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Abstract— This paper considers the problem of single-server
Private Computation wit Side Information (PC-SI). In this
problem, there is a user that initially has a subset of M messages
from a database stored on a single server, where the identities
of the side information messages are initially unknown to the
server. The user wishes to compute a linear combination of a
subset of D messages (disjoint from the set of side information
messages) while protecting the identities of the messages in
the demanded linear combination. The objective of the user is
to minimize the download cost, which is defined as the total
amount of information that the user downloads from the server.

We establish a lower bound on the capacity of the PC-
SI problem, where the capacity is defined as the supremum
of all achievable download rates. The proof relies on a novel
achievability scheme which combines together the ideas of the
interference alignment and the Partition and Code scheme
previously introduced for private information retrieval with side
information. In addition, for the case of M = 1 and D = 2,
we prove the tightness of the rate achievable by the proposed
scheme, when we restrict ourselves to the scalar-linear PC-SI
schemes. The proof of converse is based on a combination of
new algebraic and information-theoretic arguments.

I. INTRODUCTION

This work introduces the problem of Private Compu-
tation in the presence of Side Information (PC-SI) with
information-theoretic privacy guarantees. In this problem,
there is a user who knows a subset of messages from a
database stored on a single (or multiple) remote server(s),
and wishes to privately compute a linear combination of a
subset of messages, disjoint from the set of side information
messages. The identities of the side information messages are
initially unknown to the server(s). The goal of the user is to
minimize the download cost (which is defined as the total
amount of information being downloaded from the server(s)),
while hiding the identities of the messages in the demanded
linear combination from the server(s).

The PC-SI problem is closely related to the problem of
Private Information Retrieval with Side Information (PIR-
SI), which was lately introduced by Kadhe et al. in [1], and
the information-theoretic Private Computation (PC) problem
introduced recently by Sun and Jafar in [2]. In particular, in
the PIR-SI problem, the user has some side information about
the messages at the server(s), and wants to retrieve a set of
uncoded messages from the server(s) while protecting either
the privacy of both the demand and the side information
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messages or the privacy of the demand messages only. In the
PC problem, the user has no side information, and wishes
to download a linear combination of the messages at the
server(s), while hiding both the identities of the messages
and their coefficients in the demanded linear combination.

The PIR-SI problem has been studied in several differ-
ent scenarios. In particular, the single-server single-message
setting of the PIR-SI problem with uncoded side informa-
tion was studied in [1], and the scenario with coded side
information was considered in [3]. The single-server multi-
message setting of this problem was later studied in [4], [5].
The multi-server single-message and multi-message PIR-SI
were considered in [6], [7] and [8], respectively. None of
these works consider the scenario in which the user’s de-
mand consists of a linear combination of multiple messages.
Several variants of the PC problem have also been studied
in [9]–[12]. These works focus on the multi-server setting,
and do not consider any side information at the user.

A. Main Contributions

In this work, we focus on the single-server setting of the
PC-SI problem. In particular, we assume that there is a single
server storing K messages over a field Fql (for some prime
q and integer l ≥ 1), and a user who has a subset of M
messages as side information, and wants to download a linear
combination (with non-zero coefficients from Fq) of a subset
of D other messages. We establish a lower bound on the
capacity of the PC-SI problem (as a function of K,M,D,
for sufficiently large q), where the capacity is defined as
the supremum of all achievable download rates. The proof
relies on a novel achievability scheme. This scheme, termed
Partition and Code with Interference Alignment (PC-IA), is
based on a probabilistic partitioning, and allows the parts of
the partition to overlap and have multiple aligned blocks of
interference. In addition, for the case of M = 1 and D = 2,
we prove the tightness of the rate achievable by the PC-IA
scheme, when we restrict ourselves to the scalar-linear PC-
SI schemes. The converse proof is based on a combination
of new algebraic and information-theoretic arguments.

Surprisingly, our results indicate that the larger is D the
less costly would be the private computation of a linear com-
bination of D messages. Moreover, a simple comparison of
our results with the results of [4] on the single-server multi-
message PIR-SI problem shows that a linear combination
of multiple messages can be computed privately much more
efficiently than privately retrieving multiple messages first,
and then computing the desired linear combination.

1657978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019



II. PROBLEM FORMULATION

Throughout, random variables and their realizations are
denoted by bold-face letters and regular letters, respectively.

For a prime q, let Fq be a finite field of size q, and let
Fql be an extension field of Fq for some integer l ≥ 1. Let
F×q , Fq \ {0}, and let L , l log2 q. For an integer i ≥ 1,
let [i] , {1, . . . , i}. Let K,M,D be positive integers such
that K ≥ D+M . Let S and W be the set of all M -subsets
and all D-subsets of [K], respectively, and let C be the set
of all length-D sequences with elements from F×q .

There is a server that stores a set of K messages, X ,
{X1, . . . , XK}, where each message Xi is independently
and uniformly distributed over Fql . That is, H(Xi) = L for
i ∈ [K], and H(X) = KL, where X , {X1, . . . ,XK}.
Also, there is a user that knows M messages XS , {Xi}i∈S
for some S ∈ S, and wishes to retrieve a linear combination
Y [W,C] ,

∑
i∈W ciXi from the server for some W ∈ W ,

W ∩ S = ∅, and some C , {ci}i∈W ∈ C. We refer to W
as the demand index set, Y [W,C] as the demand, D as the
demand size, S as the side information index set, XS as the
side information, and M as the side information size.

We assume that S and C are distributed uniformly over
S and C, respectively, and W, conditional on S = S, is
uniformly distributed over all W ∈ W such that W ∩S = ∅.
By these assumptions, W is distributed uniformly over W .

The server initially knows the side information size M
and the demand size D along with the distributions of S,C,
and the conditional distribution of W given S; whereas the
realizations S, C, and W are not initially known to the server.

For any S,C,W , the user sends to the server a query
Q[W,C,S] in order to retrieve Y [W,C]. The query, which is a
(potentially stochastic) function of W , C, S, and XS , must
protect the privacy of the user’s demand index set from the
server, i.e., for all W ∈ W ,

Pr(W =W |Q[W,C,S] = Q,X = X) = Pr(W =W ).

This condition, which we refer to as the privacy condition,
is also known as the W -privacy condition in the private
information retrieval with side information (PIR-SI) literature
(see [1], [4]). Note that, unlike the problem model in [2],
here the query does not need to protect the privacy of the
coefficients of the messages in the demand (i.e., C).

Upon receiving Q[W,C,S], the server sends to the user
an answer A[W,C,S], which is a (deterministic) function of
the query Q[W,C,S] and the messages in X . In particular,
(W,S) and A[W,C,S] are conditionally independent given
(Q[W,C,S],X), and H(A[W,C,S]|Q[W,C,S],X) = 0.

The collection of A[W,C,S], Q[W,C,S], XS ,W, S,C must
enable the user to retrieve the demand Y [W,C]. That is,

H(Y[W,C]|A[W,C,S],Q[W,C,S],XS,W,C,S) = 0.

We refer to this condition as the recoverability condition.
We are interested in designing a protocol to generate a

pair (Q[W,C,S], A[W,C,S]), for any given W,C, S, that satisfy
both the privacy and recoverability conditions. We refer to

this problem as single-server Private Computation (PC) with
Side Information (SI), or PC-SI for short.

We define the rate of a PC-SI protocol as the ratio of
the entropy of a message, i.e., L, to the total entropy of
the answer, i.e., H(A[W,C,S]). The capacity of the PC-SI
problem is defined as the supremum of rates over all PC-
SI protocols; and the scalar-linear capacity of the PC-SI
problem is defined similarly, except when the protocols are
restricted to be scalar-linear, i.e., the answer can only contain
scalar-linear combinations of the messages in X .

Our goal in this work is to characterize the capacity and
the scalar-linear capacity of the PC-SI problem, and to design
a PC-SI protocol that is capacity-achieving.

III. MAIN RESULTS

In this section, we present our main results. For sufficiently
large q (i.e., the order of the base field Fq), Theorem 1 gives a
lower bound on the capacity of the PC-SI problem for M ≥ 1
and D ≥ 2, and Theorem 2 characterizes the scalar-linear
capacity for M = 1 and D = 2. The proofs of Theorems 1
and 2 are given in Sections IV and V, respectively.

Theorem 1. The capacity of the PC-SI problem with K
messages over Fql for q > b K

bM/Dc+1c, side information
size M ≥ 1, and demand size D ≥ 2 is lower bounded by(⌈

K −M −D
bMD c+ 1

⌉
+ 1

)−1
.

The proof is based on a PC-SI protocol, which is a non-
trivial extension of the Partition and Code protocol of [1]
for single-server single-message PIR-SI with W -privacy, that
achieves the rate lower bound. The proposed protocol, termed
Partition and Code with Interference Alignment (PC-IA),
relies on a probabilistic construction of the partition, and
allows the parts to overlap and have multiple aligned blocks
of interference (for details, see Section IV).

Theorem 2. The scalar-linear capacity of PC-SI with K
messages over Fql for q > b K

bM/Dc+1c, side information
size M = 1, and demand size D = 2 is given by (K−2)−1.

The proof of tightness of the lower bound given in The-
orem 1 for M = 1 and D = 2 (when we restrict ourselves
to the scalar-linear protocols) is based on a combination of
new algebraic and information-theoretic arguments. These
arguments rely on a necessary condition due to the privacy
and recoverability conditions (see Lemma 2).

Remark 1. The result of Theorem 1 shows that the (mini-
mum) normalized download cost (i.e., download cost nor-
malized by the entropy of a message, L) of PC-SI for
D > M is upper bounded by K −M −D + 1. As shown
in Theorem 2, this bound is also tight, when focusing on
scalar-linear PC-SI protocols, for D = 2 and M = 1.
This is while the result of [1, Theorem 2] shows that,
when W -privacy is required, the normalized download cost
of (single-server multi-message) PIR-SI for D > M is
equal to K −M . This result is interesting because it shows
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that for any given M the larger is the demand size D
(> M ) the less costly would be the private computation
of the demand. For D ≤ M , under a few assumptions for
divisibility, the normalized download cost of PIR-SI with W -
privacy was shown to be upper bounded by ( D2

D2+M )K [4,
Theorem 1]. This is while the result of Theorem 1 shows
that for D ≤ M the normalized download cost of PC-SI is
upper bounded by ( D

D+M )K −D + 1. These results imply
that the private computation of one linear combination of
multiple messages can be performed much more efficiently
than privately retrieving multiple messages first, and then
computing the desired linear combination.

Remark 2. When the user wants to retrieve one single
message from the server (i.e., D = 1), the PC-SI problem
reduces to the problem of single-server single-message PIR-
SI when W -privacy is required [1]. The capacity of this
problem was previously shown to be equal to dK/(M +
1)e−1 (see [1, Theorem 1]). This confirms the tightness of
the result of Theorem 1 for D = 1. Also, when the user
has no side information (i.e., M = 0), a simple information-
theoretic argument yields that the capacity of PC-SI is given
by (K−D+1)−1. This shows that the result of Theorem 1 is
tight for M = 0. Comparing this result with that of [2] shows
that relaxing the privacy condition to hide only the indices
of messages (instead of both their indices and coefficients)
in the demand can significantly increase the capacity.

Remark 3. Although not presented here, we have also
proved that the scalar-linear capacity of the PC-SI problem
for M = 1 and D = 2 when q = 2 is given by
(K − dlog2Ke)−1. The tightness of the lower bound of
Theorem 1 for M ≥ 2 and D ≥ 2 (and any q) remains
open in general (for both linear and non-linear protocols).

IV. PROOF OF THEOREM 1

In this section, we propose a PC-SI protocol, termed
Partition and Code with Interference Alignment (PC-IA),
which achieves the rate lower bound of Theorem 1 for large
enough q. Note that for D > M a slightly modified version
of the MDS Code protocol in [1] or the GRS Code protocol
in [4] achieves the same rate, yet for D ≤M such protocols,
when compared to the PC-IA protocol, achieve lower rates.

Define s , bMD c + 1, n , dK−M−Ds e+ 1, m , bKs c,
r , K −ms, and t , max{0,m− n}.

Assume that q > m, and let x1, . . . , xn, y0, y1, . . . , ym−n
be distinct elements from Fq .

PC-IA Protocol: This protocol consists of four steps:
Step 1: First, the user constructs m + 1 disjoint se-

quences (ordered sets) B0, B1, . . . , Bm from the indices
in [K], where B0 has length r, and Bj for j ∈ [m]
has length s, and then constructs n sequences Q1, . . . , Qn,
where Qi = {B0, B1, . . . , Bt, Bt+i} for i ∈ [n]. Note
that B0, B1 . . . , Bt are the blocks of interference between
Q1, . . . , Qn, whereas Bt+i belongs to Qi only. The proce-
dure for constructing B0, B1, . . . , Bm is as follows.

The user randomly places all elements (demand indices)
of W into B0, B1, . . . , Bm. The user then selects a minimal

subset I of [n] such that Qi’s for all i ∈ I collectively contain
all elements in W . If B0, B1, . . . , Bt do not contain all
elements from W , then I is uniquely determined; otherwise,
the user selects I = {1}. Let dj be the number of elements
from W in Bj , and let J be the set of all block indices j
such that dj 6= 0 and Bj belongs to Qi for some i ∈ I .
Then the user randomly selects s − dj for j 6= 0, j ∈ J
(or r − d0 for j = 0, j ∈ J) elements (side information
indices) from S that were not previously placed, and places
them one at a time into Bj , where each element is placed in
the least-indexed position which is not filled yet.

Starting from the least block index and moving upwards,
for any block index j 6∈ J the user places (one by one)
randomly chosen elements from S, which were not placed
yet, into Bj (with the same placement procedure as before),
until all elements in S were placed. (By this construction,
given the elements in W , all elements in S can be uniquely
determined from B0, B1, . . . , Bm.) Then, the user randomly
places (one at a time, following the same procedure as above)
the rest of the indices in [K] \ (W ∪ S), that are yet to be
placed, into the remaining positions in B0, B1, . . . , Bm.

Next, the user creates n sequences Q′1, . . . , Q
′
n,

where Q′i = {Ci,0, Ci,1, . . . , Ci,t, Ci,t+i} for
i ∈ [n], such that Ci,0 = {α0,1ωi,0, . . . , α0,rωi,0},
Ci,j = {αj,1ωi,j , . . . , αj,sωi,j} for j ∈ [t], and
Ci,t+i = {αt+i,1, . . . , αt+i,s}, where ωi,j , 1/(xi − yj)
is an element in F×q (noting that xi’s and yj’s are all
distinct), and the elements αi,j’s, which are determined
by the coefficients of the messages that contribute to the
demand, are properly chosen from F×q as follows.

Let H be the set of |I|−1 largest indices in [t]∪{0}\J , and
let T be a |I|×(|I|−1) matrix defined as T , (ωi,j)i∈I,j∈H .
It can be easily shown that there exists a row-vector v ,
(vi)i∈I , vi ∈ F×q of length |I| such that vT is an all-zero
vector. (One can show that, other than the all-zero vector,
no vector v such that vT is an all-zero vector has any zero
element.) For any given vi ∈ F×q , where i is an arbitrary
index in I , it is easy to verify that such a vector v (with
elements from F×q ) is unique. The user then selects such a
vector v such that vi∗ = 1 where i∗ is the least index in I .

For any j 6= 0, j ∈ J (or j = 0, j ∈ J) and any k ∈ [s]
(or any k ∈ [r]) such that the kth element of Bj , say w,
belongs to W , the user selects αj,k = cw/

∑
i∈I viωi,j for

j ∈ [t] ∪ {0}, and selects αj,k = cw/vi for j = t+ i, where
cw is the coefficient of Xw in the demand. (Since T is a
Cauchy matrix and vT is an all-zero vector, it is easy to
show that

∑
i∈I viωi,j 6= 0 for j ∈ J .) For any other j and

k, the user randomly chooses αj,k from F×q .
Step 2: The user then sends to the server the query

Q[W,C,S] = {Q∗1, . . . , Q∗n}, where Q∗i = (Qi, Q
′
i) for i ∈ [n].

Step 3: By using Q∗i = (Qi, Q
′
i) for i ∈ [n],

the server computes Ai =
∑r

k=1 ci,0,kXb0,k +∑t
j=1

∑s
k=1 ci,j,kXbj,k +

∑s
k=1 ci,t+i,kXbt+i,k

where
ci,j,k and bj,k are the kth element of Ci,j and Bj ,
respectively. The server then sends back to the user the
answer A[W,C,S] = {A1, . . . , An}.

Step 4: Upon receiving the answer from the server, the user
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computes
∑

j∈W cjXj by subtracting off the contribution of
the side information messages from

∑
i∈I viAi. Note that

the set I , defined as in the construction of the sequences
B0, B1, . . . , Bm, is the index set of those equations Ai’s
(collected from the server) that the user combines linearly
so as to compute the demand (where the coefficients of the
linear combination are the elements of the vector v).

Example 1. Consider a scenario with K = 12, M = 4, and
D = 3, where the server has the messages X1, . . . , X12 ∈
F7, and the user knows X4, . . . , X7, and wants to compute
X1 + 2X2 + X3. Thus, W = {1, 2, 3}, {c1, c2, c3} =
{1, 2, 1}, and S = {4, . . . , 7}.

The parameters of the PC-IA protocol for this example are
listed as follows: s = 2, n = 4, m = 6, r = 0, t = 2, and
{x1, x2, x3, x4, y0, y1, y2} = {0, 1, . . . , 6}.

First, the user creates m = 6 sequences B1, . . . , B6,
where Bj = {−,−} for all j, i.e., each Bj has two slots to
be filled. The user then randomly places the demand indices
1, 2, 3 into three slots. Suppose that after this placement,
we have B1 = {−,−}, B2 = {2,−}, B3 = {−, 1},
B4 = {3,−}, B5 = {−,−}, and B6 = {−,−}. Then the
user fills B2, B3, and B4, each with a randomly chosen
side information index; e.g., B2 = {2, 5}, B3 = {7, 1},
and B4 = {3, 4}. Next, the user places the remaining side
information index, i.e., 6 in this example, into B1, and
randomly places the remaining indices 8, . . . , 12 into the
remaining slots of B1, B5, and B6; e.g., B1 = {6, 11},
B5 = {10, 12}, and B6 = {8, 9}.

The user then constructs n = 4 sequences Q1, . . . , Q4,
where Qi = {B1, B2, B2+i} for all i. That is,
Q1 = {6, 11, 2, 5, 7, 1}, Q2 = {6, 11, 2, 5, 3, 4}, Q3 =
{6, 11, 2, 5, 10, 12}, and Q4 = {6, 11, 2, 5, 8, 9}.

Next, the user finds the set J of indices j such that Bj

contains some demand indices, and the minimal set I of
(least) indices of Qi’s that collectively include all demand
indices; for this example, J = {2, 3, 4}, and I = {1, 2}.
The user then finds the set H of |I|−1 largest indices in
[t] \ J = {1}; for this example, H = {1}.

Then the user forms the matrix T = (ωi,j)i∈I,j∈H =
[ω1,1, ω2,1]

T. The user then chooses v1 = 1 and v2 =
−ω1,1/ω2,1 = 2 such that [v1, v2] · T = 0. Then the user
selects α2,1, α3,2, and α4,1 (noting that the first element in
B2, the second element in B3, and the first element in B4

are the demand indices 2, 1, and 3, respectively) as follows:
α2,1 = c2/(v1ω1,2 + v2ω2,2) = 1, α3,2 = c1/v1 = 1, and
α4,1 = c3/v2 = 4. The user then randomly selects α1,1 = 1,
α1,2 = 3, α2,2 = 1, α3,1 = 2, α4,2 = 3, α5,1 = 4, α5,2 = 5,
α6,1 = 2, and α6,2 = 1.

Next, the user forms the sequences C1,1 = {4, 5}, C1,2 =
{1, 1}, and C1,3 = {2, 1}; C2,1 = {5, 1}, C2,2 = {4, 4},
and C2,4 = {4, 3}; C3,1 = {2, 6}, C3,2 = {5, 5}, and
C3,5 = {4, 5}; and C4,1 = {3, 2}, C4,2 = {2, 2}, and
C4,6 = {2, 1}. The user then constructs n = 4 sequences
Q′1, . . . , Q

′
4, where Q′i = {Ci,1, Ci,2, Ci,i+2} for all i. For

this example, Q′1 = {4, 5, 1, 1, 2, 1}, Q′2 = {5, 1, 4, 4, 4, 3},
Q′3 = {2, 6, 5, 5, 4, 5}, and Q′4 = {3, 2, 2, 2, 2, 1}.

The user then sends to the server

(Q1, Q
′
1) = ({6, 11, 2, 5, 7, 1}, {4, 5, 1, 1, 2, 1}),

(Q2, Q
′
2) = ({6, 11, 2, 5, 3, 4}, {5, 1, 4, 4, 4, 3}),

(Q3, Q
′
3) = ({6, 11, 2, 5, 10, 12}, {2, 6, 5, 5, 4, 5}),

(Q3, Q
′
4) = ({6, 11, 2, 5, 8, 9}, {3, 2, 2, 2, 2, 1}),

and the server sends the user back

A1 = 4X6 + 5X11 +X2 +X5 + 2X7 +X1,

A2 = 5X6 +X11 + 4X2 + 4X5 + 4X3 + 3X4,

A3 = 2X6 + 6X11 + 5X2 + 5X5 + 4X10 + 5X12,

A4 = 3X6 + 2X11 + 2X2 + 2X5 + 2X8 +X9.

The user then computes v1A1 + v2A2 = X1 + 2X2 +X3 +
6X4 + 2X5 + 2X7; and subtracting off the contribution of
X4, X5, and X7, then the user recovers X1 + 2X2 +X3.

The rate of the PC-IA protocol for this example is 1/4,
whereas an MDS Code-based protocol, similar to those in [1]
and [4], achieves a lower rate 1/(K −M −D) = 1/5.

Lemma 1. The PC-IA protocol is a PC-SI protocol, and
achieves the rate(⌈

K −M −D
bMD c+ 1

⌉
+ 1

)−1
.

Proof: It is easy to see that A1, . . . , An are inde-
pendently and uniformly distributed over Fql . Thus, for
any W ∈ W, C ∈ C, S ∈ S such that W ∩ S = ∅,
H(A[W,C,S]) = H(A1, . . . ,An) = nL. Then, the rate
of the protocol, i.e., L/H(A[W,C,S]), is equal to 1/n =
(d(K −M −D)/se+ 1)

−1 where s = bM/Dc+ 1.
The proof of recoverability should be obvious from

the construction of the protocol. To prove that the
protocol satisfies the privacy condition, we need to
show that for any query Q constructed by the pro-
tocol, Pr(W =W |Q[W,C,S] = Q) = Pr(W =W ) for all
W ∈ W , or alternatively, Pr(W = W |Q[W,C,S] = Q) is
the same for all W ∈ W . (It should be noted that by the
construction, Q is independent of the messages in X .)

By the structure of the protocol, for any W ∈ W , there
exist a unique SW ∈ S and a unique CW ∈ C such that
(W,CW , SW ) complies with Q, i.e., given that Y [W,C] and
XS are the user’s demand and side information, respectively,
the protocol could potentially construct Q. Thus,

Pr(W =W |Q[W,C,S] = Q)

= Pr(W =W,C = CW ,S = SW |Q[W,C,S] = Q),

Since the distribution of (W,S,C) is uniform, by applying
the Bayes’ rule one can easily verify that for all W ∈ W ,
Pr(W =W,C = CW ,S = SW |Q[W,C,S] = Q) is the same
so long as Pr(Q[W,C,S] = Q|W =W,C = CW ,S = SW )
is the same for all W ∈ W . By the design of the protocol,
it is easy to see that for all W ∈ W , the latter probability
is equal to 1

K!

(
K−D
M

)
(q− 1)D−K , and hence independent of

W . This implies that Pr(W = W |Q[W,C,S] = Q) is the
same for all W ∈ W , as was to be shown.
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V. PROOF OF THEOREM 2

In this section, we prove the tightness of the capacity lower
bound given in Theorem 1, when restricting ourselves to the
scalar-linear PC-SI protocols, for M = 1 and D = 2.

The following lemma, which appears without proof and
follows from a simple contradiction, shows a necessary con-
dition imposed by the privacy and recoverability conditions.

Lemma 2. For any W ∈ W , there must exist C ∈ C and
S ∈ S where W ∩ S = ∅ such that

H(Y[W,C]|A[W,C,S],Q[W,C,S],XS) = 0.

Lemma 3. The scalar-linear capacity of PC-SI with K
messages over Fql for q > 2, side information size M = 1,
and demand size D = 2, is upper bounded by (K − 2)−1.

Proof: Fix arbitrary W ∈ W , C ∈ C, and S ∈ S (and
Y , Y[W,C]) such that W ∩S = ∅. (Note that |W |= D = 2
and |S|= M = 1.) Consider the query Q , Q[W,C,S] and
the answer A , A[W,C,S] associated with an arbitrary scalar-
linear PC-SI protocol. Note that A contains only scalar-
linear combinations of messages in X. We need to show
that H(A) ≥ (K − 2)L. Suppose that H(A) < (K − 2)L.
We will show a contradiction.

Let span(A) be the set of all Fq-linear combinations
of the linear functions (i.e., the scalar-linear combinations
of messages in X) in A. It is easy to show that since
H(A) < (K − 2)L, there must exist I ⊂ [K], |I|= 2 such
that no Fq-linear combination of XI , {Xj}j∈I belongs to
span(A). Assume, w.l.o.g., that I = {1, 2}. Let R be the set
of all j ∈ [K]\I such that H(Xj |A,Q,XI) = 0, i.e., Xj is
recoverable from A,Q,XI . Again, w.l.o.g., assume that R =
{3, . . . , l}. It is easy to see that H(A) ≥ H(XR) = |R|L.
Since H(A) < (K − 2)L, then |R|< K − 2 (i.e., l < K).
Let J , [K] \ (I ∪R) = {l + 1, . . . ,K}. Note that Xj for
j ∈ J is not recoverable from A,Q,XI (otherwise, j ∈ R).

We denote by Y1
i,j (or Y2

i,j) an F×q -linear combination of
X1 (or X2), Xi, and Xj , and denote by Ỹ1

i,j (or Ỹ2
i,j) the

same linear combination excluding X1 (or X2).
First, consider the messages X1 and Xl+1. Note that no

F×q -linear combination of X1 and Xl+1 is recoverable from
A,Q, and Xj for any j ∈ [l]\{1}. By Lemma 2, there exists
j ∈ J \ {l + 1}, say l + 2, such that Y1

l+1,l+2 ∈ span(A)
(otherwise, no F×q -linear combination of X1 and Xl+1 is
recoverable from A,Q, and Xj for any j 6∈ {1, l+1}, and this
violates the privacy condition). Now, consider the messages
X2 and Xl+2. Similarly as above, it can be shown that there
exists j ∈ J \ {l + 2} such that Y2

l+2,j ∈ span(A).
Now, we will show that j 6= l+1. Suppose, for the sake of

contradiction, that j = l+1. Note that Ỹ1
l+1,l+2 and Ỹ2

l+2,l+1

must be linearly independent (otherwise, there exists an Fq-
linear combination of X1 and X2 in span(A), which yields
a contradiction). Thus, Xl+1 and Xl+2 must be recoverable
from A,Q,XI . This is however a contradiction because l+1
and l + 2 do not belong to R. Thus, j 6= l + 1. Assume,
w.l.o.g., that j = l + 3. Then, Y2

l+2,l+3 ∈ span(A). Note
that Y1

l+1,l+2 and Y2
l+2,l+3 are linearly independent.

Next, consider the messages X1 and Xl+3. By a similar
argument as above, it follows that there exists Y1

l+3,j ∈
span(A) for some j ∈ J \ [l + 3]. We will show that
j 6∈ {l + 1, l + 2}. Suppose, for the sake of contradiction,
that Y1

l+3,l+1 ∈ span(A) (or Y1
l+3,l+2 ∈ span(A)). If

Ỹ1
l+3,l+1 (or Ỹ1

l+3,l+2) is not linearly dependent on Ỹ1
l+1,l+2

and Ỹ2
l+2,l+3, then Xl+1, Xl+2, Xl+3 are recoverable from

A,Q,XI . This is a contradiction. Otherwise, if linearly
dependent, there must exist an Fq-linear combination of X1

and X2 in span(A). This is again a contradiction. Thus,
j 6∈ {l + 1, l + 2}. Assume, w.l.o.g., that j = l + 4. Then,
Y1

l+1,l+4 ∈ span(A). Again, note that Y1
l+1,l+2, Y2

l+2,l+3,
and Y1

l+1,l+4 are linearly independent.
By repeating the above arguments and reordering the

indices of the messages (if needed), it can be shown that
span(A) contains K−l linearly independent F×q -linear com-
binations Y1

l+1,l+2,Y
2
l+2,l+3,Y

1
l+3,l+4, . . . , and Y1

K−1,K
(or Y2

K−1,K) if K−l is odd (or even). Assume, w.l.o.g., that
K−l is odd. Consider the messages X1 and XK . Similarly as
before, it follows that there exists no F×q -linear combination
Y1

K,j 6∈ span(A) for any j ∈ J \ {K}. Thus, there exists
Y1

K,j ∈ span(A) for some j ∈ [l] \ {1} (otherwise, no F×q -
linear combination of X1 and XK can be recovered from
A,Q, and Xj for any j 6∈ {1,K}, violating the privacy
condition). Thus, XK must be recoverable from A,Q,XI .
This is however a contradiction because K 6∈ R. Then, it
follows that the assumption that H(A) < (K−2)L does not
hold, and hence, H(A) ≥ (K−2)L, as was to be shown.
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