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Abstract— We extend the notion of locality from the Hamming
metric to the rank and subspace metrics. Our main contribution
is to construct a class of array codes with locality constraints
in the rank metric. Our motivation for constructing such codes
stems from the need to design codes for efficient data recovery
from correlated and/or mixed (i.e., complete and partial) failures
in distributed storage systems. Specifically, the proposed local
rank-metric codes can recover locally fromcrisscross errors and
erasures, which affect a limited number of rows and/or columns
of the storage array. We also derive a Singleton-like upper bound
on the minimum rank distance of (linear) codes withrank-locality
constraints. Our proposed construction achieves this bound for
a broad range of parameters. The construction builds upon
Tamo and Barg’s method for constructing locally repairable codes
with optimal minimum Hamming distance. Finally, we construct
a class of constant-dimension subspace codes (also known as
Grassmannian codes) with locality constraints in the subspace
metric. The key idea is to show that a Grassmannian code with
locality can be easily constructed from a rank-metric code with
locality by using the lifting method proposed by Silvaet al.
We present an application of such codes for distributed storage
systems, wherein nodes are connected over a network that can
introduce errors and erasures.

Index Terms— Codes for distributed storage, locally recover-
able codes, rank-metric codes, subspace codes.

I. INTRODUCTION

DISTRIBUTED storage systems have been traditionally
replicating data over multiple nodes to guarantee reliabil-
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ity against failures and protect the data from being lost [1], [2].
However, the enormous growth of data being stored or com-
puted online has motivated practical systems to employ erasure
codes for handling failures (e.g., [3], [4]). This has galvanized
significant interest in the past few years on novel erasure
codes that efficiently handle node failures in distributed storage
systems. One of the main families of codes that has received
primary research attention islocally repairable codes(LRCs)
– that minimize locality,i.e., the number of nodes participating
in the repair process (see,e.g., [5]–[9]). Almost all the work
in the literature on LRCs has considered block codes under
the Hamming metric.
In this work, we first focus our attention to codes with
locality constraints in the rank metric. LetFqbe the finite
field of sizeq. Codewords of a rank-metric code (also known
as an array code) arem×nmatrices overFq,wheretherank
distance between two matrices is the rank of their difference
[10]–[12]. We are interested in rank-metric codes with locality
constraints. To quantify the requirement of locality under the
rank metric, we introduce the notion ofrank-locality. Wesay
that thei-th column of anm×narray code has(r,δ)rank-
localityif there exists a set (i)ofr+δ−1 columns containing
isuch that the array code formed by deleting the columns
outside (i)for each codeword has rank distance at leastδ.
We say that an m×narray code has(r,δ)rank-locality if
every column has(r,δ)rank-locality.
Our motivation of considering rank-locality is to design
codes that can locally recover fromrank errors and erasures.
Rank-errors are the error patterns such that the rank of the
error matrix is limited. For instance, consider an error pattern
added to a codeword of a binary 4×4 array code as shown
in Fig. 1. Though this pattern corrupts half the bits, its rank
over the binary field is only one. Note that it is not possible
to correct such an error pattern using a code equipped with
the Hamming metric. On the other hand, rank-metric codes
are well known for their ability to effectively correct rank-
errors [12], [13].
Errors and erasures that affect a limited number of rows
and/or columns are usually referred to ascrisscross pat-
terns[12], [13]. (See Fig. 2 for some examples of crisscross
erasures.) Our goal is to investigate codes that canlocally
recover from crisscross erasures (and rank-errors). We note
that crisscross errors (with no locality) have been studied
previously in the literature [12], [13], motivated by applica-
tions in memory chip arrays and multi-track magnetic tapes.

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2006-1030
https://orcid.org/0000-0002-2436-3944
https://orcid.org/0000-0002-5768-5800


KADHEet al.: CODES WITH LOCALITY IN THE RANK AND SUBSPACE METRICS 5455

Fig. 1.  A rank-error pattern of rank one.

Our renewed interest in these types of failures stems from the
fact that they form a subclass ofcorrelated and mixed failures,
see,e.g., [14], [15].
Recent research has shown that many distributed storage

systems suffer from a large number of correlated and mixed
failures [14]–[19]. For instance, a correlated failure of several
nodes can occur due to, say, simultaneous upgrade of a group
of servers, or a failure of a rack switch or a power supply
shared by several nodes [14]–[16]. Moreover, in distributed
storage systems composed of solid state drives (SSDs), it
is not uncommon to have a failed SSD along with a few
corruptedblocksin the remaining SSDs, referred to as mixed
failures [19]–[21]. Therefore, recent research on coding for
distributed storage has also started focusing on correlated
and/or mixed failure models, seee.g., [20], [22]–[28]. Another
potential application for codes with rank-locality is for cor-
recting errors occurring in dynamic random-access memories
(DRAMs). In particular, a typical DRAM chip contains several
internalbanks, each of which is logically organized intorows
andcolumns. Each row/column address pair identifies aword
composed of several bits. Recent studies show that DRAMs
suffer from non-negligible percentage of bit errors, single-row
errors, single-column errors, and single-bank errors [29]–[31].
Using an array code across banks, with a local code for each
bank can be helpful in correcting such error patterns.
In general, our goal is to design and analyze codes that can

locally recoverthe crisscross erasure and error patterns, which
affect a limited number of rows and columns, by accessing a
small number of nodes. We show that a code with(r,δ)rank-
locality can locally repair any crisscross erasure pattern that
affects fewer thanδrows and columns by accessing onlyr
columns. We begin with a toy example to motivate the coding
theoretic problem that we seek to solve.

Example 1.Consider a toy example of a storage system,
such as the one depicted in Fig. 2, consisting of three racks,
each containing four servers. Each server is composed of
several storage nodes which can either be solid state drives
(SSDs) or hard disk drives (HDDs).1We assume that the
storage system is arranged as an array. We refer to the
j -th server as the j -th column, and the set of i -th storage
nodes across all the servers as the i -th row of the storage
array. Given two positive integersδand d such thatδ <d,
our goal is to encode the data in such a way that

1)any crisscross failure affecting at mostδ−1rows and/or
columns of nodes in a rack should be ‘locally’ recover-
able by accessing only the nodes on the corresponding
rack, and

1Many practical storage systems such as Facebook’s ‘F4’ storage system [4]
and all-flash storage arrays such as [32], [33] have similar architecture.

2)any crisscross failure that affects at most d−1rows
and/or columns of nodes in the system should be recov-
erable (potentially by accessing all the remaining data).

Note that the failure patterns of the first kind can occur in
several cases. For example, all the nodes on a server would
fail if, say, the network switch connecting the server to the
system fails. The entire row of nodes might be temporarily
unavailable in certain scenarios, for instance, if these nodes
are simultaneously scheduled for an upgrade. A few locally
recoverable crisscross patterns are shown in Fig. 2 (consider-
ingδ=3). Note that locally recoverable erasures in different
racks can be simultaneously repaired.

Next, we extend the notion of locality from the rank metric
to the subspace distance metric. LetFMq denote the vector
space ofM-tuples overFq. A subspace code is a non-empty set
of subspaces ofFMq. A subspace code in which each codeword
has the same dimension is called a constant-dimension code or
a Grassmannian code (see,e.g., [34], [35]). A useful distance
measure between two spacesUandV, calledsubspace metric,
is defined in [34] asdS(U,V)= dim(U)+dim(V)−
2dim(U∩V). To define the notion of subspace-locality,
we need to to choose an ordered basis for every codeword
subspace. For a Grassmannian code, we say that thei-th basis
vector has(r,δ)subspace-locality, if there exists a set (i)of
basis vectors of size at mostr+δ−1suchthat (i)contains
iand the code obtained by removing the basis vectors outside
(i)for each codeword has subspace distance at leastδ.
We say that a Grassmannian code has(r,δ)subspace-locality
if every basis vector has(r,δ)subspace-locality.
Grassmannian codes play an important role in correcting
errors and erasures (rank-deficiencies) in non-coherent linear
network coding [34], [36]. We present an application of the
proposed novel Grassmannian codes with locality for down-
loading partial data and repairing failed nodes in a distributed
storage system, in which the nodes are connected over a
network that can introduce errors and erasures. The locality
is useful when a user wants to download partial data by
connecting to only a small subset of nodes, or while repairing
a failed storage node over the network (see Sec. VI-D).
Our Contributions: First, we introduce the notion of

locality in rank metric. Then, we establish a tight upper bound
on the minimum rank distance of codes with(r,δ)rank-
locality. We construct a family ofoptimalcodes which achieve
this upper bound. Our approach is inspired by the seminal
work by Tamo and Barg [9], which generalizes Reed-Solomon
code construction to obtain codes with locality. We generalize
the Gabidulin code construction [11] to design codes with
rank-locality. In particular, we obtain codes as evaluations of
specially constructedlinearized polynomialsover an extension
field, and our codes reduce to Gabidulin codes if the locality
parameterrequals the code dimension. We also characterize
various erasure and error patterns that the proposed codes with
rank-locality can efficiently correct.
Second, we extend the notion of locality to the subspace
metric. Then, we consider a method to construct Grass-
mannian codes byliftingrank-metric codes (proposed by
Silvaet al.[37]), and show that a Grassmannian code obtained
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Fig. 2.  Our motivation is to study codes for distributed storage systems that can locally recover from correlated and/or mixed failures, with particular focus
on their subclass called crisscross failures. A crisscross failure pattern affects a limited number of rows and/or columns. For example, a few instances of
crisscross failures affecting two rows and/or columns are depicted in the figure. We study rank-metric codes with local recoverability property as follows: any
crisscross failure pattern that affects fewer thanδrows and/or columns of a rack can be locally recovered by accessing only the nodes in the same rack.

by lifting an array code with rank-locality possesses subspace-
locality. This enables us to construct a novel family of Grass-
mannian codes with subspace-locality by lifting the proposed
rank-metric codes with rank-locality. Finally, we highlight
an application of codes with subspace-locality in networked
distributed storage systems.

II. PRELIMINARIES

A. Notation

We use the following notation. For an integer l,[l] =
{1,2,...,l}. For a vectorx,wt(x)denotes its Hamming
weight,i.e.,wt(x)=|{i:x(i)=0}|. The transpose, rank and
column space of a matrixHis denoted byHT,rank(H),and
H, respectively. The linear span of a set of vectorsx1,...,xk
is denoted byx1,...,xk. We define the reduced column
echelon form (RCEF) of a matrixH, denoted byrcef(H),
as the transpose of the reduced row echelon form ofHT.
In other words, one first performs row operations onHTto
transform it to the reduced row echelon form, and then takes
its transpose to obtainrcef(H).
LetCdenote a linear(n,k)code overFqwith block-

lengthn, dimensionk, and minimum distancedmin(C).
For instance, under Hamming metric, we havedmin(C)=
minci,cj∈C,ci=cjwtci−cj. Given a length-nblock codeC
and a setS⊂[n],letC|Sdenote the restriction ofCon the
coordinates inS. Equivalently,C|Sis the code obtained by
puncturingCon[n]\S.
Recall that, for Hamming metric, the well known Singleton

bound gives an upper bound on the minimum distance of an
(n,k)codeCasdmin(C)≤n−k+1. Codes which meet
the Singleton bound are called maximum distance separable
(MDS) codes (see,e.g., [38]).

B. Codes With Locality

Locality of a code captures the number of symbols partic-
ipating in recovering a lost symbol. In particular, an(n,k)
code is said to have localityrif every symbol is recoverable
from a set of at mostrother symbols. For linear codes with
locality, alocalparity check code of length at mostr+1is

associated with every symbol. The notion of locality can be
generalized to accommodatelocal codesof larger distance as
follows (see [39]).

Definition 1(Locality).An(n,k)codeCis said to have(r,δ)
locality, if for every coordinate i∈[n], there exists a set of
indices (i)such that

1)i∈ (i),
2)|(i)|≤r+δ−1, and
3)dmin C|(i)≥δ.

The codeC|(i)is said to be the local code associated with
the i -th coordinate ofC.

Properties 2 and 3 imply that for any codeword inC,the
values in (i)are uniquely determined by anyrof those
values. Under Hamming metric, the(r,δ)locality allows one
tolocallyrepair anyδ−1 erasures inC|(i),∀i∈[n],
by accessing at mostrother symbols. Whenδ=2, the above
definition reduces to the classical definition of locality pro-
posed by Gopalanet al.[6], wherein any one erasure can be
repaired by accessing at mostrother symbols.
The Singleton bound can be generalized to accommodate
locality constraints. In particular, the minimum Hamming
distance of an(n,k)codeCwith(r,δ)locality is upper
bounded as follows (see [40, Th. 21], also [39, Th. 2] for
linear codes):

dmin(C)≤n−k+1−
k

r
−1 (δ−1). (1)

III. CODESWITHRANK-LOCALITY

A. Rank-Metric Codes

LetFm×nq be the set of allm×nmatrices overFq.The
rank distanceis a distance measure between elementsAand
BofFm×nq ,definedasdR(A,B)=rank(A−B). It can be
shown that the rank distance is indeed a metric [11]. A rank-
metric code is a non-empty subset ofFm×nq equipped with the
rank distance metric (see [10]–[12]). Rank-metric codes can
be considered as array codes or matrix codes.
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The minimum rank distance of a codeCis given as

dR(C)= min
Ci,Cj∈C,Ci=Cj

dR Ci,Cj.

We refer to a linear code C⊂Fm×nq with cardinality|C| =

(qm)kand minimum rank distancedas an(m×n,k,d)code.
The Singleton bound for the rank metric (see [11]) states
that every rank-metric code with minimum rank distanced
must satisfy

|C|≤qmax{n,m}(min{n,m}−d+1).

Codes that achieve this bound are called maximum rank
distance (MRD) codes.
A minimum distance decoder for a rank-metric code

C⊆Fm×nq takes an arrayY∈Fm×nq and returns a codeword
X∈Cthat is closest toYin rank distance. In other words,

X=arg min
X∈C
rankY−X . (2)

Typically, rank-metric codes are considered by leveraging
the correspondence betweenFm×1q and the extension field
Fqm ofFq. In particular, by fixing a basis forFqm as an
m-dimensional vector space overFq, any element ofFqm can
be represented as a length-mvector overFq. Similarly, any
length-nvector overFqm can be represented as anm×n
matrix overFq. The rank of a vectora∈F

n
qm is the rank

of the correspondingm×nmatrix AoverFq. Thisrank
does not depend on the choice of basis forFqm overFq.This
correspondence allows us to view a rank-metric code inFm×nq
as a block code of lengthnoverFqm. Further, when viewed as
a block code overFqm,an(m×n,k,d)MRD code (overFq)
is an[n,k,d]MDS code (overFqm), and hence can correct
anyn−k column erasures.
Gabidulin [11] presented a construction of a class of MRD

codes form≥n. The construction is based on the evaluation
of a special type of polynomials calledlinearized polynomials.
We present a brief review of linearized polynomials and
Gabidulin construction in Appendix A.

B. Locality in the Rank Metric

Recall from Definition 1 that, for a codeCwith(r,δ)
locality, thelocal codeC|(i)associated with thei-th symbol,
i∈[n], has minimum distance at leastδ. We are interested
in rank-metric codes such that the local code associated with
every column should be a rank-metric code with minimum
rank distance guarantee. This motivates us to generalize the
concept of locality to that ofrank-localityas follows.

Definition 2 (Rank-Locality).An(m×n,k)rank-metric
code C is said to  have(r,δ)rank-locality, if for
every column i ∈ [n], there exists a set of columns
(i)⊂[n]such that

1)i∈ (i),
2)|(i)|≤r+δ−1, and
3)dR C|(i)≥δ,

whereC|(i)is the restriction ofCon the columns indexed by
(i). The codeC|(i)is said to be the local code associated
with the i -th column. An(m×n,k)rank-metric code with

minimum distance d and(r,δ)locality is denoted as an(m×
n,k,d,r,δ)rank-metric code.

As we will see in Section V, the(r,δ)-rank-locality allows
us to repair any crisscross erasure pattern ofweightδ−1in
C|(i),∀i∈[n],locallyby accessing the symbols ofC|(i).

C. Upper Bound on Rank Distance

It is easy to find the Singleton-like upper bound on the
minimum rank distance for codes with rank-locality using the
results in the Hamming metric.

Theorem 1.For a rank-metric codeC⊆Fm×nq of cardinality

qmkwith(r,δ)rank-locality, we have

dR(C)≤n−k+1−
k

r
−1 (δ−1). (3)

Proof:Note that by fixing a basis forFqmas a vector space
overFq, we can obtain a bijectionφ:Fqm→ F

m×1
q . This can

be extended to a bijectionφ:Fnqm → F
m×n
q . Then, for any

vectorc∈Fnqm, there is a corresponding matrixC∈F
m×n
q

such thatC=φ(c). For any such vector-matrix pair, we have

rank(C)≤wt(c). (4)

An (m×n,k,d)rank-metric codeCoverFq can be
considered as a block code of lengthnoverFqm, denoted
asC. From (4), it follows thatdR(C)≤dmin C. Moreover,
it follows that, ifChas(r,δ)rank-locality, then the correspond-
ing codeCpossesses(r,δ)locality in the Hamming metric.
Therefore, an upper bound on the minimum Hamming distance
of an(n,k,d)-LRCCwith(r,δ)locality is also an upper
bound on the rank distance of an(m×n,k,d)rank-metric
code with(r,δ)rank-locality. Hence, (3) follows from (1).

IV. A CLASS OFOPTIMALCODESWITHRANK-LOCALITY

A. Code Construction

We build upon the construction methodology of Tamo and
Barg [9] to construct codes with rank-locality that are optimal
with respect to the rank distance bound in (3).2In particular,
the codes are constructed as the evaluations of specially
designed linearized polynomials3on a specifically chosen set
of points ofFqm. The detailed construction is as follows. For

notational convenience, we writexq
i
=x[i].

Construction 1 ((m×n,k,r,δ)rank-metric code).Let
m,n,k,r,andδbe positive integers such that r|k,(r+
δ−1)|n, and n|m. Defineµ :=n/(r+δ−1). Fix
q≥2to be a power of a prime. LetA={α1,...,αr+δ−1}
be a basis ofFqr+δ−1 as a vector space overFq, and

B = β1,...,βµ be a basis ofFqn as a vector space
overFqr+δ−1. Define the set of n evaluation points P=

P1∪ ··· ∪Pµ, where Pj= αiβj,1≤i≤r+δ−1 for
1≤ j≤µ. To encode the messagem ∈Fkqm, denoted as

2We present a detailed comparison of our construction with that of [9]
in Sec. IV-B.
3We refer the reader to Appendix A for a brief review of linearized
polynomials and Gabidulin code construction.



5458 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

m = mij:i=0,...,r−1;j=0,...,
k
r−1, define the

encoding polynomial

Gm(x)=

r−1

i=0

k
r−1

j=0

mijx
[(r+δ−1)j+i]. (5)

The codeword formis obtained as the vector of the evalu-
ations of Gm(x)at all the points of P. In other words, the
linear codeCLocis constructed as the following evaluation
map:

Enc:Fkqm→ F
n
qm

m→ {Gm(γ ), γ∈P}. (6)

Therefore, we have

CLoc= (Gm(γ ), γ∈P)|m∈F
k
qm . (7)

The(m×n,k)rank-metric code is obtained by considering
the matrix representation of every codeword obtained as above
by fixing a basis ofFqm overFq. We denote the followingµ
codes as the local codes.

Cj= Gm(γ ), γ∈Pj|m∈F
k
qm ,1≤j≤µ. (8)

Remark 1(Field Size).It is worth mentioning that, as in the
construction of Gabidulin codes of length n overFqm [11],
it is required that m≥n. Note that, it is sufficient to choose
m=n and q=2in our construction. In other words, when
considered as a block code of length-n, the field size of2nis
sufficient for the proposed code construction.

In the following, we show that Construction 1 gives codes
with rank-locality, which are optimal with respect to the
rank distance bound in Theorem 1. In the proof, we use
some properties of linearized polynomials which are listed in
Appendix A. We begin with the two key lemmas that will be
used in the proof. The following lemma will be used to prove
the rank distance optimality.

Lemma 1.The n evaluation points given in Construction 1,
P= αiβj,1≤i≤r+δ−1,1≤j≤µ, are linearly inde-
pendent overFq.

Proof: Suppose, for contradiction, that the evalua-
tion points are linearly dependent overFq. Then, we have
µ
j=1

r+δ−1
i=1 ωijαiβj = 0 with coefficientsωij ∈ Fq

such that not allωij’s are zero. We can write the linear

dependence condition as
µ
j=1

r+δ−1
i=1 ωijαi βj=0. Now,

from the linear independence of theβj’s overFqr+δ−1,wehave
r+δ−1
i=1 ωijαi=0 for each 1≤j≤µ.However,astheαi’s

are linearly independent overFq,wehaveeveryωij=0. This
is a contradiction.
Next, we present a lemma that will be used to prove

the rank-locality for the proposed construction. Towards this,

defineH(x)=xq
r+δ−1−1=x[r+δ−1]−1. We note that (5) can

be written in the following form usingH(x):

Gm(x)=

r−1

i=0

Gi(x)x
[i], (9)

where

Gi(x)=mi0+

k
r−1

j=1

mij[H(x)]
j−1
l=0q

(r+δ−1)l+i
. (10)

To see this, observe that

[H(x)]
j−1
l=0q

(r+δ−1)l+i
= xq

r+δ−1−1
j−1
l=0q

(r+δ−1)l+i

=x
j−1
l=0q

(r+δ−1)(l+1)+i−
j−1
l=0q

(r+δ−1)l+i

=xq
(r+δ−1)j+i−qi. (11)

Now, using (11) in (10), we get

Gi(x)=mi0+

k
r−1

j=1

mijx
[(r+δ−1)j+i]−[i]. (12)

Then, substituting (12) into (9) gives us (5).
Next, we prove thatH(x)is constant on all points ofPj
for each 1≤j≤µ.

Lemma 2.Consider the partition of the set of evaluation
points given in Construction 1 as P=P1∪···∪Pµ,where
Pj= αiβj,1≤i≤r+δ−1. Then, H(x)is constant on
all evaluation points of any set Pjfor1≤j≤µ.

Proof: Note that H(βjαi) = βjαi
[r+δ−1]−1

=

β[r+δ−1]−1j α[r+δ−1]−1i =β[r+δ−1]−1j , where the last equality

follows fromαi∈Fqr+δ−1\{0}. Thus,H(ω)=β
[r+δ−1]−1
j ,

for allω∈Pj,1≤j≤µ.
Now, we use Lemmas 1 and 2 to prove the rank-locality
and rank distance optimality of the proposed construction.

Theorem 2. Construction 1 gives a linear(m×n,k,d)
rank-metric codeCLocwith(r,δ)rank-locality such that the
minimum rank distance d is equal to the upper bound given
in(3).

Proof: We begin with showing the rank distance opti-
mality of CLoc. Lemma 1 asserts thatCLocis obtained as
the evaluations ofGm(x)onnpoints ofFqm that are lin-
early independent overFq. Combining this with the structure
ofGm(x)(see (5)),CLoccan be considered as a subcode
of an n,k+ k

r−1(δ−1) Gabidulin code (cf.(31) in

Appendix A). Hence,dR(CLoc)≥n−k+1−
k
r−1(δ−1).

This shows thatdR(CLoc)attains the upper bound (3) in
Theorem 1, and thus, the proposed construction is optimal
with respect to rank distance.4

Second, we show thatCLochas(r,δ)rank-locality. Towards
this, we want to show thatdR Cj≥δfor every local codeCj,
1≤j≤µ.Letγ∈Pjand define therepair polynomialas

Rj(x)=

r−1

i=0

Gi(γ )x
[i], (13)

whereGi(·)is defined in (10). We show thatCjcan be
considered as obtained by evaluatingRj(x)on the points
ofPj.

4In Appendix B, we present an alternative proof from first principles using
the properties of linearized polynomials.
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From (10), observe thatGi(x)is a linear combination of
powers ofH(x). From Lemma 2,H(x)is constant onPj.
Therefore,Gi(x)is also constant onPj.Inother words,
we have

Gi(γ )=Gi(λ), ∀γ,λ∈Pj, (14)

for every 0≤i≤r−1.
Moreover, when evaluating Rj(x)inλ∈Pj,weget

Rj(λ)=

r−1

i=0

Gi(γ )λ
[i]=

r−1

i=0

Gi(λ)λ
[i]=Gm(λ). (15)

Hence, the evaluations of the encoding polynomialGm(x)and
the repair polynomialRj(x)on points inPjare identical.
Therefore, we can consider thatCjis obtained by evaluating
Rj(x)on points ofPj. Now, since points ofPjare linearly
independent overFq,andRj(x)is a linearized polynomial
ofq-degreer−1,Cjcan be considered as a(r+δ−1,r)
Gabidulin code (cf.(31) in Appendix A). Thus,Cjis an MRD
code, and we havedR Cj=δ, which proves the rank-locality
of the proposed construction.5

We note that, in Construction 1, we assume that(r+δ−1)|
n. Generalizing the construction when(r+δ−1)ndoes not
seem to be straightforward, and it is left as a future work.
Next, we present an example of an(9×9,4)rank-metric
code with(2,2)rank-locality. We note that the code presented
in this example satisfies the correctability constraints specified
in the motivating example (Example 1) in the Introduction
section.

Example 2.Let n=9,k=4,r=2,δ=2.Setq=2and
m=n. Letωbe the primitive element ofF29with respect to
the primitive polynomial p(x)=x9+x4+1. Note thatω73

generatesF23,asω
737=1. ConsiderA={1,ω73,ω146}

as a basis forF23overF2. WeviewF29as an extension field
overF23considering the irreducible polynomial p(x)=x

3+
x+ω73. It is easy to verify thatω309is a root of p(x), and
thus,B={1,ω309,ω107}forms a basis ofF29overF23. Then,
the evaluation points P and their partitionPis as follows.

P= P1={1,ω
73,ω146},P2={ω

309,ω382,ω455},

P3={ω
107,ω180,ω253}.

Letm=(m00,m01,m10,m11)∈F
4
29
be the information

vector. Define the encoding polynomial (as in(5)) as follows.

Gm(x)=m00x
[0]+m01x

[3]+m10x
[1]+m11x

[4].

The codewordcfor the information vectormis obtained as the
evaluation of the polynomial Gm(x)at all the points of P. The
codeCis the set of codewords corresponding to allm∈F4

29
.

From Lemma 1, the evaluation points are linearly indepen-
dent overF2, and thus,Ccan be considered as a subcode of
a(9,5)Gabidulin code (cf.(31)). Thus, dR(C)=5,whichis
optimal with respect to(3).

5We note that the result dR(C)≥ δalso follows from Lemma 5 in
Appendix B, which is proved from first principles using the properties of
linearized polynomials.

Now, consider the local codesCj,1≤ j≤3.Itiseasy
to verify thatCjcan be obtained by evaluating the repair
polynomial Rj(x)on Pjgiven as follows (see(13)).

R1(x)=(m00+m01)x
[0]+(m10+m11)x

[1],

R2(x)=(m00+ω
119m01)x

[0]+(m10+ω
238m11)x

[1],

R3(x)=(m00+ω
238m01)x

[0]+(m10+ω
476m11)x

[1].

For instance, let the message vector bem=(ω, ω2,ω4,ω8).
Then, the codeword is

c=(ω440,ω307,ω81,ω465,ω11,ω174,ω236,ω132,ω399).

One can easily check that evaluating R1(x)on P1gives
c1=(ω

440,ω307,ω81), evaluating R2(x)on P2givesc2=
(ω465,ω11,ω174), and evaluating R3(x)on P3givesc3=
(ω236,ω132,ω399).
This implies that the local codeCj,1≤ j≤3, can be
considered as obtained by evaluating a linearized polynomial
of the form Rj(x)=m0x

[0]+m1x
[1]on three points that are

linearly independent overF2. Hence,Cjis a Gabidulin code
of length 3 and dimension 2, which gives dR Cj =2.This
shows thatChas(2,2)rank-locality.

B. Comparison With Tamo and Barg [9]

The key idea in [9] is to construct codes with locality
as evaluations of a specially designed polynomial over a
specifically chosen set of elements of the underlying finite
field. To point out the similarities and differences, we briefly
review Construction 8 from [9]. We assume thatr|k,and
(r+δ−1)|n.
Construction 8 from [9]:LetP={P1,...,Pµ},µ=

n/(r+δ−1), be a partition of the setP⊂Fq,|P| =n,
such that|Pi| =r+δ−1, 1≤i≤µ.Leth∈Fq[x]be a
polynomial of degreer+δ−1, called thegood polynomial,
that is constant on each of the setsPi. For an information
vectorm∈Fkq, define the encoding polynomial

gm(x)=

r−1

i=0

⎛

⎜
⎝

k
r−1

j=0

mijh(x)
j

⎞

⎟
⎠x

i.

The codeCis defined as the set ofn-dimensional vectors

C= (gm(γ ), γ∈P)|m∈F
k
q .

The authors show thath(x)=xr+δ−1can be used as a
good polynomial, when the evaluation points are cosets of a
multiplicative subgroup ofF∗qof orderr+δ−1. In this case,
we can writegm(x)as

gm(x)=

r−1

i=0

k
r−1

j=0

mijx
(r+δ−1)j+i. (16)

Therefore, C can be considered as a subcode of an
n,k+ k

r−1(δ−1) Reed-Solomon code. In addition,

local codesCj= gm(γ ), γ∈Pj|m∈F
k
q,1≤ j≤µ,

can be considered as(r+δ−1,r)Reed-Solomon codes.
In our case, the codeCLocobtained from Construction 1

can be considered as a subcode of an,k+ k
r−1(δ−1)
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Gabidulin code. Further, the local codesCj,1≤ j≤ µ,
can be considered as(r+δ−1,r)Gabidulin codes. In fact,
as one can see from the proof of Theorem 2, we implicitly use
H(x)=x[r+δ−1]−1as the good polynomial, which evaluates
as a constant on all points ofPjfor 1≤ j≤ µgiven
in Construction 1. It is worth mentioning that (16) and (5)
turn out to beq-associates of each other; see Definition 8 in
Appendix A.

C. Comparison With Silberstein et al. [41]

In [41] (see also [40]), Silbersteinet al.have presented a
construction of LRC codes based on rank-metric codes. The
idea is to first precode the information vector with an(rµ,k)
Gabidulin code overFqm. The symbols of the codeword are
then partitioned intoµsetsC1,...,Cµof sizereach. For each
setCj,an(r+δ−1,r)Reed-Solomon code overFqis used
to obtainδ−1 local parities, which together with the symbols
ofCjform the codeword of a local codeCj. This ensures that
each local code has minimum distanceδ. However, it does not
guarantee that the minimum rank distance of a local code is
at leastδ.
In fact, for anyc∈Cj,1≤j≤µ,wehaverank(c)≤r,
as the local parities are obtained via linear combinations over
Fq.Clearly,whenδ>r, the construction cannot achieve rank-
locality. Moreover, even ifδ≤r, it is possible to have a
codewordc∈Cjsuch thatrank(Ci)<δfor some local code
Cj. Therefore, in general, the construction of [41], that uses
Gabidulin codes as outer codes, does not guarantee that the
codes possess rank-locality.
On the other hand, our construction can be viewed as a

method to design (n,k)linear codes overFqm with(r,δ)
locality (under the Hamming metric). For the construction
in [41], the field size ofqnis sufficient forq≥r+δ−1
whenδ >2, while one can choose anyq≥2 whenδ=2.
When our construction is used to obtain LRCs, it is sufficient
to operate over the field of size 2n.

V. CORRECTIONCAPABILITY OFCODES
WITHRANK-LOCALITY

Suppose the encoded data is stored on anm×narrayC
using an(m×n,k,d,r,δ)rank-metric codeCoverFq.Our
goal is to characterize the class of (possibly correlated) mixed
erasure and error patterns corresponding to column and row
failures ofCthatCcan correct locally or globally.

Remark 2.In this section, we assume that the columns of an
(m×n,k,r,δ)rank-metric codeCcan be partitioned into
µ :=n/(r+δ−1)disjoint sets C1,...,Cµ each of size
r+δ−1such that, for all i∈Cj, (i)=Cj.Inother
words, we assume that the local codes associated with the
columns have disjoint coordinates. Note that the proposed
Construction 1 satisfies this assumption.

We begin with the notion of crisscross weight of an erasure
pattern. LetE=[ei,j]1≤i≤m,1≤j≤nbe anm×nbinary matrix
that specifies the location of the erased symbols ofC, referred
to as an erasure matrix. In particular,eij=1ifthe(i,j)-th
entry ofC is erased, otherwiseeij = 0. For simplicity,

we denote the erasure pattern byEitself. We denote byE(Cj)
ther+δ−1 columns ofEcorresponding to the local arrayCj,
and we refer toE(Cj)as the erasure pattern restricted to the
local arrayCj. We first consider the notion of acoverofE,
which is used to define the crisscross weight ofE(see [12],
also [13]).

Definition 3(Cover ofE).([12]) A cover of an m×nmatrix
E is a pair(X,Y)of sets X⊆[m],Y⊆[n], such that
eij= 0 ⇒ ((i∈X)or(j∈Y))for all1≤i≤m,
1≤ j≤ n. The size of the cover(X,Y)is defined as
|(X,Y)|=|X|+|Y|.

We define the crisscross weight of an erasure pattern as the
crisscross weight of the associated binary matrixEdefined as
follows.

Definition 4(Crisscross weight ofE).([12]) The crisscross
weight of an erasure pattern E is the minimum size|(X,Y)|
over all possible covers(X,Y)of the associated binary matrix
E. We denote the crisscross weight of E aswtc(E).

Note that a minimum-size cover of a given matrixEis
not always unique. Further, the minimum size of a cover of
a binary matrix is equal to the maximum number of 1’s that
can be chosen in that matrix such that no two are on the same
row or column [42, Th. 5.1.4].
LetE =[ei,j]1≤i≤m,1≤j≤n ∈ F

m×n
q bea matrixthat

specifies the location and values of errors occurred in the
array, referred to as an error matrix. Specifically,ei,j∈Fq
denotes the error at thei-throwandthej-th column. If there
is no error,ei,j=0. We assume that for every 1≤i≤m,

1≤ j≤n, such thatei,j=1, we haveei,j=0. In other
words, the value of the error is zero at a location where
an erasure occurs. We denote byE(Cj)ther+δ−1
columns ofE corresponding to the local arrayCj,and we
refer toE(Cj)as the error pattern restricted to the local
arrayCj.
Now, we characterize erasure and error patterns that C
can correct locally or globally. Towards this, define a binary
variableδjfor 1≤j≤µas follows.

δj=
1if2rankE(Cj)+wtcE(Cj)≤δ−1,

0 otherwise.
(17)

Recall that, for simplicity, we assume that the local codes
associated with columns are disjoint in their support. We note
that the proposed construction indeed results in disjoint local
codes.

Proposition 1.LetCbe an(m×n,k,d)rank-metric code with
(r,δ)rank-locality. LetCj,1≤j≤µ, be the j -th local(r+
δ−1,r,δ)rank-metric code, and let Cjbe the corresponding
local array. Consider erasure and error matrices E and E.
The codeCjis guaranteed to correct the erasures E(Cj)and
errors E(Cj)by accessing the unerased symbols only from
Cjprovided

2rankE(Cj)+wtc E(Cj)≤δ−1. (18)
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Fig. 3.  An example of a 9×9 bit array. When an erasure pattern affects
a single row or column in a local array, it should be corrected locally.
Further, any erasure pattern that is confined to at most four rows or columns
(or both) should be globally correctable. In the example above, locally
correctable erasures are denoted as ‘?’, while globally correctable erasures
are denoted as ‘??’.

Further, the codeCis guaranteed to correct E and Eprovided

2rankE +wtc(E)

−

µ

j=1

δj2rankE(Cj)+wtc E(Cj) ≤d−1, (19)

whereδjis defined in(17).

Proof: The proof essentially follows from the fact that
a rank-metric codeCof rank distancedcan correct any
erasure patternEand error patternEsuch that 2rankE +
wtc(E)≤ d−1. To see this, consider a minimum-size
cover(X,Y)ofE. Delete the rows and columns indexed
respectively byXandYin all the codeword matrices ofC
as well as fromE to obtainE. The resulting array code
composed of matrices of sizem−|X|×n−|Y|has rank
distance at leastd−wtc(E). This code can correct any
error patternE such thatrankE ≤(d−wtc(E)−1)/2
using the minimum distance decoder (cf. (2)). This immedi-
ately gives (18). First correcting erasures and errors locally
usingCjfor each 1≤ j≤µ, and then globally usingC
yields (19).

Example 3.Suppose the data is to be stored on a9×9bit
array C using the(9×9,5,5,2,2)rank-metric code discussed
in Example 2. Note that the first three columns of C form the
first local array C1, the next three columns form the second
local array C2, and the remaining three columns form the
third local array C3. The encoding satisfies the correctability
constraints mentioned in Example 1. We give an example
of the erasure pattern that is correctable in Fig. 3, where
locally correctable erasures are denoted as ‘?’, while globally
correctable erasures are denoted as ‘??’.

Remark 3.In Proposition 1, we only characterize the erasure
patterns that are locally or globally correctable. It is inter-
esting to consider efficient decoding algorithms on the lines
of [43], [44].

Remark 4.We note that an(m×n,k,d,r,δ)code may correct
a number of erasure patterns that are not covered by the
class mentioned in Proposition 1. This is analogous to the
fact that an LRC can correct a large number of erasures

beyond minimum distance. In fact, the class of LRCs that
have the maximum erasure correction capability are known as
maximally recoverable codes (see [24]). Along similar lines,
it is interesting to extend the notion of maximal recoverability
for the rank metric and characterize all the erasure patterns
that an(m×n,k,d,r,δ)rank-metric code can correct.

VI. CODESWITHSUBSPACE-LOCALITY

A. Subspace Codes

We briefly review the ideas of subspace codes introduced
in [34]. The set of all subspaces ofFMq, called theprojective
spaceof orderMoverFq, is denoted byPq(M).Thesetof
alln-dimensional subspaces ofFMq, called aGrassmannian,
is denoted byGq(M,n), where0≤ n≤ M. Note that
Pq(M)=∪

M
n=0Gq(M,n).

In [34], the notion ofsubspace distancewas introduced. Let
U,V∈Pq(M). The subspace distance betweenUandVis
defined as

dS(U,V)=dim(U)+dim(V)−2dim(U∩V).(20)

It is shown in [34] that the subspace distance is indeed a metric
onPq(M).
Asubspace codeis a non-empty subset ofPq(M)equipped
with the subspace distance metric [34]. The minimum sub-
space distance of a subspace code ⊆Pq(M)is defined as

dS()= min
Vi,Vj∈ ,Vi=Vj

dS Vi,Vj. (21)

A subspace code in which each codeword has the
same dimension, sayn,i.e., ⊆ Gq(M,n), is called a
constant-dimension codeor aGrassmannian code. It is easy
to see, from (20) and (21), that the minimum distance of a
Grassmannian code is always an even number. In the rest of
the paper, we restrict our attention to Grassmannian codes.

Remark 5.It is worth noting that several results on subspace
codes are q-analogs [45] of well-known results on classical
codes in the Hamming metric. For instance, Grassmannian
codes are q-analogs of constant weight codes, and the sub-
space distance is the q-analog of the Hamming distance
in the Hamming space. For further details, we refer the
reader to [45].

B. Locality in the Subspace Metric

In this section, we extend the concept of locality to that
ofsubspace-locality. We begin with setting up the necessary
notation. Let ⊆ Gq(M,n)be a Grassmannian code.
To define the notion of subspace-locality, we need to to choose
an ordered basis for every codeword subspace. It is possible
to choose an arbitrary basis. However, we choose vectors in
reduced column echelon form as an ordered basis since it turns
out to be a natural choice for the lifting construction (described
in Sec. VI-C). Specifically, for every codewordU ∈ ,
consider anM×nmatrix [U] in a reduced column echelon
form (RCEF) such that columns of [U]spanU.Inotherwords,
[U]=rcef([U])andU= [U]. Note that columns of [U]
form an ordered basis ofU.
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For a setS⊂[n],let[U]|Sdenote theM×|S|sub-matrix
of [U] consisting of the columns of [U] indexed byS.Let
U|S= [U]|S,and |S= U|S:U∈ . Note that the
code |Sis essentially obtained by taking a projection of
every subspaceUof on the subspace formed by the basis
vectors indexed by the elements inS.
Now, we define the notion of subspace-locality in the
following.

Definition 5(Subspace-Locality).A Grassmannian code ⊆
Gq(M,n)is said to have(r,δ)subspace-locality if, for each
i∈[n], there exists a set (i)⊂[n]such that

1)i∈ (i),
2)|(i)|≤r+δ−1,
3)dim |(i)=| (i)|, and
4)dS |(i)≥δ.

The code |(i)is said to be the local code associated with
the i -th basis vector for the subspaces of . A subspace code
⊆Gq(M,n)with minimum distance d and(r,δ)locality is

denoted as an(M×n,logq||,d,r,δ)Grassmannian code.

C. Grassmannian Codes With Subspace-Locality via Lifting

In [37], Silvaet al.presented a construction for a broad
class of Grassmannian codes based on rank-metric codes. The
construction takes codewords of a rank-metric code and gen-
erates codewords of a Grassmannian code using an operation
calledlifting, described in the following.

Definition 6(Lifting).Consider the following mapping

:Fm×nq → Gq(m+n,n),

X→ (X)=
I
X
, (22)

where I is the n×n identity matrix. The subspace (X)is
called the lifting of the matrix X .6Similarly, for a rank-metric
codeC⊆Fm×nq , the subspace code (C)={(X):X∈C}
is called the lifting ofC.

Note that the lifting operationX→ (X)is an injective
mapping, since every subspace corresponds to a unique matrix
in reduced column echelon form (RCEF). Thus, we have
|(C)|=|C|. Also, a subspace code constructed by lifting is a
Grassmannian code, with each codeword having dimensionn.
The key feature of the lifting based construction is that

the Grassmannian code constructed by lifting inherits the
distance properties of its underlying rank-metric code. More
specifically, we have the following result from [37].

Lemma 3.([37]) Consider a rank-metric codeC⊆Fm×nq .
Then, we have

dS((C))=2dR(C).

Next, we show that the lifting construction given in (22)
preserves the locality property.

6It is worth noting that the definition of the lifting operation is adapted to
our notation. In [37], Silvaet al.define the lifting of anm×nmatrixXas
the row space of the matrix[I X], whereIis anm×midentity matrix.
We define the lifting on columns, since rank-locality is defined with respect
to columns.

Lemma 4. A Grassmainnian code obtained by lifting
a rank-metric code with(r,δ)rank-locality has(r,2δ)
subspace-locality.

Proof: LetC⊆Fm×nq be a rank-metric code with(r,δ)
rank-locality. For eachi∈[n], there is a local codeC|(i)
such thatdR C|(i) ≥δdue to the(r,δ)rank-locality ofC.
Let = (C)be the Grassmannian code obtained by

liftingC.Let |(i)={U|(i):U∈ }. Consider a pair
of codewordsV,V∈ |(i). Then, we have

V=
Î(i)
C(i)

, V =
Î(i)
C(i)

,

whereÎ(i)is ann×| (i)|sub-matrix of then×niden-
tity matrix composed of the columns indexed by (i),and
C(i),C(i)∈C|(i). Note thatdim(V)= dimV =
|(i)|. Thus, we have

dS V,V
(a)
=2dimV+V −dim(V)−dimV

(b)
=2dimV+V −2|(i)|

(c)
=2rank

Î(i) Î(i)
C(i)C(i)

−2|(i)|

=2rank
Î(i) 0
C(i)C(i)−C(i)

−2|(i)|

=2rankC(i)−C(i)

(d)
≥2δ, (23)

where (a) follows from (20) and the fact thatdimV+V =
dim(V)+dimV −dimV∩V , (b) follows due to
dim(V)=dimV =| (i)|, (c) follows from the fact that
for any pair of matricesXandY,wehave

[X Y]= X + Y,

and (e) follows fromdR C|(i)≥δ.
The result is immediate from (23).
Now, by lifting rank-metric codes obtained via Construc-
tion 1, we get a family of Grassmannian codes with locality.
Specifically, from Lemmas 3 and 4, we get the following result
as a corollary.

Corollary 1.LetCLocbe an(m×n,k,d,r,δ)rank-metric
code obtained by Construction 1. The code (CLoc)obtained
by liftingCLocis an((m+n)×n,mk,2d,r,2δ)Grassmannian
code.

D. Application of Subspace-Locality in Networked
Distributed Storage Systems

In this section, we present an application of Grass-
mannian codes with subspace-locality in distributed storage
systems (DSS), in which storage servers are connected over a
communication network that can introduce errors and erasures.
We demonstrate how codes with subspace-locality can be
helpful when users want to partially download the data stored
on one or more racks, or when repairing a failed node. Fig. 4
demonstrates an example for our set-up.
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Fig. 4.  We highlight a potential application of Grassmannian codes with subspace-locality in distributed storage systems, wherein storage serverscan be
accessed over a noisy network. In this example, we considern=12 servers located inµ=3 racks such that each rack containsr+δ−1=4servers.
Consider a scenario where users 1 and 2 are interested in downloading only the data stored on Rack 1. The nodes in the network use random linear network
coding, and the network links can introduce errors and erasures. Subspace-locality ensures that the servers in Rack 1 can generate a Grassmannian codethat
is guaranteed to correct a certain number of errors and erasures introduced by the noisy network. Subspace-locality is also useful to repair a server when
assessing other servers over a noisy network.

For simplicity, we focus on the case of partial data download
from a rack over a noisy network. Node repairs can be handled
in a similar fashion. In particular, we consider the following
set-up. Consider a DSS consisting ofnservers, which are
located inµracks such that each rack containsr+δ−1servers.
Users can download data from the servers over a network
that can introduce erasures and errors. Nodes in the network
use random linear network coding to transferpackets[46].
Storage servers and users have no knowledge of the topology
of the network or of the particular network code used in the
network.7

We briefly mention the random linear network coding
model, borrowing some notation from [37]. Each link in the
network can transport apacketofMsymbols in a finite field
Fq. Consider a node in the network withaincoming links
andboutgoing links. The node produces an outgoing packet
independently on each of itsboutgoing links as a random
Fq-linear combination of theaincoming packets it has
received.
Let us focus on a useruinterested in downloading the data

stored on rackj, where1≤ j≤µ. We assume that the
network contains(r+δ−1)mutually edge disjoint paths
from the rack to the user.
Suppose the data is encoded using an((m+n)×n,

mk,2d,r,2δ)Grassmannian code obtained using the lifting
construction described in Sec. VI-C. More specifically, first,
the data is encoded using an(m×n,k,d,r,δ)rank-metric

7The goal of this section is to highlight the usefulness of subspace-locality
for random linear network coding over anoisy network. A detailed study of
various protocols for efficiently downloading data over a noisy network is
beyond the scope of this paper.

codeCas given in Construction 1. Then, each of thenservers
stores a column of the codeword matrix. LetC(j−1)(r+δ−1)+i
denote the vector stored on thei-th server in thej-th rack.
LetIldenote thel-th column of then×nidentity matrix.

Then, each serveriin thej-th rack sends a packetX
(j)
i =

IT(j−1)(r+δ−1)+iC
T
(j−1)(r+δ−1)+i ∈F1×Mq on its outgoing

link, whereM=m+n.
LetX(j)be an(r+δ−1)×Mmatrix whose rows are the
transmitted packets for rackj. We assume that the user collects
N(≥r)packets, denoted asY(u)1 ,...,Y

(u)
N ∈F

1×M
q .LetY(u)

be anN×M matrix whose rows are the received packets.
If the network is error free, then, regardless of the network
topology, the transmitted packetsX(j)and the received packets
Y(u)can be related asY(u)=AX(j),whereAis anN×(r+
δ−1)matrix corresponding to the overall linear transformation
applied by the network.
Next, let us extend this model to incorporate packet errors
and erasures. We consider that packet errors may occur at any
link, which is a common assumption in the network coding
literature. In particular, let us index the links in the network
from 1 to.LetZidenote the error packet injected at link
i∈{1,...,}. If a particular linkidoes not inject any error,
thenZiis a zero vector. LetZbe an ×M matrix whose
rows are the error packets. Then, by linearity of the network
code, we get

Y(u)=AX(j)+BZ, (24)

whereBis anN× matrix corresponding to the overall linear
transformation applied by the network to the error packets.
Note that the number of non-zero rows of Zdenotes the
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total number of error packets injected by the network. Further,
the rank-deficiency of the matrixAcaptures packet erasures
caused by link failures.
Now, using [37, Th. 1], we immediately get the following

result.

Proposition 2.Suppose the network introduces at mostρ
erasures (i.e., therank(A)≥r+δ−1−ρ), and injects
at most t error packets (i.e., the number of non-zero rows in
Z is at most t). Then, the user is guaranteed to recover the
data from a rack provided

2t+ρ≤δ−1. (25)

Proof: Let j= (Cj),whereCjis thej-th local code
ofC. Note that[X(j)]T ∈ j. Further, from Corollary 1,
we have thatdS j=2δ.
Now, the user can decode the data by using the minimum

distance decoding rule as follows

X̂=arg min
X∈ j

dS X ,[Y(u)]T . (26)

From [37, Th. 1], the decoding is guaranteed to be success-
ful provided 2t+ρ <dS j/2, from which the result
follows.

Remark 6. Note that, in general, Proposition 2 holds for
any(M×n,logq||,2d,r,2δ)Grassmannian code with
disjoint local codes. In this case, during encoding, the first
step is to fix an arbitrary injective mappingφbetween data
symbols and subspaces in . Then, given a set of data symbols
to be stored, a subspace from corresponding to the data
symbols is obtained using the mappingφ. Finally, each server
stores a basis vector of this subspace.8During the partial data
download, each server from the j -th rack transmits the stored
basis vector as a packet on its outgoing link.

VII. RELATEDWORK ANDCOMPARISON

1) Codes With Locality:Codes with small locality were
introduced in [5] and [47] (see also [7]). The study of the
locality property was galvanized with the pioneering work
of Gopalanet al.[6], which established Singleton-like upper
bound on the minimum distance of locally recoverable codes
(LRCs). The distance bound has been generalized in multiple
ways, seee.g., [39], [40], [48], [49]. A large number of optimal
code constructions have been presented, seee.g., [9], [41],
[50]–[54].
Maximally recoverable codes (MRCs) are a class of LRCs

that have thestrongesterasure correction capability. The
notion of maximal recoverability was first proposed by [5]
and was generalized by [24].
LRCs as well as MRCs are primarily designed to correct

small number of erasures locally. As an example, consider

8Note that when a Grassmannian code is obtained via lifting, a server does
not need to store the entire basis vector, but only the part due to the rank-metric
code. This is because of the particular structure of the basis vectors obtained
via lifting. On the other hand, for an arbitrary Grassmannian code, each server
needs to store the entire basis vector. However, in typical applications, we have
m n, and the storage savings achieved by the lifting construction would
be nominal.

a family of distance-optimal LRCs presented in [9, Construc-
tion 8].9(See Sec. IV-B for details.) LetCbe an(n,k)LRC
from this family with(r,δ)locality. Letµ=n/(r+δ−1),
andC1,C2,...,Cµ denote theµlocal codes with disjoint
coordinatesC1,C2,...,Cµ, respectively. Then, a local code
Cjcan correctδ−1 or less erasures inCjby accessing
unerased symbols only fromCj(for every 1≤ j≤ µ).
Further,Ccan correct anyd−1 erasures, wheredis the
minimum distance given in the right hand side of (1). An MRC
can correct any erasure pattern that is information-theoretically
correctable by any LRC with the same parameters.
Even though LRCs (and MRCs) are not designed to correct
crisscross erasures, they can be easily adapted to correct
crisscross erasure patterns. In particular, let us describe how an
LRC can be adapted to mimic the performance ofCLocgiven
in Construction 1 for correcting crisscross erasures. Towards
this, consider an(mn,mk)LRCCLRCwith(rm,(δ−1)m+1)
locality. Letµ=n/(r+δ−1),andletCLRC1 ,CLRC2 ,...,CLRCµ
denote theµlocal codes with disjoint coordinates. Note
that it is straightforward to construct such a code using
[9, Construction 8].10

Supposemkdata symbols are encoded usingCLRC.The
encoded symbols are arranged in anm×narray such that
(r+δ−1)msymbols ofCLRCj are arranged in columns(j−1)

(r+δ−1)+1,...,j(r+δ−1), denoted asCj. Note thatC
LRC
j

has the minimum Hamming distance(δ−1)m+1. Therefore,
CLRCj can locally correct any crisscross erasure pattern inCj
of weight smaller thanδ−1. In fact, local codesCLRCj ofCLRC

are stronger than the local codesCjinCLoc. In particular,
CLRCj can correct all erasure patterns inCjwith fewer than
(δ−1)merasures, which include crisscross erasure patterns
as a proper subset.
On the other hand, despite their strong erasure correction

capability, LRCs and MRCs are not capable of correcting
crisscross and rank errors. This is because they are not
guaranteed to have large rank distance.
2) Codes for Mixed Failures:Several families of codes have

recently been proposed to encounter mixed failures. The two
main families are: sector-disk (SD) codes and partial-MDS
(PMDS) codes (see [20], [27], [28], [55]). Coded data are
arranged in anm×narray, where a column of an array can
be considered as a disk. Each row of the array containsp
localparities, and the array containsh globalparities. SD
codes can tolerate erasure of anypdisks, plus erasure of any
additionalhsectors in the array. PMDS codes can tolerate a
broader class of erasures: anypsector erasures per row, plus
any additionalhsector erasures. However, these codes cannot
correct criscross erasures and errors.
3) Codes  for  Correlated  Failures: Very  recently,
Gopalanet al.[26] presented a class of maximally recoverable
codes (MRCs) forgrid-like topologies. An MRCforagrid-
like topology encodes data into anm×narray such that each
row hasa localparities, each column hasb localparities,
and the array hash globalparities. Such a code can locally

9We choose this construction because it requires the smallest possible field
size (in particularO(n)) among the known constructions.
10Note that in this case the required field size would beO(mn).
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correct anyaerasures in a row orberasures in column.
When any arows andbcolumns are erased, it can globally
correct additionalherasures.
MRCs for grid-like topologies can correct a large number of

erasure patterns locally. However, their locality guarantees are
significantly different. For instance, if an entire row (or less
thanbrows) is erased, then it can be repaired by downloading
n−asymbols from anym−brows (similarly for column
erasures). Further, these codes cannot correct crisscross and
rank errors, as they are not guaranteed to have large rank
distance.
4) Rank-Metric Codes:Rank-metric codes were introduced

by Delsarte [10] and were largely developed by Gabidulin [11]
(see also [12]). In addition, Gabidulin [11] presented a con-
struction for a class of MRD codes. Roth [12] introduced the
notion of crisscross error pattern, and showed that MRD codes
are powerful in correcting such error patterns. In [13], Blaum
and Bruck presented a family of MDS array codes for cor-
recting crisscross errors. Existing constructions of rank-metric
codes do not possess locality properties. In order to correct
a criscross error/erasure pattern, it is required to read all the
remaining symbols. To the best of our knowledge, this is the
first work to propose the notion of locality in the rank metric.
5) Subspace Codes:The important role of the subspace
metric in correcting errors and erasures in non-coherent linear
network codes was first noted in [34]. Since then, subspace
codes (also known as codes over projective space) and
constant-dimension subspace codes or Grassmannian codes
have been studied in a number of research papers, see
e.g., [35]–[37], [56]–[59], and references therein. Existing
constructions of Grassmannian codes do not possess locality
properties. To the best of our knowledge, this is the first work
to propose the notion of locality in the subspace metric.
6) Codes for Distributed Storage Based on Subspace Codes:

Recently, subspace codes have been used to construct repair
efficient codes for distributed storage systems. In [60],
the authors construct regenerating codes based on subspace
codes. In [61], array codes with locality and availability (in the
Hamming metric) are constructed using subspace codes. A key
feature of these codes is their small locality for recovering
a lost symbol as well as a lost column. On the other hand,
we present a construction of Grassmannian codes that have
locality in the subspace metric. These codes are useful to
recover partial data or repair nodes over noisy networks.

APPENDIXA
LINEARIZEDPOLYNOMIALS ANDGABIDULINCODES

In this section, we first review some properties of linearized
polynomials. (For details, please see [62].) Then, we specify
Gabidulin codes construction. Let us begin with the definition

of linearized polynomials. Recall thatxq
i
=x[i].

Definition 7(Linearized Polynomial).([62]) A polynomial in
Fqm[x]of the following form

L(x)=

n

i=0

aix
[i] (27)

is called as a linearized polynomial or a q-polynomial over
Fqm.Further,max{i∈[n]:ai=0}is said to be the q-degree
of L(x)denoted asdegq(L(x)).

The name arises from the following property of linearized
polynomials, referred to asFq-linearity [62]. LetFbe an
arbitrary extension field ofFqm andL(x)be a linearized
polynomial overFqm,then

L(α+β)=L(α)+L(β)∀α, β∈F. (28)

L(cα)=cL(α)∀c∈Fqand∀α∈F. (29)

Definition 8(q-Associates).([62]) The polynomials

l(x)=

n

i=0

cix
i and L(x)=

n

i=0

cix
[i] (30)

overFqm are called q-associates of each other. In particular,
l(x)is referred to as the conventional q-associate of L(x)and
L(x)is referred to as the linearized q-associate of l(x).

Theorem 3. [62, Th. 3.50] Let L(x)be a non-zero linearized
polynomial overFqm and letFqsbe the extension field ofFqm

that contains all the roots of L(x). Then, the roots form a
linear subspace ofFqs,whereFqsis regarded as the vector
space overFq.

The above theorem yields the following corollary.

Corollary 2.Let L(x)be a non-zero linearized polynomial
overFqm withdegq(L(x))= l, and letFqtbe arbitrary
extension field ofFqm. Then, L(x)has at most l roots inFqt
that are linearly independet overFq.

A. Gabidulin Code Construction

We review a class of maximum rank distance (MRD) codes
presented by Gabidulin [11] for the casem≥n.Letqbe a
prime power, letm≥n,andletP={γ1,···,γn}∈F

n
qm be

nlinearly independent elements overFq.An(n,k)Gabidulin
code over the extension fieldFqm form≥nis the set of
evaluations of allq-polynomials ofq-degree at mostk−1
overP.
More specifically, let Gm(x)∈ Fqm[x]denote the lin-

earized polynomial ofq-degree at mostk−1 with coefficients
m=[m0m1···mk−1]∈F

k
qm as follows:

Gm(x)=

k−1

j=0

mjx
[j], (31)

Then, the Gabidulin code is obtained by the following
evaluation map

Enc:Fkqm → F
n
qm

m→ {Gm(γ ), γ∈P} (32)

Therefore, we have

CGab= (Gm(γ ), γ∈P)|m∈F
k
qm . (33)
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B. Reed-Solomon Code Construction

It is worth mentioning the analogy between Reed-Solomon
codes and Gabidulin codes. An(n,k)Reed-Solomon code
over the finite fieldFqforq≥nis the set of evaluations
of all polynomials of degree at mostk−1 overndistinct
elements ofFq. More specifically, letP={γ1,···,γn}be a
set ofndistinct elements ofFq(q≥n). Consider polynomials
gm(x)∈Fq[x]with coefficientsm=[m0m1···mk−1]∈F

k
q

of the following form:

gm(x)=

k−1

j=0

mjx
j, (34)

Then, the Reed-Solomon code is obtained by the following
evaluation map

Enc:Fkq→ F
n
q

m→ {gm(γ ), γ∈P} (35)

Therefore, we have

CRS= (gm(γ ), γ∈P)|m∈F
k
q . (36)

Remark  7. For the same information vector m =
[m0···mk−1] ∈F

k
q, the evaluation polynomials of the

Gabidulin code and the Reed-Solomon code are q-associates
of each other.

APPENDIXB
RANKDISTANCEOPTIMALITY

We present a proof of the optimality of the proposed
Construction 1 with respect to (3). We use some properties
of linearized polynomials which are listed in Appendix A.
We begin with a useful lemma regarding the minimum rank
distance of a rank-metric code that is obtained through evalu-
ations of a linearized polynomial.

Lemma 5.Let P be a set of n elements inFqm that are
linearly independent overFq(m≥n). Consider a linearized
polynomial Lm(x)∈Fqm[x]of the following form

Lm(x)=

k

j=1

mijx
[ij], (37)

where ij’s are non-negative integers such that0≤i1<i2<
···<ik≤n−1, and k≤n. Consider the code obtained by
the following evaluation map

Enc:Fkqm→ F
n
qm

m→ {Lm(γ ), γ∈P} (38)

In other words, we have

C= Lm(γ )|m∈F
k
qm,γ∈P . (39)

Then,Cis a linear(m×n,k,d)rank-metric code with rank
distance d≥n−ik.

Proof:First, note that a codewordc∈Cis the evaluation
ofLm(x)onnpoints ofPfor a fixedm ∈F

k
qm. Thus,

a codeword is a set ofnvalues each inFqm. By fixing a basis

forFqmas a vector space overFq, we can represent a codeword
c∈Fnqm as anm×nmatrixC∈F

m×n
q . Thus,Ccan be

considered as a matrix or array code.
Second, note thatCis an evaluation map overFqm.Observe

thatm→ Lm(x)is an injective map. Sinceq-degree ofLm(x)
is at mostn−1, two distinct polynomialsLmj(x)andLml(x)
result in distinct codewords, and thus, dimension of the code
(overFqm)isk.
Finally, we show thatdR(C)≥n−ik. Notice that

max
Lm,m∈Fkqm

degq(Lm)≤ik, (40)

where degq(F)denotes the q-degree of a linearized
polynomialF.
Consider a codewordcas a length-nvector overFqm.Let

mcbe the message vector resulting inc,andLmc be the
corresponding polynomial givingc. LetC∈Fm×nq be the
matrix representation ofcfor some basis ofFqm overFq.
Supposerank(C)=wr. We want to prove thatwr≥n−ik.
Suppose, for contradiction,wr<n−ik.
Letwt(c)=w. Clearly,wr≤w. Without loss of generality
(WLOG), assume that the lastn−w columns ofC are
zero. We know thatn−wpoints inP,{γw+1,...,γn},are
the roots ofLmc(x). Note that, since elements ofPare
linearly independent overFq,w≥n−ik(see Corollary 2
in Appendix A).
WLOG, assume that the firstwrcolumns ofCare linearly

independent overFq. After doing column operations, we can
make the middlew−wrcolumns as zero columns. Thus, there
exist coefficientsclj’s inFq, not all zero, such that

wr

j=1

cljLmc(γj)+c
l
wr+1
Lmc(γwr+l)=0,for 1≤l≤w−wr.

(41)

By using Fq-linearity property of linearized polynomials
(see (28), (29)), the above set of equations (41) is equivalent to

Lmc

⎛

⎝
wr

j=1

cljγj+c
l
wr+1
γwr+l

⎞

⎠=0,for 1≤l≤w−wr.

(42)

Therefore, wr
j=1c

l
jγj+c

l
wr+1
γwr+l,1≤l≤w−wr are

also the roots ofLmc(x). Together with{γw+1,...,γn}as its
roots,Lmc(x)hasn−wr>ikroots. Note that, sinceγj’s
are linearly independent overFq,soareallofthen−wr
roots. Thus,Lmc(x)has more thanikroots that are linearly
independent overFq, which is a contradiction due to (40)
and Corollary 2.
From the above lemma, it follows thatCobtained using
Construction 1 is a linear(m×n,k)rank-metric code. Observe
that theq-degree ofGm(x)is bounded as

degq(Gm(x))

≤
k

r
−1 (r+δ−1)+r−1=k−1+

k

r
−1 (δ−1).

Hence, from Lemma 5, we havedR(C)≥ n−k+1−
k
r−1(δ−1), which proves the rank distance optimality.
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