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Abstract— We extend the notion of locality from the Hamming
metric to the rank and subspace metrics. Our main contribution
is to construct a class of array codes with locality constraints
in the rank metric. Our motivation for constructing such codes
stems from the need to design codes for efficient data recovery
from correlated and/or mixed (i.e., complete and partial) failures
in distributed storage systems. Specifically, the proposed local
rank-metric codes can recover locally from crisscross errors and
erasures, which affect a limited number of rows and/or columns
of the storage array. We also derive a Singleton-like upper bound
on the minimum rank distance of (linear) codes with rank-locality
constraints. Our proposed construction achieves this bound for
a broad range of parameters. The construction builds upon
Tamo and Barg’s method for constructing locally repairable codes
with optimal minimum Hamming distance. Finally, we construct
a class of constant-dimension subspace codes (also known as
Grassmannian codes) with locality constraints in the subspace
metric. The key idea is to show that a Grassmannian code with
locality can be easily constructed from a rank-metric code with
locality by using the lifting method proposed by Silva ef al
We present an application of such codes for distributed storage
systems, wherein nodes are connected over a network that can
introduce errors and erasures.

Index Terms— Codes for distributed storage, locally recover-
able codes, rank-metric codes, subspace codes.

I. INTRODUCTION
DISTRIBUTED storage systems have been traditionally

replicating data over multiple nodes to guarantee reliabil-
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ity against failures and protect the data from being lost [1], [2].
However, the enormous growth of data being stored or com-
puted online has motivated practical systems to employ erasure
codes for handling failures (e.g., [3], [4]). This has galvanized
significant interest in the past few years on novel erasure
codes that efficiently handle node failures in distributed storage
systems. One of the main families of codes that has received
primary research attention is locally repairable codes (LRCs)
— that minimize locality, i.e., the number of nodes participating
in the repair process (see, e.g., [S]-[9]). Almost all the work
in the literature on LRCs has considered block codes under
the Hamming metric.

In this work, we first focus our attention to codes with
locality constraints in the rank metric. Let F, be the finite
field of size g. Codewords of a rank-metric code (also known
as an array code) are m x n matrices over F;, where the rank
distance between two matrices is the rank of their difference
[10]-[12]. We are interested in rank-metric codes with locality
constraints. To quantify the requirement of locality under the
rank metric, we introduce the notion of rank-locality. We say
that the i-th column of an m x n array code has (r, §) rank-
locality if there exists a set I" (i) of r4+d—1 columns containing
i such that the array code formed by deleting the columns
outside I' (i) for each codeword has rank distance at least 4.
We say that an m x n array code has (r, d) rank-locality if
every column has (r, ) rank-locality.

Our motivation of considering rank-locality is to design
codes that can locally recover from rank errors and erasures.
Rank-errors are the error patterns such that the rank of the
error matrix is limited. For instance, consider an error pattern
added to a codeword of a binary 4 x 4 array code as shown
in Fig. 1. Though this pattern corrupts half the bits, its rank
over the binary field is only one. Note that it is not possible
to correct such an error pattern using a code equipped with
the Hamming metric. On the other hand, rank-metric codes
are well known for their ability to effectively correct rank-
errors [12], [13].

Errors and erasures that affect a limited number of rows
and/or columns are usually referred to as crisscross pat-
terns [12], [13]. (See Fig. 2 for some examples of crisscross
erasures.) Our goal is to investigate codes that can locally
recover from crisscross erasures (and rank-errors). We note
that crisscross errors (with no locality) have been studied
previously in the literature [12], [13], motivated by applica-
tions in memory chip arrays and multi-track magnetic tapes.
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Fig. 1. A rank-error pattern of rank one.

Our renewed interest in these types of failures stems from the
fact that they form a subclass of correlated and mixed failures,
see, e.g., [14], [15].

Recent research has shown that many distributed storage
systems suffer from a large number of correlated and mixed
failures [14]-[19]. For instance, a correlated failure of several
nodes can occur due to, say, simultaneous upgrade of a group
of servers, or a failure of a rack switch or a power supply
shared by several nodes [14]-[16]. Moreover, in distributed
storage systems composed of solid state drives (SSDs), it
is not uncommon to have a failed SSD along with a few
corrupted blocks in the remaining SSDs, referred to as mixed
failures [19]-[21]. Therefore, recent research on coding for
distributed storage has also started focusing on correlated
and/or mixed failure models, see e.g., [20], [22]-[28]. Another
potential application for codes with rank-locality is for cor-
recting errors occurring in dynamic random-access memories
(DRAMS). In particular, a typical DRAM chip contains several
internal banks, each of which is logically organized into rows
and columns. Each row/column address pair identifies a word
composed of several bits. Recent studies show that DRAMs
suffer from non-negligible percentage of bit errors, single-row
errors, single-column errors, and single-bank errors [29]-[31].
Using an array code across banks, with a local code for each
bank can be helpful in correcting such error patterns.

In general, our goal is to design and analyze codes that can
locally recover the crisscross erasure and error patterns, which
affect a limited number of rows and columns, by accessing a
small number of nodes. We show that a code with (r, §) rank-
locality can locally repair any crisscross erasure pattern that
affects fewer than J rows and columns by accessing only r
columns. We begin with a toy example to motivate the coding
theoretic problem that we seek to solve.

Example 1. Consider a toy example of a storage system,
such as the one depicted in Fig. 2, consisting of three racks,
each containing four servers. Each server is composed of
several storage nodes which can either be solid state drives
(SSDs) or hard disk drives (HDDs).! We assume that the
storage system is arranged as an array. We refer to the
J-th server as the j-th column, and the set of i-th storage
nodes across all the servers as the i-th row of the storage
array. Given two positive integers é and d such that ¢ < d,
our goal is to encode the data in such a way that

1) any crisscross failure affecting at most d— 1 rows and/or
columns of nodes in a rack should be ‘locally’ recover-
able by accessing only the nodes on the corresponding
rack, and

IMany practical storage systems such as Facebook’s ‘F4 storage system [4]
and all-flash storage arrays such as [32], [33] have similar architecture.
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2) any crisscross failure that affects at most d — 1 rows
and/or columns of nodes in the system should be recov-
erable (potentially by accessing all the remaining data).

Note that the failure patterns of the first kind can occur in
several cases. For example, all the nodes on a server would
fail if, say, the network switch connecting the server to the
system fails. The entire row of nodes might be temporarily
unavailable in certain scenarios, for instance, if these nodes
are simultaneously scheduled for an upgrade. A few locally
recoverable crisscross patterns are shown in Fig. 2 (consider-
ing 6 = 3). Note that locally recoverable erasures in different
racks can be simultaneously repaired.

Next, we extend the notion of locality from the rank metric
to the subspace distance metric. Let ]FgJ denote the vector
space of M-tuples over IF,;. A subspace code is a non-empty set
of subspaces of Fgf . A subspace code in which each codeword
has the same dimension is called a constant-dimension code or
a Grassmannian code (see, e.g., [34], [35]). A useful distance
measure between two spaces U and V, called subspace metric,
is defined in [34] as ds(U,V) = dim(U) + dim (V) —
2dim(U NV). To define the notion of subspace-locality,
we need to to choose an ordered basis for every codeword
subspace. For a Grassmannian code, we say that the i-th basis
vector has (r, 8) subspace-locality, if there exists a set I' (i) of
basis vectors of size at most r +J — 1 such that I' (i) contains
i and the code obtained by removing the basis vectors outside
I' (i) for each codeword has subspace distance at least 4.
We say that a Grassmannian code has (r, ) subspace-locality
if every basis vector has (r, d) subspace-locality.

Grassmannian codes play an important role in correcting
errors and erasures (rank-deficiencies) in non-coherent linear
network coding [34], [36]. We present an application of the
proposed novel Grassmannian codes with locality for down-
loading partial data and repairing failed nodes in a distributed
storage system, in which the nodes are connected over a
network that can introduce errors and erasures. The locality
is useful when a user wants to download partial data by
connecting to only a small subset of nodes, or while repairing
a failed storage node over the network (see Sec. VI-D).

Our Contributions: First, we introduce the notion of
locality in rank metric. Then, we establish a tight upper bound
on the minimum rank distance of codes with (r,d) rank-
locality. We construct a family of optimal codes which achieve
this upper bound. Our approach is inspired by the seminal
work by Tamo and Barg [9], which generalizes Reed-Solomon
code construction to obtain codes with locality. We generalize
the Gabidulin code construction [11] to design codes with
rank-locality. In particular, we obtain codes as evaluations of
specially constructed linearized polynomials over an extension
field, and our codes reduce to Gabidulin codes if the locality
parameter r equals the code dimension. We also characterize
various erasure and error patterns that the proposed codes with
rank-locality can efficiently correct.

Second, we extend the notion of locality to the subspace
metric. Then, we consider a method to construct Grass-
mannian codes by liffing rank-metric codes (proposed by
Silva et al. [37]), and show that a Grassmannian code obtained
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Fig. 2. Our motivation is to study codes for distributed storage systems that can locally recover from correlated and/or mixed failures, with particular focus
on their subclass called crisscross failures. A crisscross failure pattern affects a limited number of rows and/or columns. For example, a few instances of
crisscross failures affecting two rows and/or columns are depicted in the figure. We study rank-metric codes with local recoverability property as follows: any
crisscross failure pattern that affects fewer than 6 rows and/or columns of a rack can be locally recovered by accessing only the nodes in the same rack.

by lifting an array code with rank-locality possesses subspace-
locality. This enables us to construct a novel family of Grass-
mannian codes with subspace-locality by lifting the proposed
rank-metric codes with rank-locality. Finally, we highlight
an application of codes with subspace-locality in networked
distributed storage systems.

II. PRELIMINARIES
A. Notation

We use the following notation. For an integer [, [I] =
{1,2,...,1}. For a vector x, wi(x) denotes its Hamming
weight, i.e., Wt (x) = |{i : x(i) # 0}|. The transpose, rank and
column space of a matrix H is denoted by H”, rank (H), and
(H), respectively. The linear span of a set of vectors Xy, ..., Xj
is denoted by (xiy,...,x;). We define the reduced column
echelon form (RCEF) of a matrix H, denoted by rcef (H),
as the transpose of the reduced row echelon form of H T,
In other words, one first performs row operations on H T to
transform it to the reduced row echelon form, and then takes
its transpose to obtain rcef (H).

Let C denote a linear (n,k) code over [F; with block-
length n, dimension k, and minimum distance dpin (C).
For instance, under Hamming metric, we have dpi, (C) =
Ming; ¢ eC, c;tc; Wi (ci —cj). Given a length-n block code C
and a set S C [n], let C |g denote the restriction of C on the
coordinates in S. Equivalently, C |g is the code obtained by
puncturing C on [n] \ S.

Recall that, for Hamming metric, the well known Singleton
bound gives an upper bound on the minimum distance of an
(n,k) code C as din (C) < n — k + 1. Codes which meet
the Singleton bound are called maximum distance separable
(MDS) codes (see, e.g., [38]).

B. Codes With Locality

Locality of a code captures the number of symbols partic-
ipating in recovering a lost symbol. In particular, an (n, k)
code is said to have locality r if every symbol is recoverable
from a set of at most r other symbols. For linear codes with
locality, a local parity check code of length at most r 4 1 is

associated with every symbol. The notion of locality can be
generalized to accommodate local codes of larger distance as
follows (see [39]).

Definition 1 (Locality). An (n, k) code C is said to have (r, )
locality, if for every coordinate i € [n], there exists a set of
indices T (i) such that

1) i e T (i),

2) IT@)|=<r+d—1,and

3) dmin (C Ir)) = .
The code C Ir(i) is said to be the local code associated with
the i-th coordinate of C.

Properties 2 and 3 imply that for any codeword in C, the
values in I' (/) are uniquely determined by any r of those
values. Under Hamming metric, the (r, d) locality allows one
to locally repair any 6 — 1 erasures in C |rg), Vi € [n],
by accessing at most r other symbols. When J = 2, the above
definition reduces to the classical definition of locality pro-
posed by Gopalan ef al. [6], wherein any one erasure can be
repaired by accessing at most r other symbols.

The Singleton bound can be generalized to accommodate
locality constraints. In particular, the minimum Hamming
distance of an (n,k) code C with (r,d) locality is upper
bounded as follows (see [40, Th. 21], also [39, Th. 2] for
linear codes):

dmin (C)Sn_k‘l']—(l‘%_l—]) (5—])

III. CoDEs WITH RANK-LOCALITY

1)

A. Rank-Metric Codes

Let 7" be the set of all m x n matrices over F;. The
rank distance is a distance measure between elements A and
B of ]FZ“‘”, defined as dg (A, B) = rank (A — B). It can be
shown that the rank distance is indeed a metric [11]. A rank-
metric code is a non-empty subset of F7'*" equipped with the
rank distance metric (see [10]-[12]). Rank-metric codes can
be considered as array codes or matrix codes.
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The minimum rank distance of a code C is given as

_dR (C,', Cj).

7

dr €) = c;, nglfl,nc,-;éc
We refer to a linear code C C ]FZ“‘" with cardinality |C| =
(g™)* and minimum rank distance d as an (m x n, k, d) code.

The Singleton bound for the rank metric (see [11]) states
that every rank-metric code with minimum rank distance d
must satisfy

|C| < qmax[n.,m}(min{n,m}—d+l).
Codes that achieve this bound are called maximum rank
distance (MRD) codes.

A minimum distance decoder for a rank-metric code
C < F7*" takes an array Y e F7"*" and returns a codeword
X € C that is closest to Y in rank distance. In other words,

- U
X = arg min rank (Y¥-x). ()

Typically, rank-metric codes are considered by leveraging
the correspondence between IE';”X] and the extension field
Fym of Fy. In particular, by fixing a basis for Fym as an
m-dimensional vector space over F,, any element of Fym can
be represented as a length-m vector over Fy. Similarly, any
length-n vector over Fym can be represented as an m x n
matrix over Fy. The rank of a vector a € Fy, is the rank
of the corresponding m x n matrix A over F,. This rank
does not depend on the choice of basis for Fym over F,. This
correspondence allows us to view a rank-metric code in ]Fg‘x”
as a block code of length n over F m. Further, when viewed as
a block code over Fym, an (m x n, k, d) MRD code (over F,)
is an [n, k, d] MDS code (over F ), and hence can correct
any n — k column erasures.

Gabidulin [11] presented a construction of a class of MRD
codes for m > n. The construction is based on the evaluation
of a special type of polynomials called linearized polynomials.
We present a brief review of linearized polynomials and
Gabidulin construction in Appendix A.

B. Locality in the Rank Metric

Recall from Definition 1 that, for a code C with (r,d)
locality, the local code C [r (i) associated with the i-th symbol,
i € [n], has minimum distance at least 6. We are interested
in rank-metric codes such that the local code associated with
every column should be a rank-metric code with minimum
rank distance guarantee. This motivates us to generalize the
concept of locality to that of rank-locality as follows.

Definition 2 (Rank-Locality). An (m x n, k) rank-metric
code C is said to have (r,d) rank-locality, if for
every column i € [n], there exists a set of columns
[ (i) C [n] such that

1) i eI (i),

2) T@|<r+d6—1, and

3) dr (CIr@)) =4,
where C |r(; is the restriction of C on the columns indexed by
I (i). The code C |1 is said to be the local code associated
with the i-th column. An (m x n, k) rank-metric code with
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minimum distance d and (r, d) locality is denoted as an (m x
n,k,d,r,d) rank-metric code.

As we will see in Section V, the (r, d)-rank-locality allows
us to repair any crisscross erasure pattern of weight 6 — 1 in
C Ir(), Vi € [n], locally by accessing the symbols of C |r).

C. Upper Bound on Rank Distance

It is easy to find the Singleton-like upper bound on the
minimum rank distance for codes with rank-locality using the
results in the Hamming metric.

Theorem 1. For a rank-metric code C < F7'>" of cardinality
g™ with (r, 8) rank-locality, we have

d,q((,’)gn—k—kl—([%1—1)({3—1).

Proof: Note that by fixing a basis for Fy» as a vector space
over IF,, we can obtain a bijection ¢ : Fym — IE';”‘]. This can
be extended to a bijection ¢ : F7, — FZ™™". Then, for any
vector ¢ € Fl,, there is a corresponding matrix C € F7>”
such that C = ¢(c). For any such vector-matrix pair, we have

“)

An (m x n,k,d) rank-metric code C over F; can be
considered as a block code of length n over Fym, denoted
as C'. From (4), it follows that dg (C) < dmin (C'). Moreover,
it follows that, if C has (r, d) rank-locality, then the correspond-
ing code C’ possesses (r, d) locality in the Hamming metric.
Therefore, an upper bound on the minimum Hamming distance
of an (n, k,d")-LRC C’ with (r, §) locality is also an upper
bound on the rank distance of an (m x n, k, d) rank-metric
code with (r, ) rank-locality. Hence, (3) follows from (1). W

3

rank (C) < wt(c).

IV. A CLASS OF OPTIMAL CODES WITH RANK-LOCALITY
A. Code Construction

We build upon the construction methodology of Tamo and
Barg [9] to construct codes with rank-locality that are optimal
with respect to the rank distance bound in (3)2 In particular,
the codes are constructed as the evaluations of specially
designed linearized polynomials® on a specifically chosen set
of points of Fym. The detailed construction is as follows. For
notational convenience, we write x4 = xlil.

Construction 1 ((m x n,k,r,d) rank-metric code). Let
m,n,k,r, and é be positive integers such that r | k, (r +
6 —1) | n, and n | m. Define p := n/(r +0—1). Fix
q = 2 to be a power of a prime. Let A = {a1,...,ar15-1}
be a basis of Fy 51 as a vector space over F,, and
B = {p1,...,Bu} be a basis of Fyn as a vector space
over Fris-1. Define the set of n evaluation points P =
Py U---U P, where Pj = {aifj,1<i<r+6—1} for
1 < j < p. To encode the message m € ]F‘;,,., denoted as

2We present a detailed comparison of our construction with that of [9]
in Sec. IV-B.

3We refer the reader to Appendix A for a brief review of linearized
polynomials and Gabidulin code construction.
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m = {myj:i=0,...,r—1;j=0,...,5 — 1}, define the

encoding polynomial

k
r—17—1

Gu(x) = Z Z mijx[(r-l—é—l]jﬁ]_

i=0 j=0

)

The codeword for m is obtained as the vector of the evalu-
ations of G (x) at all the points of P. In other words, the
linear code Cp,c is constructed as the following evaluation
map:

Enc : Fin — Fln

m > {Gw(y),y € P}. (6)

Therefore, we have

CLoc = {(Gm(y).7 € P) Im e Fiu}. ©)

The (m x n, k) rank-metric code is obtained by considering
the matrix representation of every codeword obtained as above
by fixing a basis of Fym over F,. We denote the following u
codes as the local codes.

Cj= [(Gm(y),y € Pj) |meIE‘f;m], l<j=p. (8

Remark 1 (Field Size). It is worth mentioning that, as in the
construction of Gabidulin codes of length n over Fgm [11],
it is required that m > n. Note that, it is sufficient to choose
m =n and q = 2 in our construction. In other words, when
considered as a block code of length-n, the field size of 2" is
sufficient for the proposed code construction.

In the following, we show that Construction 1 gives codes
with rank-locality, which are optimal with respect to the
rank distance bound in Theorem 1. In the proof, we use
some properties of linearized polynomials which are listed in
Appendix A. We begin with the two key lemmas that will be
used in the proof. The following lemma will be used to prove
the rank distance optimality.

Lemma 1. The n evaluation points given in Construction 1,
P={aipj,1 <i <r+d—1,1< j < p}, are linearly inde-
pendent over Fg.

Proof:  Suppose, for contradiction, that the evalua-
tlon points are linearly dependent over F,. Then, we have
r4d—1
124 wjjaif; = 0 with coefficients w;; € F,
such that not all w;;’s are zero. We can write the linear
dependence condition as Z‘“ (Z: +;$ Ywija;) pj = 0. Now,
from the linear independence of the B;’s over Fri5-1, we have
Z:*’f lca,)a, =0 for each 1 < j < u. However, as the a;’s
are linearly independent over IF,;, we have every w;; = 0. This
is a contradiction. |
Next, we present a lemma that will be used to prove
the rank- locallty for the proposed construction. Towards this,
define H(x) = g1 _ yIr+0-11-1 We note that (5) can
be written in the followmg form using H (x):
r—1
i=0

Gm(x) = ®)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

where
L.

mio + Z mij [H(x)]zg

j=1

q (r+d— 1}l+:

Gi(x) = (10)
To see this, observe that
(r+d—1)l+i

[H( )]Z{Dq(rﬁi Dl+i _ [x r+a 1 I]Zf o‘?

Z{_—J q(r+«5—l}(1+1}+i_zfz_ﬂl gD

_ xq(r+6—1}j+i_qi. (11)
Now, using (11) in (10), we get
LA
Gi(x) = mio + > myxlr+o=Di+I-li,
j=1
Then, substituting (12) into (9) gives us (5).
Next, we prove that H (x) is constant on all points of P;
foreach 1 < j < pu.

(12)

Lemma 2. Consider the partition of the set of evaluation
points given in Construction 1 as P = Py U ---U P,, where
Pj = {aipj,1 <i <r+46—1}. Then, H(x) is constant on
all evaluation points of any set P; for 1 < j < p.

[r+d—-1]-1
, where the last equality

J
follows from a; € F r+s1 \ {0}. Thus, H(w) = ﬁ}'+§_l]_],
forallme Pj, 1 < j < p. [ |
Now, we use Lemmas 1 and 2 to prove the rank-locality
and rank distance optimality of the proposed construction.

Proof: Note that H(f;a
ﬁ[_r+5—]]—l [r+3—1]-1 B[r+ —1] 1
I

Theorem 2. Construction 1 gives a linear (m x n,k,d)
rank-metric code Croc with (r,d) rank-locality such that the
minimum rank distance d is equal to the upper bound given
in (3).

Proof: 'We begin with showing the rank distance opti-
mality of Cr,.. Lemma 1 asserts that Cp,. is obtained as
the evaluations of Gy, (x) on n points of Fym that are lin-
early independent over ;. Combining this with the structure
of Gn(x) (see (5)), Cro- can be considered as a subcode
of an (n,k+ (£ —1)(d—1)) Gabidulin code (¢f (31) in
Appendix A). Hence, dg (CLoc) > n—k+1— (’F‘ —1)(@—1).
This shows that dr (Croc) attains the upper bound (3) in
Theorem 1, and thus, the proposed construction is optimal
with respect to rank distance.*

Second, we show that Cp, has (r, §) rank-locality. Towards
this, we want to show that dg (C;) > & for every local code Cj,
1 < j<u.Lety € P; and define the repair polynomial as

r—1
> Gi(y)xl,
i=0

where G;(-) is defined in (10). We show that C; can be
considered as obtained by evaluating R;(x) on the points
of P;.

R;j(x) = (13)

4In Appendix B, we present an alternative proof from first principles using
the properties of linearized polynomials.
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From (10), observe that G;(x) is a linear combination of
powers of H(x). From Lemma 2, H(x) is constant on P;.
Therefore, G;(x) is also constant on P;. In other words,
we have

Gi(y) = Gi(4D),

forevery 0 <i <r — 1.
Moreover, when evaluating R;(x) in 4 € P;, we get

Vy,AePj, (14)

r—1 r—1
Rj() = Gi(nA" = Gi)i" = Gm(2). (15)

i=0 i=0

Hence, the evaluations of the encoding polynomial G, (x) and
the repair polynomial R;(x) on points in P; are identical.
Therefore, we can consider that C; is obtained by evaluating
Rj(x) on points of P;. Now, since points of P; are linearly
independent over I, and R;(x) is a linearized polynomial
of g-degree r — 1, C; can be considered as a (r +J —1,r)
Gabidulin code (cf. (31) in Appendix A). Thus, C; is an MRD
code, and we have dg (C;) = 4, which proves the rank-locality
of the proposed construction. |

We note that, in Construction 1, we assume that (r +Jd—1) |
n. Generalizing the construction when (r +dJ — 1) { n does not
seem to be straightforward, and it is left as a future work.

Next, we present an example of an (9 x 9, 4) rank-metric
code with (2, 2) rank-locality. We note that the code presented
in this example satisfies the correctability constraints specified
in the motivating example (Example 1) in the Introduction
section.

Example 2. Letn =9,k =4,r =2,0 =2. Set ¢ =2 and
m = n. Let w be the primitive element of F,9e with respect to
the primitive polvnomzaf p(x) = x? + x* + 1. Note that ™
generates Fys, as (ca”) = 1. Consider A = {1,0", »'}
as a basis for Fy3 over Fy. We view Fqe as an extension field
over B3 considering the irreducible polynomial p(x) = x4
x+o Itis easy to verify that @® is a root of p(x), and
thus, B = {1, 0", ©'7} forms a basis of F,s over Fy. Then,
the evaluation points P and their partition P is as follows.

016}, Py —
mzss}] _
Let m = (mqo, mo1, mig, m1) € F2

59 be the information
vector. Define the encoding polynomial (as in (5)) as follows.

Gm(x)

The codeword c for the information vector m is obtained as the
evaluation of the polynomial G, (x) at all the points of P. The
code C is the set of codewords corresponding to all m € ]F4

From Lemma 1, the evaluation points are linearly mdepen-
dent over 2, and thus, C can be considered as a subcode of
a (9, 5) Gabidulin code (cf. (31)). Thus, dg (C) =5, which is
optimal with respect to (3).

309 382 455
{@ 07},

— [Pl — (1,07

, @

107 _ 180
P3 = {C{J » @

= moox'” + mo1xP®! + myox™ + my x4,

SWe note that the result dp(C) = ¢ also follows from Lemma 5 in
Appendix B, which is proved from first principles using the properties of
linearized polynomials.
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Now, consider the local codes C;, 1 < j < 3. It is easy
to verify that C; can be obtained by evaluating the repair
polynomial R;(x) on P; given as follows (see (13)).

R1(x) = (moo + mo1)x'” + (m1o +m11)x t
Ry(x) = (moo + wngmm)xlol + (m1o + @° mn)x[l]
R3(x) = (moo + @*®mo1)x® + (m10 + ©*"®my1)x.

For instance, let the message vector be m = (o, caz, m4, ws).

Then, the codeword is

307 _ 81 _465 _ 11 _ 174 _ 236 _ 132

¢ = (@, ¥, 0* 0!, 0%, 0?3, 0'32, *P).

One can easily check that evaluating Ri(x) on Pi gives

¢ = (0, @ 307 ®h), evaluating Ry(x) on Py gives ¢ =

465 o' ]74) and evaluating R3(x) on P; gives ¢3 =
(@ 236 m132 %)
, .

Tms implies that the local code Cj, 1 < j < 3, can be
considered as obtained by evaluating a linearized polynomial
of the form R;j(x) = m{x1% +m/ x!"1 on three points that are
linearly independent over 2. Hence, C; is a Gabidulin code
of length 3 and dimension 2, which gives dg (C;) = 2. This
shows that C has (2, 2) rank-locality.

B. Comparison With Tamo and Barg [9]

The key idea in [9] is to construct codes with locality
as evaluations of a specially designed polynomial over a
specifically chosen set of elements of the underlying finite
field. To point out the similarities and differences, we briefly
review Construction 8 from [9]. We assume that r | k, and
r+d—1)]|n.

Construction 8 from [9]: Let P = {Py,..., Py}, p =
n/(r +46 — 1), be a partition of the set P C Fy, |P| = n,
such that |P;| =r+6—1,1<i < pu. Let h € Fy[x] be a
polynomial of degree r + é — 1, called the good polynomial,
that is constant on each of the sets P;. For an information
vector m € ]E‘f;, define the encoding polynomial

r—1 $—1

z Z m,'jk(x)j x'.

i=0 | j=0

gm(x) =

The code C is defined as the set of n-dimensional vectors

C:[(gm(}'),y eP)|meIFf;}.

The authors show that h(x) = x"9=1 can be used as a

good polynomial, when the evaluation points are cosets of a
multiplicative subgroup of ]F; of order r +J — 1. In this case,
we can write gm(x) as

k
r—1 -1

gm(x) =D > myjx =it

i=0 j=0

(16)

Therefore, C can be considered as a subcode of an
(n,k+ (X —1)(6—1)) Reed-Solomon code. In addition,
local codes C; = {(gm(y),y ePj)me ]F‘"}, 1<j<u,
can be considered as (r + Jd — 1, r) Reed-Solomon codes.

In our case, the code Cr,. obtained from Construction 1
can be considered as a subcode of a (n, k + (’F‘ —1)(@-1)



Gabidulin code. Further, the local codes Cj, 1 < j < u,
can be considered as (r + J — 1, r) Gabidulin codes. In fact,
as one can see from the proof of Theorem 2, we implicitly use
H(x) = x[r+9-11-1 a5 the good polynomial, which evaluates
as a constant on all points of P; for 1 < j < u given
in Construction 1. It is worth mentioning that (16) and (5)
turn out to be g-associates of each other; see Definition 8 in
Appendix A.

C. Comparison With Silberstein et al. [41]

In [41] (see also [40]), Silberstein ef al. have presented a
construction of LRC codes based on rank-metric codes. The
idea is to first precode the information vector with an (r u, k)
Gabidulin code over Fym. The symbols of the codeword are
then partitioned into u sets Cy, ..., C,, of size r each. For each
set Cj, an (r +J — 1, r) Reed-Solomon code over F, is used
to obtain J — 1 local parities, which together with the symbols
of C; form the codeword of a local code C;. This ensures that
each local code has minimum distance . However, it does not
guarantee that the minimum rank distance of a local code is
at least 4.

In fact, for any ¢ € Cj, 1 < j < u, we have rank (c) < r,
as the local parities are obtained via linear combinations over
F,. Clearly, when 6 > r, the construction cannot achieve rank-
locality. Moreover, even if § < r, it is possible to have a
codeword ¢ € C; such that rank (C;) < J for some local code
C;. Therefore, in general, the construction of [41], that uses
Gabidulin codes as outer codes, does not guarantee that the
codes possess rank-locality.

On the other hand, our construction can be viewed as a
method to design (n, k) linear codes over Fym with (r,d)
locality (under the Hamming metric). For the construction
in [41], the field size of ¢” is sufficient for ¢ = r +J — 1
when é > 2, while one can choose any ¢ > 2 when 6 = 2.
‘When our construction is used to obtain LRCs, it is sufficient
to operate over the field of size 2".

V. CORRECTION CAPABILITY OF CODES
WITH RANK-LOCALITY

Suppose the encoded data is stored on an m x n array C
using an (m x n, k,d, r,d) rank-metric code C over IF,. Our
goal is to characterize the class of (possibly correlated) mixed
erasure and error patterns corresponding to column and row
failures of C that C can correct locally or globally.

Remark 2. In this section, we assume that the columns of an
(m x n,k,r,d) rank-metric code C can be partitioned into
u = n/(r+0—1) disjoint sets C1,...,C, each of size
r + 6 — 1 such that, for all i € Cj, T'(i) = Cj. In other
words, we assume that the local codes associated with the
columns have disjoint coordinates. Note that the proposed
Construction 1 satisfies this assumption.

We begin with the notion of crisscross weight of an erasure
pattern. Let E = [¢; jl1<i<m,1<j<n D€ an m x n binary matrix
that specifies the location of the erased symbols of C, referred
to as an erasure matrix. In particular, e¢;; = 1 if the (i, j)-th
entry of C is erased, otherwise ¢;; = 0. For simplicity,
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we denote the erasure pattern by E itself. We denote by E(C;)
the r+J—1 columns of E corresponding to the local array C;,
and we refer to E(C;) as the erasure pattern restricted to the
local array C;. We first consider the notion of a cover of E,
which is used to define the crisscross weight of E (see [12],
also [13]).

Definition 3 (Cover of E). ([12]) A cover of an m x n matrix
E is a pair (X,Y) of sets X < [m], Y < [nl], such that
i #0 = ((ieX)or(jeY)) foralll <i <m,
1 < j < n. The size of the cover (X,Y) is defined as
(X, V)| =IX]+ Y]

We define the crisscross weight of an erasure pattern as the
crisscross weight of the associated binary matrix E defined as
follows.

Definition 4 (Crisscross weight of E). ([12]) The crisscross
weight of an erasure pattern E is the minimum size |(X,Y)]
over all possible covers (X, Y) of the associated binary matrix
E. We denote the crisscross weight of E as Wt (E).

Note that a minimum-size cover of a given matrix E is
not always unique. Further, the minimum size of a cover of
a binary matrix is equal to the maximum number of 1’s that
can be chosen in that matrix such that no two are on the same
row or column [42, Th. 5.1.4].

Let E' = [e; J]14:,{,,“4”{,, c ]me” be a matrix that
specifies the loeatlon and values of errors occurred in the
array, referred to as an error matrix. Specifically, e :, ;€ Fy,
denotes the error at the i-th row and the j-th column. If there
is no error, eJ = = 0. We assume that for every 1 <i < m,
1 < j < n, such that ¢; ; = 1, we have e, . = 0. In other
words, the value of the error is zero at a location where
an erasure occurs. We denote by E'(C;) the r +J — 1
columns of E’ corresponding to the local array C;, and we
refer to E'(C;) as the error pattern restricted to the local
array C;.

Now, we characterize erasure and error patterns that C
can correct locally or globally. Towards this, define a binary
variable d; for 1 < j < u as follows.

5':{1 if 2rank (E'(C;)) + wt. (E(Cj)) <d— 1, an

0 otherwise.

Recall that, for simplicity, we assume that the local codes
associated with columns are disjoint in their support. We note
that the proposed construction indeed results in disjoint local
codes.

Proposition 1. Let C be an (m xn, k, d) rank-metric code with
(r, &) rank-locality. Let C;, 1 < j < pu, be the j-th local (r +
d—1,r,0) rank-metric code, and let C; be the corresponding
local array. Consider erasure and error matrices E and E'.
The code C;j is guaranteed to correct the erasures E(C;) and
errors E'(C;) by accessing the unerased symbols only from
C; provided

2 rank (E'(C))) + wt. (E(Cj)) < — 1. (18)
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77 7? 77| 77 7 lar|as| e
77 77 77 77 €25 €26 C2.7 Ca8 €29
77 77 77 77 C3,5 C3.6 C3,7 C3.8 €3,9
cqn | cap | cas || 77 [ cas | cap || car | cas | cap
cs1 | cs2 [ es3 || 77 | ess | cse || 57 | 58 | Cs9
61 | 62 | o3 || 77 | c65 | o6 || 6,7 | 6,8 | Co,9
cra | cr2 | ez || 7?7 | crs | ere || err | crs | cro
Cg,1 | Cg2 | C8,3 77 Cg5 | €86 || C8,7 | C8,8 | C8,9
co1 | coo | cas || 77 | cos | cos ] 7 ? ?
Fig. 3.  An example of a 9 x 9 bit array. When an erasure pattern affects

a single row or column in a local array, it should be corrected locally.
Further, any erasure pattern that is confined to at most four rows or columns
(or both) should be globally correctable. In the example above, locally
correctable erasures are denoted as “?°, while globally correctable erasures
are denoted as ‘77",

Further, the code C is guaranteed to correct E and E' provided

2 rank (E') + wi. (E)

7
= D.9j (2rank (E'(C))) + Wi (E(C)))) =d =1, (19)
Jj=1

where d; is defined in (17).

Proof: The proof essentially follows from the fact that
a rank-metric code C of rank distance d can correct any
erasure pattern E and error pattern E such that 2 rank (E') +
wi. (E) < d — 1. To see this, consider a minimum-size
cover (X,Y) of E. Delete the rows and columns indexed
respectively by X and Y in all the codeword matrices of C
as well as from E’ to obtain E”. The resulting array code
composed of matrices of size m — |X| x n — |Y| has rank
distance at least d — wi. (E). This code can correct any
error pattern E” such that rank (E”) < (d — wt. (E) — 1)/2
using the minimum distance decoder (cf. (2)). This immedi-
ately gives (18). First correcting erasures and errors locally
using C; for each 1 < j < p, and then globally using C
yields (19). ]

Example 3. Suppose the data is to be stored on a 9 x 9 bit
array C using the (9x9,5,5, 2, 2) rank-metric code discussed
in Example 2. Note that the first three columns of C form the
first local array Cy, the next three columns form the second
local array C,, and the remaining three columns form the
third local array Cs. The encoding satisfies the correctability
constraints mentioned in Example 1. We give an example
of the erasure pattern that is correctable in Fig. 3, where
locally correctable erasures are denoted as ‘?°, while globally
correctable erasures are denoted as 77"

Remark 3. In Proposition 1, we only characterize the erasure
patterns that are locally or globally correctable. It is inter-
esting to consider efficient decoding algorithms on the lines

of [43], [44].

Remark 4. We note that an (m xn, k, d, r, ) code may correct
a number of erasure patterns that are not covered by the
class mentioned in Proposition 1. This is analogous to the
fact that an LRC can correct a large number of erasures

beyond minimum distance. In fact, the class of LRCs that
have the maximum erasure correction capability are known as
maximally recoverable codes (see [24]). Along similar lines,
it is interesting to extend the notion of maximal recoverability
Jor the rank metric and characterize all the erasure patterns
that an (m x n,k,d, r,d) rank-metric code can correct.

VI. CoDESs WITH SUBSPACE-LOCALITY
A. Subspace Codes

We briefly review the ideas of subspace codes introduced
in [34]. The set of all subspaces of [E'gdr , called the projective
space of order M over F, is denoted by P, (M). The set of
all n-dimensional subspaces of IF;J , called a Grassmannian,
is denoted by G, (M,n), where 0 < n < M. Note that
Py (M) =UM G, (M, n).

In [34], the notion of subspace distance was introduced. Let
U,V € P, (M). The subspace distance between U and V is
defined as

ds (U, V) = dim (U) + dim (V) —2dim (U N V). (20)

It is shown in [34] that the subspace distance is indeed a metric
on Py (M).

A subspace code is a non-empty subset of P, (M) equipped
with the subspace distance metric [34]. The minimum sub-
space distance of a subspace code Q < P, (M) is defined as

ds (Q) = y min (21)

5 VieQ, Vi#V; ds (V"’ Vj) '

A subspace code Q in which each codeword has the
same dimension, say n, ie, Q € G, (M,n), is called a
constant-dimension code or a Grassmannian code. It is easy
to see, from (20) and (21), that the minimum distance of a
Grassmannian code is always an even number. In the rest of
the paper, we restrict our attention to Grassmannian codes.

Remark 5. It is worth noting that several resulfs on subspace
codes are q-analogs [45] of well-known results on classical
codes in the Hamming mefric. For instance, Grassmannian
codes are g-analogs of constant weight codes, and the sub-
space distance is the g-analog of the Hamming distance
in the Hamming space. For further details, we refer the
reader to [45].

B. Locality in the Subspace Metric

In this section, we extend the concept of locality to that
of subspace-locality. We begin with setting up the necessary
notation. Let Q < G, (M,n) be a Grassmannian code.
To define the notion of subspace-locality, we need to to choose
an ordered basis for every codeword subspace. It is possible
to choose an arbitrary basis. However, we choose vectors in
reduced column echelon form as an ordered basis since it turns
out to be a natural choice for the lifting construction (described
in Sec. VI-C). Specifically, for every codeword U € (,
consider an M x n matrix [U] in a reduced column echelon
form (RCEF) such that columns of [U] span U. In other words,
[U] = rcef ([U]) and U = ([U]). Note that columns of [U]
form an ordered basis of U.
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For a set S C [n], let [U] |s denote the M x | S| sub-matrix
of [U] consisting of the columns of [U] indexed by S. Let
Ulg = ([U] |S), and Q |[g = [U ls: U € Q}. Note that the
code Q |g is essentially obtained by taking a projection of
every subspace U of € on the subspace formed by the basis
vectors indexed by the elements in S.

Now, we define the notion of subspace-locality in the
following.

Definition 5 (Subspace-Locality). A Grassmannian code 2 C
Gq (M, n) is said to have (r, d) subspace-locality if, for each
i € [n], there exists a set T (i) C [n] such that

1) i el (@),

) IT@)|=r+d-1,

3) dim(Q |r(;)) = IT ()|, and

4) ds (Q|rg) = 0.
The code Q |r(;) is said to be the local code associated with
the i-th basis vector for the subspaces of Q. A subspace code
Q C G, (M, n) with minimum distance d and (r, 8) locality is
denoted as an (M x n,log, |Q|,d, r,d) Grassmannian code.

C. Grassmannian Codes With Subspace-Locality via Lifting

In [37], Silva ef al. presented a construction for a broad
class of Grassmannian codes based on rank-metric codes. The
construction takes codewords of a rank-metric code and gen-
erates codewords of a Grassmannian code using an operation
called lifting, described in the following.

Definition 6 (Lifting). Consider the following mapping
A:FP>" — Gy (m+n,n),

oo 1]

where I is the n x n identity matrix. The subspace A(X) is
called the lifting of the matrix X.® Similarly, for a rank-metric
code C C ]F;’“x”, the subspace code A(C) = {A(X): X €C}
is called the lifting of C.

(22)

Note that the lifting operation X +— A(X) is an injective
mapping, since every subspace corresponds to a unique matrix
in reduced column echelon form (RCEF). Thus, we have
|A(C)| = |C|. Also, a subspace code constructed by lifting is a
Grassmannian code, with each codeword having dimension n.

The key feature of the lifting based construction is that
the Grassmannian code constructed by lifting inherits the
distance properties of its underlying rank-metric code. More
specifically, we have the following result from [37].

Lemma 3. ([37]) Consider a rank-metric code C < ]F;’“x”.
Then, we have

ds (A(C)) = 2dr (C).

Next, we show that the lifting construction given in (22)
preserves the locality property.

61t is worth noting that the definition of the lifting operation is adapted to
our notation. In [37], Silva ef al. define the lifting of an m x n matrix X as
the row space of the matrix [/ X], where [ is an m x m identity matrix.
We define the lifting on columns, since rank-locality is defined with respect
to columns.
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Lemma 4. A Grassmainnian code obtained by lifting
a rank-metric code with (r,d) rank-locality has (r,20)
subspace-locality.

Proof: Let C C IE'Z“‘" be a rank-metric code with (r, d)
rank-locality. For each i € [n], there is a local code C @)
such that dg (C |r@)) = 6 due to the (r, §) rank-locality of C.

Let @ = A(C) be the Grassmannian code obtained by
lifting C. Let Q Irgy = {U Irg) : U € Q}. Consider a pair
of codewords V, V' € Q Iri)- Then, we have

() &)
V - » V - r »
<[CF(E) Cr(i)

where fr(,-) is an n x |I" (i) | sub-matrix of the n x n iden-
tity matrix composed of the columns indexed by I' (i), and
Cr(), Cry € C Ir@- Note that dim (V) = dim (V') =
|T" (i) |. Thus, we have

ds (v, V') € 2dim (V + V') — dim (V) — dim (V")

©Q 5 dim (V + V) =21 ()|

() fr(f) fr(i)]) .
= 2rank —2|T (@) ]
([Cr(i) Ci‘(f)

fr(;) 0 ]) .
= 2rank , —2|T (i
([Cr(f) Cre — Cro rol
= 2rank (Cl!"(i) — Cr(;))

(@)

= 24, (23)

where (a) follows from (20) and the fact that dim (V + V') =
dim (V) + dim (V') — dim(V nV’), (b) follows due to
dim (V) = dim (V') = |T (i) |, (c) follows from the fact that
for any pair of matrices X and Y, we have

(X YD =(X)+(Y),

and (e) follows from dg (C |r)) > 0.
The result is immediate from (23). |
Now, by lifting rank-metric codes obtained via Construc-
tion 1, we get a family of Grassmannian codes with locality.
Specifically, from Lemmas 3 and 4, we get the following result
as a corollary.

Corollary 1. Let Croc be an (m x n,k,d,r,d) rank-metric
code obtained by Construction 1. The code A(CLo.) obtained
by lifting Cpoc is an ((m+n) xn, mk, 2d, r, 20) Grassmannian
code.

D. Application of Subspace-Locality in Networked
Distributed Storage Systems

In this section, we present an application of Grass-
mannian codes with subspace-locality in distributed storage
systems (DSS), in which storage servers are connected over a
communication network that can introduce errors and erasures.
We demonstrate how codes with subspace-locality can be
helpful when users want to partially download the data stored
on one or more racks, or when repairing a failed node. Fig. 4
demonstrates an example for our set-up.
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Rack 1 Rack 2 Rack 3
Server 1 Server 2 Server 3 Server 4 Server 1 Server 2 Server3 Server 4 Server 1 Server 2 Server3 Server 4
C )| C )1 C )| C ) C )| C )| C ) C )] C || C )| C )
C )| C )11 C )| C ) C )| C )| C ) C )] C || C )| C )
C )| C 1 C )| C ) C )| C )| C ) C )|1C || C )| C )
D) C J11C C ) )
D] _ C . D[ C _ )| C ) )

User 1 User 2 User 3
Fig. 4. We highlight a potential application of Grassmannian codes with subspace-locality in distributed storage systems, wherein storage servers can be
accessed over a noisy network. In this example, we consider n = 12 servers located in g = 3 racks such that each rack contains r + 4 — 1 = 4 servers.

Consider a scenario where users 1 and 2 are interested in downloading only the data stored on Rack 1. The nodes in the network use random linear network
coding, and the network links can introduce errors and erasures. Subspace-locality ensures that the servers in Rack 1 can generate a Grassmannian code that
is guaranteed to correct a certain number of errors and erasures introduced by the noisy network. Subspace-locality is also useful to repair a server when

assessing other servers over a noisy network.

For simplicity, we focus on the case of partial data download
from a rack over a noisy network. Node repairs can be handled
in a similar fashion. In particular, we consider the following
set-up. Consider a DSS consisting of n servers, which are
located in u racks such that each rack contains r+J—1 servers.
Users can download data from the servers over a network
that can introduce erasures and errors. Nodes in the network
use random linear network coding to transfer packets [46].
Storage servers and users have no knowledge of the topology
of the network or of the particular network code used in the
network.”

We briefly mention the random linear network coding
model, borrowing some notation from [37]. Each link in the
network can transport a packet of M symbols in a finite field
F,. Consider a node in the network with a incoming links
and b outgoing links. The node produces an outgoing packet
independently on each of its b outgoing links as a random
F,-linear combination of the a incoming packets it has
received.

Let us focus on a user u interested in downloading the data
stored on rack j, where 1 < j < u. We assume that the
network contains (r + é — 1) mutually edge disjoint paths
from the rack to the user.

Suppose the data is encoded using an ((m + n) x n,
mk, 2d, r,26) Grassmannian code obtained using the lifting
construction described in Sec. VI-C. More specifically, first,
the data is encoded using an (m x n, k,d,r, d) rank-metric

TThe goal of this section is to highlight the usefulness of subspace-locality
for random linear network coding over a noisy network. A detailed study of
various protocols for efficiently downloading data over a noisy network is
beyond the scope of this paper.

code C as given in Construction 1. Then, each of the n servers
stores a column of the codeword matrix. Let C(j_1y(46—1)+i
denote the vector stored on the i-th server in the j-th rack.
Let I; denote the /-th column of the n x n identity matrix.
Then, each server i in the j-th rack sends a packet XE’ ) =

[f(?}_l)(r+a_1}+i C(j:s_l}(r+5_1}+f] e Fg*¥ on its outgoing
link, where M =m + n.

Let XU) be an (r +6 — 1) x M matrix whose rows are the
transmitted packets for rack j. We assume that the user collects
N (= r) packets, denoted as Y](“], . YI(V“] e FPM Let y @
be an N x M matrix whose rows are the received packets.
If the network is error free, then, regardless of the network
topology, the transmitted packets X /) and the received packets
Y®) can be related as Y = AXU), where A is an N x (r +
d—1) matrix corresponding to the overall linear transformation
applied by the network.

Next, let us extend this model to incorporate packet errors
and erasures. We consider that packet errors may occur at any
link, which is a common assumption in the network coding
literature. In particular, let us index the links in the network
from 1 to £. Let Z; denote the error packet injected at link
i €{l,...,£}. If a particular link i does not inject any error,
then Z; is a zero vector. Let Z be an £ x M matrix whose
rows are the error packets. Then, by linearity of the network
code, we get

Y@ = ax"¥) 4 Bz, (24)
where B is an N x £ matrix corresponding to the overall linear
transformation applied by the network to the error packets.
Note that the number of non-zero rows of Z denotes the



total number of error packets injected by the network. Further,
the rank-deficiency of the matrix A captures packet erasures
caused by link failures.

Now, using [37, Th. 1], we immediately get the following
result.

Proposition 2. Suppose the network infroduces at most p
erasures (i.e., the rank(A) > r +6 — 1 — p), and injects
at most t error packets (i.e., the number of non-zero rows in
Z is at most t). Then, the user is guaranteed fo recover the
data from a rack provided

A+p<s—1. (25)

Proof: Let Q; = A(Cj), where C; is the j-th local code
of C. Note that [X(f)]r) € Q;. Further, from Corollary 1,
we have that ds (Q;) = 24.

Now, the user can decode the data by using the minimum
distance decoding rule as follows

X = in d (X’,(Y(“)T)). 26

arngg}Elgjs() Y] (26)

From [37, Th. 1], the decoding is guaranteed to be success-

ful provided 2t + p < ds (L) /2, from which the result

follows. |

Remark 6. Note that, in general, Proposition 2 holds for
any (M x n, log, |Q],2d,r, 28) Grassmannian code CQ with
disjoint local codes. In this case, during encoding, the first
step is to fix an arbitrary injective mapping ¢ between data
symbols and subspaces in C). Then, given a set of data symbols
fo be stored, a subspace from Q corresponding to the data
symbols is obtained using the mapping ¢. Finally, each server
stores a basis vector of this subspace.s During the partial data
download, each server from the j-th rack transmits the stored
basis vector as a packet on its outgoing link.

VII. RELATED WORK AND COMPARISON

1) Codes With Locality: Codes with small locality were
introduced in [5] and [47] (see also [7]). The study of the
locality property was galvanized with the pioneering work
of Gopalan et al. [6], which established Singleton-like upper
bound on the minimum distance of locally recoverable codes
(LRCs). The distance bound has been generalized in multiple
ways, see e.g., [39], [40], [48], [49]. A large number of optimal
code constructions have been presented, see e.g., [9], [41],
[50]-[54].

Maximally recoverable codes (MRCs) are a class of LRCs
that have the sfrongest erasure correction capability. The
notion of maximal recoverability was first proposed by [5]
and was generalized by [24].

LRCs as well as MRCs are primarily designed to correct
small number of erasures locally. As an example, consider

8Note that when a Grassmannian code is obtained via lifting, a server does
not need to store the entire basis vector, but only the part due to the rank-metric
code. This is because of the particular structure of the basis vectors obtained
via lifting. On the other hand, for an arbitrary Grassmannian code, each server
needs to store the entire basis vector. However, in typical applications, we have
m 3> n, and the storage savings achieved by the lifting construction would
be nominal.
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a family of distance-optimal LRCs presented in [9, Construc-
tion 8].7 (See Sec. IV-B for details.) Let C be an (1, k) LRC
from this family with (r, d) locality. Let x = n/(r +J — 1),
and C1,Ca,...,C, denote the u local codes with disjoint
coordinates Cy, C2, ..., Cy, respectively. Then, a local code
C; can correct 6 — 1 or less erasures in C; by accessing
unerased symbols only from C; (for every 1 < j < u).
Further, C can correct any d — 1 erasures, where d is the
minimum distance given in the right hand side of (1). An MRC
can correct any erasure pattern that is information-theoretically
correctable by any LRC with the same parameters.

Even though LRCs (and MRCs) are not designed to correct
crisscross erasures, they can be easily adapted to correct
crisscross erasure patterns. In particular, let us describe how an
LRC can be adapted to mimic the performance of Cp,. given
in Construction 1 for correcting crisscross erasures. Towards
this, consider an (mn, mk) LRC CLRC with (rm, (6—1)m+1)
locality. Let # = n/(r+d—1), and let C{-R¢, CJ-RC, ... CLRC
denote the g local codes with disjoint coordinates. Note
that it is straightforward to construct such a code using
[9, Construction 8].1°

Suppose mk data symbols are encoded using CLRC The
encoded symbols are arranged in an m x n array such that
(r+6—1)m symbols of CjLRC are arranged in columns (j—1)
(r+0—1)+1,..., j(r+6—1), denoted as C;. Note that CfRC
has the minimum Hamming distance (6 — 1)m + 1. Therefore,
CjLRC can locally correct any crisscross erasure pattern in C;
of weight smaller than 5— 1. In fact, local codes CERC of CLRC
are stronger than the local codes C; in Cr,.. In particular,
CLRC can correct all erasure patterns in C; with fewer than
(é — 1)m erasures, which include crisscross erasure patterns
as a proper subset.

On the other hand, despite their strong erasure correction
capability, LRCs and MRCs are not capable of correcting
crisscross and rank errors. This is because they are not
guaranteed to have large rank distance.

2) Codes for Mixed Failures: Several families of codes have
recently been proposed to encounter mixed failures. The two
main families are: sector-disk (SD) codes and partial-MDS
(PMDS) codes (see [20], [27], [28], [55]). Coded data are
arranged in an m x n array, where a column of an array can
be considered as a disk. Each row of the array contains p
local parities, and the array contains h global parities. SD
codes can tolerate erasure of any p disks, plus erasure of any
additional h sectors in the array. PMDS codes can tolerate a
broader class of erasures: any p sector erasures per row, plus
any additional h sector erasures. However, these codes cannot
correct criscross erasures and errors.

3) Codes for Correlated Failures: Very recently,
Gopalan ef al. [26] presented a class of maximally recoverable
codes (MRCs) for grid-like topologies. An MRC for a grid-
like topology encodes data into an m x n array such that each
row has a local parities, each column has b local parities,
and the array has h global parities. Such a code can locally

9We choose this construction because it requires the smallest possible field
size (in particular O(n)) among the known constructions.

10Note that in this case the required field size would be O(mn).
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correct any a erasures in a row or b erasures in column.
When any a rows and b columns are erased, it can globally
correct additional A erasures.

MRC:s for grid-like topologies can correct a large number of
erasure patterns locally. However, their locality guarantees are
significantly different. For instance, if an entire row (or less
than b rows) is erased, then it can be repaired by downloading
n — a symbols from any m — b rows (similarly for column
erasures). Further, these codes cannot correct crisscross and
rank errors, as they are not guaranteed to have large rank
distance.

4) Rank-Metric Codes: Rank-metric codes were introduced
by Delsarte [10] and were largely developed by Gabidulin [11]
(see also [12]). In addition, Gabidulin [11] presented a con-
struction for a class of MRD codes. Roth [12] introduced the
notion of crisscross error pattern, and showed that MRD codes
are powerful in correcting such error patterns. In [13], Blaum
and Bruck presented a family of MDS array codes for cor-
recting crisscross errors. Existing constructions of rank-metric
codes do not possess locality properties. In order to correct
a criscross error/erasure pattern, it is required to read all the
remaining symbols. To the best of our knowledge, this is the
first work to propose the notion of locality in the rank metric.

5) Subspace Codes: The important role of the subspace
metric in correcting errors and erasures in non-coherent linear
network codes was first noted in [34]. Since then, subspace
codes (also known as codes over projective space) and
constant-dimension subspace codes or Grassmannian codes
have been studied in a number of research papers, see
e.g., [35]-[37], [56]-[59], and references therein. Existing
constructions of Grassmannian codes do not possess locality
properties. To the best of our knowledge, this is the first work
to propose the notion of locality in the subspace metric.

6) Codes for Distributed Storage Based on Subspace Codes:
Recently, subspace codes have been used to construct repair
efficient codes for distributed storage systems. In [60],
the authors construct regenerating codes based on subspace
codes. In [61], array codes with locality and availability (in the
Hamming metric) are constructed using subspace codes. A key
feature of these codes is their small locality for recovering
a lost symbol as well as a lost column. On the other hand,
we present a construction of Grassmannian codes that have
locality in the subspace metric. These codes are useful to
recover partial data or repair nodes over noisy networks.

APPENDIX A
LINEARIZED POLYNOMIALS AND GABIDULIN CODES

In this section, we first review some properties of linearized
polynomials. (For details, please see [62].) Then, we specify
Gabidulin codes construction. Let us begin with the definition
of linearized polynomials. Recall that x4 = xll,

Definition 7 (Linearized Polynomial). ([62]) A polynomial in
Fym[x] of the following form

L(x) = Za;x["] (27)
i=0

is called as a linearized polynomial or a q-polynomial over
Fym. Further, max{i € [n] : a; # 0} is said to be the q-degree
of L(x) denoted as degq (L(x)).

The name arises from the following property of linearized
polynomials, referred to as F,-linearity [62]. Let F be an
arbitrary extension field of Fym and L(x) be a linearized
polynomial over F m, then

La+p)=L(a)+L(B) VY a,pel. (28)
L(ca) =cL(a) YceF;, and VacF. (29)
Definition 8 (g-Associates). ([62]) The polynomials
1) =Y cix' and L(x) =) cix" (30)
i=0 i=0

over Fym are called q-associates of each other. In particular,
I(x) is referred to as the conventional q-associate of L(x) and
L(x) is referred to as the linearized q-associate of l(x).

Theorem 3. [62, Th. 3.50] Let L(x) be a non-zero linearized
polynomial over Fym and let Fys be the extension field of Fym
that contains all the roots of L(x). Then, the roots form a
linear subspace of Fys, where Fys is regarded as the vector
space over Fy.

The above theorem yields the following corollary.

Corollary 2. Let L(x) be a non-zero linearized polynomial
over Fgm with deg, (L(x)) = I, and let Fy be arbitrary
extension field of Fym. Then, L(x) has at most | roots in Fgr
that are linearly independet over .

A. Gabidulin Code Construction

We review a class of maximum rank distance (MRD) codes
presented by Gabidulin [11] for the case m > n. Let g be a
prime power, let m > n, and let P = {y1,---,ya} € IE‘;,,, be
n linearly independent elements over F;. An (n, k) Gabidulin
code over the extension field Fym for m > n is the set of
evaluations of all g-polynomials of g-degree at most kK — 1
over P.

More specifically, let G(x) € Fgm[x] denote the lin-
earized polynomial of g-degree at most k —1 with coefficients
m=|[mg my --- Mmy_1] € IE'g,,, as follows:

k-1
Gm(x) =D mjxll, 31)
=0

Then, the Gabidulin code is obtained by the following
evaluation map

Enc : ]Ff;m — Fgm
m > {Gm(y),y € P} (32)
Therefore, we have
Coab = {Gm(),7 € P) ImeFin).  (33)



B. Reed-Solomon Code Construction

It is worth mentioning the analogy between Reed-Solomon
codes and Gabidulin codes. An (1, k) Reed-Solomon code
over the finite field F; for ¢ > n is the set of evaluations
of all polynomials of degree at most k — 1 over n distinct

elements of F,. More specifically, let P = {y1,---, .} be a
set of n distinct elements of F; (¢ > n). Consider polynomials
gm(x) € Fy[x] with coefficients m = [mom1 --- mp_1] € IE'f‘ir

of the following form:

k—1
gm(x) = D mjx/, (34)
j=0

Then, the Reed-Solomon code is obtained by the following
evaluation map
.k n
Enc: F, — I,
m = {gm(y),7 € P} (35)
Therefore, we have

Crs = {(gm(r),7 € P) Im e Fi}.

Remark 7. For the same information vector m =
[mo---mp_1] € ]Ff;, the evaluation polynomials of the
Gabidulin code and the Reed-Solomon code are q-associates
of each other.

(36)

APPENDIX B
RANK DISTANCE OPTIMALITY

We present a proof of the optimality of the proposed
Construction 1 with respect to (3). We use some properties
of linearized polynomials which are listed in Appendix A.
We begin with a useful lemma regarding the minimum rank
distance of a rank-metric code that is obtained through evalu-
ations of a linearized polynomial.

Lemma 5. Let P be a set of n elements in Fym that are
linearly independent over Fy (m = n). Consider a linearized
polynomial Ly, (x) € Fym[x] of the following form

k
Ln(x) = D my;xil, 37
j=1

where ij’s are non-negative integers such that 0 < iy < iz <
- < i <n—1, and k < n. Consider the code obtained by
the following evaluation map

Enc : Fgm — F;m

m— {Lm(y),y € P} (38)
In other words, we have
C={Lm() I meFhn,y e P}. (39)

Then, C is a linear (m x n, k,d) rank-metric code with rank
distance d = n — iy.

Proof: First, note that a codeword ¢ € C is the evaluation
of Ly(x) on n points of P for a fixed m € ]F:;,,.. Thus,
a codeword is a set of n values each in F ». By fixing a basis
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for IF,m as a vector space over F,, we can represent a codeword
(= ]F;m as an m x n matrix C € ]F;"x". Thus, C can be
considered as a matrix or array code.

Second, note that C is an evaluation map over F m. Observe
that m +— Ly, (x) is an injective map. Since g-degree of Ly, (x)
is at most n — 1, two distinct polynomials Ly, i (x) and Ly, (x)
result in distinct codewords, and thus, dimension of the code
(over Fym) is k.

Finally, we show that dr (C) = n — i. Notice that

max )
Lm,mEFzm

degq (Lm) < i, (40)
where deg, (F) denotes the g-degree of a linearized
polynomial F.

Consider a codeword ¢ as a length-n vector over Fm. Let
m. be the message vector resulting in ¢, and Ly, be the
corresponding polynomial giving ¢. Let C ]FZ“‘" be the
matrix representation of ¢ for some basis of Fym over Fy.
Suppose rank (C) = w,. We want to prove that w, > n — i;.
Suppose, for contradiction, w, < n — ij.

Let wit (¢) = w. Clearly, w, < w. Without loss of generality
(WLOG), assume that the last n — w columns of C are
zero. We know that n — w points in P, {yy41,...,Va}, are
the roots of L. (x). Note that, since elements of P are
linearly independent over F,;, w > n — i} (see Corollary 2
in Appendix A).

WLOG, assume that the first w, columns of C are linearly
independent over IF,. After doing column operations, we can
make the middle w — w, columns as zero columns. Thus, there
exist coefficients ci.’s in Fy, not all zero, such that

Wy
> iLm )+l 11 L (uw,41) =0, for 1<I<w—uw,.
j=1

(41)

By using F,-linearity property of linearized polynomials
(see (28), (29)), the above set of equations (41) is equivalent to

Wy
L | D chyi+cly 1ywa1 | =0, for 1<l <w—uw,.
j=1
(42)

Therefore, {ij’;] c;yj + CLF_H Ywral, 1 <1 <w— w,} are
also the roots of Ly, (x). Together with {y,+1,..., ya} as its
roots, Ly (x) has n — w, > i roots. Note that, since y;’s
are linearly independent over Fy, so are all of the n — w,
roots. Thus, Ly, (x) has more than iy roots that are linearly
independent over F,, which is a contradiction due to (40)
and Corollary 2. |

From the above lemma, it follows that C obtained using
Construction 1 is a linear (m x n, k) rank-metric code. Observe
that the g-degree of G, (x) is bounded as

deg, (Gm(x))
5(§—1)(r+5—1)+r—1:k—1+(§—1)(5—1).

Hence, from Lemma 5, we have dr(C) = n —k + 1 —
(£ — 1) (6 — 1), which proves the rank distance optimality.
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