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Abstract— We study the problem of single-server single-
message Private Information Retrieval with Private Coded Side
Information (PIR-PCSI). In this problem, there is a server
that stores a database, and a user who knows a random
linear combination of a random subset of messages in the
database. The number of messages contributing to the user’s
side information is known to the server a priori, whereas the
indices and the coefficients of these messages are unknown to
the server a priori. The user wants to retrieve a message from
the server, while protecting the identities of both the demand
message and the side information messages.

Depending on whether the demand is part of the coded
side information or not, we consider two different models for
the problem. For the model in which the demand does not
contribute to the side information, we prove a lower bound
on the minimum download cost for all (linear and non-linear)
PIR schemes; and for the model wherein the demand is one of
the messages contributing to the side information, we prove a
lower bound for all scalar-linear PIR protocols. In addition, we
propose novel PIR protocols that achieve these lower bounds.

I. INTRODUCTION

In the information-theoretic Private Information Retrieval
(PIR) problem (see, e.g., [1], [2]), there is a user that wishes
to download a single or multiple messages belonging to a
database stored on a single or multiple (non-colluding or
colluding) servers. The goal of the user is to minimize the
download cost (i.e., the amount of information downloaded
from the server(s)), while hiding the identity of its demanded
message(s) from the server(s). This setup was recently ex-
tended in [3]–[12] to the settings wherein the user has some
side information about the messages in the database, and the
side information is unknown to the server(s).

For the single-server setting of the PIR problem in the
presence of some side information, we studied the cases in
which the side information is a random subset of messages
(a.k.a. PIR with Side Information (PIR-SI)) and a random
linear combination of a random subset of messages (a.k.a.
PIR with Coded Side Information (PIR-CSI)) in [3], [11]
and [9], respectively. The multi-server setting of the PIR-
SI problem was also studied in [7], [8], [10]. For the PIR-SI
problem, two different types of privacy, known as W -privacy
(i.e., only the identities of the demand messages must be
protected) and (W,S)-privacy (i.e., the identities of both the
demand and side information messages must be protected
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jointly) have been considered, whereas the problem of PIR-
CSI has only been studied when W -privacy is required.

In this work, we study the single-server single-message
PIR-CSI problem where (W,S)-privacy is required. In this
problem, referred to as PIR with Private Coded Side Informa-
tion (PIR-PCSI), there is a single server storing a database
of K messages, and there is a user who knows a random
linear combination of a random subset of M messages in
the database. The user is interested in downloading a single
message from the server while preserving the privacy of both
the demand message and the messages contributing to the
side information. This problem setting can be motivated by
several practical scenarios. For instance, the user may have
obtained their side information via overhearing in a wireless
network; or from a trusted server with limited knowledge
about the database; or from the information locally stored in
the user’s cache of limited size.

A. Main Contributions

We define the (scalar-linear) capacity of the PIR-PCSI
problem as the supremum of all achievable rates (i.e., the
ratio of the entropy of a message to the entropy of the
download cost) over all (scalar-linear) PIR-PCSI protocols.
Depending on whether the user’s demanded message itself
contributes to the user’s coded side information or not, we
consider two different models of the problem.

For the model in which the demanded message is not
part of the side information, we characterize the capacity
and the scalar-linear capacity. In particular, we show that
for this model the capacity and the scalar-linear capacity are
both equal to (K −M)−1 for any 0 ≤M ≤ K − 1. This is
interesting because, as shown in [3, Theorem 2], even when
the user knows M randomly chosen (uncoded) messages as
their side information, in order to guarantee (W,S)-privacy,
the capacity is equal to (K −M)−1.

For the model wherein the user’s demanded message
contributes to their side information, we show that the
scalar-linear capacity is equal to (K −M + 1)−1 for any
2 ≤M ≤ K. Interestingly, this result shows that when the
user knows M−1 randomly chosen messages (different from
the demand), achieving (W,S)-privacy is as costly as that
when the user knows only one random linear combination of
their demanded message and M−1 other random messages.

The converse proofs are based on new information-
theoretic arguments, and the proofs of achievability rely on
novel PIR protocols based on the Generalized Reed-Solomon
(GRS) codes that contain a specific codeword which depends
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on the coefficients and the indices of messages in the side
information and the index of the demanded message.

II. PROBLEM FORMULATION

Throughout, we denote random variables and their real-
izations by bold-face letters and regular letters, respectively.

Let Fq be a finite field for some prime q, and let Fql be
an extension field of Fq for some integer l ≥ 1, and let
L , l log2 q. For an integer i ≥ 1, let [i] , {1, . . . , i}. Let
K ≥ 1 and 0 ≤ M ≤ K be two integers. We denote by S
the set of all M -subsets of [K], and denote by C the set of
all length-M sequences with elements from F×q , Fq \ {0}.

Assume that there is a server that stores a set of K mes-
sages, denoted by X , {X1, . . . , XK}, where each message
Xi is independently and uniformly distributed over Fql , i.e.,
H(Xi) = L for i ∈ [K] and H(X) = KL, where X ,
{X1, . . . ,XK}. Also assume that there is a user that wishes
to retrieve a message XW from the server for some W ∈ [K],
and knows a linear combination Y [S,C] ,

∑
i∈S ciXi for

some S , {i1, . . . , iM} ∈ S and C , {ci1 , . . . , ciM } ∈ C.
We refer to W as the demand index, XW as the demand, S as
the side information index set, Y [S,C] as the side information,
and M as the side information size.

We assume that S is uniformly distributed over S, and
C is uniformly distributed over C. Also, we consider two
different models as follows for the conditional distribution
of W given S = S:

Model I: W is uniformly distributed over [K] \ S;
Model II: W is uniformly distributed over S.

To avoid the degenerate cases, we assume 0 ≤M ≤ K − 1
and 2 ≤ M ≤ K for the models I and II, respec-
tively. Note that Pr(W =W,S = S|W 6∈ S) is equal to
((K −M)

(
K
M

)
)−1 for all W ∈ [K], S ∈ S such that W 6∈ S,

and it is zero otherwise; and Pr(W =W,S = S|W ∈ S)
is equal to (M

(
K
M

)
)−1 for all W ∈ [K], S ∈ S such that

W ∈ S, and it is zero otherwise.
We assume that a priori the server knows the underlying

problem model (i.e., W 6∈ S or W ∈ S), the side
information size (M ), the distributions of S and C, and
the conditional distribution of W given S; whereas the
realizations S, C, and W are unknown to the server a priori.

For any S,C,W , in order to retrieve XW , the user sends
to the server a query Q[W,S,C], which is a (potentially
stochastic) function of W,S,C. We denote Q[W,S,C] by Q.
The query must protect the privacy of both the user’s demand
index and side information index set from the server. That
is, for any θ ∈ {0, 1}, it must hold that

Pr(W =W,S = S|Q = Q,1{W∈S} = θ,X = X)

= Pr(W =W,S = S|1{W∈S} = θ)

for all W ∈ [K], S ∈ S . We refer to this condition as
the (W,S)-privacy condition. Note that (W,S)-privacy is a
stronger condition than W -privacy considered in [9], where
the query must protect only the privacy of the user’s demand
index from the server.

Upon receiving Q[W,S,C], the server sends to the user
an answer A[W,S,C], which is a (deterministic) function of

the query Q[W,S,C], the indicator variable 1{W∈S}, and
the messages in X . We denote A[W,S,C] by A. Note that
(W,S) → (Q,1{W∈S},X) → A forms a Markov chain,
and H(A|Q,1{W∈S},X) = 0. The answer A[W,S,C] along
with Q[W,S,C],1{W∈S}, Y

[S,C], and W,S,C must enable the
user to retrieve the demand XW . That is, it must hold that

H(XW|A,Q,1{W∈S},Y[S,C],W,S,C) = 0.

We refer to this condition as the recoverability condition.
The following lemma, which follows from a simple con-

tradiction and hence appears without proof, gives a necessary
condition for (W,S)-privacy and recoverability.

Lemma 1. For any θ ∈ {0, 1}, for any W ∈ [K], S ∈ S
such that 1{W∈S} = θ, there must exist C ∈ C such that

H(XW |A,Q,1{W∈S} = θ,Y[S,C]) = 0.

For each model (I or II), the problem is to design a proto-
col for generating a query Q[W,S,C] (and the corresponding
answer A[W,S,C], given Q[W,S,C], 1{W∈S}, and X) for any
given W,S,C, such that both the privacy and recoverability
conditions are satisfied. We refer to this problem as single-
server Private Information Retrieval (PIR) with Private
Coded Side Information (PCSI), or PIR-PCSI for short. The
PIR-PCSI problem under the model I or model II is referred
to as PIR-PCSI–I or PIR-PCSI–II, respectively.

The rate of a PIR-PCSI–I (or PIR-PCSI–II) protocol is
defined as the ratio of the entropy of a message, i.e., L, to
the conditional entropy of the answer A[W,S,C] given that
W 6∈ S (or W ∈ S). The capacity of PIR-PCSI–I (or PIR-
PCSI–II) problem is defined as the supremum of rates over
all PIR-PCSI–I (or PIR-PCSI–II) protocols. The supremum
of rates over all scalar-linear PIR-PCSI–I (or PIR-PCSI–II)
protocols, i.e., where the answer contains only scalar-linear
combinations of the messages in X , is defined as the scalar-
linear capacity of PIR-PCSI–I (or PIR-PCSI–II) problem.

In this work, our goal is to characterize the capacity and
the scalar-linear capacity of the PIR-PCSI–I and PIR-PCSI–
II problems, and to design PIR-PCSI–I and PIR-PCSI–II
protocols that are capacity-achieving.

III. MAIN RESULTS

We present our main results in this section. The capacity
and the scalar-linear capacity of PIR-CSI–I problem are
characterized in Theorem 1, and the scalar-linear capacity
of PIR-CSI–II problem is characterized in Theorem 2. The
proofs are given in Sections IV and V.

Theorem 1. The capacity and the scalar-linear capacity of
PIR-PCSI–I problem with K messages and side information
size 0 ≤M ≤ K − 1 are given by (K −M)−1.

The converse follows directly from the result of [3, Theo-
rem 2], which was proven using an index coding argument,
for single-server single-message PIR with (uncoded) side
information when (W,S)-privacy is required. In this work,
we provide an alternative proof by upper bounding the
rate of any PIR-PCSI–I protocol using information-theoretic
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arguments (see Section IV-A). The key component of the
proof is the necessary condition presented in Lemma 1.

The achievability proof relies on a new PIR-PCSI–I pro-
tocol, termed the Specialized GRS Code protocol, which
achieves the rate (K−M)−1 (see Section IV-B). This proto-
col is based on the Generalized Reed-Solomon (GRS) codes
that contain a specific codeword depending on W,S,C.

Remark 1. As shown in [3], when there is a single server
storing K independent and identically distributed messages,
and there is a user that knows M randomly chosen (uncoded)
messages as their side information and demands a single
message not in their side information, in order to guarantee
(W,S)-privacy, the minimum download cost is (K −M)L,
where L is the entropy of a message. Surprisingly, this result
matches the result of Theorem 1. This shows that, when
compared to having M random messages separately as side
information, for achieving (W,S)-privacy there will be no
additional loss in capacity even if only one random linear
combination of M random messages is known to the user.

Remark 2. When W -privacy is required, the result of [9,
Theorem 1] shows that the capacity of single-server single-
message PIR with a coded side information that does not
include the demand (known as the PIR-CSI–I problem in [9])
is equal to d K

M+1e
−1. Since d K

M+1e < K − M for all
1 ≤M ≤ K − 2, the capacity of PIR-PCSI–I is strictly
smaller than that of PIR-CSI–I. This is expected because
W -privacy is a weaker notion of privacy when compared
to (W,S)-privacy. However, for the two extremal cases of
M = 0 and M = K − 1, it follows that (W,S)-privacy
comes at no extra cost than W -privacy.

Theorem 2. The scalar-linear capacity of PIR-PCSI–
II problem with K messages and side information size
2 ≤M ≤ K is given by (K −M + 1)−1.

The converse proof is based on a mix of algebraic and
information-theoretic arguments (see Section V-A), and the
proof of achievability is based on a modified version of
the Specialized GRS Code protocol which achieves the rate
(K −M + 1)−1 (see Section V-B).

Remark 3. Interestingly, comparing the results of [3, The-
orem 2] and Theorem 2, one can see that when the side
information is composed of M − 1 randomly chosen mes-
sages (different from the demand message), (W,S)-privacy
cannot be achieved more efficiently than the case in which
the side information is only one random linear combination
of M random messages including the demand.

Remark 4. As shown in [9, Theorem 2], when W -privacy
is required, the capacity of single-server single-message PIR
with a coded side information to which the demand message
contributes (known as the PIR-CSI–II problem in [9]) is
equal to 1 for M = 2 and M = K, and is equal to 1

2
for all 3 ≤M ≤ K − 1. The result of Theorem 2 matches
this result for the cases of M = K and M = K − 1, and
thereby, (W,S)-privacy and W -privacy are attainable at the
same cost. For other cases of M , as expected, achieving

(W,S)-privacy is more costly than achieving W -privacy.

IV. THE PIR-PCSI–I PROBLEM

A. Converse for Theorem 1
As shown in [3] using an index-coding argument, when

(W,S)-privacy is required, the capacity of PIR with M un-
coded messages as side information is given by (K −M)−1.
Obviously, the capacity of PIR-PCSI–I is upper bounded by
this quantity. This proves the converse for Theorem 1. We
present an alternative information-theoretic proof here.

Lemma 2. For any 0 ≤ M ≤ K − 1, the capacity of PIR-
PCSI–I is upper bounded by (K −M)−1.

Proof: Fix W , S, and C (and Y , Y[S,C]) such that
W 6∈ S. Let E denote the event that W 6∈ S. We need to
show that H(A|E) ≥ (K −M)L. Similar to the proof of
[9, Theorem 1], it can be shown that

H(A|E) ≥ H(XW ) +H(A|Q,E,Y,XW ). (1)

If W ∪ S = [K] (i.e., M = K − 1), then H(A|E) ≥
H(XW ) = L, as was to be shown. If W ∪ S 6= [K],
for any i ∈ [K] \ (W ∪ S) there exists Ci ∈ C (and Yi ,
Y[S,Ci]) such that H(Xi|A,Q,E,Yi) = 0 (by Lemma 1).
Let I be a maximal subset of [K] \ (W ∪ S) such that Y
and YI , {Yi}i∈I are linearly independent. (Note that
|I|≤ |S|−1 =M − 1.) Let XI , {Xi}i∈I . Then,

H(A|Q,E,Y,XW ) ≥ H(A|Q,E,Y,XW ,YI)

+H(XI |A,Q,E,Y,XW ,YI) (2)
= H(XI |Q,E,Y,XW ,YI)

+H(A|Q,E,Y,XW ,YI ,XI)

= H(XI)

+H(A|Q,E,Y,XW ,YI ,XI) (3)

where (2) holds because H(Xi|A,Q,E,Yi) = 0 for
all j ∈ I (by assumption); and (3) holds since XI

is independent of (Q,E,Y,XW ,YI) (noting that I and
W ∪ S are disjoint). Note also that, by the maximality
of I , for any j ∈ J , [K] \ (W ∪ S ∪ I), there exists
Cj ∈ C (and Yj , Y[S,Cj ], which is linearly dependent
on {Y,YI}) such that H(Xj |A,Q,E,Yj) = 0, and
subsequently, H(Xj |A,Q,E,YI) = 0. (Note that |J |=
K −M − 1− |I|.) Let XJ , {Xj}j∈J . Thus, we can write

H(A|Q,E,Y,XW ,YI ,XI)

= H(A|Q,E,Y,XW ,YI ,XI)

+H(XJ |A,Q,E,Y,XW ,YI ,XI) (4)
= H(XJ |Q,E,Y,XW ,YI ,XI)

+H(A|Q,E,Y,XW ,YI ,XI ,XJ)

≥ H(XJ) (5)

where (4) holds since H(Xj |A,Q,E,YI) = 0 for all
j ∈ J (by assumption); and (5) holds because XJ and
(Q,E,Y,XW ,YI ,XI) are independent (noting that J and
W ∪ S ∪ I are disjoint). Putting (1), (3), and (5) together,
it follows that H(A|E) ≥ H(XW ) + H(XI) + H(XJ) =
(K −M)L, as was to be shown.
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B. Achievability for Theorem 1

In this section, we propose a PIR-PCSI–I protocol that
achieves the rate (K −M)−1. Throughout, we assume that
q ≥ K. It is noteworthy that for q < K the achievability
of the rate (K −M)−1 is not necessarily feasible, and it is
conditional upon the existence of a (K,K −M) maximum-
distance-seperable (MDS) code over Fq that includes a
codeword such that the ith codeword symbol is zero for any
i 6∈ W ∪ S, it is equal to ci for any i ∈ S (where ci is the
coefficient of Xi in Y [S,C]), and is non-zero for i =W .

Specialized GRS Code Protocol: This protocol consists
of four steps as follows:

Step 1: First, the user arbitrarily chooses K distinct
elements ω1, . . . , ωK from Fq , and constructs a polynomial
p(x) =

∑K−M−1
i=0 pix

i ,
∏

i6∈W∪S(x− ωi). Then, the user
constructs K−M sequences Q1, . . . , QK−M , each of length
K, defined as Qi = {v1ωi−1

1 , . . . , vKω
i−1
K } for i ∈ [K−M ],

where the choice of vi’s is specified as follows. For any
i ∈ S, vi = ci

p(ωi)
where ci is the coefficient of Xi in Y [S,C];

and for any i 6∈ S, vi is chosen at random from F×q .
For any i ∈ [K −M ] and any j ∈ [K], the jth element

in the sequence Qi can be thought of as the entry (i, j)

of a (K −M) × K matrix G , [gT1 , . . . , g
T
K−M ]

T, which
is the generator matrix of a (K,K −M) GRS code with
distinct parameters ω1, . . . , ωK and non-zero multipliers
v1, . . . , vK [13]. The above construction ensures that such
a GRS code has a specific codeword with support S ∪W ,
namely

∑K−M
i=1 pi−1gi, where the ith codeword symbol is

equal to ci for i ∈ S, and is non-zero for i =W .
Step 2: The user sends the query Q[W,S,C] =

{Q1, . . . , QK−M} to the server.
Step 3: By using Qi, the server computes Ai =∑K
j=1 vjω

i−1
j Xj for all i ∈ [K−M ], and it sends the answer

A[W,S,C] = {A1, . . . , AK−M} to the user.
Note that Ai’s are the parity check equations of a (K,M)

GRS code which is the dual code of the GRS code generated
by the matrix G defined earlier.

Step 4: Upon receiving the answer, the user retrieves XW

by subtracting off the contribution of their side information
Y [S,C] from

∑K−M
i=1 pi−1Ai = cWXW +

∑
i∈S ciXi.

Example 1. Consider a scenario where the server has
K = 4 messages X1, . . . , X4 ∈ F5, and the user demands
the message X1 and has a coded side information of size
M = 2, say Y = X2 + X3. For this example, W = 1,
S = {2, 3}, and C = {c2, c3} = {1, 1}.

First, the user chooses K = 4 distinct elements ω1, . . . , ω4

from F5, say (ω1, ω2, ω3, ω4) = (0, 1, 2, 3). Then, the user
constructs the polynomial p(x) =

∏
i6∈W∪S(x − ωi) =

x− ω4 = x + 2. Note that p(x) = p0 + p1x = 2 + x.
The user then computes vj for j ∈ S, i.e., v2 and v3, by
setting v2 = c2

p(ω2)
= 2 and v3 = c3

p(ω3)
= 4, and chooses vj

for j 6∈ S, i.e., v1 and v4, at random (from F×5 ). Suppose
that the user chooses v1 = 1 and v4 = 2. Then, the user
constructs K −M = 2 sequences Q1 = {v1, . . . , v4} =
{1, 2, 4, 2} and Q2 = {v1ω1, . . . , v4ω4} = {0, 2, 3, 1}. The
user then sends the query Q = {Q1, Q2} to the server. The

server computes A1 =
∑4

j=1 vjXj = X1+2X2+4X3+2X4

and A2 =
∑4

j=1 vjωjXj = 2X2 + 3X3 + X4, and sends
the answer A = {A1, A2} back to the user. Then, the user
computes

∑2
i=1 pi−1Ai = 2A1+A2 = 2X1+X2+X3, and

recovers X1 by subtracting off the side information X2+X3.
For this example, the rate of the proposed protocol is 1/2.

Lemma 3. The Specialized GRS Code protocol is a PIR-
PCSI–I protocol, and achieves the rate (K −M)−1.

Proof: Since the matrix G, defined in Step 1 of the
protocol, generates a (K,K −M) GRS code which is an
MDS code, the rows of G are linearly independent, and
accordingly, A1, . . . , AK−M are linearly independent combi-
nations of X1, . . . , XK , which are themselves independently
and uniformly distributed over Fql . Thus, A1, . . . , AK−M
are independently and uniformly distributed over Fql . Since
H(Xi) = L for all i, then H(Ai) = L for all i, and
H(A[W,S,C]) = H(A1, . . . ,AK−M ) =

∑K−M
i=1 H(Ai) =

(K −M)L for any W ∈ [K], S ∈ S such that W 6∈ S, and
C ∈ C. Since W and S are jointly distributed uniformly
(given that W 6∈ S) and C is uniformly distributed, then
H(A[W ,S,C]|W 6∈ S) = H(A[W,S,C]) = (K −M)L. Thus,
the rate is equal to L/((K −M)L) = (K −M)−1.

From the construction, it should be obvious that the
recoverability condition is satisfied. The (W,S)-privacy con-
dition is also satisfied because: (i) the (K,K − M) GRS
code, generated by the matrix G, is an MDS code, and
thereby, the minimum (Hamming) weight of a codeword is
K − (K −M) + 1 = M + 1; and (ii) there exist the same
number of minimum-weight codewords for any support of
size M + 1 [13]. Thus, for any W ∈ [K], S ∈ S such that
W 6∈ S, the dual code, defined by the parity check matrix
G, contains the same number of parity check equations
(with support W ∪ S) from each of which the candidate
demand message XW can be recovered, given a potential
side information Y [S,C] for some C ∈ C.

V. THE PIR-PCSI–II PROBLEM

A. Converse for Theorem 2

In this section, we give an information-theoretic proof of
converse for Theorem 2.

Lemma 4. For any 2 ≤M ≤ K, the scalar-linear capacity
of PIR-PCSI–II is upper bounded by (K −M + 1)−1.

Proof: Fix W , S, and C (and Y , Y[S,C]) such that
W ∈ S. Let E denote the event that W ∈ S. We need to
show that H(A|E) ≥ (K −M + 1)L. Let I be the set of all
i ∈ [K] such that H(Xi|A,Q) = 0, i.e., Xi is recoverable
from A (given Q) directly. Let XI , {Xi}i∈I . There are
two cases: (i) I 6= ∅, and (ii) I = ∅.

Case (i): Since XI and (Q,E) are independent, and
H(XI |A,Q,E) = 0 (by assumption), then

H(A|E) ≥ H(A|Q,E) +H(XI |A,Q,E)

= H(XI |Q,E) +H(A|Q,E,XI)

= H(XI) +H(A|Q,E,XI). (6)
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If |I|≥ K −M + 1, then H(XI) ≥ (K − M + 1)L, and
subsequently, H(A|E) ≥ (K − M + 1)L, as was to be
shown. If |I|≤ K − M , H(A|Q,E,XI) can be further
lower bounded as follows. Let N , |I|. Assume, w.l.o.g.,
that I = [N ]. Let J , [K − M − N + 1], and Sj ,
{N + 1, N + j + 1, . . . , N + j +M − 1} for j ∈ J . By
Lemma 1, for any j ∈ J , there exists Cj ∈ C (and
Yj , Y[Sj ,Cj ]) such that H(XN+1|A,Q,E,Yj) = 0.
Let Zj , Yj − cjXN+1 where cj is the coefficient of
XN+1 in Yj . For any scalar-linear protocol (i.e., the answer
A consists only of scalar-linear combinations of messages
in X), it is easy to see that either H(Zj |A,Q) = 0
or H(Zj + cXN+1|A,Q) = 0 for some c ∈ F×q \ {cj}.
(Otherwise, the server learns that W and S cannot be N +1
and Sj , respectively. This obviously violates the (W,S)-
privacy condition.) Thus, H(Zj |A,Q,XN+1) = 0. Let
ZJ , {Zj}j∈J . Then, we have

H(A|Q,E,XI) ≥ H(A|Q,E,XI ,XN+1)

+H(ZJ |A,Q,E,XI ,XN+1) (7)

= H(ZJ |Q,E,XI ,XN+1)

+H(A|Q,E,XI ,XN+1,ZJ)

≥ H(ZJ) (8)

where (7) holds since H(Zj |A,Q,XN+1) = 0 for all
j ∈ J (by assumption); and (8) follows because ZJ is
independent of (Q,E,XI ,XN+1), noting that ZJ , XI , and
XN+1 are linearly independent (by construction). By the
linear independence of Zj’s for all j ∈ J , it follows that
H(ZJ) = (K −M −N + 1)L. By (6) and (8), we get
H(A|E) ≥ NL+ (K −M −N + 1)L = (K −M + 1)L.

Case (ii): Assume, w.l.o.g., that W = 1 and S = [M ]. Let
J , [K −M ], and Sj , {1, j + 2, . . . , j +M} for j ∈ J .
Similarly as in the case (i), we define Yj (and Zj) for all
j ∈ J , where XN+1 is replaced by X1 everywhere.

For any scalar-linear protocol, by a similar argument as
before, it can be shown that H(Zj |A,Q,X1) = 0 for all
j ∈ J . Let ZJ , {Zj}j∈J . Then, we can write

H(A|E) ≥ H(A|Q,E,Y) +H(X1|A,Q,E,Y) (9)

= H(X1|Q,E,Y) +H(A|Q,E,Y,X1)

= H(X1) +H(A|Q,E,Y,X1)

+H(ZJ |A,Q,E,Y,X1) (10)

= H(X1) +H(ZJ |Q,E,Y,X1)

+H(A|Q,E,Y,X1,ZJ)

≥ H(X1) +H(ZJ) (11)

where (9) follows because H(X1|A,Q,E,Y) = 0
(by the recoverability condition); (10) holds
since H(Zj |A,Q,X1) = 0, and subsequently,
H(Zj |A,Q,E,Y,X1) = 0, for all j ∈ J ; and (11)
follows because ZJ is independent of (Q,E,Y,X1)
(due to the linear independence of ZJ , Y, and X1).
Since |J |= K − M , we have H(ZJ) = (K − M)L
(noting that Zj’s are linearly independent), and thereby,
H(A|E) ≥ L+ (K −M)L = (K −M + 1)L.

B. Achievability for Theorem 2
In this section, we propose a PIR-PCSI–II protocol, which

is a slightly modified version of the Specialized GRS Code
protocol, that achieves the rate (K −M + 1)−1.

Modified Specialized GRS Code Protocol: This protocol
consists of four steps, where the steps 2-4 are the same as
Steps 2-4 in the Specialized GRS Code protocol (Section IV-
B), except that M is replaced with M − 1 everywhere. The
step 1 of the proposed protocol is as follows:

Step 1: The user first constructs a polynomial
p(x) =

∑K−M
i=0 pix

i ,
∏

i6∈S(x− ωi), and then constructs
K−M +1 sequences Q1, . . . , QK−M+1, each of length K,
defined as Qi = {v1ωi−1

1 , . . . , vKω
i−1
K } for i ∈ [K −M ],

where vi’s are chosen as follows. For any i ∈ S \ W ,
vi = ci

p(ωi)
where ci is the coefficient of Xi in Y [S,C];

vW = c
p(ωW ) for a randomly chosen element c from

F×q \ {cW } where cW is the coefficient of XW in Y [S,C];
and for any i 6∈ S, vi is chosen at random from F×q .

Lemma 5. The Modified Specialized GRS Code protocol is a
PIR-PCSI–II protocol, and achieves the rate (K−M+1)−1.

Proof: The proof, omitted to avoid repetition, follows
from the same lines as in the proof of Lemma 3 where M is
replaced by M − 1, and W 6∈ S is replaced by W ∈ S.
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