist (Right Wrist) and LWrist (Left Wrist).

Feature Representation
Body pose is shown to have correlation with affect and emo-
tion. GeMAPS is a minimalist set of low level descriptors for
audio including prosodic, excitation, vocal tract, and spectral
descriptors which increase the accuracy of affect recogni-
tion. OpenSmile [17] is used to extract GeMAPS [16] features
sub-sampled rate of 90 Hz to match the body pose frequency.

In this work, translation of the body is not considered, as
it is largely absent in the data. Instead rotation angles are
modeled, which form the crux of dyadic interactions in a
conversation setting. In our experiments we use pose features
that are 3-dimensional joint coordinates are converted to
local rotation vectors and parameterized as quaternions [31].

Baselines
There has been limited work in the domain of gesture genera-
tion from audio signals using neural architectures. Themodel
only take into account monadic behaviours of a person using
a bidirectional-LSTM [39]. Bidirectional-LSTMs depend on

4Our modeling is performed for all 12 joints, but we group them in our
results to help with interpretability

the future time-steps, hence they are unusable in real-time
applications. An adapted version of this network (referred as
Avatar Audio only- LSTM in Table 1) and TCNs are used
as temporal models for Dyadic fd and Monadic fm models.

To gauge the naturalness of our proposed model DRAMs,
they are compared with Early Fusion (f from Equation 1)
and DRAMw/o Attention (fd from Equation 5)

To demonstrate presence of Intrapersonal Dynamics in a
dyadic conversation, a reasonable baseline is Monadic Mod-
els (fm from Equation 4) with inputs as the avatar’s audio
(refer as Avatar Audio Only) and avatar’s audio+pose his-
tory (refer as Avatar Monadic Only). Both of these models
forecast the pose of the avatar.

To demonstrate presence of Interpersonal Dynamics in a
dyadic conversation, a reasonable baseline is Monadic Mod-
els (fm from Equation 4) with inputs as the human’s audio
(refer as Human Audio Only) and human’s audio+pose
history (refer as Human Monadic Only). Both of these
models forecast the pose of the avatar.

Objective Evaluation Metrics
We evaluate all models on the held-out set with a metric
Average Position Error (APE). Given a particular keypoint p,
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Figure 4: Two examples demonstrating Interpersonal Dynamics in predictions made by DRAM. For the first example, inter-
locutor performs a pose switch which is followed by predicted pose switch by the avatar. Mean of Dyadic Residual Attention
vector (mean(∆t )) is moslty below 0.5 till the interlocutor performs a pose switch. DRAM estimates the need to focus on
the human (i.e. interpersonal dynamics) with the increase in value of ∆t and predicts a pose-switch for the avatar. Similarly,
the second example has the interlocutor performing a head nod, which is followed by a forecast of head nod by the avatar.
mean(∆t ) values rise to values above 0.5 just after the interlocuter’s head nod implying the need for interpersonal dynamics.

it can be denoted as APE(p),

APE(p) =
1
Y

∑
Y

∥ŷt (p) − yt (p)∥2 (10)

whereyt (p) is the true location and ŷt (p) ∈ Y is the predicted
location of keypoint p
Another metric, Probability of Correct Keypoints (PCK)

[3, 35], is also used to evaluate all models. If a predicted
keypoint lies inside a sphere (of radius σ ) around the ground
truth, the prediction is deemed correct. Given a particular
keypoint p, PCKσ (p) is defined as follows,

PCKσ (p) =
1
Y

∑
Y

δ (∥ŷt (p) − yt (p)∥2 ≤ σ ) (11)

where δ is an indicator function.

User Study: Subjective Evaluation Metrics
Pose generation during dyadic interactions can be a subjec-
tive task as reactions of the avatar depend on its own audio,
and the human’s audio and pose. A human’s subjective judge-
ment on the quality of prediction is an important metric for
this task.

Figure 5: Histograms of Subjective Scores for Naturalness,
Intrapersonal Dynamics, Interpersonal Dynamics and the
mean across all criteria. Higher scores are better. Two-tailed
pairwise t-test between Avatar Monadic only, Early Fusion
TCN models and DRAM-TCN where ∗- p<0.05, ∗∗- p<0.01,
and ∗ ∗ ∗- p<0.001
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To achieve this, we design a user study of the generated
videos from a held-out set. During the study, an acclimation
phase is performed by showing reference clips (ground truth
poses taken from the training set) to annotators to get them
acquainted with the natural motion of the avatar. The main
part of the study consists of showing annotators multiple one
minute clips from the test set. Each video contains predicted
avatar pose, avatar’s audio and the ground truth audio and
poses for the human. Pose is represented in form of a stick
figure (Refer to 7). The avatar predicted poses can come
from one of these models in Figure 5 or the ground truth.
Annotators do not know which model was used to animate
the avatar. They are instructed to judge the animation based
on the following statements:

S1 Naturalness:The motion of avatar looks natural and
match his/her audio

S2 Intrapersonal Dynamics:Avatar behaves like them-
self (recall the reference video)

S3 Interpersonal Dynamics:Avatar reacts realistically
to the interlocutor (in terms of interlocutor’s audio
and motion)

At the end of each clip they give a score for all the statements
following a 1 to 7 on the likert scale where,

1 2 3 4 5 6 7

Disagree Somewhat
Disagree

Somewhat
Agree Agree

A fourth quesiton is asked to know how confident annota-
tors were in scoring each video based on all input modalities.
Each video is rated by a minimum of 2 human annotators
where the final score is a weighted average with the weights
as the confidence rating for each video.

6 RESULTS AND DISCUSSION
Objective Evaluation
Average Position Error (APE): Models with only Interper-
sonal Dynamics achieve the best APE of around 3.3 which is
slightly worse than the best APE of 3.0 onmodels with Intrap-
ersonal dynamics (Table 1). Early Fusion and DRAM w/o
Attention are models with both interpersonal and intrap-
ersonal dynamics as input, but they are not able to surpass
the Avatar Monadic Only model. This is not surprising
as avatar’s speech is highly correlated with its body pose.
Models with Adaptive Interpersonal and Intrapersonal Dy-
namics (e.g. DRAM), which achieved an APE of 2.8, are
able to exploit changing dynamics in a conversation unlike
non-adaptive methods such as Early Fusion and DRAM w/o
Attention.

Each joint has different characteristics in a conversation
setting. Some of them, like Torso, and Neck, do not move a

Figure 6: Plots of average Probability of Correct Keypoint
(PCK) values over multiple values of PCK threshold (σ ) for
Early Fusion, DRAMw/o Attention, and DRAMmodels with
TCNs. Higher values are better.

lot during the course of the conversation. It is clear from
the low APE values for these joints in Table 1 that modeling
them is easier when compared to frequently moving joints
likeWrists. It is also evident from the table that forecasting
wrists had a much higher APE across all joints across all
models. Dyadic Residual-Attention Model gives almost
a 1.0 reduction in APE values when compared to the best
non-adaptive model.

The joint, Head, shows some interesting characteristics. It
can be fairly hard to predict head motion with just monadic
data of the avatar as it sometimes mirrors head nods com-
ing from the interlocutor (or Human). Dyadic information
becomes crucial in this scenario. It is interesting to see that
head predictions are around 1.0 value of APE worse for mod-
els with only intrapersonal dynamics. The monadic model
conditioned on only Human features ends up performing rea-
sonably well, probably because it can learn to map Avatar’s
sporadic head nods to those of the Human.

Probability of Correct Key-points (PCK): The gap be-
tween PCK values of DRAM and other baselines increase
with the value of PCK threshold (Figure 6), which implies that
variance of erroneous predictions by DRAM is lesser than
other baselines, making our proposed model more robust.

Subjective Evaluation
Based on the user study we conducted on the generated
Avatar Pose (see Figure 5), humans find that DRAM gener-
ates more natural pose sequences which correlate better with
the audio signals (i.e intrapersonal) and the Human’s body
pose (i.e. interpersonal) than other models. DRAM gets an
average score of 4.6 which implies that annotators ‘some-
what agree’ with all the statements in Section 5. On the other
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Figure 7: An example demonstrating Intrapersonal Dynamics in predictionsmade by DRAM. The black skeleton is the current
pose, while the red skeleton is the pose from one second in the past. Paralinuguistic cues of emphasis are denoted by a larger
font in the spoken sentence. It can be seen that the avatar performs a beat motion for the first five seconds to emphasize the
word go. For the next two seconds, the avatar nod’s its head also to denote emphasis while speaking the words our bags. Mean
of Dyadic Residual Attention vector (mean(∆t )) is moslty below 0.5which implies that fm is dominant for the final avatar body
pose prediction.

hand, annotators are neutral towards the pose generated by
Avatar conditioned Monadic only model.

Qualitative Analysis
Conversations in a dyad contain non-verbal social cues,
which might go unnoticed to us humans, but play an impor-
tant role in maintaining the naturalness of the interaction.
Head nod mirroring and Torso Pose switching are two of
the most common cues. We pick out 2 cases in Figure 4 with
such cues existing in the conversation. Our model detects
the head nod and pose switch in the human’s pose and is
successfully able to react to it.
Another aspect in social cues is hand gestures during

conversation. Utterances that are emphasized usually lead
to a switch in position of hands almost instantaneously. Our
model is able to detect emphasis and moves their hand(s) up
and down (Figure 7) to sync with the speech.
Real conversations are a mixture of changing interper-

sonal and intrapersonal dynamics. Our model is able to de-
tect these changes and react appropriately. In Figure 3, the
avatar conducts hand raises which are due to emphasis in the
avatar’s speech, but when the interlocutor interrupts in with
an exclamation, the avatar starts head nodding in agreement
while still performing beat gestures to accompany emphasis
in its audio signal.
The mean value of Dyadic Residual Vector ∆t is plotted

along the animation to analyze its effects and correlations
with changing dynamics in the conversation. First, ∆t ’s mean
value seems to correlate with changing interpersonal and in-
trapersonal dynamics. In Figure 3, mean(∆t ) rises as soon as
the interlocuter interrupts the avatar. In Figure 7, mean(∆t )

remains almost constant as the interlocutor does not seem to
have a huge role in that part of the sequence. Second, even
though the value of ∆t correlate with changing roles in a
conversation, its absolute value is not extreme. (i.e. at an
average it is closer to 0.5 than to 0 or 1). This is not surpris-
ing as the contribution of interpersonal and intrapersonal
dynamics can often overlap hence requiring both monadic
fm and dyadic fd models.

7 CONCLUSIONS
In this paper we introduce a new model for the task of gener-
ating body pose in a conversation setting conditioned on an
audio signal, and interlocutor’s audio and body pose. This
person specific model, Dyadic Residual-Attention Model ,
learns to selectively attend to interpersonal and intrapersonal
dynamics. The attention mechanism is successfully able to
capture social cues such as head nods and pose switches
while generating a sequence of poses which appear natural
to the human eye. It is a first step towards an avatar for
remote communication which is anthropomorphised with
non-verbal cues.

8 ACKNOWLEDGEMENTS
This material is based upon work partially supported by
the National Science Foundation (Award #1722822). Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of National Science Foundation,
and no official endorsement should be inferred.

82



ICMI ’19, October 14–18, 2019, Suzhou, China Chaitanya Ahuja et. al.

REFERENCES
[1] Shailen Agrawal and Michiel van de Panne. 2016. Task-based locomo-

tion. ACM Transactions on Graphics (TOG) 35, 4 (2016), 82.
[2] Chaitanya Ahuja and Louis-Philippe Morency. 2018. Lattice Recurrent

Unit: Improving Convergence and Statistical Efficiency for Sequence
Modeling. In AAAI-18. 4996–5003. https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/17394

[3] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt
Schiele. 2014. 2d human pose estimation: New benchmark and state
of the art analysis. In Proceedings of the IEEE Conference on computer
Vision and Pattern Recognition. 3686–3693.

[4] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical eval-
uation of generic convolutional and recurrent networks for sequence
modeling. arXiv preprint arXiv:1803.01271 (2018).

[5] Jeremy N Bailenson, Nick Yee, Dan Merget, and Ralph Schroeder. 2006.
The effect of behavioral realism and form realism of real-time avatar
faces on verbal disclosure, nonverbal disclosure, emotion recognition,
and copresence in dyadic interaction. Presence: Teleoperators and Vir-
tual Environments 15, 4 (2006), 359–372.

[6] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-PhilippeMorency. 2018.
Multimodal machine learning: A survey and taxonomy. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2018).

[7] Matthew Brand. 1999. Voice puppetry. In Proceedings of the 26th
annual conference on Computer graphics and interactive techniques.
ACM Press/Addison-Wesley Publishing Co., 21–28.

[8] Justine Cassell and Kristinn R Thorisson. 1999. The power of a nod and
a glance: Envelope vs. emotional feedback in animated conversational
agents. Applied Artificial Intelligence 13, 4-5 (1999), 519–538.

[9] Justine Cassell, Hannes Högni Vilhjálmsson, and Timothy Bickmore.
2004. Beat: the behavior expression animation toolkit. In Life-Like
Characters. Springer, 163–185.

[10] Yu-Wei Chao, Jimei Yang, Brian L Price, Scott Cohen, and Jia Deng. [n.
d.]. Forecasting Human Dynamics from Static Images.

[11] Chung-Cheng Chiu and Stacy Marsella. 2011. How to train your
avatar: A data driven approach to gesture generation. In International
Workshop on Intelligent Virtual Agents. Springer, 127–140.

[12] Chung-Cheng Chiu, Louis-Philippe Morency, and Stacy Marsella. 2015.
Predicting co-verbal gestures: a deep and temporal modeling approach.
In International Conference on Intelligent Virtual Agents. Springer, 152–
166.

[13] Hang Chu, Daiqing Li, and Sanja Fidler. 2018. A Face-to-Face Neural
ConversationModel. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 7113–7121.

[14] Abe Davis, Michael Rubinstein, NealWadhwa, GauthamMysore, Fredo
Durand, and William T. Freeman. 2014. The Visual Microphone: Pas-
sive Recovery of Sound from Video. ACM Transactions on Graphics
(Proc. SIGGRAPH) 33, 4 (2014), 79:1–79:10.

[15] Allen T Dittmann. 1972. The body movement-speech rhythm relation-
ship as a cue to speech encoding. Studies in dyadic communication
(1972), 135–152.

[16] Florian Eyben, Klaus R Scherer, Björn W Schuller, Johan Sundberg,
Elisabeth André, Carlos Busso, Laurence Y Devillers, Julien Epps, Petri
Laukka, Shrikanth S Narayanan, et al. 2016. The Geneva minimalistic
acoustic parameter set (GeMAPS) for voice research and affective
computing. IEEE Transactions on Affective Computing 7, 2 (2016), 190–
202.

[17] Florian Eyben, Felix Weninger, Florian Gross, and Björn Schuller. 2013.
Recent developments in opensmile, the munich open-source multi-
media feature extractor. In Proceedings of the 21st ACM international
conference on Multimedia. ACM, 835–838.

[18] Tony Ezzat, Gadi Geiger, and Tomaso Poggio. 2002. Trainable videore-
alistic speech animation. Vol. 21. ACM.

[19] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik.
2015. Recurrent network models for human dynamics. In Proceedings
of the IEEE International Conference on Computer Vision. 4346–4354.

[20] Ruohan Gao, Rogerio Feris, and Kristen Grauman. 2018. Learning to
separate object sounds by watching unlabeled video. arXiv preprint
arXiv:1804.01665 (2018).

[21] Alex Graves. 2012. Supervised sequence labelling. In Supervised
sequence labelling with recurrent neural networks. Springer, 5–13.

[22] Ikhsanul Habibie, Daniel Holden, Jonathan Schwarz, Joe Yearsley, and
Taku Komura. 2017. A Recurrent Variational Autoencoder for Human
Motion Synthesis. BMVC17 (2017).

[23] Uri Hadar, TJ Steiner, and F Clifford Rose. 1984. The relationship
between head movements and speech dysfluencies. Language and
Speech 27, 4 (1984), 333–342.

[24] Shangchen Han, Beibei Liu, Robert Wang, Yuting Ye, Christopher D
Twigg, and Kenrick Kin. 2018. Online optical marker-based hand
tracking with deep labels. ACM Transactions on Graphics (TOG) 37, 4
(2018), 166.

[25] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term
memory. Neural computation 9, 8 (1997), 1735–1780.

[26] Alejandro Jaimes and Nicu Sebe. 2007. Multimodal human–computer
interaction: A survey. Computer vision and image understanding 108,
1-2 (2007), 116–134.

[27] Stanley E Jones and Curtis D LeBaron. 2002. Research on the rela-
tionship between verbal and nonverbal communication: Emerging
integrations. Journal of Communication 52, 3 (2002), 499–521.

[28] Tero Karras, Timo Aila, Samuli Laine, Antti Herva, and Jaakko Lehti-
nen. 2017. Audio-driven facial animation by joint end-to-end learning
of pose and emotion. ACM Transactions on Graphics (TOG) 36, 4 (2017),
94.

[29] Jina Lee and Stacy Marsella. 2006. Nonverbal behavior generator
for embodied conversational agents. In International Workshop on
Intelligent Virtual Agents. Springer, 243–255.

[30] Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh.
2018. Deep appearance models for face rendering. ACM Transactions
on Graphics (TOG) 37, 4 (2018), 68.

[31] Dario Pavllo, David Grangier, and Michael Auli. 2018. QuaterNet: A
Quaternion-based Recurrent Model for Human Motion. arXiv preprint
arXiv:1805.06485 (2018).

[32] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne.
2018. DeepMimic: Example-guided Deep Reinforcement Learning of
Physics-based Character Skills. ACM Trans. Graph. 37, 4, Article 143
(July 2018), 14 pages. https://doi.org/10.1145/3197517.3201311

[33] Stefan Scherer, Stacy Marsella, Giota Stratou, Yuyu Xu, Fabrizio
Morbini, Alesia Egan, Louis-Philippe Morency, et al. 2012. Perception
markup language: Towards a standardized representation of perceived
nonverbal behaviors. In International Conference on Intelligent Virtual
Agents. Springer, 455–463.

[34] Konrad Schindler, Luc Van Gool, and Beatrice de Gelder. 2008. Rec-
ognizing emotions expressed by body pose: A biologically inspired
neural model. Neural networks 21, 9 (2008), 1238–1246.

[35] Tomas Simon, Hanbyul Joo, Iain A Matthews, and Yaser Sheikh. 2017.
Hand Keypoint Detection in Single Images Using Multiview Bootstrap-
ping.. In CVPR, Vol. 1. 2.

[36] Namrata Singh and Sarvpal Singh. 2017. Virtual reality: A brief survey.
In Information Communication and Embedded Systems (ICICES), 2017
International Conference on. IEEE, 1–6.

[37] Anthony Steed and Ralph Schroeder. 2015. Collaboration in Immersive
and Non-immersive Virtual Environments. In Immersed in Media.
Springer, 263–282.

83

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17394
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17394
https://doi.org/10.1145/3197517.3201311


To React or not to React ICMI ’19, October 14–18, 2019, Suzhou, China

[38] Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-
Shlizerman. 2017. Synthesizing obama: learning lip sync from audio.
ACM Transactions on Graphics (TOG) 36, 4 (2017), 95.

[39] Kenta Takeuchi, Dai Hasegawa, Shinichi Shirakawa, Naoshi Kaneko,
Hiroshi Sakuta, and Kazuhiko Sumi. 2017. Speech-to-Gesture Gener-
ation: A Challenge in Deep Learning Approach with Bi-Directional
LSTM. In Proceedings of the 5th International Conference on Human
Agent Interaction. ACM, 365–369.

[40] Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler, James Krahe,
Anastasio Garcia Rodriguez, Jessica Hodgins, and Iain Matthews. 2017.
A deep learning approach for generalized speech animation. ACM
Transactions on Graphics (TOG) 36, 4 (2017), 93.

[41] Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W Senior, and
Koray Kavukcuoglu. [n. d.]. WaveNet: A generative model for raw
audio.

[42] PetraWagner, Zofia Malisz, and Stefan Kopp. 2014. Gesture and speech
in interaction: An overview.

[43] Nigel Ward and Wataru Tsukahara. 2000. Prosodic features which cue
back-channel responses in English and Japanese. Journal of pragmatics
32, 8 (2000), 1177–1207.

[44] Martin Wöllmer, Moritz Kaiser, Florian Eyben, BjöRn Schuller, and
Gerhard Rigoll. 2013. LSTM-Modeling of continuous emotions in an
audiovisual affect recognition framework. Image and Vision Computing
31, 2 (2013), 153–163.

[45] Amir Zadeh, Paul Pu Liang, Soujanya Poria, Prateek Vij, Erik Cam-
bria, and Louis-Philippe Morency. 2018. Multi-attention recurrent
network for human communication comprehension. arXiv preprint
arXiv:1802.00923 (2018).

[46] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Vondrick, Josh
McDermott, and Antonio Torralba. 2018. The sound of pixels. arXiv
preprint arXiv:1804.03160 (2018).

84


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	Challenges of Jointly Modeling Interpersonal and Intrapersonal Dynamics

	4 Dyadic Residual-Attention Model 
	Dyadic Residual Vector
	Loss Function
	Design Choices for fd and fm

	5 Experiments
	Dataset
	Feature Representation
	Baselines
	Objective Evaluation Metrics
	User Study: Subjective Evaluation Metrics

	6 Results and Discussion
	Objective Evaluation
	Subjective Evaluation
	Qualitative Analysis

	7 Conclusions
	8 Acknowledgements
	References

