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Abstract—We study the problem of Private Information Re-
trieval (PIR) in the presence of prior side information. The
problem setup includes a database of K independent messages
possibly replicated on several servers, and a user that needs to
retrieve one of these messages. In addition, the user has some
prior side information in the form of a subset of M messages,
not containing the desired message and unknown to the servers.
This problem is motivated by practical settings in which the user
can obtain side information opportunistically from other users
or has previously downloaded some messages using classical PIR
schemes.

The objective of the user is to retrieve the required message
with downloading minimum amount of data from the servers
while achieving information-theoretic privacy in one of the
following two scenarios: (i) the user wants to protect jointly
the identities of the demand and the side information; (ii) the
user wants to protect only the identity of the demand, but not
necessarily the side information. To highlight the role of side
information, we focus first on the case of a single server (single
database). In the first scenario, we prove that the minimum
download cost is K − M messages, and in the second scenario
it is dK/(M + 1)e messages, which should be compared to K
messages—the minimum download cost in the case of no side
information. Then, we extend some of our results to the case of
the database replicated on multiple servers. Our proof techniques
relate PIR with side information to the index coding problem.
We leverage this connection to prove converse results, as well as
to design achievability schemes.

Index Terms—Private information retrieval, information-
theoretic privacy, index coding

I. INTRODUCTION

Consider the following Private Information Retrieval (PIR)
setting first studied in [1], [2]: a user wishes to privately
download a message belonging to a database with copies
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stored on a single or multiple remote servers, without revealing
which message it is requesting. In a straightforward PIR
scheme, the user would download all the messages in the
database. This scheme may not be feasible due to its high
communication cost. In the case of a single server (i.e., there
is only one copy of the database), it can be shown that down-
loading the whole database is necessary to achieve perfect
privacy in an information-theoretic sense [1]. If computational
(cryptographic) privacy is desired, then PIR schemes with
lower communication overhead do exist [3], [4], but they do
not offer information-theoretic privacy guarantees and usually
have high computational complexity. In contrast, in this paper,
we design and analyze schemes that achieve information-
theoretic privacy.

Interestingly, more efficient PIR schemes achieving perfect
information-theoretic privacy can be constructed when the
database is replicated on multiple servers with restriction on
the servers’ collusion. This replication-based model has been
the one that is predominantly studied in the PIR literature
(e.g., [5]–[8]) with breakthrough results in the past few years
(e.g., [9]–[13]). Recently, there has been a renewed interest in
PIR for the case in which the data is stored on the servers
using erasure codes, which result in better storage overhead
compared to the traditional replication techniques [12]–[19].

In this paper, we study the PIR problem when the user has
prior side information about the database. In particular, we as-
sume that the user already has a random subset of the database
messages that is unknown to the server(s)1. This side informa-
tion could have been obtained in several ways. For example,
the user could have obtained these messages opportunistically
from other users in its network, overheard them from a
wireless broadcast channel, or downloaded them previously
through classical PIR schemes. The next example illustrates
how this side information could be leveraged to devise efficient
PIR with side information (PIR-SI) schemes. In particular, the
following example shows that perfect information-theoretic
privacy can be achieved in the single server case without
having to download the entire database.

Example 1 (single-server PIR with side information). Con-
sider a remote server that has a database formed of an even
number of binary messages denoted by X1, . . . , XK of equal
length. A user wants to download one of these messages from
the server without revealing to the server which one. Moreover,
the user has one message as side information chosen uniformly
at random among all the other messages and unknown to the
server. We propose two PIR-SI schemes that leverage the side

1We assume that this side information subset does not contain the desired
message. Otherwise, the problem is degenerate.
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information and compare them to the straightforward scheme
that downloads all the K messages.

1) Maximum Distance Separable (MDS) PIR-SI scheme.
The number of bits downloaded by this scheme is
equivalent to K − 1 messages. The user sends to the
server the number of messages in their side information
(one in this example). The server responds by coding
all the messages using a (2K − 1, K) systematic MDS
code and sending the K− 1 parity symbols of the code.
Therefore, the user can always decode all the messages
using their side information and the coded messages
received from the server. Perfect privacy is achieved
here, since the protocol is independent of the index of
the desired message (as well as the index of the side
information).

2) Partition and Code PIR-SI scheme. The number of
bits downloaded by this scheme is equivalent to K/2
messages. Suppose the message the user wants is XW
and the message in the user’s side information is XS for
some W, S ∈ {1, . . . , K}, W 6= S. The user chooses a
random partition of {1, . . . , K} formed only of sets of
size two and containing {W, S}, and sends indices of all
pairs in the partition to the server. The server sends back
the XOR of the messages indexed by each subset. Using
this scheme, the user can always decode XW because it
always receives XW + XS. Intuitively, perfect privacy is
achieved here because the index of the desired message
can be in any subset of the partition, and in each subset
it could be either one of the messages in the subset,
since the server does not know the index of the side
information.

We will show later that the two schemes above are optimal,
but achieve different privacy constraints. The MDS PIR-SI
scheme protects both the indices of the desired message and
that of the side information, whereas the Partition and Code
PIR-SI scheme is designed to protect only the former.2

A. Our Contributions

We consider the PIR with side information (PIR-SI) prob-
lem as illustrated in Example 1. A user wishes to download a
message from a set of K messages that belong to a database
stored on a single remote server or replicated on several
non-colluding servers. The user has a random subset of M
messages as side information. The identity of the messages
in this subset is unknown to the server. We focus on PIR-
SI schemes that achieve information-theoretic privacy. The
figure of merit that we consider for the PIR-SI schemes is
the download rate, which dominates the total communication
rate (download plus upload) for large message sizes. Under
this setting, we distinguish between two types of privacy
constraints:

2It is worth noting that, in the above toy example, the Partition and Code
scheme also protects the side information individually, but it does not protect
the desired message index and the side information index jointly. In general,
the Partition and Code scheme is guaranteed to protect only the desired
message index and may leak some information about user’s side information
(see Remark 3 in Sec. IV-C).

(i) hiding both the identity of the requested message and that
of the side information from the server; and

(ii) hiding only the identity of the desired message.
The latter, and less stringent, privacy constraint is justified
when the side information is obtained opportunistically given
that it is random and assumed to be independent of the user’s
request. In the case in which the side information messages
were obtained previously through PIR, this constraint implies
that the identity of these messages may be leaked to the
server(s). However, this type of privacy can still be relevant
when privacy is only desired for a certain duration of time, i.e.,
when the user is not concerned about protecting the identity of
messages downloaded as long as it has happened far enough
in the past.

First, we focus on the single server scenario as the canonical
case to understand the role of side information in PIR. We
characterize the capacity of PIR-SI problem in the case of
a single server for the two privacy constraints mentioned
above. We show that when protecting the request and the
side information jointly, the maximum download rate3 is
(K − M)−1, and this can be achieved by a generalization
of the MDS PIR-SI scheme in Example 1. Moreover, we
show that when protecting only the request, the maximum
download rate is dK/(M + 1)e−1, and this can be achieved
by a generalization of the Partition and Code PIR-SI scheme
in Example 1. We present achievability and converse proofs
that use, among other things, connections to index coding.

Second, we tackle the case of N > 1 servers storing replicas
of the database. In this case, we devise a PIR-SI scheme that
achieves a download rate equal to(

1 +
1
N

+ · · ·+ 1

Nd
K

M+1 e−1

)−1
.

Our scheme for the multiple servers uses ideas from our single
server scheme in conjunction with the scheme due to Sun and
Jafar [9] for the setting with no side information.

B. Related Work

Single-server PIR: Our initial motivation for this work
grew from the need to construct single-server, computationally
efficient PIR schemes with efficient download rate. Before this
work, single-server PIR has been predominantly studied in the
computational privacy setting. In particular, the authors of [3]
presented a single-server computational PIR scheme that does
not require downloading the entire database. This result was
extended in several works to further reduce the communication
costs, see e.g., [4], [20], [21]. However, computational PIR
schemes typically suffer from heavy computational cost, and
require homomorphic encryption [22].

On the other hand, for achieving information-theoretic pri-
vacy in the single-server case, it is well-known that the user has
to download the entire database to hide which message they
are interested in (see [1]). The key contribution of this paper
is to demonstrate that having access to some side information
(that is unknown to the server) enables the user to achieve

3The download rate is defined as the inverse of the normalized download
cost.
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information-theoretic privacy without needing to download the
entire database.

Multi-server PIR: The initial work on PIR in [1], [2] and in
the literature that followed focused on designing PIR schemes
for replicated data that have efficient communication cost
accounting for both the size of the user queries and the
servers’ responses. PIR schemes with communication cost that
is subpolynomial in the number of messages were devised in
[7] and [23]. Information-theoretic bounds on the download
rate (servers’ responses) and achievable schemes were devised
in [9] and [10].

Several recent works on the so-called cache-aided PIR [24]–
[26] are conceptually related to our work in considering the
role of side information in PIR. The main difference is that
in the cache-aided PIR problem the user can choose the side
information, which the servers may or may not know. On the
contrary, in our setting, the user is given a certain (random)
subset of messages as a side information, which is unknown to
the servers. In [24], the capacity is derived for the case when
the side information can be any function of the database, and is
known to all the servers. In [25], the authors present capacity
results when the servers are partially aware of the uncoded
side information. In [26], the authors present capacity results
when the side information is uncoded and not known to the
servers.

It is worth mentioning that, following the initial version of
this paper in [27] and [28], references [29], [30] generalized
the capacity result from single server to multiple non-colluding
servers (storing replicas of the database). In particular, follow-
ing up the privacy model where the user wants to protect both
the requested message(s) and the side information messages,
the work of [29] characterized the capacity for the multi-server
single-message case, whereas [30] characterized the capacity
for multi-server multi-message case for certain regimes. The
multi-message version of our problem is considered in [31],
[32], and the case of coded side information is considered
in [33]. The work of [34] builds up on the Partition and Code
scheme to design a computationally efficient single-server PIR
scheme with computational privacy guarantees.

Privacy in broadcasting: Another related line of work is
that of private broadcasting in [35], which considers the index
coding setting with multiple users with side information and
a single server. In this setup, the server does know the content
of the side information at the users. The privacy constraint is
to protect the request and side information of a user from the
other users through a carefully designed encoding matrix. In
contrast, the goal of our scheme is to protect the identity of
the requested data from the server. We note that the case in
which the side information is unknown at the server is also
considered in the index coding literature under the name of
blind index coding [36]. However, the goal there is to minimize
the broadcast rate without privacy constraints.

II. PROBLEM FORMULATION

For a positive integer K, denote {1, . . . , K} by [K]. For a set
{X1, . . . , XK} and a subset S ⊆ [K], let XS = {X j : j ∈ S}.
For a subset S ⊆ [K], let 1S denote the characteristic vector of

the set S, which is a binary vector of length K such that, for
all j ∈ [K], its j-th entry is 1 if j ∈ S, otherwise it is 0. Let Fq
denote the finite field of order q. We denote a random variable
with a bold symbol, e.g., X, and its realization without bold
face, e.g., X.

We assume that the database consists of a set of K messages
X[K] = {X1, . . . , XK}, with each message being independently
and uniformly distributed over F2t (i.e., each message X j is t
bits long). We also assume that there are N ≥ 1 non-colluding
servers, which store identical copies of the K messages.

A user is interested in downloading a message XW for some
W ∈ [K]. We refer to W as the demand index and XW as the
demand. The user has the knowledge of a subset XS of the
messages for some S ⊆ [K] \ {W}, |S|= M, M < K. We
refer to S as the side information index set and XS as the side
information.

Let W and S denote the random variables corresponding to
the demand index and the side information index set, respec-
tively. We restrict our attention to the class of distributions
pW(·) of W such that pW(W) > 0 for every W ∈ [K].

An important distribution of W and S that we focus on in
this work is as follows. We assume that the side information
index set S is distributed uniformly over over all subsets of
[K] of size M, i.e.,

pS(S) =

{
1

(K
M)

, if S ⊂ [K], |S|= M,

0, otherwise.
(1)

Further, we assume that the demand index set W has the
following conditional distribution given the side information
index set S:

pW|S(W | S) =
{ 1

K−M , if W ∈ [K] \ S
0, otherwise.

(2)

We note that this implies the following joint distribution on
(W, S):

pW,S(W, S) =

{
1

(K−M)(K
M)

, if W 6∈ S, |S|= M,

0, otherwise.
(3)

Marginalizing (3) over S, it is easy to see that the demand
index W is distributed uniformly over [K], i.e.,

pW(W) =
1
K

, ∀W ∈ [K]. (4)

We assume that the servers do not know the realization of the
user’s side information S, but they know the number of side
information messages M and the a priori distributions pS(S)
and pW|S(W|S).

To download the message XW given the side information
XS, the user sends a query Q[W,S]

j from a finite alphabet Q to
the j-th server. The j-th server responds to the query it receives
with an answer A[W,S]

j over a finite alphabet A. Let Q[W,S]
j

and A[W,S]
j be the corresponding random variables. We refer to

the set of queries and answers as the PIR with side information
(PIR-SI) scheme. Our focus in this paper is on non-interactive
(single round) schemes. Further, we assume that the servers
do not collude with each other.

A PIR-SI scheme should satisfy the following requirements.
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1. For every j ∈ [N], the query Q[W,S]
j to the server j is a

(potentially stochastic) function of W and S4. We assume
that the answer from the server is a deterministic function
of the query and the messages, i.e., for all j ∈ [N],
(W, S) ↔ (Q[W,S]

j , X[K]) ↔ A[W,S]
j forms a Markov

chain, and

H
(

A[W,S]
j | Q[W,S]

j , X[K], W, S
)
= 0. (5)

2. From the answers A[W,S]
1 , . . . , A[W,S]

N , the queries
Q[W,S]

1 , . . . , Q[W,S]
N , and the side information XS, the user

should be able to decode the desired message XW , i.e.,

H
(

XW | A[W,S]
1 , · · · , A[W,S]

N ,

Q[W,S]
1 , · · · , Q[W,S]

N , XS, W, S
)
= 0. (6)

3. The PIR-SI scheme should guarantee privacy for the user
by ensuring one of the following two conditions, referred
to as W-privacy and (W, S)-privacy, as defined below.
Definition 1. W-privacy: No server can infer any infor-
mation about the demand index from the query, answer,
and messages, i.e., for all j ∈ [N], we have

I
(

W ; Q[W,S]
j , A[W,S]

j , X[K]

)
= 0. (7)

Definition 2. (W, S)-privacy: No server can infer any
information about the demand index as well as the
side information index set from the query, answer, and
messages, i.e., for all j ∈ [N], we have

I
(

W, S ; Q[W,S]
j , A[W,S]

j , X[K]

)
= 0. (8)

We refer to a PIR-SI scheme preserving W-privacy or
(W, S)-privacy as W-PIR-SI or (W, S)-PIR-SI scheme,
respectively.

The rate of a PIR-SI scheme is defined as the ratio of the
message length (t bits) to the total length of the answers (in
bits) as follows5:

R =
t

∑
N
j=1 H

(
A[W,S]

j

) . (9)

The capacity of W-PIR-SI or (W, S)-PIR-SI problem, respec-
tively denoted by CW or CW,S, is defined as the supremum
of rates over all W-PIR-SI or (W, S)-PIR-SI schemes for a
given N, K, and M, respectively.

Remark 1. Note that, in general, queries can be a (potentially
stochastic) function of the demand index W, the side informa-
tion index set S, as well as the side information XS. However,
throughout the paper, we assume that queries depend only
on W and S, and are independent of the message values XS.
Characterizing the capacities of W-PIR-SI and (W, S)-PIR-SI
when queries also depend on XS is left as a future work.

4We assume that the queries are independent of the message values XS.
See Remark 1 for details.

5Note that the download rate dominates the total communication rate for
large enough messages.

III. MAIN RESULTS

First, we summarize our main results for the single server
case in Theorems 1 and 2, which characterize the capacity of
W-PIR-SI and (W, S)-PIR-SI problems, respectively.

Theorem 1. For the W-PIR-SI problem with N = 1 server,
K messages, and side information size M, when the demand
index W and the side information index set S are jointly
distributed according to (3), the capacity is

CW =

⌈
K

M + 1

⌉−1
. (10)

Our proof for Theorem 1 is based on two parts. We prove the
converse in Section IV-B for any joint distribution of (W, S).
Then, we construct an achievability scheme in Section IV-C
for the distribution given in (3).

Theorem 2. For the (W, S)-PIR-SI problem with N = 1
server storing K messages and for any arbitrary joint distri-
bution of the demand index W and the side information index
set S such that the size of S is equal to M, the capacity is

CW,S = (K−M)−1. (11)

We begin by showing that the capacity CW,S of the (W, S)-
PIR-SI problem with N = 1 server, K messages, and size
information size M is upper bounded by (K − M)−1 for
any joint distribution of (W, S) (see Section V-A). Then, we
construct a scheme based on maximum distance separable
(MDS) codes, which achieves this bound (see Section V-B).

Second, we state our main result for multiple servers storing
replicas of the database, which gives a lower bound on the
capacity of W-PIR-SI problem based on an achievability
scheme.

Theorem 3. For the W-PIR-SI problem with N servers, each
storing K messages, and side information size M, when the
demand index W and the side information index set S are
jointly distributed according to (3), the capacity is lower
bounded as

CW ≥
(

1 +
1
N

+ · · ·+ 1

Nd
K

M+1 e−1

)−1
. (12)

Our proposed PIR scheme builds up on the scheme in [9],
which is for the case of no side-information.

Remark 2. The capacity of (W, S)-PIR-SI problem with N
servers, each storing K messages, was characterized in [29] as
(1 + 1/N + · · ·+ 1/NK−M−1)−1. Note that this is identical
to the capacity of the PIR problem with N servers, each storing
K − M messages, and no side information (characterized
in [9]). In other words, in the (W, S)-PIR problem, the side
information effectively reduces the size of the database by M
messages (i.e., from K to K−M messages). On the other hand,
our proposed achievability scheme shows that in the W-PIR-SI
problem, the side information reduces the size of the database
by a factor of 1/(M + 1) (i.e., from K to dK/(M + 1)e
messages). Whether this rate is optimal is an open question.
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IV. SINGLE-SERVER W-PIR-SI PROBLEM

Our converse proofs for Theorems 1 and 2 in the single-
server case use the following simple yet powerful observa-
tion6.

Proposition 1. For a W-PIR-SI scheme, given a demand index
W, a side information index set S, and a query Q[W,S], the
following two conditions hold:

1) For each i ∈ [K] \ {W}, there exist a subset Si ⊂
[K] \ {i} with |Si|= M and a decoding function

DQ[W,S]

i such that, for every message set realization
{X1, . . . , XK}, the corresponding answer A[W,S] satis-

fies DQ[W,S]

i

(
A[W,S], XSi

)
= Xi.

2) There exists a decoding function DQ[W,S]

W such that,
for every message set realization {X1, . . . , XK},
the corresponding answer A[W,S] satisfies
DQ[W,S]

W

(
A[W,S], XS

)
= XW .

Proof. The result follows from the decodability require-
ment (6) and the W-privacy requirement (7)7. In particular,
the second condition is implied by the decodability require-
ment (6). Further, observe that the two conditions together
imply that, for each i ∈ [K], there exist a subset Si ⊂ [K] \ {i}
with |Si|= M and a decoding function DQ[W,S]

i satisfying

DQ[W,S]

i

(
A[W,S], XSi

)
= Xi. This is necessary to ensure the

W-privacy requirement (7). Indeed, if this was not the case
for some i, then the server would know that the i-th message
is not requested by the user. Therefore, it holds that

P
(

W = i | Q[W,S] = Q[W,S]
)
= 0, (13)

which, in turn, implies that I
(

W; Q[W,S], A[W,S], X[K]

)
> 0.

This violates the W-privacy condition (7). It is worth noting
that the result holds under the assumption that W has a
distribution such that pW(W) > 0 for each W ∈ [K]. �

The above proposition enables us to show a relation of
the single-server PIR-SI problem with an instance of index
coding with side information problem [37]–[40]. We begin
with briefly reviewing the index coding problem. We refer the
reader to [41] for an excellent recent survey.

A. Index Coding problem

Consider a server with K messages {X1, · · · , XK} with
X j ∈ {0, 1}t for each j ∈ [K]. Consider L clients R1, · · · , RL,
L ≥ K, where for each i ∈ [L], Ri is interested in one
message, denoted by X f (i) ∈ X, and knows some subset XSi
of the other messages, referred to as the side information.
Here, f : [L] → [K] is a function that maps the index of a
client to the index of the client’s requested message. We refer
to I , { f (i), Si : i ∈ [L]} as an instance of the index coding
problem.

6For the single-server case (N = 1), we drop the subscript from the query
and the answer, and denote them, respectively, as Q[W,S] and A[W,S] for any
given demand W and side information set S.

7Note that (W, S)-privacy implies W-privacy. Thus, we consider the W-
privacy requirement without loss of generality.

An index code of length ` for a given instance I is a set
of codewords in {0, 1}` together with an encoding function
EI : {0, 1}tK → {0, 1}`, and a set of L decoding functions
DI

1, · · · , DI
L such that

DI
i

(
EI (X1, · · · , XK) , XSi

)
= X f (i) (14)

for all i ∈ [L]. We refer to EI (X1, · · · , XK) as a solution to the
instance I of the index coding problem. Note that the solution
as well as the decoding functions depend on the instance I.

When L = K and every client requires a distinct message,
the side information of all the clients can be represented by a
simple directed graph G = (V, E), where V = {1, 2, · · · , K}
with vertex i corresponding to the message Xi, and there is
an arc (i, j) ∈ E if j ∈ Si. We denote the out-neighbors of
vertex i as N (i).

For a given instance of the index coding problem, the
minimum encoding length `, as a function of message-length t,
is denoted as βt, and the broadcast rate is defined as (see [38],
[42])

β = inf
t

βt

t
(15)

It is well-known that the broadcast rate can be lower bounded
as follows [37], [41], [43].

Proposition 2. [41, Theorem 5.1] For an index coding
instance with side information graph G, the broadcast rate
β is lower bounded by the size of a maximum acyclic induced
subgraph (MAIS) of G, denoted as MAIS(G)8.

B. Converse for Theorem 1

The key step of the converse is to show that for any scheme
that satisfies the W-privacy constraint (7), the answer from the
server must be a solution to an instance of the index coding
problem that satisfies certain requirements as specified in the
following lemma.

Lemma 1. For a W-PIR-SI scheme, given a demand index
W, a side information index set S, and a query Q[W,S],
for every message set realization {X1, · · · , XK}, the answer
A[W,S] from the server must be a solution to the following
instance of the index coding problem:

1) The instance has the messages X1, · · · , XK;
2) There are K clients such that each client wants to decode

a distinct message from X1, · · · , XK, and possesses a
side information that includes M messages;

3) The client that wants XW has the side information set
XS; for each other client the side information set has
M arbitrary messages from X1, · · · , XK.

Proof. Fix a demand index W, a side information index set S,
and a query Q[W,S]. Now, for each i ∈ [K], there must exist a
subset Si and a decoding function DQ[W,S]

i satisfying the con-
ditions mentioned in Proposition 1. These sets and decoding
functions can be used to construct an instance I of the index

8Note that the size of a graph is the number of its vertices. A MAIS of
a graph G is an acyclic vertex-induced subgraph of G that has the largest
number of vertices amongst all acyclic vertex-induced subgraphs of G.
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coding problem as follows. Let X[K] = {X1, . . . , XK} be an
arbitrary message set realization, and let A[W,S] be the answer
corresponding to X[K] given Q[W,S]. The instance I has the
message set X[K], and K clients {R1, · · · , RK} such that:
• Client RW requires packet XW and has the side informa-

tion set XS; and
• Each other client Ri , i 6= W, requires Xi and has side

information set XSi .
By the construction, the instance I satisfies the three conditions
stated in the statement of the lemma. It remains to show that
A[W,S] is a solution for the instance I. Towards this end, first,
from Proposition 1, for each i ∈ [K] \ {W}, there exist a
subset Si ⊂ [K] \ {i} and a decoding function DQ[W,S]

i such

that DQ[W,S]

i

(
A[W,S], XSi

)
= Xi. Further, there exists a decod-

ing function DQ[W,S]

W such that DQ[W,S]

W

(
A[W,S], XS

)
= XW .

Therefore, each of the K clients can recover their request
from their side information and A[W,S], and thus, A[W,S] is a
solution to the instance I (cf. (14)). This completes the proof.

�

Note that Lemma 1 shows that the answer A[W,S] from
the server must be a solution to an instance of the index
coding problem in which out-degree of every vertex in the
corresponding side information graph G is equal to M. Note
that, since the query Q[W,S] is assumed to be independent
of the message values, in the corresponding instance of the
index coding problem no client obtains any information about
the messages outside of their side information by knowing
Q[W,S]. Next, we lower bound the broadcast rate for an index
coding problem with side information graph G such that out-
degree of every vertex in G is M as follows.

Lemma 2. Consider any instance of the index coding problem
such that the out-degree of every vertex in the corresponding
side information graph G is equal to M. Then, the broadcast
rate of the instance is lower bounded by dK/(M + 1)e.

Proof. For an index coding instance with side information
graph G, the broadcast rate β is lower bounded by the size
of a maximum acyclic induced subgraph (MAIS) of G (see
Proposition 2). We show that for any graph G that satisfies
the conditions of the lemma (i.e., the out-degree of each of
the K vertices of G is M), it holds that

MAIS(G) ≥
⌈

K
M + 1

⌉
.

Specifically, we build an acyclic subgraph of G induced
by a vertex set Z of size at least dK/(M + 1)e, through
the following procedure. Recall that the vertex set of a side
information graph G is denoted by V = {1, . . . , K}, and the
set of out-neighbors of each vertex i ∈ V is represented by
N (i).

1. Set Z = ∅ and a candidate set of vertices V′ = V;
2. Add an arbitrary vertex i ∈ V′ into Z, i.e., Z← Z ∪ {i};
3. Set V′ ← V′ \ (N (i) ∪ {i});
4. There are two cases:

Case 1: If V′ 6= ∅, then repeat Steps 2-4.

Case 2: If V′ = ∅, then terminate the procedure and
return Z.

It is easy to see that the vertices in set Z returned by the
procedure induce an acyclic subgraph of G. More specifically,
if the vertices are ordered in the order they are added to Z,
then there can only be an edge (i, j) if j was added to Z
before i. This implies that the subgraph induced by Z cannot
contain a cycle.

Further, note that the set Z contains at least dK/(M + 1)e
vertices. At each removal step, there are at most M + 1
vertices removed from V. Thus, the procedure iterates at least
dK/(M + 1)e times, and in each iteration we add one vertex
to Z. This implies that the size of Z is at least dK/(M + 1)e,
as was to be shown. �

Corollary 1 (Converse of Theorem 1). For the W-PIR-SI
problem with N = 1 server, K messages, and side information
size M, the capacity is at most dK/(M + 1)e−1.

Proof. Lemmas 1 and 2 imply that the length of the answer
A[W,S] is at least dK/(M + 1)et bits for any given W, S,
and X[K]. Then, by (9), the rate of any W-PIR-SI scheme for
N = 1 server, K messages, and side information size M is
upper bounded by dK/(M + 1)e−1. �

C. Achievability for Theorem 1

In this section, we propose a W-PIR-SI scheme for N =
1 server, K messages, and side information size M, which
achieves the rate dK/(M + 1)e−1. Recall that we assume that
the distribution of the side information index set S and the
conditional distribution of the demand index W given S are
given respectively in (1) and (2). We describe the proposed
scheme, referred to as the Partition and Code PIR-SI scheme,
in the following.

Partition and Code PIR-SI Scheme: Given K, M, W,
and S, denote g , dK/(M + 1)e. The scheme consists of the
following three steps.

Step 1. The user creates a partition of the K messages into
g sets. For the ease of understanding, we describe the special
case of (M + 1) | K first.

(a) Special case of (M + 1) | K: Denote P1 , W ∪ S.
The user randomly partitions the set of messages [K] \ P1 into
g− 1 sets, each of size M + 1, denoted as P2, . . . , Pg.

(b) General case: Let P1, . . . , Pg be a collection of g
empty sets. Note that, although empty at the beginning, once
constructed, the sets P1, . . . , Pg−1 will be of size M + 1,
and the set Pg will be of size K − (g − 1)(M + 1). The
user begins by assigning probabilities to the sets according
to their sizes: the sets P1, . . . , Pg−1 are each assigned a
probability (M + 1)/K, and the set Pg is assigned a prob-
ability (K − (g − 1)(M + 1))/K. Then, the user chooses a
set randomly according to the assigned probabilities of the
sets.

If the chosen set is a set P ∈ {P1, . . . , Pg−1}, then the
user fills the set P with the demand index W and the side
information index set S. Next, it fills the remaining sets
choosing one index at a time from the set of indices of the
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remaining messages uniformly at random until all the message
indices are filled.

If the chosen set is the set Pg, then it fills Pg
with the demand index W, and fills the remaining
K− (g− 1)(M + 1)− 1 places in the set Pg with randomly
chosen elements from the side information index set S. (Note
that once Pg is filled, it is possible that not all of the indices in
the side information index set S are placed in the set.) Next,
it fills the remaining sets by choosing one index at a time
from the set of indices of the unplaced messages uniformly at
random until all message indices are placed.

Step 2. The user sends to the server a uniform random
permutation of the partition {P1, · · · , Pg}, i.e., they send
{P1, · · · , Pg} in a random order.

Step 3. The server computes the answer A[W,S] as a set of
g inner products given by A[W,S] = {AP1 , . . . , APg}, where
AP = [X1, . . . , XK] · 1P for all P ∈ {P1, . . . , Pg}. (Recall that
1P denotes the characteristic vector of the set P.)

Upon receiving the answer from the server, the user decodes
XW by subtracting off the contributions of the side information
XS from AP for some P ∈ {P1, . . . , Pg} such that W ∈ P.

Example 2. Assume that K = 8 and M = 2. Assume that the
user demands the message X2 and has two messages X4 and
X6 as side information, i.e., W = 2 and S = {4, 6}. Following
the Partition and Code PIR-SI scheme, the user labels three
sets as P1, P2, and P3, and assigns probability 3/8 to each
of the two sets P1 and P2, and assigns probability 2/8 to the
set P3. Next, the user chooses one of these sets at random
according to the assigned probabilities. Assume the user has
chosen the set P3. The user then places 2 into the set P3, and
chooses another element from {4, 6} uniformly at random to
place in P3 as well. Say the user chooses 6 from the set {4, 6},
then the set P3 becomes P3 = {2, 6}. Then the user fills the
other sets P1 and P2 randomly to exhaust the elements from
{1, 2, 3, 5, 7, 8}. Say the user chooses P1 = {1, 7, 8} and
P2 = {3, 4, 5}. Then the user sends to the server a random
permutation of {P1, P2, P3} as the query Q[2,{4,6}]. The server
sends three coded messages back to the user: Y1 = X1 +X7 +
X8, Y2 = X3 + X4 + X5, and Y3 = X2 + X6. The user can
decode for X2 by computing X2 = Y3 − X6.

From the server’s perspective the user’s demand is in either
{1, 7, 8} or {3, 4, 5} with probability 3/8 each, or in {2, 6}
with probability 2/8. Given a set Pi, since any message in the
set is equally likely to be the demand, it follows that

P(W = W ′|Q[W,S] = Q[1,{2,3}]) =
1
8
= pW(W ′)

for any W ′ ∈ [K].

In the following, we show that the Partition and Code PIR-
SI scheme satisfies the W-privacy requirement for the setting
in which the user’s side information index set S and demand
index W (given S) are distributed according to (1) and (2),
respectively.

Lemma 3 (Achievability of Theorem 1). Consider the sce-
nario of a W-PIR-SI problem in which:
• The server has messages X[K] = {X1, X2, ..., XK};

• The side information index set S and the demand index
W given the side information index set S follow the
distributions given in (1) and (2), respectively.

In this scenario, the Partition and Code PIR-SI scheme satis-
fies the W-privacy, and has rate R = dK/(M + 1)e−1.

Proof. First, we show that, for the Partition and Code protocol,
we have

H
(

W | Q[W,S], A[W,S], X[K]

)
= H

(
W | Q[W,S]

)
. (16)

To see this, we expand H
(

W, A[W,S], X[K] | Q[W,S]
)

in two
ways as

H
(

W, A[W,S], X[K] | Q[W,S]
)

= H
(

X[K] | Q[W,S]
)
+ H

(
A[W,S] | Q[W,S], X[K]

)
+ H

(
W | Q[W,S], X[K], A[W,S]

)
(17)

= H
(

W | Q[W,S]
)
+ H

(
X[K] | Q[W,S], W

)
+ H

(
A[W,S] | Q[W,S], W, X[K]

)
. (18)

Now, for the Partition and Code PIR-SI scheme, the an-
swer is a deterministic function of the query and the mes-
sage values. Thus, H

(
A[W,S] | Q[W,S], X[K]

)
= 0, and

since conditioning cannot increase the entropy, we also get
H
(

A[W,S] | Q[W,S], W, X[K]

)
= 0. Further, since the de-

mand is independent of the message values, and since the
queries in the Partition and Code protocol are also indepen-
dent of the message values, we have H

(
X[K] | Q[W,S]

)
=

H
(

X[K] | Q[W,S], W
)

= H
(

X[K]

)
. Then, from (17)

and (18), we get the desired result (16).
Next, it follows from (7) and (16) that, to show that the

Partition and Code PIR-SI scheme satisfies the W-privacy, it
suffices to show that

P(W = W ′|Q[W,S] = Q[W,S]) = pW(W ′) =
1
K

,

for any W ′ ∈ [K].
Towards this end, first observe that

P(W ∈ Pi|Q[W,S] = Q[W,S]) =
|Pi|
K

,

which follows from how the user chooses a set that would
contain the demand index. Next, note that for any i ∈ [g], we
have

P(W = W ′|W ∈ Pi , Q[W,S] = Q[W,S])

=

{
1
|Pi |

if W ′ ∈ Pi ,

0 otherwise.
(19)

This is because, given W ∈ Pi, every index in Pi is equally
likely to be the demand by the construction of the sets Pi and
from (1) and (2).
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Thus, for any W ′ ∈ [K], we have

P(W = W ′|Q[W,S] = Q[W,S])

=
g

∑
i=1

P(W = W ′|W ∈ Pi , Q[W,S] = Q[W,S])

× P(W ∈ Pi|Q[W,S] = Q[W,S])

=
1
K

.

This completes the proof of W-privacy.
To compute the rate of the scheme, note that for any feasible

(W, S), we have

H(A[W,S]) = H(AP1 , AP2 , . . . , APg)

=
g

∑
i=1

H(APi )

= g× t,

where the last two equalities follow since the messages X j’s
(and hence the answers AP’s) are independently and uniformly
distributed over F2t . Further, observe that H

(
A[W,S]

)
= g×

t, since H
(

A[W,S]
)

= g × t for all feasible (W, S). Thus,
the Partition and Code PIR-SI scheme has rate

R =
t

g× t
=

1
g
=

⌈
K

M + 1

⌉−1
,

as was to be shown. �

Remark 3. It is easy to see that the Partition and Code
scheme does not protect the desired message index and the
side information index jointly. In fact, the Partition and Code
scheme even leaks some information about user’s side infor-
mation when M ≥ 2. To see this, let P = {P1, P2, · · · , Pg}
be the partition in the query. Let Xi1 ∈ Pi and X j1 ∈ Pj.
Then, the server learns that the user cannot have Xi1 and X j1
together in their side information. On the other hand, it is
easy to see that, when M = 1, the Partition and Code scheme
also protects the side information individually.

Remark 4. It is worth noting that the Partition and Code
scheme is reminiscent of the “clique covering” scheme that
is well-known in the index coding literature, see e.g., [41,
Chapter 6].

V. SINGLE-SERVER (W, S)-PIR-SI PROBLEM

In this section we consider the single-server PIR-SI problem
when (W, S)-privacy is required. We show the proof of
the converse and the achievability for Theorem 2 through a
reduction to an index coding instance and an MDS coding
scheme, respectively.

A. Converse for Theorem 2

Similar to the W-privacy case, the key step of the converse
is to show that for any scheme that satisfies the (W, S)-privacy
constraint (7), the answer from the server must be a solution to
an instance of the index coding problem that satisfies certain
requirements as specified in the following lemma.

Lemma 4. For a (W, S)-PIR-SI scheme, given a demand
index W, a side information index set S, and a query Q[W,S],
for every message set realization X[K] = {X1, · · · , XK}, the
answer A[W,S] from the server must be a solution to the
following instance of the index coding problem:

1) The instance has the messages X1, · · · , XK;
2) There are L = (K − M)(K

M) clients such that each
client wants to decode one message and possesses a
side information set that includes M other messages.

3) For each i ∈ [K], for each Si ⊂ [K] \ {i} such that
|Si|= M, there exists a client that demands Xi and
possesses XSi as their side information.

Proof. Fix a demand index W, a side information index set S,
and a query Q[W,S]. We note that the (W, S)-privacy require-
ment implies that, for each message i ∈ [K] and every set Si ⊆
[K] \ {i} of size M, there exists a decoding function DQ[W,S]

i,Si
,

such that, for every message set realization X[K], the corre-

sponding answer A[W,S] satisfies DQ[W,S]

i,Si

(
A[W,S], XSi

)
= Xi.

Otherwise, for a particular {i, Si}, the server will know that
the user cannot possess the side information Si and demand
the i-th message. Therefore, it holds that

P
(

W = i, S = Si | Q[W,S] = Q[W,S]
)
= 0, (20)

which, in turn, implies that I
(

W, S; Q[W,S], A[W,S], X[K]

)
>

0. This violates the (W, S)-privacy requirement (8).
Now, let X[K] = {X1, . . . , XK} be an arbitrary message

set realization, and let A[W,S] be the answer corresponding to
X given Q[W,S]. Consider an instance I of the index coding
problem as stated in the lemma. For each i ∈ [K], Si ⊂ [K] \
{i}, |Si|= M, a client can use the decoding function DQ[W,S]

i,Si

to decode Xi from their side information XSi and A[W,S]. Thus,
A[W,S] is a solution to the instance I. �

Next, we give a lower bound on the broadcast rate for an
instance satisfying the conditions in Lemma 4.

Lemma 5. For any instance of the index coding problem
satisfying the conditions specified in Lemma 4, the broadcast
rate is at least K−M.

Proof. Let J denote an instance of the index coding problem
satisfying the conditions in Lemma 4. Let J′ be an instance
of the index coding problem with the K messages X[K] =
{X1, · · · , XK} and K − M clients. Each client has the side
information XS and wants to decode one distinct message from
X[K] \ XS. Clearly, a solution to instance J is also a solution
to instance J′. Observe that the side information graph for J′

is acyclic, and thus, the broadcast rate for J′ is at least K−M
from the MAIS lower bound in Proposition 2. This completes
the proof. �

Corollary 2 (Converse of Theorem 2). For the (W, S)-PIR-SI
problem with N = 1 server, K messages, and side information
size M, the capacity is at most (K−M)−1.

Proof. Lemmas 4 and 5 imply that the length of the answer
A[W,S] is at least (K−M)t for any given W, S, and X. Thus,
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by using (9), it follows that the rate of any (W, S)-PIR-SI
scheme is upper bounded by (K−M)−1. �

B. Achievability for Theorem 2

In this section, we give a (W, S)-PIR-SI scheme based on
a maximum distance separable (MDS) code that achieves the
rate of (K−M)−1.

MDS PIR-SI Scheme: Given a demand index W and a side
information index set S of size M, the user queries the server
to send the K − M parity symbols of a systematic (2K −
M, K) MDS code over the finite field F2t . We assume that
t ≥ log2(2K −M), or equivalently, 2t ≥ 2K −M. Thus, it
is possible construct a (2K−M, K) MDS code over F2t . The
answer A[W,S] from the server consists of the K −M parity
symbols.

Lemma 6 (Achievability of Theorem 2). The MDS PIR-
SI scheme satisfies the decodability condition in (6) and
the (W, S)-privacy condition in (8), and it has the rate of
R = (K−M)−1.

Proof. For a (2K − M, K) systematic MDS code, given the
K − M parity symbols and any M out of the K messages,
the user can decode all of the remaining K−M messages as
the code is MDS. Thus, the user can recover their demanded
message.

To ensure the (W, S)-privacy, note that the query and the
answer are independent of the particular realizations of W
and S, but only depend on the size M of the side information
index set. As the server already knows the size of the side
information index set, it does not get any other information
about W and S from the query and the answer. Thus, the MDS
PIR-SI scheme satisfies the (W, S)-privacy requirement.

To compute the rate, note that for any W and S, the answer
A[W,S] of the MDS PIR-SI scheme consists of K−M parity
symbols of a (2K − M, K) systematic MDS code over F2t .
For an MDS code, any parity symbol is a linear combination
of all the messages. Thus, as each message is distributed
independently and uniformly over F2t and the parity symbols
are linearly independent, every parity symbol is also inde-
pendently and uniformly distributed over F2t . Hence, we have
H(A[W,S]) = (K−M)t. Therefore, the rate of the MDS PIR-
SI scheme is R = (K−M)−1. �

VI. W-PIR-SI PROBLEM WITH MULTIPLE SERVERS

In this section, we present a W-PIR-SI scheme, when data is
replicated on multiple non-colluding servers. The rate achieved
by the proposed scheme gives a lower bound on the capacity
of multi-server W-PIR-SI problem. Our scheme builds up on
the scheme proposed by Sun and Jafar in [9], referred to
as the Sun-Jafar protocol, which deals with the case of no
side information (i.e., M = 0). Next, we use an example
to describe the Sun-Jafar protocol. (The details can be found
in [9].)

Example 3. (Sun-Jafar Protocol [9]) N = 2 servers, K = 2
messages, and M = 0, i.e., no side information. The protocol
assumes that each of the messages is t = NK = 4 bits

long. For a message Xi, let [Xi,1, · · · , Xi,t] be a uniform
random permutation of its t bits. The user chooses a random
permutation of the bits of X1, and an independent random
permutation of the bits of X2. Suppose that the user is
interested in downloading X1. Then, they request the bits from
the first server (S1) and the second server (S2) as given in first
(i.e., left) part of Table I. The second (i.e., right) part of Table I
corresponds to the case when the user is interested in X2.

TABLE I
QUERIES FOR THE SUN-JAFAR PROTOCOL FOR N = 2 SERVERS AND
K = 2 MESSAGES (AND NO SIDE-INFORMATION), WHEN THE USER

DEMANDS THE MESSAGE X1 AND X2 , RESPECTIVELY. EACH MESSAGE Xi
CONSISTS OF t = 4 BITS Xi,1 , Xi,2 , Xi,3 , Xi,4 .

S1 S2
X1,1 X1,2
X2,1 X2,2

X1,3 + X2,2 X1,4 + X2,1

S1 S2
X1,1 X1,2
X2,1 X2,2

X2,3 + X1,2 X2,4 + X1,1

Note that the user can decode the four bits of the desired
message from the answers it gets. To ensure privacy, note that
each server is asked for a randomly chosen bit of each message
and a sum of different pair of randomly chosen bits from each
message irrespective of the demand. Therefore, a server cannot
distinguish about which message is requested by the user.

Next, we give an example to outline our proposed scheme
for multi-server PIR-SI before describing it formally.

Example 4. (Multi-Server W-PIR-SI Scheme) N = 2 servers,
K = 4 messages, and M = 1 message as side information.
Our scheme assumes that each message is t = N

K
M+1 = 4 bits

long. The demand is privately chosen by the user, uniformly
at random. The side information set has size M = 1. It is
chosen uniformly at random from the other messages, and is
unknown to the servers.

Consider an instance when the user demands W = 1, and
the side information index set S = {2}. First step is that
the user forms a partition of [K] into g = K/(M + 1) = 2
sets {P1, P2}, where P1 = {1, 2}, and P2 = {3, 4}9. Next,
the user sends a random permutation of {P1, P2} to both the
servers. The user and the servers form two coded messages
X̂1 and X̂2 by taking the sum of the messages indexed by P1
and P2 as follows: X̂1 = X1 + X2 and X̂2 = X3 + X4. The
last step is that the user and the servers apply the Sun-Jafar
protocol using the two coded messages X̂1 and X̂2, such that
the user can download X̂1. The form of the queries is given
in Table I.

From the answers, the user obtains X̂1, from which it can
decode the desired message X1 using the side-information X2.
Note that the privacy property of the Sun-Jafar protocol guar-
antees that no server can distinguish which coded message is
requested by the user. Thus, since the desired coded message
can be either one, and in a coded message, any of the messages
can be the demand, the privacy of the demand index is ensured.

Note that in the above example the proposed scheme
requires to download 6 bits, achieving the rate of 2/3.

9The general procedure for forming the partition is elaborated in the formal
description of the scheme.
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It is shown in [9, Theorem 1] that the capacity of PIR
with N servers and K messages and no side information is
(1+ 1/N + · · ·+ 1/NK−1)−1. Therefore, if the user attempts
to download the demand without using their side information,
then the capacity is (1 + 1/N + 1/N2 + 1/N3)−1 = 8/15,
which is smaller than 2/3.

Next, we describe our W-PIR-SI scheme for N non-
colluding servers storing identical copies of the K messages,
when the user has a side information set of size M. For
the sake of simplicity, here we describe the scheme for the
case (M + 1) | K, and refer the reader to Remark 5 for the
case (M + 1) - K. Suppose the messages are t = NK/(M+1)

bits long. Recall that, for a subset S ⊂ [K], 1S denotes the
characteristic vector of the set S. Let g , K/(M + 1).

Multi-Server W-PIR-SI Scheme: The scheme consists of
the following three steps.

Step 1. Given the demand index W and the side information
index set S, let P1 = W ∪ S. The user randomly partitions the
set of messages [K] \ P1 into g− 1 sets of size M + 1 each,
denoted as {P2, · · · , Pg}.

Step 2. The user sends to all the servers a uniform random
permutation of the partition {P1, · · · , Pg}, i.e., they send
{P1, · · · , Pg} in a random order. Then, the user and the
servers form g coded messages {X̂1, . . . , X̂g}, where X̂i =
[X1, . . . , XK] · 1Pi for i ∈ [g].

Step 3. The user and the N servers utilize the Sun-Jafar
protocol with g coded messages in such a way that the user
can download the message X̂1.

Lemma 7. Consider the scenario of a W-PIR-SI problem in
which:
• The N non-colluding servers store identical copies of K

messages X[K] = {X1, X2, ..., XK};
• The side information index set S and the demand index

W given the side information index set S follow the
distributions given in (1) and (2), respectively.

In this scenario, the multi-server W-PIR-SI scheme satisfies
the W-privacy, and has rate

R =

(
1 +

1
N

+ · · ·+ 1

N
K

M+1−1

)−1

Proof. Since the messages X[K] are uniform and independent,
the coded messages {X̂1, . . . , X̂g} are uniform and indepen-
dent as well. Thus, the rate of the scheme is that of the Sun-
Jafar protocol for N servers and K/(M + 1) messages, which

is given by
(

1 + 1/N + · · ·+ 1/NK/(M+1)−1
)−1

, see [9,
Theorem 1].

To prove the privacy of the scheme, first note that it easy
to show the following, similar to the proof of Lemma 3.

H
(

W | Q[W,S]
j , A[W,S]

j , X[K]

)
= H

(
W | Q[W,S]

j

)
, (21)

for every j ∈ [N]. Next, it follows from (7) and (21) that, to
show the W-privacy, it suffices to show that

P(W = W ′|Q[W,S]
j = Q[W,S]

j ) = pW(W ′) =
1
K

,

for any W ′ ∈ [K] and j ∈ [N].

Towards this end, we note that the Sun-Jafar protocol
protects the privacy of the demanded coded message, i.e., no
server can have any information about which coded message
the user is trying to download. Therefore, from the perspective
of each server, every coded message is equally likely to
include the demanded message. Further, any one of the M+ 1
messages in a coded message is equally likely to be the
demanded message. In other words, for every server j ∈ [N]
and each i ∈ [g], we have

P
(

W ∈ Pi | Q[W,S]
j = Q[W,S]

j

)
=

M + 1
K

,

and

P
(

W = W ′|W ∈ Pi , Q[W,S]
j = Q[W,S]

j

)
=

{
1

M+1 if W ′ ∈ Pi ,
0 otherwise.

(22)

Hence, for any W ′ ∈ [K] and j ∈ [N], we have

P
(

W = W ′|Q[W,S]
j = Q[W,S]

j

)
=

1
K

.

This completes the privacy proof. �

Remark 5. Consider the case (M + 1) - K. Let g ,
dK/(M + 1)e. For this case, we form the partitions
P1, P2, . . . , Pg in Step 1 of the multi-server W-PIR-SI scheme
in the same way as described in Step 1 Case (b) of the Partition
and Code PIR-SI scheme. It is straightforward to adapt the
proof of privacy as in Lemma 7 for this case. Further, it is
easy to see that the rate of the underlying scheme for this case

is
(

1 + 1/N + · · ·+ 1/NdK/(M+1)e−1
)−1

.

It is easy to see that Theorem 3 follows from Lemma 7 and
Remark 5.

VII. CONCLUSION

In this paper we considered the problem of Private In-
formation Retrieval (PIR) with side information (PIR-SI), in
which the user has a priori a subset of the messages at the
server obtained from other sources. The goal of the user is to
download a message, which is not in their side information,
from the server(s) while satisfying a certain privacy constraint.
We considered two types of privacy constraints: W-privacy—
in which the user wants to protect the identity of the demand
(i.e., which message the user wishes to download) from the
server(s); and (W, S)-privacy—in which the user wants to
protect the identities of the demand and the side information
jointly, from the server(s). First, we focused on the case
of single server (i.e., single database). We established the
capacity of single-server PIR-SI problem when (W, S)-privacy
is required for arbitrary distribution of the demand index W
and the side information index set S. In the case of W-
privacy, we established the capacity of single-server PIR-SI
problem for the uniform distribution. Second, we extended
our single-server PIR-SI scheme for W-privacy to the case of
multiple servers (i.e., multiple copies of the database). Our
multi-server PIR-SI scheme uses ideas from our single-server
PIR-SI scheme in conjunction with the no-side-information
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scheme of Sun and Jafar in [9]. The capacity of multi-server
PIR-SI problem under the W-privacy constraint remains open.
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