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ABSTRACT

Graph sampling is an important tool to obtain small and manage-
able subgraphs from large real-world graphs. Prior research has
shown that Induced Edge Sampling (IES) outperforms other sam-
pling methods in terms of the quality of subgraph obtained. Even
though fast sampling is crucial for several workflows, there has
been little work on parallel sampling algorithms in the past.

In this paper, we present parlES - a framework for parallel In-
duced Edge Sampling on shared-memory parallel machines. parIES,
equipped with optimized load balancing and synchronization avoid-
ing strategies, can sample both static and streaming dynamic graphs,
while achieving high scalability and parallel efficiency. We develop
a lightweight concurrent hash table coupled with a space-efficient
dynamic graph data structure to overcome the challenges and mem-
ory constraints of sampling streaming dynamic graphs. We evaluate
parlES on a 16-core (32 threads) Intel server using 7 large synthetic
and real-world networks. From a static graph, parIES can sample
a subgraph with > 1.4B edges in < 2.5s and achieve upto 15.5%
parallel speedup. For dynamic streaming graphs, parlES can process
upto 86.7M edges per second achieving 15x parallel speedup.
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1 INTRODUCTION

Graph analysis forms the backbone for many applications in social
media, WWW, bioinformatics and transportation that generate and
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process large real-world graphs. Often these graphs are too large
to process on a single machine, however, despite the development
of highly optimized distributed graph databases and processing
frameworks [5, 12, 14, 19, 32, 34], many analytics algorithms can-
not run efficiently and directly on these extremely large graphs.
Thus approximate analytics on smaller, representative subgraphs
have become a popular alternative [2, 25, 30, 31, 33]. Sampling is a
widely used method for generating manageable subgraphs — many
network repositories that provide datasets for analysis and bench-
marking, store subgraphs sampled from real-world graphs[17, 18].
Fast representative graph sampling (i.e graph sampling done fast
while simultaneously ensuring the sampled subgraph remains a
good representative of the original) is therefore essential for the
smooth processing of many crucial programs, especially within
mission-critical workflows.

In spite of the numerous applications, there has been little work
on parallelizing graph sampling. Sequential sampling of very large
graphs can be unacceptably slow, especially in cases when a graph
has to be repeatedly sampled or when the sampling throughput
must match the incoming rate of a streaming graph. Existing works
on parallel sampling are tailored towards application-specific algo-
rithms that extract subgraphs conforming to the objective in the
corresponding problem, for example, finding gene functionality
clusters [7, 8]. Recently, an FPGA accelerator [28] was proposed
for deletion sampling methods [16] that remove vertices and/or
edges from the original graph to create a subgraph. However, the
accelerator only caters to static in-memory graphs and takes ~ 50s
to sample a 150M edge graph, further emphasizing the need for
efficient parallelization of graph sampling techniques.

In this paper, we focus on Induced Edge Sampling (IES) [3, 24].
Edge Sampling (ES) randomly samples edges, thus mitigating the
downward degree bias of node sampling. Additionally, induction
on the sampled nodes further improves the connectivity in the
sampled subgraph G;. IES has been shown to outperform many
sophisticated state-of-the-art node sampling and topology based
algorithms, such as forest fire or snowball sampling [3], in terms of
preserving graph structure.

Parallelizing edge sampling is challenging as the parallel threads
need to track and update a common goal in terms of target graph
size. If implemented naively, this can limit the scalability of a paral-
lel sampler. Furthermore, if the graph G is too large to fit in memory
or dynamically changing with time (which is often the case with
real-world graphs), a streaming algorithm must be applied that can
work with strict memory space restrictions and perform sampling
and induction in a single pass over the incoming stream of edges.


https://doi.org/10.1145/3310273.3323052
https://doi.org/10.1145/3310273.3323052

CF ’19, April 30-May 2, 2019, Alghero, Italy

Stream sampling is especially challenging to parallelize as the sam-
pled vertex set and induced subgraph G need to be dynamically
maintained, while processing the edge stream at a high rate.

To this purpose, we develop parlES - an efficient framework for
parallel Induced Edge Sampling on shared-memory systems. parIES
consists of 2 algorithms - parTIES and parPIES that effectively
utilize the parallel computing resources provided by off the shelf
multi-core architectures to sample static in-memory and stream-
ing dynamic graphs, respectively. parTIES utilizes a checkpointing
mechanism that allows all threads to continuously track the state of
G, without synchronizing. For parPIES, we further develop a light-
weight hash table coupled with a space-efficient dynamic graph
data structure, that concurrently and efficiently update the sam-
pled subgraph G, while respecting the memory constraints on a
streaming algorithm. To the best of our knowledge, this is the first
work that comprehensively targets parallel edge-based sampling of
both static and dynamic/streaming graphs, allowing billion scale
graphs to be sampled in a few seconds.

The major contributions of our work are as follows:

(1) We develop an asynchronous scalable parallel Totally In-
duced Edge Sampling (parTIES) algorithm that efficiently
executes Edge Sampling and Induction using optimized load
balancing and synchronization avoidance mechanisms.

(2) To facilitate efficient sampling of streaming networks, we
develop a dynamic graph data structure coupled with a par-
allel hash table that allows concurrent insertions, deletions,
replace and search. Unlike conventional hash tables, our ap-
proach does not require rehashing, thereby ensuring scalable
and highly parallel execution of updates.

(3) Using these data structures, we create parPIES - parallel Par-
tially Induced Edge Sampling algorithm for dynamic graphs.
parPIES generates the sampled subgraph in a single pass
through the edge stream, while satsifying the memory con-
straints on a streaming algorithm.

2 SAMPLING STATIC GRAPHS
2.1 Background

Many applications such as graph sparsification, visualization and
analytics require sampling a subgraph Gs(Vs, Es) from the larger
graph G(V, E). Edge sampling and vertex sampling are two very
well-known sampling techniques [3, 24]. In many practical scenar-
ios, the objective is to sample a subgraph comprised of a target
number of vertices |Vs| followed by inducing some or all of the
edges in Vg (partial versus total induction). While nodes in an in-
duced subgraph have inherently smaller degrees than the original,
it has been shown that random edge sampling with induction im-
proves the connectivity in G (by selecting high degree nodes with
larger probability) and brings its distributions (degree, path length,
clustering coefficient etc.) closer to G [3].

The sequential induced edge sampling algorithm given in [3]
randomly selects edges from E until a desired number k = |V;| of
distinct vertices in V have been sampled. This is followed by a total
induction phase that iterates over all the edges in E for induction in
Vs. Such algorithms assume the graph is static and small enough that
both V and E are always accessible through calls to main memory.
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Naive parallelization of these algorithms entails concurrent threads
having to probe and update a shared collective target. Such heavy
synchronization can limit scalability and even make parallel execu-
tion slower than sequential execution. Further, the induction phase
requires Q(E) work, making it very inefficient for the cases when
k/V is very small.

2.2 Asynchronous parallel Totally Induced
Edge Sampling (ASparTIES)
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Figure 1: SparTIES: Synchronous Parallel Edge Sampling in
parTIES using p threads

We develop an asynchronous, fast, efficient and load-balanced
parallel algorithm for Totally Induced Edge Sampling (ASparTIES)
for static graphs. Before describing this, we first outline a simple,
loosely synchronous parallelization - SparTIES (Fig. 1). The key idea
is to assign each thread a fixed amount of work in each iteration and
iterate until |Vs| > k. Specifically, SparTIES restricts the amount of

edges selected by a thread in an iteration to (1+a)l;——cntVs

, where p
denotes the number of concurrent threads and cntV; is the global
sampled vertex size just before that iteration. &, 0 < @ <« 1is
an edge oversampling factor to drive sampling towards the vertex
target. As shown in lemma 1, @ does not have to be too large for
reasonable target sizes on most graphs. Each thread maintains a
private local array localV; of sampled vertices unique to it. During
an iteration, for each sampled edge (u, v), a thread uses an atomic
Compare-And-Swap (CAS) instruction to update both its localV
and a global boolean array of vertex status (status[]) if v and/or
v are new samples. Threads only have to synchronize and update
cntVs at the end of an iteration, thus limiting the amount of synchro-
nization. When cntVs becomes greater than k, each thread copies its
localVs into a global Vs array and proceeds to the induction phase.
During induction, each thread is allocated cnt Vs /p sampled vertices
to induce edges from. Similar to the sampling phase, threads use
a private localE array. Via the CSR matrix, only edges that are
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incident on at least one sampled node are inspected for induction.
This makes our implementation efficient even for small k/V.

SparTIES has some drawbacks. For real-world graphs with power
law degree distribution, the static task allocation can introduce
load imbalance while the use of dynamic local vectors can slow
down execution. Further, making « small to reduce oversampling
can increase the amount of synchronization and limit scalability.
Finally, the parallel efficiency of parTIES is also affected by the
type of sampling. Intuitively, sampling with replacement (from E)
has less overhead but requires more iterations to reach the sample
target. Consider the fraction = |Es|/|E| of edges that need to be
sampled in order to obtain a subgraph of vertex size |Vs| = B|V]|.
Let ¢y = e 7. Let Dy, be a random variable denoting the degree of
a vertex v in G. Then it is straightforward to show the following
(proof omitted for brevity):

LEMMA 1. (1) Sampling with replacement: The expected fraction
of edges to be sampled to achieve a targeted fraction f of vertices
is obtained by solving E[(c,,)Dv] ~ 1 - p. (2) Sampling without
replacement: E[n] < f.

We resolve these drawbacks by developing ASparTIES: a fully
asynchronous algorithm for static edge sampling with the following
key design features: Each thread avoids conflicts by reserving work
in rounds of vertex chunks (of size BS) through atomic updates of a
global checkpoint on the size of V5. A thread then samples random
edges asynchronously until it obtains exactly BS vertex samples
(after which it moves to its next round), or until it views |V| > k.
Thus the algorithm samples exactly k vertices. A similar process is
carried out for the induction phase. With dynamic task allocation,
in-place storage and conflict-free updates of sampled vertices and
induced edges, ASparTIES significantly improves load balance and
avoids inefficiencies associated with dynamic private vectors.

Algorithm 1 shows the pseudocode of ASparTIES. The key func-
tion is update (lines 18-21), used by each thread ¢ to reserve for
itself an exclusive space of size BS in V. An atomic Fetch-and-add
(FAA) on global counter cntVs, executed once t has locally gathered
and inserted BS number of new vertices into V; (lines 4-10), initiates
the next round for ¢. Lastly, the induction phase parallelizes tasks
over vertices in Vs, following a similar process (lines 11-17).

Note that if p < k, all threads keep working until the last round,
thus ensuring efficient load balancing in ASparTIES. Also note that
the work done in the induction phase dominates the sampling phase
as sampling only selects a subset of edges to be induced. Induction
probes all edges incident on at least one vertex in Vg, thus expected
work is O(kd), where d is the average degree of V. Assuming that
status array is initialized beforehand, the expected time complexity
of ASparTIES is O(%d) if all operations are executed in parallel.
However, on a CREW machine, multiple FAAs to the same vari-
able are sequentialized. Choosing BS = 6(p) limits the number of
rounds and consequently, the number of sequential steps incurred
to O(%) Thus, the scalability and asymptotic time complexity of
the algorithm is not affected by the checkpointing.

Finally, ASparTIES implements sampling without replacement
with low overheads (O(1) work per edge). When the number of sam-
pled edges is large, it allocates edge partitions to threads. Threads
sample edges from their respective partitions and move sampled
edges to the end of array to remove them from the edge set.
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Algorithm 1 Asynchronous parTIES with dynamic scheduling

{Vs,Es} = ¢, {cntVs, cntEg, Vi € V : status[i]} = 0
1: BS = p X const
2: for tid = 1,2...p do in parallel
3: cntjpeqr = 0, update(cntyyeqr, cntVs, BS)
4 while cntj .41 < k do
5 (u,v) = rnd(E)
6: if CAS(&status[u],0,1) then
7
8

> Edge Sampling

Vslentiocarl=u
update(cntyyeqr, cntVs, BS)

9: Execute lines 6-8 for vertex v

10: E=E—-{(u,v)}

11: for u € Vs do in parallel > Induction
12: cntipeqar =0

13: update(cntyyeqr, cntEs, BS)

14: for each (u,v) € E

15: if v € V5 then

16: Es[entiocar] = (u,0)

17: update(cntyeqg, cntEg, BS)

18: function update(&cntjocqar, &cntgropals BS)

19: if (cntjoeqr = 0) V ((entjpeqr + 1)%BS = 0) then
20: cntioeal = FAA(&Cntglabal,BS)

21: else cntjocqr + +;

Initialization cost can be amortized across multiple runs of AS-
parTIES. Resetting the status array requires O(k) work and O( f—))
time. Resetting the end pointers of partitions to recover initial edge
set requires O(p) work and O(1) time. The optimizations discussed
in ASparTIES will also be useful in sampling dynamic streaming
graphs as we will see in the next section.

3 SAMPLING DYNAMIC GRAPHS
3.1 Background & Challenges

Graphs representing real-world networks may often be extremely
large to fit on the main memory of a machine. Furthermore, the
graph could be dynamically evolving over time, requiring updates
to be processed as they arrive and without visiting the same edge
repeatedly. In such situations, the graph may only be accessible in a
streaming fashion i.e. as a randomly ordered stream of edges, possi-
bly coming from a disk. Algorithms that assume the ability to store
and randomly access elements from V and E are unsuitable for (par-
allel) sampling (of) such streaming graphs. Rather, streaming algo-
rithms that can process edges on the fly, performing both sampling
and induction in a single pass over the edge stream are necessary.

Recently, a sequential streaming algorithm labeled Partially In-
duced Edge Sampling (PIES) was proposed in [3]. For completeness,
we provide a brief description of PIES below. PIES samples from a
stream of incoming edges and maintains a partially induced sub-
graph. Initially, PIES selects all edges and adds them to G as long
as |Vs| < k, a given parameter. Subsequently, the ¢ h streamed edge
er = (u,v) is inducted into G if either 1) both u and v are already in
Vs or 2) e; gets selected with probability Zt, where m = |Es| at the
end of the initial phase. This is shown to be equivalent to random
edge sampling[3]. If e; is selected and u ¢ Vs (v ¢ Vg, resp.), then a
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random vertex i € Vs (j, resp.) is selected and u (v, resp.) replaces
that vertex. Vertex i (j, resp.) is then deleted along with all its ex-
isting incident edges in E. Edge e; is then inducted into Es. Note
that the sample-induced graph is of necessity, partially induced,
since induction is dependent on the current state of Vi. Vertices
can appear and disappear from V; but edges, once deleted/dropped,
are lost from the stream and will not be represented even if their
vertices are present in the final sampled set.

To the best of our knowledge, neither [3] nor any other work
discusses how such streaming edge sampling can be efficiently
implemented or parallelized ([3] does not provide any parallel algo-
rithm details). We note that any parallel streaming algorithm for
induced sampling should have the following (minimal) attributes:

(1) Concurrent Dynamic Graph Update Capability: The sampled sub-
graph G must be dynamically maintained, allowing concurrent
insertion, replacement and search of vertices and edges.

(2) Space-Efficient Operation: Data structures used in the algorithm
must allocate and operate on O(|Vs| + |Es|)) main memory. The
algorithm shouldn’t assume access to (|V| + |E|) mainmemory.

Thus we require a data structure that can store the current
sampled subgraph G as well as rapidly search it for the pres-
ence/absence of a vertex!. Clearly, we cannot use a §(V) dense
status array (like in parTIES) for search as it would violate the
space-efficiency requirement. For storing the dynamic subgraph
Gg, sophisticated frameworks that support graph updates, such as
STINGER([9], Boost[13], Galois[22], would seem natural choices.
However, a fundamental problem associated with these structures is
that upon a vertex deletion, they only delete the incident edges and
do not reclaim the complete memory associated with that vertex
(eg. pointers to adjacency list). Directly using them requires at least
0(V) main memory. Moreover, we can utilize a simplified structure
that just satisfies the requirements of our streaming algorithm and
avoids performance overheads of a comprehensive database.

To solve both problems together, we propose to use an unordered
array of size 0(k) to store Vs, tightly coupled with a sparse set data
structure for rapid vertex search, specifically, a concurrent hash
table. The coupling between the two structures ensures consistent
insertions/deletions from both Vi and the hash table so that at any
point in time, a vertex is perceived as either present or absent in
both (by concurrent threads).

There are several separate chaining based parallel hash tables[21,
26, 29] that could potentially be used for this purpose. However,
such hash tables store linked lists that require pointer chasing
for search and constant memory management to allocate and free
the elements in the list. While hopscotch hashing[15] and phase
concurrent deterministic hash tables[27] provide very fast searches
and updates, insertions and deletions in such hash tables displace
pre-existing elements and hence, concurrent replace operations
required in sampling are not supported. Some open addressing
based hash tables can process concurrent insertions, deletions and
searches[10, 23]. However, the hash table of[23] is very complex
and cannot implement a dictionary. In [10], deletions are soft and
create "tombstones” that insertion and search skip over. Since we

!This data structure is required for the intermediate and final output of sampling. It is
not to store the input dynamic graph which is streamed in as an edge list.
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require a large number of inserts and deletes in our streaming edge-
sampling algorithm, such a table will quickly get filled mandating
frequent rehashing which can become a performance bottleneck.

3.2 Dynamic Graph Data Structure

Our design of a space-efficient and fast dynamic graph structure is
motivated by the following key observations about subgraph up-
dates in the parallel streaming edge-sampling algorithm: 1) All edge
deletions are initiated by a vertex deletion. 2) The first k vertex op-
erations are unbalanced insertions, followed by only replacements.

Keeping the above algorithm properties in mind, we propose to
store the dynamic graph Gs as a k length array of structs - vA[]
and relabel the vertices on-the-fly before they are inserted. The new
label of a vertex is simply its location (index) in the vA[] array. Each
element of vA[] contains the following:

e vld — the original id of the vertex in G. The vId of all elements
in vA[] constitute the sampled vertex set V.

e <> adj — a dynamic array containing current set of vertices in
Vs that are adjacent to vId, labeled using their original ids in G.
Note that this is only the set of adjacent vertices discovered in
the edges induced since vId’s last (re)insertion into V. The adj
of all elements in vA[] constitute the induced edge set Es.

e Jock — a thread must acquire the lock before modifying adj.

The dynamic graph interface provides several functions to mod-
ify Vs and Es :

1) insertVs: adds vertices to V; if |Vs| < k or else return —1 indicat-
ing completion of initial phase. The mechanism to reserve locations
for threads in vA[] is similar to algorithm 1.

2) replaceVs: replaces the vertex at a given location with input
vertex v and deletes the adjacency list of replaced vertex.

In addition, it also has a push_edge(pos, v) function to append v
to vA[pos].adj; a lockSpec/lockRand functions to acquire lock at
a specified/random location; and an unlock function to release the
lock at a specified location.

Since vA[] is unordered, we use a hash table for efficient vertex
search. Note that the hash table must function as a dictionary, not
only confirming the presence/absence of a vertex in Vg, but also
storing its new label (location in vA[]).

3.3 Hash Table

Clearly, a hash table suitable for streaming edge-sampling must
support concurrent insertions, searches and replacements. More-
over, consistency in the number of copies visible in both hash table
and vA[] (either 0 or 1) is essential for correct functioning of the
sampling algorithm. To ensure consistent thread-safe updates be-
tween Vs and the hash table, we need to resolve several challenges.
For example, during replacements, multiple threads may want to
add a vertex u to Vg and might attempt to replace different vertices
in vA[], on behalf of the same vertex u. In such cases, we must
prevent multiple incorrect deletions from vA[] and the hash table
along with multiple insertions of u. Further, any operations in the
interval between committing a replacement in the hash table and
commiting in the vA[] should not result in erroneous updates to G.

Thus, our lightweight hash table design is tailored towards our
specific stream sampling problem. Delete operations are designed to
create empty cells that can be reclaimed by future insertions (rather
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than creating tombstones[10]) and clean cells where a search can ter-
minate. Given that there are only replacements after first k vertices
are sampled, such hash table will not require rehashing throughout
sampling. To this purpose, we create our hash table as an array of
structs-HT[], in which each element has the following components:

o status € {V,E, B} — indicating the presence (V) or absence
(E) of a vertex at the location or Busy (B), indicating a dele-
tion/insertion in progress.

e vld — original vertex label in G; used as hash table key.
status and vld are stored as a single word.

e [abel — location of vId in vA[] (i.e new label of vId).

o lock — for fine-grained locking of the element.

e cnt — the running count of the number of vertices currently
present in the hash table that hashed on the respective or a
preceding location but are stored further ahead.

Let HT[pos] denote an arbitrary element in the hash table. We
define an element as clean if HT [pos].cnt = 0.

Cram 1. A search must terminate if it encounters a clean element.

Algorithm 2 describes our main hash table functions.

1) search starts from location h and terminates at either a valid
(success) or clean (failure-ref. Claim 1) element.

2) replace inserts a given input vertex v and removes a randomly
selected vertex from both hash table and V;. Starting from the
hashed position HT [hash(v)], it first locks it to prevent a concurrent
thread from inserting the same vertex and then searches for an
empty location. If it encounters v, it terminates, returning the label
of v. Otherwise, if an empty location pos is found, it atomically sets
it to busy and searches further ahead for v (this is needed only if a
clean element was not found earlier) If the search for v succeeds
it resets the lock and status and returns the label (line 28-29). If
the search fails (lines 19-27), it locks a random location in vA[] and
replaces the vertex prev occupying it with the new vertex v. prev
is then deleted and v inserted in the hash table. cnt is incremented
at appropriate locations in the hash table before releasing the lock
on HT[hash(v)] to reflect the insertion of v.

3) delete searches for and deletes the input vertex v from the hash
table. If hash(v) = h and v is found at pos = h + x, it atomically
decrements HT[i].cnt Vi€ {h,...,h+x —1}.

The hash table also has an insert function to be used in the ini-
tial phase of the streaming algorithm. Under any sequence of calls to
insert and replace, the following will hold true (we define a ver-
tex as searchable if search can successfully find it in the hash table):

CrLaM 2. Any vertex committed in Vs is searchable.

ProOF. Since insertion is completed in the hash table before
unlocking vA[], any vertex in Vs is definitely present in the hash
table. Let v be a vertex such that hash(v) = h and v is placed at
HT[h + x] and consider HT[i].cnt V i € {h,...h + x — 1}. Clearly,
in the absence of deletions, HT[i] > 1 and hence, v is searchable.
In the presence of deletions, consider a vertex u # v to be deleted
such that hash(u) = &’ and u is placed at HT[h’ + x’]. Deletion of
u # v can decrease HT[i].cnt by at most 1ifi € {h’,...h" + x’ — 1}.
Before delete(u) executes, HT[i].cnt > 2 because insertion of u
and v have incremented HT[i].cnt by 1, each. Hence, after deletion
of u, HT[i].cnt > 1 and v is still searchable. O
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Algorithm 2 Hash Table functions

Gs — dynamic graph; hash() — hashing function

1: function SEARCH(v)

2 pos = hash(v)

3: do

4 if HT[pos].(vId, status) = (v, V) then
5 return HT[pos].label

6: if HT[pos].cnt = 0 then return —1

7: pos = pos + 1

8: while pos # hash(v)

9: return —1

10: function REPLACE(v, Gy)
11: pos = hash(v), h = hash(v)
12: while CAS(&HT[h].lock,0,1) = 0 {}

13: do

14: e = HT[pos]

15: if e.(vld, status) = (v, V) then

16: HT[h].lock =0

17: return e.label

18: if CAS(&e.(vId, status), (x, E), (x, B)) then
19: vlabel = search(v)

20: if vlabel < 0 then

21: e.label = Gs.1lockRand()

22: prev = Gs.replaceVs(v, e.label)

23: delete(prev)

24: e.(vld, status) = (v, V)

25: for loc =h,h+1,...,pos —1do

26: FAA(&HT|[loc].cnt, 1)

27: HT[h].lock = 0, Gs.unlock(e.label)
28: return e.label

29: e.status = E, HT[h].lock = 0

30: return vlabel

31: pos = pos + 1

32: while pos # h

33: HT[h].lock = 0, return — 1
34: function DELETE(v)

35: pos = hash(v), h = hash(v)

36: do

37: e = HT[pos]

38: if CAS(e.(vld, status), (v, V), (x, E)) then
39: for loc =h,h+1,...,pos —1do

40: FAA(&HT|loc].cnt,—1)

41: if HT[pos].cnt = 0 then return

42: pos = pos + 1

43: while pos # h

Cram 3. There exists exactly one copy of vertex v in the Hash
table if and only if v € V.

Proor. Ifv € Vg, by claim 2, v is searchable and hence, exists in
the hash table. Assume that there are multiple copies of a vertex
v in the hash table. Since replace and insert lock HT[hash(v)],
the multiple copies must have been inserted sequentially one-by-
one. By claim 2, after first insertion of v, subsequent attempts to
insert v will find the existing copy and abort. Hence, no other copy



CF ’19, April 30-May 2, 2019, Alghero, Italy

of v would be created in the hash table. If v ¢ Vs, either v was
never inserted in which case, it is not in the hash table, or v was
replaced from V5. If v was removed, by claim 2, the delete function
would have successfully found and deleted one copy of v. Since,
there existed only one copy of v, after deletion, v must have been
completely removed from the hash table. O

Claim 3 implies that vertices in the hash table will always be consis-
tent with vA[]. During the transient phase of a function, vertices in
vA[] may differ from the hash table but since the corresponding loca-
tion in vA[] is locked, it does not result in erroneous updates to Gs.

3.4 Parallel Partially Induced Edge Sampling

Using the data structures described above, we develop a high through-
put parallel Partially Induced Edge Sampling (parPIES) algorithm
for sampling streaming dynamic graphs(algorithm 3). parPIES uses
hash table functions to manipulate vertices in Vs and dynamic graph
functions to populate Es.

Each thread, when idle, exclusively reads a small batch of edges
from the incoming stream and then processes them. In the first
phase, parPIES calls insert for vertices of all edges (u, v), which
inserts the vertices in vA[] if they were not already present. All
edges (u, v) are induced by pushing v to the adjacency list at lo-
cation of u in va[]. When k vertices have been sampled, insert
returns —1 terminating this phase.

In the second phase, for every edge (u, v), parPIES first calls
search(u). If the search fails, with probability m’:’id, it inserts u
in V; by calling replace(u). The same procedure is repeated for
v as well. If u and v are either found or inserted in Vg, the edge is
induced. However, before pushing v to the adjacency of u; (new
label of u), a check is performed on vA[u;].vld as a concurrent
replace may have changed it.

Note that if u is deleted, all edges {(u, %)} are removed (algorithm
3). However, spurious edges (v, u) | v € V; continue to exist in Es as
they are stored in the adjacency of v. To prevent memory overflow
from spurious edges, we perform a cleanup if clean_cond is asserted.
clean_cond can be set if either a given number of edges have been
processed since the last cleanup or if |Eg| crosses a threshold (de-
termined by available memory). During a cleanup, vertices in all
adjacencies are searched for in the hash table and removed if not
found . Reading an exclusive batch of edges from the graph stream,
tracking uv;q, |Vs| and |Es| variables and the global clean_cond
condition uses checkpointing described in algorithm 1.

Extensions: Algorithm 3 can be easily tweaked for total induc-
tion on static graphs with only streaming access (eg. massive disk-
resident graphs). If the graph is not changing, we can run multiple
passes over the edge stream. The first pass will simply execute
sampling using algorithm 3 without induction. The second pass
will induce edges incident on vertices in the hash table, executing
total induction over Vs.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup

We conduct experiments on a 16-core machine with 2 x 2.6GHz
8-core Intel Xeon E5-2650 processors (256KB L2 and 20MB L3 cache)
and 128GB main memory. The processors are enabled with 2-way
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Algorithm 3 parPIES pseudocode

Gs — dynamic graph object, vSet — hash table object
uv;q — position of edge (u, v) in input edge stream
clean_cond =0, Vs = ¢, Es = ¢

1: fori€0,1...p — 1 do in parallel > first phase

2 while |Vs| < k do
3 read E’ exclusive edges from stream
4 for each (u,v) € E’
5 u; = vSet.insert(u, Gs)
6: if u; < 0 then goto line 11
7 Execute lines 5-6 for v
8: Gs.lockSpec(u;)
9: Gs.pushEdge(u;, v)
10: Gs.unlockSpec(u;)
11: m = |Eg|
12: fori € 0,1...p — 1 do in parallel > second phase
13: while graph is streaming do
14: while clean_cond = 0 do
15: read E’ exclusive edges from stream
16: for each (u,v) € E’
17: r = uniform_random(0, 1)
18: u; = vSet.search(u)
19: if (r < m/uv;g) A (u; < 0) then
20: u; = vSet.replace(u, Gs)
21: else if u; < 0 then process next edge
22: Execute lines 18-21 for v
23: Gs.lockSpec(u;)
24: if (Gs.vAly;].vId = u) then
25: Gs.pushEdge(u;, v)
26: Gs.unlockSpec(uj)
27: __synchronize()__
28: clean spurious edges
29: reset clean_cond
30: __synchronize()__

hyperthreading (total 32 threads). The memory bandwidth of our
machine as measured by the STREAM benchmark, is 55.2GBps
for Copy and 61.4GBps for Add. All codes are written in C++ and
compiled using G++ 4.7.1 with OpenMP v3.1 on Ubuntu 14.04 OS.

We use 7 large real world and synthetic graph datasets for per-
formance evaluation; table 1 summarizes their characteristics. We
only focus on undirected graphs and report time and memory per-
formance of the algorithms discussed in this paper.

Implementation Details: In parTIES, edge deletion (line 13, algo-
rithm 1) is only implemented if sampling fraction % > 0.5. This is
because overlap in randomly selected edges is significant only if a
large fraction of total edges are needed to sample target number of
vertices. In parPIES, we instantiate the hash table with size 2k and
thus, the maximum load factor is 0.5. This was done to mimic the
strict memory constraints for a streaming algorithm. The adjacency
lists are implemented using C++ STL vectors. Unless specified oth-
erwise, the programs run on all 16 cores with hyperthreading (16h),
sample 20% vertices i.e. k = 0.2|V| and parPIES executes 1 cleanup
just before writing the output.
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Table 1: Graph Datasets

Dataset Description #Nodes(M) | #Edges(M) | Degree
soclj [17] LiveJournal (social) 4.85 68.48 14.1
gplus [11] Google Plus (social) 28.94 462.99 16
rmat25 [6] Synthetic graph 33.55 536.87 16
pld [20] Paylevel-Domain (hyperlink) 42.89 623.06 14.53
rmat26 [6] Synthetic graph 67.11 1073.74 16
twitter [17] Follower network (social) 61.58 1468.36 23.84
sd1 [20] Subdomain graph (hyperlink) 94.95 1937.49 20.4

For measuring the throughput of parPIES, we randomly shuffle the
edges and store them in a queue. To emulate the streaming aspect of
dynamic graphs, threads only pop edges from the top of the queue
until the queue is empty.

4.2 Results

Table 2 shows the performance of different phases of the sampling
algorithms in parIES. For parTIES, we report the time of sampling
and induction phases. For parPIES, table 2 reports the overall exe-
cution time of algorithm 3 (in_sampling) and a modified streaming
algorithm that only executes edge sampling without induction
(sampling). We also measure the time for search with sampling
(s_sampling) by allowing vertex search for all the edges but re-
moving memory operations i.e populating/clearing adjacency lists.
For reference, we also report the execution time of an optimized
sequential PIES algorithm?.

We observe that sequential and parallel ASparTIES outperforms
the corresponding versions of SparTIES, for all the datasets. The
sequential implementation of ASparTIES benefits from the in-place
storage of samples that eliminates memory operations required
by dynamic vectors. The parallel speedup over all datasets aver-
ages 14.2x for asynchronous ASparTIES compared to 4X for syn-
chronous parTIES. This is because of the inherent dynamic task
allocation policy of ASparTIES that minimizes load imbalance and
ensures that all threads work till the end of each phase. For the
largest dataset sd1, ASparTIES creates a sampled subgraph of size
1442M edges (fig.2) in < 2.5 seconds. For further evaluation of
totally induced sampling, we will only use ASparTIES and refer to
it as simply parTIES. We also note that parTIES spends > 75% of
the execution time in induction. This is because sampling reaches
its target after touching a small subset of edges incident on Vs but
induction has to probe all the edges incident on any vertex in V;.
Further, parTIES is able to induce upto 74% of the total edges in G
by sampling only 20% of the vertices.

parPIES processes dynamic graph streams with a large aver-
age throughput of 63.6 million edges per second (MEPS). With 4B
indices for vertices, this translates to ~ 0.5GB of graph stream pro-
cessed every second. parPIES also exhibits high parallel efficiency
by achieving an average 14.74X speedup on 16 hyperthreaded cores.
Compared to seqPIES, single threaded execution of parPIES is upto
30% slower on small graphs and comparable on large graphs. With
32 threads, parPIES executes 11.6 X —17.2X faster than seqPIES.

2 Among the several hash maps tried (C++ STL, Boost, Google, hopscotch), Tessil hop-
scotch [1] was fastest and was used in sequential version of PIES (seqPIES). However, it
does not support concurrent writes and cannot be used for parallel sampling. Execution
time of sequential TIES implementation is almost same as single-threaded ASparTIES
and we do not separately report it for brevity.
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Figure 2: Total edges induced by parTIES and parPIES

For soclj, parPIES is able to process as much as 86.7 MEPS. This is
because it induces fewer edges for soclj compared to other datasets
and hence, performs less memory operations associated with insert-
ing and clearing edges. Conversely, for twitter and sd1, parPIES is
able to induce > 45% of the edges in spite of only partial induction
(fig.2). It is also evident from the fact that for sampling only, through-
put achieved for twitter (619 MEPS) and sd1 (602 MEPS) is compa-
rable to soclj (571MEPS). For large datasets, we also observe that
execution time of s_sampling is < 40% of the time of in_sampling.
This implies that > 60% of the time in parPIES is spent on pushing
edges and freeing the memory occupied by adjacency lists.

Quality of Sampled Graph: Also note that the number of edges
induced by parPIES is lesser than parTIES (fig.2). The difference
arises due to partial induction in parPIES where edges once dropped
are not recovered even if the corresponding vertices are present in
the final sampled vertex set.

Interestingly for very sparse graphs, partial induction in parPIES
may result in better representative subgraphs than parTIES because
total induction can overestimate the degree distribution[3]. Fig. 3
shows the degree distribution (cumulative density function) of the
five real world datasets and their corresponding sampled versions.
For all of these datasets, degree distribution of parPIES sampled
subgraph is closer to the original, in comparison to the parTIES
sampled subgraph. We also note that the distribution of sampled
graphs obtained by parTIES and parPIES is almost identical to
the corresponding sequential algorithms given in [3]. Thus, we
obtain parallel speedup from parTIES and parPIES without altering
the quality of sampled subgraph. For a detailed analysis of output
quality, we refer the readers to [3].

Scaling: Tables 3 and 4 show the parallel speedup with increasing
number of threads, for parTIES and parPIES, respectively. Both
of our parallel algorithms are highly scalable and achieve close
to 16X speedup when executed on 16 cores with hyperthreading
(16(h)). We observe that the average speedup with 2 threads is only
1.5—1.6X. This is because sequential implementation does not incur
any parallelism overheads. As mentioned in sections 2 and 3, we
use shared variables between threads to checkpoint the global state
of the program. For a multithreaded execution, the shared variables
are updated by multiple cores incurring costs associated with cache
coherency mechanisms. From 2 to 16 cores, the scaling is linear
with speedup almost doubling with every 2-fold increase in the
number of threads. Hyperthreading on 16 cores further accelerates



CF ’19, April 30-May 2, 2019, Alghero, Italy

Kartik Lakhotia et al.

Table 2: Time (in seconds) for different phases in parTIES and parPIES for k = 0.2|V|. (16h) indicates 16 cores with 2-way

hyperthreading and (1) indicates single-threaded execution

Algorithm Phase socLj gplus rmat25 pld rmat26 twitter sd1
(1) [ (@eh) | (1) |(6h) | (1) |@eh) | (1) |(@d6h)| (1) |({d6h)| (1) | d6h) | (1) | (16h)
sampling 0.11 | 0.02 0.89 0.12 1.08 0.13 2.07 0.21 2.35 0.29 4.66 0.37 6.07 0.61
SparTIES induction 0.64 | 0.23 5.16 1.32 6.66 1.9 10.2 277 | 16.47 | 3.78 24.6 6.73 33 9.2
total 0.75 | 0.25 6.05 1.44 7.74 2.03 | 12.27 | 298 | 18.82 | 4.07 | 29.26 7.1 39.07 | 9.81
sampling 0.1 0.01 0.93 0.06 1.09 0.07 2.24 0.14 2.55 0.15 4.47 0.27 7.23 0.43
ASparTIES induction 0.52 | 0.03 4.1 0.26 5.7 0.35 8.2 0.65 | 13.13 | 0.98 | 17.75 | 1.46 | 23.66 2
total 0.62 | 0.04 5.03 0.32 6.77 | 0.42 | 1045 | 0.78 | 15.67 | 1.13 22.2 1.73 | 30.88 | 2.43
seqPIES in_sampling | 9.17 - 88.3 - 110.2 - 149.9 - 247.5 - 386.5 - 621.8 -
sampling 1.82 | 0.12 | 13.19 | 0.88 14.5 0.97 | 19.03 | 1.26 | 2932 | 1.84 | 3519 | 237 | 52.18 | 3.22
parPIES s_sampling | 8.55 0.4 63.6 3.76 | 63.92 | 438 | 70.54 | 4.78 | 130.9 | 9.06 | 148.6 | 10.18 | 194.6 | 13.58
in_sampling | 12 0.79 | 105.1 | 7.06 | 122.3 | 8.28 | 150.7 | 10.64 | 266.8 | 18.18 | 376.9 | 26.08 | 541.4 | 35.94
parTIES seqTIES orig = = =parPIES = = -seqPIES
socLj gplus pld twitter sd1
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Figure 3: Degree CDF of original graphs and subgraphs sampled by sequential and parallel PIES and TIES algorithms

Table 3: parTIES parallel speedup over single thread

Number of threads
(1) @ | (@) | (8 | (16) | (16h)
socLj 1 1.57 | 3.19 | 591 | 1042 | 15.81
gplus 1 1.61 | 3.27 | 6.40 | 10.99 | 15.70
rmat32 1 1.62 | 3.19 | 5.85 | 10.59 | 16.06
pld 1 1.54 | 3.19 | 548 | 9.97 13.30
rmat64 1 1.63 | 3.23 | 6.09 | 11.15 | 13.88
twitter 1 1.59 | 3.12 | 5.60 | 10.15 | 12.86
sd1 1 1.60 | 3.19 | 5.84 | 10.51 | 14.33

Table 4: parPIES parallel speedup over single thread

Number of threads
(1| @ | @ | (8 | (16) | (16h)
socLj 1 1.51 | 2.87 | 5.73 | 9.61 15.10
gplus 1 1.58 | 2.94 | 5.57 | 10.01 | 14.89
rmat32 1 1.48 | 2.78 | 5.38 | 9.66 14.78
pld 1 1.45 | 2.76 | 5.31 | 9.48 14.16
rmat64 1 144 | 2.83 | 542 | 9.52 | 14.68
twitter 1 148 | 2.76 | 5.41 9.58 14.45
sd1 1 1.44 | 2.82 | 5,51 | 10.06 | 15.06

parPIES by an average of 1.52Xx and parTIES by 1.37X. The scaling

is also quite consistent for all the datasets.

Sampling Fraction: is the ratio of the number of sampled vertices
to the total vertices in original graph i.e. ﬁ Fig.4 and 5 depict the
variation in execution time with sampling fraction, for parTIES and
parPIES, respectively. Note that the execution time increases more
rapidly for parTIES than parPIES. This is because unlike parTIES
that only processes edges incident on a sampled node, parPIES
processes all the edges irrespective of the sampling fraction.

For parPIES, the increase in execution time is mostly a conse-
quence of larger number of edges induced and the resulting memory
operations. For soclj, induction increases drastically with sampling
fraction and so does the execution time. For large graphs twitter
and sd1, > 45% edges are induced with k = 0.2|V| only and further
increase in k marginally affects |Es|. Hence, the execution time
increases only 2X with an 8-fold increase in the sampling fraction.

Within parTIES, we observed that the execution time of sampling
phase increases more rapidly as compared to induction. Intuitively,
this happens because if a lot of vertices are already sampled, it
becomes harder for a randomly selected edge to sample new vertices.
On the other hand, induction phase probes lot of edges even with
small k because edge sampling preferentially selects high degree
vertices. As k is increased, the new vertices sampled have relatively
small expected degree. For all our test cases, execution time of
induction phase was still significantly higher than sampling.

parPIES Cleanups: As shown in algorithm 3, parPIES performs
periodic cleanups of spurious edges to avoid memory overflow. Let
Es(t) be the edge set at any time ¢ (inclusive of spurious edges) dur-
ing the execution of parPIES and T be the total execution time. Since
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a cleanup is always done just before outputting Gs, Es(T) has no
spurious edges. To evaluate the effect of number of cleanups N, on

max;e(o, 7] | Es(£)]
(1) Storage (fig.6) — we measure —IEM

vs N.. We ob-
served that ~ 90% of the total space requirement of parPIES
is due to induced edges and hence, max;¢(g, 7] |Es(?)| is a
good indicator of main memory consumed.

(2) Performance (fig.7) — we measure T vs N,

The storage required for edges reduces as N, increases. We
observe that cleanups have a large impact on the E¢(t) for soclj
which requires 20% extra edge storage if no intermittent cleanup
is done. This can be intuitively explained by the small fraction
of edges in the output subgraph for soclj (fig.2) that increase the
relative overhead of spurious edges. Contrarily, large graphs twitter
and sd1 require very little extra storage for spurious edges.

For almost all datasets, the execution time grows by only 50—70%
with an 11X increase in N¢. This empirically shows the efficiency
of search operations in our hash table data structure.

5 CONCLUSION & FUTURE WORK

In this paper, we introduced parIES - the first parallel Induced Edge
Sampling framework that uses synchronization avoiding strategies
and novel data structures to overcome the parallelization chal-
lenges in sampling and memory constraints of a streaming algo-
rithm. For future work, we will explore better memory management
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Figure 7: Execution time of parPIES (normalized by time
with only one cleanup) vs N

schemes for the dynamic subgraph structure (such as thread-safe
non-blocking vector containers[4]).

Also, there are several interesting directions to pursue in terms
of different sampling algorithms and objectives , such as extensions
to distributed implementations. Note that sampling on distributed
memory systems poses a different set of challenges. Locking and
global atomics may become a major bottleneck. A bulk synchronous
approach such as sparTIES may be more suitable in such a scenario.
For sampling a streaming graph, instead of processing small chunks
from the graph stream, edges could be batched in larger groups and
distributed across the machines for processing.
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