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Abstract— We study Private Information Retrieval with Side
Information (PIR-SI) in the single-server multi-message setting.
In this setting, a user wants to download D messages from
a database of K ≥ D messages, stored on a single server,
without revealing any information about the identities of the
demanded messages to the server. The goal of the user is to
achieve information-theoretic privacy by leveraging the side
information about the database. The side information consists of
a random subset of M messages. The identities of the messages
forming the side information are initially unknown to the server.
Our goal is to characterize the capacity of this setting, i.e., the
maximum achievable download rate.

In our previous work, we have established the PIR-SI
capacity for the special case in which the user wants a single
message, i.e., D = 1 and showed that the capacity can be
achieved through the Partition and Code scheme. In this paper,
we focus on the case when the user wants multiple messages, i.e.,
D > 1. Our first result is that if the user wants more messages
than what they have as side information, i.e., D > M , then
the capacity is D

K−M
, and it can be achieved using a scheme

based on the Generalized Reed-Solomon codes. Our second
result shows that when D ≤ M the capacity can be higher. We
present a lower bound on the capacity based on an achievability
scheme which we call Generalized Partition and Code.

I. INTRODUCTION

In the Private Information Retrieval (PIR) problem, a
user wants to privately download a message belonging to
a database with copies stored on a single or multiple remote
servers [1]. In this paper, we focus on the single-server PIR
problem. While the multi-server PIR problem has received
extensive attention in the literature (see, e.g., [2]–[6]), the
model and the information-theoretic privacy guarantees there
still hinge on the assumption of restricted collusion among
the servers. Not only may this assumption be hard to verify
and enforce, but it may also be infeasible in some practical
systems; for instance when the servers are owned and oper-
ated by same entity. With single-server PIR, the no-collusion
assumption is no longer relevant.
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We focus on information-theoretic PIR [5], which guar-
antees unconditional privacy irrespective of the computa-
tional power of the servers. The drawback of this strong
requirement is that in the single-server case, the user has to
download the whole database to hide which message they are
interested in [1]. This result has led to the aforementioned
large body of work on multi-sever (information-theoretic)
PIR with a constraint on collusion. Aside from information-
theoretic PIR is computational PIR which relies mainly on
certain limits on the computational power of the server(s),
assuming the hardness of certain mathematical problems,
such as factoring large numbers. It was shown in [7] that
single-server computational PIR does not require download-
ing the whole database. Since then, single-server PIR has
been almost exclusively studied under the computational
privacy model, see e.g., [8]–[10]. However, computational
PIR schemes typically require homomorphic encryption, and
suffer from prohibitive computational cost [11].

Recently, in [12], the authors initiated the study of single-
server PIR with Side Information (PIR-SI), wherein the user
knows a random subset of messages that is unknown to the
server. This side information could have been obtained from
other trusted users or from previous interactions with the
server. It was shown that the side information enables the
user to achieve information-theoretic privacy without having
to download the entire database. The savings in the download
cost depend on whether the user wants to protect the privacy
of both the requested message and the messages in the side
information, or only the privacy of the requested message.

A. Main Contributions of This Work

In this work, we consider the single-server multi-message
PIR-SI problem in which a user wishes to download D
messages from a database of K messages, stored on a single
remote server. The user has a random subset of M messages,
and the identities of these messages are unknown to the
server. We focus on the case in which the user wishes
to protect only the identities of the requested messages,
and restrict our attention to PIR-SI schemes that achieve
information-theoretic privacy. Our goal is to characterize
the capacity of this setting, i.e., the maximum achievable
download rate over all such PIR-SI schemes.

For the regime where D > M , we characterize the
capacity of the single-server multi-message PIR-SI problem,
as D/(K −M) (Theorem 1). The converse is based on a
mix of combinatorial and information-theoretic arguments,
whereas the achievability is based on Generalized Reed-
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TABLE I
SUMMARY OF OUR MAIN RESULTS ON THE CAPACITY OF SINGLE

SERVER PIR-SI.

Parameters D = 1 2 ≤ D ≤M D > M

Capacity

⌈
K

M+1

⌉−1

([12, Theorem 1])

Open
(Lower bound
in Theorem 2)

D
K−M

(Theorem 1)

Achievability
Schemes

Partition
and Code (PC)

Generalized PC
and GRS Code

GRS
Code

Solomon (GRS) codes [13]. Interestingly, the number of
downloaded symbols in this case (i.e., K −M ) is the same
as that in the single-server single-message PIR-SI problem
studied in [12] when the user wishes to protect the identities
of messages in both their demand and their side information.
This implies that, in the regime D > M , protecting only the
identities of the demanded messages is as costly (in terms of
number of downloaded symbols) as protecting the identities
of messages in both the demand and the side information.

When D ≤ M , we present a lower bound on the
capacity of the single-server multi-message PIR-SI problem
(Theorem 2). The achievability results rely on two schemes:
(i) a scheme termed Generalized Partition and Code (GPC),
which is a generalization of the Partition and Code scheme
previously presented in [12], and (ii) a scheme based on
the GRS codes, which is a simple modification of the
Maximum Distance Separable (MDS) Code scheme in [12].
We summarize our main results in Table I. The result for
D = 1 is from [12], and is presented here for completeness.

B. Related Work

The replication-based model where multiple servers store
copies of the database has been predominantly studied in
the PIR literature, with breakthrough results in the past few
years (e.g., [2]–[6], [14]). The multi-message PIR problem
for multiple non-colluding servers was recently considered
in [15] under information-theoretic privacy. There has also
been a renewed interest in PIR for the case in which the
data is stored on the servers using erasure codes, which
result in better storage overhead compared to the traditional
replication techniques [16]–[23].

In a concurrent and independent work, the authors in [24]
considered the same problem setting as ours, while restricting
their attention to only linear PIR schemes. This is however
in contrast to our work where we consider all (linear and
non-linear) PIR schemes. Other works most relevant to our
setting are those on the capacity of PIR when some side
information is present at the user for single server [12], [25]
and multiple servers [26]–[31]. These works differ mainly
in their side information models. The scenario in which
the user can choose the side information, referred to as
cache-aided PIR, is considered in [26]–[28] for the case of
multiple servers. In [26], the side information can be any
function of the database, and is known to all the servers.
In [27], the side information is uncoded and not known to
the servers, whereas, in [28], the servers are partially aware
of the uncoded side information.

The single-server single-message scenario where the side
information available at the user is in the form of a random
subset of messages is considered in [12]. In [29], it is shown
that this type of side information also helps in multi-server
single-message scenario when the user only wants to protect
the requested message. For the same type of side information,
the multi-server single-message and the multi-server multi-
message scenarios are respectively studied in [30] and [31],
when the user wants to protect both the requested message(s)
and the side information messages. The single-server single-
message case where the side information is a random linear
combination of a random subset of messages is considered
in [25] when the user wants to protect the requested message.

II. PROBLEM FORMULATION

For a positive integer i, we denote {1, . . . , i} by [i]. With
an abuse of notation, we denote a random variable and its
realizations by the same uppercase letter whenever clear
from the context. With an abuse of notation we denote a
random variable and its realization by the same uppercase
letter whenever clear from the context; whenever clarification
is needed we denote a random variable with a bold symbol,
e.g. X , and its realization without bold face, e.g., X . Also,
we denote the (Shannon) entropy of a random variable X by
H(X), and the conditional entropy of a random variable X
given a random variable Y by H(X|Y ).

Let Fqm be an extension field of the finite field Fq
for some prime q ≥ 2 and m ≥ 1. There is a server
storing a set X of K ≥ 1 messages, X , {X1, . . . , XK},
where each Xi is chosen independently and uniformly from
Fqm , i.e., H(X1) = H(X2) = · · · = H(XK) = L and
H(X1, X2, . . . , XK) = KL where L , m log2 q. There is
a user that wishes to retrieve D (1 ≤ D ≤ K) messages
XW , {Xi : i ∈ W} from the server for some W ⊆ [K],
|W |= D. Additionally the user knows M (0 ≤M ≤ K−D)
messages XS , {Xi : i ∈ S} for some S ⊆ [K] \ W ,
|S|=M . (Note that W and S are disjoint sets.) We refer to
W as demand index set, XW as demand, and D as demand
size, and refer to S as side information index set, XS as side
information, and M as side information size. From now on,
for any T ⊆ [K], we denote {Xi}i∈T by XT .

In this work, we assume that W is distributed uniformly
over all subsets of [K] of size D,

P(W =W ) =
1(
K
D

) , W ⊂ [K], |W |= D,

and S is uniformly distributed over [K] \W ,

P(S = S|W =W ) =

{
1

(K−D
M )

, S ⊆ [K] \W,
0, otherwise.

The server does not know the realizations S and W a
priori, whereas the size of W (i.e.. D), the size of S (i.e.,
M ), and the distribution of W as well as the conditional
distribution of S given W are known to the server a priori.

Given S, W , and XS , to retrieve XW , the user sends a
query Q[W,S] to the server, which is a (potentially stochastic)

181



function of W , S, and XS , and is independent of X[K]\S ,
the messages that are not in the user’s side information.

The query Q[W,S] is required to protect the privacy of the
user’s demand index set W at the server, i.e.,

P(W =W ∗|Q[W,S], X) =
1(
K
D

) W ∗ ⊂ [K], |W ∗|= D.

We refer to this condition as the privacy condition. This
condition is also known as W -privacy [12]. A stronger type
of privacy is (W,S)-privacy, also introduced in [12], where
both the user’s demand and side information index sets must
remain private to the server. Although our main focus in this
work is on W -privacy, we will show that W -privacy implies
(W,S)-privacy in certain cases, depending on D and M .

Upon receiving Q[W,S], the server sends the user an answer
A[W,S], which is a function of Q[W,S] and X , i.e.,

H(A[W,S]|Q[W,S], X) = 0.

The answer A[W,S] together with XS must enable the user
to retrieve XW , i.e.,

H(XW |A[W,S], Q[W,S], XS) = 0.

We refer to this condition as the recoverability condition.
The single-server multi-message Private Information Re-

trieval with Side Information (PIR-SI) problem is to design
a query Q[W,S] and an answer A[W,S] for any W and S that
satisfy the privacy and recoverability conditions. We refer to
a collection of Q[W,S] and A[W,S] for all W of fixed size D
and all S of fixed size M as a PIR-SI protocol.

The rate of a PIR-SI protocol is defined as the ratio of the
entropy of D messages, i.e., DL, to the average entropy
of the answer, i.e., H(A[W ,S]) =

∑
H(A[W,S])P(W =

W,S = S), where the sum is over all W of size D and all
S of size M . The capacity of the PIR-SI problem is defined
as the supremum of rates over all PIR-SI protocols.

In this work, our goal is to characterize (or establish a
lower bound on) the capacity of PIR-SI problem for all D
and M , and to design a PIR-SI protocol that achieves the
capacity (or the derived lower bound on the capacity).

III. MAIN RESULTS

In this section, we present our main results. Theorem 1
characterizes the capacity of PIR-SI problem for D > M ,
and Theorem 2 provides a lower bound on the capacity of
PIR-SI problem for D ≤ M . The proofs of Theorems 1
and 2 can be found in Sections IV and V, respectively.

Theorem 1. The capacity of the PIR-SI problem with K
messages, side information size M , and demand size D > M
is given by D/(K −M).

The proof of converse is by upper bounding the rate of any
PIR-SI protocol for D > M using a mixture of combinatorial
and information-theoretic arguments based on a necessary
condition imposed by both the privacy and recoverability
conditions (see Lemma 2). The achievability proof relies on
a PIR-SI scheme based on the Generalized Reed-Solomon
(GRS) codes [13], termed GRS Code protocol, which is

a simple modification of the Maximum Distance Separable
(MDS) Code scheme of [12] and achieves the derived upper
bound on the rate (see Section IV).

Remark 1. It was shown in [1] that when there is a single
server storing K messages, and the user demands a single
message (D = 1), and does not know any of the messages
a priori (M = 0), in order to guarantee the privacy of the
demand index set, the user needs to download K units of
information, e.g., all the K messages; and thus the capacity is
1/K. This result matches the result of Theorem 1 for D = 1
and M = 0. In general, the result of Theorem 1 shows that
when the user knows M messages a priori, and demands
D > M other messages, the capacity is D/(K −M). That
is, the user needs to download K −M units of information
that they do not know a priori, e.g., K − M MDS-coded
combinations of all the K messages.

Remark 2. The result of Theorem 1 for D = 1 matches
the capacity of single-server single-message PIR-SI problem,
studied in [12], where (W,S)-privacy is required. Moreover,
the result of [12] for single-server single-message PIR-SI
problem when (W,S)-privacy is required naturally extends
to the multi-message setting, i.e., the capacity of single-
server multi-message PIR-SI problem when (W,S)-privacy
is required is D/(K−M). By comparing this result with that
of Theorem 1, it can be seen that for D > M , the capacity
of single-server multi-message PIR-SI problem when W -
privacy is required is the same as that of single-server multi-
message PIR-SI problem when (W,S)-privacy is required.

Theorem 2. Letting K∗ , K −M +DbMD c, the capacity
of the PIR-SI problem with K messages, side information
size M , and demand size D ≤M is lower bounded by

max

{
D

K −M
,D

(
K∗ −

⌊
M

D

⌋⌊
K∗

D + bM/Dc

⌋)−1}
if

K∗ −D
D + bM/Dc

≤
⌊

K∗

D + bM/Dc

⌋
,

and

max

{
D

K −M
,

⌈
K∗

D + bM/Dc

⌉−1}
otherwise.

For those cases of K, D, and M such that the capacity
is lower bounded by D/(K − M), the proof relies on
the GRS Code protocol (see Section IV). In these cases,
not only is W -privacy achieved but also (W,S)-privacy
is achieved. For the rest of the cases of K, D, and M ,
the proof is based on constructing a PIR-SI protocol that
achieves the rate D/(K∗ − bM/Dc bK∗/(D + bM/Dc)c)
or 1/dK∗/(D + bM/Dc)e where K∗ = K −M +DbMD c,
depending on K, D, and M . This protocol, referred to as
the Generalized Partition and Code (GPC) protocol, is a
generalization of the Partition and Code protocol previously
introduced in [12] (see Section V).
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Remark 3. Under a few divisibility assumptions,
the results of Theorem 2 can be further simpli-
fied. In particular, when D divides M , and D +
bM/Dc divides K, the lower bound on the capacity
is max{D/(K −M), (D +M/D)/K}. For a given D,
if M is sufficiently large, namely, M > K −D2, the
lower bound is equal to D/(K −M), and it can be
achieved by the GRS Code protocol (see Section IV); oth-
erwise, if D ≤M ≤ K −D2, the lower bound is equal to
(D +M/D)/K, and it can be achieved by the GPC protocol
(see Section V) .

Remark 4. For D > 1, the tightness of the lower bounds
in Theorem 2 remains unknown in general. However, these
lower bounds are tight for D = 1. In this case, by Theorem 2,
the capacity is lower bounded by 1/(K −MbK/(M + 1)c)
if (K − 1)/(M + 1) ≤ bK/(M + 1)c, and is lower bounded
by 1/dK/(M + 1)e if (K − 1)/(M + 1) > bK/(M + 1)c.
It can be shown that both lower bounds are equal to
1/dK/(M + 1)e (see [32, Appendix]). It was also shown
in [12] that for D = 1, the capacity is equal to
1/dK/(M + 1)e. This shows that the result of Theorem 2 is
tight for D = 1.

IV. PIR-SI PROBLEM: THE CASE OF D > M

A. Proof of Converse for Theorem 1

Lemma 1. The capacity of the PIR-SI problem for D > M
is upper bounded by D/(K −M).

Proof (Sketch): Suppose that the user wishes to retrieve
XW for a given W ⊂ [K], |W |= D, and it knows XS

for a given S ⊆ [K] \ W , |S|= M . Note that D > M
(by assumption). The user sends to the server a query Q ,
Q[W,S], and the server responds to the user by an answer
A , A[W,S]. We need to show that H(A) ≥ (K −M)L.

The proof is based on several results, formally proved later,
and here we present a sketch of the proof to provide more
intuition about the subsequent results.

First, we prove a necessary condition imposed by the
privacy and recoverability conditions. Specifically, we show
that given Q and X (and A), for any candidate demand
index set W ∗ ⊂ [K], |W ∗|= D, the server must be able to
find a potential side information index set S∗ ⊆ [K] \W ∗,
|S∗|=M such that if the user’s demand index set was W ∗,
then the user could recover XW∗ from Q, A and XS∗ . If
not, the server learns that W ∗ is not the user’s demand index
set, and this violates the privacy condition. This observation,
formally stated in Lemma 2, is one of the key components
in the proof. Based on this observation, we then show that
for D > M the user must be able to recover all messages
X[K]\S from A and XS , i.e., H(X[K]\S |A,Q,XS) = 0. This
is the main idea of the proof, and will be formally proved in
Lemmas 3 and 4. The rest of the proof proceeds as follows.

By the chain rule of entropy, it is easy to show that

H(A|Q,XS) = H(X[K]\S |Q,XS).

Given Q and XS , the user has no knowledge about
X[K]\S . Thus, X[K]\S is independent of (Q,XS), i.e.,

H(X[K]\S |Q,XS) = H(X[K]\S). Then,

H(A|Q,XS) = H(X[K]\S) = (K −M)L

since H(X[K]\S) =
∑
i∈[K]\S H(Xi) = (K − M)L (by

the uniformity and independence of X1, . . . , XK). Since
conditioning does not increase the entropy, then

H(A) ≥ H(A|Q,XS) = (K −M)L,

as was to be shown.

In the sequel, we provide the proofs of the main ingredi-
ents discussed in the proof sketch of Lemma 1.

The following result gives a necessary condition for pri-
vacy and recoverability.

Lemma 2. For any W ⊂ [K], |W |= D, and S ⊆ [K] \W ,
|S|= M , and any W ∗ ⊂ [K], |W ∗|= D, there must exist
S∗ ⊆ [K] \W ∗, |S∗|=M such that

H(XW∗ |A[W,S], Q[W,S], XS∗) = 0.

Proof: The proof is by contradiction. Suppose that there
does not exist any S∗ (and correspondingly, XS∗ ) such that
XW∗ is recoverable from A[W,S], Q[W,S], and XS∗ . Then,
the server knows that W ∗ cannot be the user’s demand index
set, and this violates the privacy condition.

The following lemma shows that given Q and X (and A),
for D > M the server must be able to find a candidate side
information index set S∗ ⊂ [K], |S∗|= M such that if the
user’s side information index set was S∗, then the user could
recover all messages X[K]\S∗ from Q, A, and XS∗ .

Lemma 3. For any W ⊂ [K], |W |= D > M , and
S ⊆ [K] \W , |S|= M , there exists S∗ ⊂ [K], |S∗|= M
such that

H(X[K]\S∗ |A
[W,S], Q[W,S], XS∗) = 0.

Before proving Lemma 3, we present a toy example to
give more intuition about the result of the lemma.

Example 1. Consider a scenario where K = 5, D = 2,
and M = 1. Suppose that the server has the messages
X1, . . . , X5, and the user knows one message, say X1,
and demands two other messages, say X2, X3. That is,
W = {2, 3} and S = {1}.

By the result of Lemma 2, for any two messages Xi1 , Xi2 ,
the server must be able to find another message Xi,
i 6∈ {i1, i2}, as a potential side information, i.e., Xi1 , Xi2

are recoverable from Q , Q[{2,3},{1}], A , A[{2,3},{1}],
and Xi. Define the notation

{i} → {i1, . . . , in}

to mean that Xi1 , . . . , Xin are recoverable from Q, A, and
Xi.

By the recoverability condition, {1} → {2, 3}, i.e., X2, X3

must be recoverable from Q, A, and X1.
Now, consider the candidate demand index set {1, 4}.

There are two cases:
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(i) {5} → {1, 4}. Since we also have {1} → {2, 3}, then
{5} → {1, 2, 3, 4}.

(ii) {2} → {1, 4} (or {3} → {1, 4}). Similarly, since we
also have {1} → {2, 3}, then {2} → {1, 3, 4}. Now,
consider the candidate demand index set {4, 5}. Either
{1} → {4, 5}, or {2} → {4, 5}, or {3} → {4, 5}. In all
of these cases, {2} → {1, 3, 4, 5}.

Taking S∗ = {5} or S∗ = {2} in case (i) or case (ii),
respectively, it follows that the result of Lemma 3 holds for
K = 5, D = 2, and M = 1.

Next, we prove Lemma 3 by extending the reasoning in
Example 1 to arbitrary K, D, and M such that D > M .

Proof of Lemma 3: It suffices to show that there exists
W∗ ⊂ [K], |W∗|= K −M such that all the messages in
XW∗ are recoverable from Q , Q[W,S], A , A[W,S], and
X[K]\W∗ . Taking S∗ = [K] \W∗, the proof will be complete.

The idea is to start with a set of D messages that can be
recovered from M (< D) other messages (along with Q and
A), and grow this set in size (up to K −M ) recursively.

Let W1 ⊂ [K], D ≤ |W1|< K −M and S1 ⊆ [K] \W1,
|S1|=M be such that

H(XW1
|A,Q,XS1

) = 0.

(Such W1 and S1 exist; in particular, W1 =W and S1 = S
satisfy these requirements (by the recoverability condition).)
We will show that there exist W2 ⊂ [K], |W2|> |W1| and
S2 ⊆ [K] \W2, |S2|=M such that

H(XW2 |A,Q,XS2) = 0.

That is, starting with any arbitrary set of |W1| (< K −M )
messages XW1

which are recoverable from M other mes-
sages XS1

, one can always find a set of |W2| (> |W1|)
messages XW2

which can be recovered from a set of M
other messages XS2 . The proof is as follows.

Take an arbitrary i ∈ [K] \ (W1 ∪ S1). (Such an
index i exists because |W1 ∪ S1|< K.) Note that
|S1 ∪ {i}|=M + 1 ≤ D since D > M . Take an arbitrary
W0 ⊆ [K] \ (S1 ∪ {i}), |W0|= D − M − 1. Note that
|W0|≥ 0. By the result of Lemma 2, there must exist
S2 ⊆ [K] \ (S1 ∪ {i} ∪W0), |S2|=M such that

H(XS1
, Xi, XW0

|A,Q,XS2
) = 0.

Let W2 = (W1 \ S2) ∪ (S1 ∪ {i} ∪W0). It remains to
show that W2 and S2 satisfy the following require-
ments: (i) |W2|> |W1|; (ii) S2 ⊆ [K] \W2, and (iii)
H(XW2 |A,Q,XS2) = 0. It is easy to see that

|W2|= |W1|−|S2|+|S1|+1 + |W0|−|W1 ∩W0|,

and subsequently, |W2|≥ |W1|+1 > |W1|. It is also easy
to see that S2 ⊆ [K] \W2 because S2 ∩ (W1 \ S2) = ∅ and
S2 ∩ (S1 ∪ {i} ∪W0) = ∅. Moreover,

H(XW2
|A,Q,XS2

)

= H(XS1
, Xi, XW0

|A,Q,XS2
)

+H(XW1\S2
|A,Q,XS2

, XS1
, Xi, XW0

)

= 0.

Thus, W2 and S2 satisfy the requirements (i)-(iii).
By repeating the above arguments recursively, it fol-

lows that there exists W∗ ⊂ [K], |W∗|= K −M such that
H(XW∗ |A,Q,X[K]\W∗) = 0, as desired.

Note that Lemma 3 guarantees that for D > M there
exists a “potential” side information index set S∗ such that
if the user’s side information index set was S∗, then the
user could recover all messages X[K]\S∗ from Q, A, and
XS∗ . However, it is not obvious that the user’s “actual” side
information index set S is one such set S∗. In the following
lemma, we show that this must be the case for D > M .

Lemma 4. For any W ⊂ [K], |W |= D (> M ), and
S ⊆ [K] \W , |S|=M ,

H(X[K]\S |A[W,S], Q[W,S], XS) = 0.

The following example explains the result of Lemma 4 for
the scenario of Example 1.

Example 2. Consider the scenario of Example 1. Recall that
in case (i), {1} → {2, 3} and {5} → {1, 4}, and in case (ii),
{1} → {2, 3}, {2} → {1, 4}, and {1} → {4, 5}.

First, consider the case (i). Consider the candidate de-
mand index set {4, 5}. Either {1} → {4, 5}, or {2} →
{4, 5}, or {3} → {4, 5}. In either case, {1} → {2, 3, 4, 5}
since {1} → {2, 3}.

Next, consider the case (ii). Since {1} → {2, 3} and
{1} → {4, 5}, then {1} → {2, 3, 4, 5}.

Thus, in both cases (i) and (ii), all the messages
X2, . . . , X5 can be recovered from Q, A, and X1. Noting
that X1 is the user’s actual side information, it follows that
the result of Lemma 4 holds for K = 5, D = 2, and M = 1.

Lemma 4 generalizes the result of Example 2 for arbitrary
K, D, and M such that D > M , and we prove this lemma
by way of contradiction as follows.

Proof of Lemma 4: Fix arbitrary W and S. Let Q ,
Q[W,S] and A , A[W,S]. Let S be the collection of all
S∗ ⊂ [K], |S∗|=M such that H(X[K]\S∗ |A,Q,XS∗) = 0.
Since A, Q, and X are available at the server, then S is
known to the server. From the perspective of the server, there
are two possibilities: the user can recover all messages in X
from Q and A, i.e., H(XS∗ |A,Q,XS) = 0 for some S∗ ∈ S,
or given Q and A, the user cannot recover all messages in
X , i.e., H(XS∗ |A,Q,XS) > 0 for all S∗ ∈ S.

First, suppose that H(XS∗ |A,Q,XS) = 0 for
some S∗ ∈ S. Then, S must belong to S, i.e.,
H(X[K]\S |A,Q,XS∗) = 0, as was to be shown. Next,
suppose that H(XS∗ |A,Q,XS) > 0 for all S∗ ∈ S. That
is, S 6∈ S. In this case, we will show a contradiction.
Since S is the user’s (actual) side information index set
and S 6∈ S , from the server’s perspective the user’s side
information index set cannot belong to S. Thus, from the
perspective of the server, none of S∗ ∈ S can be the user’s
side information index set. That is, for a given subset of
D indices, say W ∗, if the server can only pair W ∗ with
some candidate side information index set(s) in S (given
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Q and A), then W ∗ cannot be the user’s (actual) demand
index set. Since this violates the privacy condition and the
server knows that Q and A satisfy the privacy condition,
then the server simply rules out any S∗ ∈ S from the set
of candidate side information index sets for any possible
demand index set. Repeating the same lines as in the proof
of Lemma 4 except when ruling out all S∗ ∈ S from
the set of candidate side information index sets, it follows
that there must exist S0 6∈ S, S0 ⊂ [K], |S0|=M such that
H(X[K]\S0

|A,Q,XS0
) = 0. Since S contains all S∗ ⊂ [K],

|S∗|=M such that H(X[K]\S∗ |A,Q,XS∗) = 0, then S must
contain S0. i.e., S0 ∈ S. This is a contradiction.

B. Proof of Achievability for Theorem 1

In this section, we propose a PIR-SI protocol for arbitrary
K, M , and D. We notice that this protocol is applicable to
both cases of D > M and D ≤M . As will be shown shortly,
the rate achieved by this protocol is optimal for D > M ,
whereas for D ≤ M the protocol proposed in Section V
may achieve a higher rate, depending on K, D, and M .

Assume that q ≥ K, and let ω1, . . . , ωK be K distinct
elements from Fq .

Generalized Reed-Solomon (GRS) Code Protocol: This
protocol consists of three steps as follows:

Step 1: The user constructs K − M sequences
Q1, . . . , QK−M , each of length K, such that Qi =
{ωi−11 , . . . , ωi−1K } for i ∈ [K −M ], and sends to the server
the query Q[W,S] = {Q1, . . . , QK−M}.

Note that for any i ∈ [K −M ] and j ∈ [K], the jth ele-
ment in the sequence Qi can be thought of as the entry (i, j)
in a (K −M)×K Vandermonde matrix V with distinct
parameters ω1, . . . , ωK . It is also well-known that the matrix
V is full-rank, and any (K −M)× (K −M) sub-matrix of
V is full-rank [13].

Step 2: By using Qi, the server computes Ai =∑K
j=1 ω

i−1
j Xj for i ∈ [K − M ], and sends to the user

the answer A[W,S] = {A1, . . . , AK−M}. In the language of
coding theory, the matrix V can be viewed as the parity-
check matrix of a (K,M) (normalized) Generalized Reed-
Solomon (GRS) code [13], and accordingly, A1, . . . , AK−M
are the parity check equations of this code (and hence the
name of the proposed protocol).

Step 3: Upon receiving the answer from the server, the
user retrieves Xj for each j ∈ [K] \S by subtracting off the
contribution of side information {Xi}i∈S from the K −M
equations A1, . . . , AK−M , and solving the resulting system
of K −M linear equations with K −M unknowns.

Remark 5. It should be noted that the GRS Code protocol
is similar to the MDS Code scheme in [12]. The main benefit
of the GRS Code protocol is that it can operate over any
field of size q ≥ K, whereas the MDS Code scheme of [12]
requires a field size q ≥ 2K −M (> K). In particular, in
the MDS Code scheme of [12], the user queries the server to
send K −M parity symbols of a systematic (2K −M,K)
MDS code; whereas the coded symbols sent by the server
in the GRS Code protocol may not correspond to the parity
symbols of a systematic (2K −M,K) MDS code. This is

because for a systematic MDS code, the parity part of a
generator matrix needs to be super-regular [13, Proposition
11.4]. This is while a Vandermonde matrix over a finite field
is not guaranteed to be super-regular.

Lemma 5. The GRS Code protocol is a PIR-SI protocol,
and achieves the rate D/(K −M).

Proof: Recall that H(X1) = · · · = H(XK) = L.
Since A1, . . . , AK−M are linearly independent combinations
of X1, . . . , XK , which are themselves independently and
uniformly distributed over Fqm , then A1, . . . , AK−M are in-
dependently and uniformly distributed over Fqm . (The linear
independence follows from our choice of the coefficients
of Xj’s in the linear combinations Ai’s, and the full-rank
property of the Vandermonde matrix associated with these
coefficients.) Then, H(A1) = · · · = H(AK−M ) = L,
and H(A[W,S]) = H(A1, . . . , AK−M ) =

∑K−M
i=1 H(Ai) =

(K−M)L for any W ⊂ [K], |W |= D and any S ⊆ [K]\W ,
|S|=M . Thus, the rate of the GRS Code protocol is equal to
DL/H(A[W ,S]) = DL/H(A[W,S]) = D/(K −M), noting
that H(A[W ,S]) = H(A[W,S]) by the uniformity of joint
distribution of W and S.

Next, we prove that the GRS Code protocol is a PIR-SI
protocol. Once the user subtracts off the contribution of side
information XS from the K − M linear equations in the
answer, the coefficient matrix associated with the resulting
system of linear equations is a (K −M) × (K −M) sub-
matrix of a (K − M) × K Vandermonde matrix. Since
this sub-matrix is invertible, the user can uniquely solve the
underlying system of linear equations, and recover all K−M
messages in X[K]\S , including the demand XW . Thus the
recoverability condition is satisfied.

The privacy condition is also satisfied, simply because
given D and M , the user sends exactly the same query for
any demand index set W of size D, and any side information
index set S of size M . Thus, the server does not gain any
knowledge about the realization of W (and S).

V. PIR-SI PROBLEM: THE CASE OF D ≤M
A. Proof of Achievability for Theorem 2

In this section, we propose a PIR-SI protocol for arbitrary
K, M , and D ≤M .

Define α , bM/Dc, δ , M − Dα, β , D + α, γ ,
b(K − δ)/βc, and ρ = K − δ − βγ. (Note that 0 ≤ ρ < β.)
Also, define σ , max{ρ−D, 0}. Assume q ≥ β + δ, and
let ω1, . . . , ωβ+δ be β + δ distinct elements from Fq .

Generalized Partition and Code (GPC) Protocol: This
protocol consists of four steps as follows:

Step 1: First, the user constructs a set Q0 of size ρ from
the indices in [K], γ − 1 disjoint sets Q1, . . . , Qγ−1 (also
disjoint from Q0), each of size β, from the indices in [K],
and a set Qγ (also disjoint from all sets Q0, . . . , Qγ−1) of
size β+δ from the indices in [K]. The user randomly chooses
D positions among all K positions available in Q0, . . . , Qγ ,
and randomly places the D demand indices in W into these
positions. If Q0 (or respectively, Qi for i ∈ [γ − 1], or
Qγ) contains a demand index, the user randomly selects σ
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(or respectively, α, or α + δ) indices from S that were not
previously selected and positioned, and places them into Q0

(or respectively, Qi for i ∈ [γ − 1], or Qγ). Then, the user
randomly places the rest of the indices in [K], that are yet
to be placed, into the remaining positions in Q0, . . . , Qγ .

Next, the user creates a collection Q′ of ρ − σ
sequences Q′1, . . . , Q

′
ρ−σ , each of length ρ, such that

Q′i = {ω
i−1
1 , . . . , ωi−1ρ } for i ∈ [ρ−σ]. The user also creates

a collection Q′′ of D sequences Q′′1 , . . . , Q
′′
D, each of length

β, such that Q′′i = {ωi−11 , . . . , ωi−1β } for i ∈ [D], and a
collection Q′′′ of D sequences Q′′′1 , . . . , Q

′′′
D , each of length

β + δ, such that Q′′′i = {ωi−11 , . . . , ωi−1β+δ} for i ∈ [D].
Step 2: The user constructs Q∗0 = (Q0, Q

′),
Q∗i = (Qi, Q

′′) for i ∈ [γ − 1], and Q∗γ = (Qγ , Q
′′′),

and sends to the server the query Q[W,S] = {Q∗0, . . . , Q∗γ}.
Step 3: By using Q∗0 = (Q0, Q

′), Q∗i = (Qi, Q
′′) for

i ∈ [γ − 1], and Q∗γ = (Qγ , Q
′′′), the server computes

A0 = {A1
0, . . . , A

ρ−σ
0 } by Aj0 =

∑ρ
l=1 ω

j−1
l Xil for

j ∈ [ρ− σ] where Q0 = {i1, . . . , iρ}; it computes
Ai = {A1

i , . . . , A
D
i } for i ∈ [γ − 1] by Aji =

∑β
l=1 ω

j−1
l Xij

for j ∈ [D] where Qi = {i1, . . . , iβ}, and computes
Aγ = {A1

γ , . . . , A
D
γ } by Ajγ =

∑β+δ
l=1 ω

j−1
l Xij for j ∈ [D]

where Qγ = {i1, . . . , iβ+δ}. The server then sends to the
user the answer A[W,S] = {A0, . . . , Aγ}.

Step 4: Upon receiving the answer from the server, the
user retrieves Xj for each j ∈ W by subtracting off
the contribution of side information {Xi}i∈S from the D
equations in A0 if j ∈ Q0, or from the D equations in
Ai if j ∈ Qi, and solving the resulting system of D linear
equations with D unknowns.

The following demonstrates an example where the GPC
protocol achieves a higher rate than the GRS Code protocol.

Example 3. Consider a scenario where the server has
K = 10 messages X1, . . . , X10 ∈ F5, and the user’s demand
and side information index sets are respectively W = {3, 4}
and S = {5, 8} (i.e., D = 2 and M = 2).

The GPC protocol’s parameters for this example are:
α = 1, δ = 0, β = 3, γ = 3, ρ = 1, σ = 0, and
{ω1, ω2, ω3} = {0, 1, 2}. First, the user creates four sets
Q0, Q1, Q2, and Q3, where Q0 = {−} has one position
(slot) to be filled, and Q1 = {−,−,−}, Q2 = {−,−,−},
and Q3 = {−,−,−} have three slots each. The user then
randomly chooses two slots (out of the 10 slots in total)
to place the demand indices 3 and 4. Say that the user
places 4 in one of the slots in Q1, and places 3 into
one of the slots in Q2, i.e., Q0 = {−}, Q1 = {4,−,−},
Q2 = {3,−,−}, and Q3 = {−,−,−}. (The order of the
slots within the same set Qi is irrelevant.) The user then
places one randomly chosen side information index in Q1

and the other in Q2. Say that the user randomly chooses
the side information index 8 to place in Q1, i.e., Q0 = {−},
Q1 = {4, 8,−}, Q2 = {3, 5,−}, and Q3 = {−,−,−}. Then
the user randomly places the rest of the indices into the empty
slots in these three sets; say Q0 = {2}, Q1 = {4, 6, 8},
Q2 = {3, 5, 7}, and Q3 = {1, 9, 10}.

Next, the user forms the collection Q′, with the sequence

Q′1, which in this example is a sequence of length one, with
the element ω1 = 0: Q′1 = {1}; and forms the collections
Q′′ and Q′′′ of two sequences Q′′1 = Q′′′1 and Q′′2 = Q′′′2
using the three elements ω1 = 0, ω2 = 1, and ω3 = 2:
Q′′1 = Q′′′1 = {1, 1, 1} and Q′′2 = Q′′′2 = {0, 1, 2}. The user
then sends to the server

(Q0, Q
′) = ({2}, {1}),

(Q1, Q
′′) = ({4, 6, 8}, {{1, 1, 1}, {0, 1, 2}}),

(Q2, Q
′′) = ({3, 5, 7}, {{1, 1, 1}, {0, 1, 2}}),

(Q3, Q
′′′) = ({1, 9, 10}, {{1, 1, 1}, {0, 1, 2}}),

and the server sends the user back

A0 = {X2},
A1 = {X4 +X6 +X8, X6 + 2X8},
A2 = {X3 +X5 +X7, X5 + 2X7}.
A3 = {X1 +X9 +X10, X9 + 2X10}.

The user then solves for X3 (and X7) by subtracting off the
contribution of X5 from the equations in A2 and solving
the resulting equations, and solves for X4 (and X6) by
subtracting off the contribution of X8 from the equations
in A1, and solving the resulting equations.

The rate of the GPC protocol for this example is 2/7,
whereas the GRS Code protocol achieves a lower rate
D/(K −M) = 2/8.

The next example illustrates a scenario in which the GRS
Code protocol achieves a higher rate than the GPC protocol.

Example 4. Consider a scenario where the server has
K = 5 messages X1, X2, . . . , X5 ∈ F5, and the user’s
demand and side information index sets are respectively
W = {2, 5} and S = {1, 3} (i.e., D = 2 and M = 2).

In the GPC protocol, the parameters defined for this
example are: α = 1, δ = 0, β = 3, γ = 1, ρ = 2,
σ = 0, and {ω1, ω2, ω3} = {0, 1, 2}. The user creates two
sets Q0 and Q1, where Q0 = {−,−} and Q1 = {−,−,−}.
The user randomly chooses two slots to place 1 and 3, say
after choosing slots, Q0 = {5,−} and Q1 = {2,−,−}.
The user then places one element from S into Q1, say
Q1 = {1, 2,−}. Then the user fills the rest of the slots with
unplaced elements; say Q0 = {3, 5} and Q1 = {1, 2, 4}.

Then the user forms the collection Q′ by using the ele-
ments ω1 = 0 and ω2 = 1, and the collection of sequences
Q′′′ by using the elements ω1 = 0, ω2 = 1, and ω3 = 2. The
following are the collections:

Q′ = {{1, 1}, {0, 1}},
Q′′′ = {{1, 1, 1}, {0, 1, 2}}.

The user then sends the server Q = {(Q0, Q
′), (Q1, Q

′′′)},
and the server sends the user back the following equations:

A0 = {X3 +X5, X5},
A1 = {X1 +X2 +X4, X2 + 2X4}.
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The user then recovers X5 (and X3) from A0, and recovers
X2 (and X4) by subtracting X1 from the two equations in
A1, and then solving for X2 (and X4).

For this example, the rate of the GPC protocol is 1/2, and
the rate of the GRS Code protocol is D/(K −M) = 2/3.

Lemma 6. The Generalized Partition and Code (GPC)
protocol is a PIR-SI protocol, and achieves the rate

D

(
K−M+D

⌊
M

D

⌋
−
⌊
M

D

⌋⌊
K −M +DbM/Dc

D + bM/Dc

⌋)−1
if

K −M +DbM/Dc −D
D + bM/Dc

≤
⌊
K −M +DbM/Dc

D + bM/Dc

⌋
,

and ⌈
K −M +DbM/Dc

D + bM/Dc

⌉−1
otherwise.

Proof: The proof can be found in [32].
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