
Parallel Edge-based Sampling for Static and Dynamic Graphs

Kartik Lakhotia
†
, Rajgopal Kannan

‡
, Aditya Gaur

†
, Ajitesh Srivastava

†
, Viktor Prasanna

†

{†University of Southern California,
‡
Army Research Lab-West }

Los Angeles, USA

{klakhoti,adityaga,ajiteshs,prasanna}@usc.edu,rajgopal.kannan.civ@mail.Mil

ABSTRACT
Graph sampling is an important tool to obtain small and manage-

able subgraphs from large real-world graphs. Prior research has

shown that Induced Edge Sampling (IES) outperforms other sam-

pling methods in terms of the quality of subgraph obtained. Even

though fast sampling is crucial for several workflows, there has

been little work on parallel sampling algorithms in the past.

In this paper, we present parIES - a framework for parallel In-

duced Edge Sampling on shared-memory parallel machines. parIES,

equipped with optimized load balancing and synchronization avoid-

ing strategies, can sample both static and streaming dynamic graphs,

while achieving high scalability and parallel efficiency. We develop

a lightweight concurrent hash table coupled with a space-efficient

dynamic graph data structure to overcome the challenges and mem-

ory constraints of sampling streaming dynamic graphs. We evaluate

parIES on a 16-core (32 threads) Intel server using 7 large synthetic

and real-world networks. From a static graph, parIES can sample

a subgraph with > 1.4B edges in < 2.5s and achieve upto 15.5×

parallel speedup. For dynamic streaming graphs, parIES can process

upto 86.7M edges per second achieving 15× parallel speedup.

CCS CONCEPTS
• Computing methodologies→ Shared memory algorithms;
Vector / streaming algorithms; Concurrent algorithms.

KEYWORDS
Parallel Graph Sampling, Streaming Graphs, Induced Edge Sam-

pling, Dynamic Graph Data Structure, Big Data

ACM Reference Format:
Kartik Lakhotia

†
, Rajgopal Kannan

‡
, Aditya Gaur

†
, Ajitesh Srivastava

†
, Vik-

tor Prasanna
†
. 2019. Parallel Edge-based Sampling for Static and Dynamic

Graphs . In Proceedings of the 16th conference on Computing Frontiers (CF
’19), April 30-May 2, 2019, Alghero, Italy. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3310273.3323052

1 INTRODUCTION
Graph analysis forms the backbone for many applications in social

media, WWW, bioinformatics and transportation that generate and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CF ’19, April 30-May 2, 2019, Alghero, Italy
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6685-4/19/05. . . $15.00

https://doi.org/10.1145/3310273.3323052

process large real-world graphs. Often these graphs are too large

to process on a single machine, however, despite the development

of highly optimized distributed graph databases and processing

frameworks [5, 12, 14, 19, 32, 34], many analytics algorithms can-

not run efficiently and directly on these extremely large graphs.

Thus approximate analytics on smaller, representative subgraphs

have become a popular alternative [2, 25, 30, 31, 33]. Sampling is a

widely used method for generating manageable subgraphs – many

network repositories that provide datasets for analysis and bench-

marking, store subgraphs sampled from real-world graphs[17, 18].

Fast representative graph sampling (i.e graph sampling done fast

while simultaneously ensuring the sampled subgraph remains a

good representative of the original) is therefore essential for the

smooth processing of many crucial programs, especially within

mission-critical workflows.

In spite of the numerous applications, there has been little work

on parallelizing graph sampling. Sequential sampling of very large

graphs can be unacceptably slow, especially in cases when a graph

has to be repeatedly sampled or when the sampling throughput

must match the incoming rate of a streaming graph. Existing works

on parallel sampling are tailored towards application-specific algo-

rithms that extract subgraphs conforming to the objective in the

corresponding problem, for example, finding gene functionality

clusters [7, 8]. Recently, an FPGA accelerator [28] was proposed

for deletion sampling methods [16] that remove vertices and/or

edges from the original graph to create a subgraph. However, the

accelerator only caters to static in-memory graphs and takes ≈ 50s
to sample a 150M edge graph, further emphasizing the need for

efficient parallelization of graph sampling techniques.

In this paper, we focus on Induced Edge Sampling (IES) [3, 24].

Edge Sampling (ES) randomly samples edges, thus mitigating the

downward degree bias of node sampling. Additionally, induction

on the sampled nodes further improves the connectivity in the

sampled subgraph Gs . IES has been shown to outperform many

sophisticated state-of-the-art node sampling and topology based

algorithms, such as forest fire or snowball sampling [3], in terms of

preserving graph structure.

Parallelizing edge sampling is challenging as the parallel threads

need to track and update a common goal in terms of target graph

size. If implemented naively, this can limit the scalability of a paral-

lel sampler. Furthermore, if the graphG is too large to fit in memory

or dynamically changing with time (which is often the case with

real-world graphs), a streaming algorithm must be applied that can

work with strict memory space restrictions and perform sampling

and induction in a single pass over the incoming stream of edges.

https://doi.org/10.1145/3310273.3323052
https://doi.org/10.1145/3310273.3323052

CF ’19, April 30-May 2, 2019, Alghero, Italy Kartik Lakhotia et al.

Stream sampling is especially challenging to parallelize as the sam-

pled vertex set and induced subgraph Gs need to be dynamically

maintained, while processing the edge stream at a high rate.

To this purpose, we develop parIES - an efficient framework for

parallel Induced Edge Sampling on shared-memory systems. parIES

consists of 2 algorithms - parTIES and parPIES that effectively

utilize the parallel computing resources provided by off the shelf

multi-core architectures to sample static in-memory and stream-

ing dynamic graphs, respectively. parTIES utilizes a checkpointing

mechanism that allows all threads to continuously track the state of

Gs without synchronizing. For parPIES, we further develop a light-

weight hash table coupled with a space-efficient dynamic graph

data structure, that concurrently and efficiently update the sam-

pled subgraph Gs , while respecting the memory constraints on a

streaming algorithm. To the best of our knowledge, this is the first

work that comprehensively targets parallel edge-based sampling of

both static and dynamic/streaming graphs, allowing billion scale

graphs to be sampled in a few seconds.

The major contributions of our work are as follows:

(1) We develop an asynchronous scalable parallel Totally In-

duced Edge Sampling (parTIES) algorithm that efficiently

executes Edge Sampling and Induction using optimized load

balancing and synchronization avoidance mechanisms.

(2) To facilitate efficient sampling of streaming networks, we

develop a dynamic graph data structure coupled with a par-

allel hash table that allows concurrent insertions, deletions,

replace and search. Unlike conventional hash tables, our ap-

proach does not require rehashing, thereby ensuring scalable

and highly parallel execution of updates.

(3) Using these data structures, we create parPIES - parallel Par-

tially Induced Edge Sampling algorithm for dynamic graphs.

parPIES generates the sampled subgraph in a single pass

through the edge stream, while satsifying the memory con-

straints on a streaming algorithm.

2 SAMPLING STATIC GRAPHS
2.1 Background
Many applications such as graph sparsification, visualization and

analytics require sampling a subgraph Gs (Vs ,Es) from the larger

graph G(V ,E). Edge sampling and vertex sampling are two very

well-known sampling techniques [3, 24]. In many practical scenar-

ios, the objective is to sample a subgraph comprised of a target

number of vertices |Vs | followed by inducing some or all of the

edges in Vs (partial versus total induction). While nodes in an in-

duced subgraph have inherently smaller degrees than the original,

it has been shown that random edge sampling with induction im-

proves the connectivity in Gs (by selecting high degree nodes with

larger probability) and brings its distributions (degree, path length,

clustering coefficient etc.) closer to G [3].

The sequential induced edge sampling algorithm given in [3]

randomly selects edges from E until a desired number k = |Vs | of
distinct vertices inV have been sampled. This is followed by a total
induction phase that iterates over all the edges in E for induction in

Vs . Such algorithms assume the graph is static and small enough that

both V and E are always accessible through calls to main memory.

Naive parallelization of these algorithms entails concurrent threads

having to probe and update a shared collective target. Such heavy

synchronization can limit scalability and even make parallel execu-

tion slower than sequential execution. Further, the induction phase

requires Ω(E) work, making it very inefficient for the cases when

k/V is very small.

2.2 Asynchronous parallel Totally Induced
Edge Sampling (ASparTIES)

update

edges

sampled

update

edges

sampled

No No

atomically

update

Yes

atomically

update

Yes

update

edges

sampled

atomically

update

Yes

No

Synchronize

No

Figure 1: SparTIES: Synchronous Parallel Edge Sampling in
parTIES using p threads

We develop an asynchronous, fast, efficient and load-balanced

parallel algorithm for Totally Induced Edge Sampling (ASparTIES)

for static graphs. Before describing this, we first outline a simple,

loosely synchronous parallelization - SparTIES (Fig. 1). The key idea

is to assign each thread a fixed amount of work in each iteration and

iterate until |Vs | ≥ k . Specifically, SparTIES restricts the amount of

edges selected by a thread in an iteration to
(1+α)k−cntVs

2p , where p

denotes the number of concurrent threads and cntVs is the global
sampled vertex size just before that iteration. α , 0 < α ≪ 1 is

an edge oversampling factor to drive sampling towards the vertex

target. As shown in lemma 1, α does not have to be too large for

reasonable target sizes on most graphs. Each thread maintains a

private local array localVs of sampled vertices unique to it. During

an iteration, for each sampled edge (u,v), a thread uses an atomic

Compare-And-Swap (CAS) instruction to update both its localVs
and a global boolean array of vertex status (status[]) if u and/or

v are new samples. Threads only have to synchronize and update

cntVs at the end of an iteration, thus limiting the amount of synchro-

nization. When cntVs becomes greater than k , each thread copies its
localVs into a global Vs array and proceeds to the induction phase.

During induction, each thread is allocated cntVs/p sampled vertices

to induce edges from. Similar to the sampling phase, threads use

a private localEs array. Via the CSR matrix, only edges that are

Parallel Edge-based Sampling for Static and Dynamic Graphs CF ’19, April 30-May 2, 2019, Alghero, Italy

incident on at least one sampled node are inspected for induction.

This makes our implementation efficient even for small k/V .

SparTIES has some drawbacks. For real-world graphs with power

law degree distribution, the static task allocation can introduce

load imbalance while the use of dynamic local vectors can slow

down execution. Further, making α small to reduce oversampling

can increase the amount of synchronization and limit scalability.

Finally, the parallel efficiency of parTIES is also affected by the

type of sampling. Intuitively, sampling with replacement (from E)
has less overhead but requires more iterations to reach the sample

target. Consider the fraction η = |Es |/|E | of edges that need to be

sampled in order to obtain a subgraph of vertex size |Vs | = β |V |.

Let cη = e−η . Let Dv be a random variable denoting the degree of

a vertex v in G. Then it is straightforward to show the following

(proof omitted for brevity):

Lemma 1. (1) Sampling with replacement: The expected fraction
of edges to be sampled to achieve a targeted fraction β of vertices
is obtained by solving E[(cη)Dv] ≈ 1 − β . (2) Sampling without
replacement: E[η] ≤ β .

We resolve these drawbacks by developing ASparTIES: a fully

asynchronous algorithm for static edge sampling with the following

key design features: Each thread avoids conflicts by reserving work

in rounds of vertex chunks (of size BS) through atomic updates of a

global checkpoint on the size of Vs . A thread then samples random

edges asynchronously until it obtains exactly BS vertex samples

(after which it moves to its next round), or until it views |Vs | ≥ k .
Thus the algorithm samples exactly k vertices. A similar process is

carried out for the induction phase. With dynamic task allocation,
in-place storage and conflict-free updates of sampled vertices and

induced edges, ASparTIES significantly improves load balance and

avoids inefficiencies associated with dynamic private vectors.

Algorithm 1 shows the pseudocode of ASparTIES. The key func-

tion is update (lines 18-21), used by each thread t to reserve for

itself an exclusive space of size BS in Vs . An atomic Fetch-and-add

(FAA) on global counter cntVs , executed once t has locally gathered
and inserted BS number of new vertices intoVs (lines 4-10), initiates
the next round for t . Lastly, the induction phase parallelizes tasks

over vertices in Vs , following a similar process (lines 11-17).

Note that if p ≪ k , all threads keep working until the last round,

thus ensuring efficient load balancing in ASparTIES. Also note that

the work done in the induction phase dominates the sampling phase

as sampling only selects a subset of edges to be induced. Induction

probes all edges incident on at least one vertex inVs , thus expected
work is O(kd), where d is the average degree of Vs . Assuming that

status array is initialized beforehand, the expected time complexity

of ASparTIES is O(kdp) if all operations are executed in parallel.

However, on a CREW machine, multiple FAAs to the same vari-

able are sequentialized. Choosing BS = θ (p) limits the number of

rounds and consequently, the number of sequential steps incurred

to O(kdp). Thus, the scalability and asymptotic time complexity of

the algorithm is not affected by the checkpointing.

Finally, ASparTIES implements sampling without replacement

with low overheads (O(1)work per edge). When the number of sam-

pled edges is large, it allocates edge partitions to threads. Threads

sample edges from their respective partitions and move sampled

edges to the end of array to remove them from the edge set.

Algorithm 1 Asynchronous parTIES with dynamic scheduling

{Vs ,Es } = ϕ, {cntVs , cntEs ,∀i ∈ V : status[i]} = 0

1: BS = p × const
2: for tid = 1, 2...p do in parallel ▷ Edge Sampling

3: cntlocal = 0 , update(cntlocal , cntVs ,BS)
4: while cntlocal < k do
5: (u,v) = rnd(E)
6: if CAS(&status[u], 0, 1) then
7: Vs [cntlocal]=u
8: update(cntlocal , cntVs ,BS)

9: Execute lines 6-8 for vertex v

10: E = E − {(u,v)}

11: for u ∈ Vs do in parallel ▷ Induction

12: cntlocal = 0

13: update(cntlocal , cntEs ,BS)
14: for each (u,v) ∈ E
15: if v ∈ Vs then
16: Es [cntlocal] = (u,v)
17: update(cntlocal , cntEs ,BS)

18: function update(&cntlocal ,&cntдlobal ,BS)
19: if (cntlocal = 0) ∨ ((cntlocal + 1)%BS = 0) then
20: cntlocal = FAA(&cntдlobal ,BS)
21: else cntlocal + +;

Initialization cost can be amortized across multiple runs of AS-

parTIES. Resetting the status array requires O(k) work and O(kp)

time. Resetting the end pointers of partitions to recover initial edge

set requires O(p) work and O(1) time. The optimizations discussed

in ASparTIES will also be useful in sampling dynamic streaming

graphs as we will see in the next section.

3 SAMPLING DYNAMIC GRAPHS
3.1 Background & Challenges
Graphs representing real-world networks may often be extremely

large to fit on the main memory of a machine. Furthermore, the

graph could be dynamically evolving over time, requiring updates

to be processed as they arrive and without visiting the same edge

repeatedly. In such situations, the graph may only be accessible in a

streaming fashion i.e. as a randomly ordered stream of edges, possi-

bly coming from a disk. Algorithms that assume the ability to store

and randomly access elements fromV and E are unsuitable for (par-

allel) sampling (of) such streaming graphs. Rather, streaming algo-

rithms that can process edges on the fly, performing both sampling

and induction in a single pass over the edge stream are necessary.

Recently, a sequential streaming algorithm labeled Partially In-

duced Edge Sampling (PIES) was proposed in [3]. For completeness,

we provide a brief description of PIES below. PIES samples from a

stream of incoming edges and maintains a partially induced sub-

graph. Initially, PIES selects all edges and adds them to Gs as long

as |Vs | < k , a given parameter. Subsequently, the t th streamed edge

et = (u,v) is inducted intoGs if either 1) bothu andv are already in

Vs or 2) et gets selected with probability
m
t , wherem = |Es | at the

end of the initial phase. This is shown to be equivalent to random

edge sampling[3]. If et is selected and u < Vs (v < Vs , resp.), then a

CF ’19, April 30-May 2, 2019, Alghero, Italy Kartik Lakhotia et al.

random vertex i ∈ Vs (j, resp.) is selected and u (v , resp.) replaces
that vertex. Vertex i (j, resp.) is then deleted along with all its ex-

isting incident edges in Es . Edge et is then inducted into Es . Note
that the sample-induced graph is of necessity, partially induced,

since induction is dependent on the current state of Vs . Vertices
can appear and disappear fromVs but edges, once deleted/dropped,
are lost from the stream and will not be represented even if their

vertices are present in the final sampled set.

To the best of our knowledge, neither [3] nor any other work

discusses how such streaming edge sampling can be efficiently

implemented or parallelized ([3] does not provide any parallel algo-

rithm details). We note that any parallel streaming algorithm for

induced sampling should have the following (minimal) attributes:

(1) Concurrent Dynamic Graph Update Capability: The sampled sub-

graphGs must be dynamically maintained, allowing concurrent
insertion, replacement and search of vertices and edges.

(2) Space-Efficient Operation: Data structures used in the algorithm

must allocate and operate on O(|Vs | + |Es |)) main memory. The

algorithm shouldn’t assume access to θ (|V | + |E |) mainmemory.

Thus we require a data structure that can store the current

sampled subgraph Gs as well as rapidly search it for the pres-

ence/absence of a vertex
1
. Clearly, we cannot use a θ (V) dense

status array (like in parTIES) for search as it would violate the

space-efficiency requirement. For storing the dynamic subgraph

Gs , sophisticated frameworks that support graph updates, such as

STINGER[9], Boost[13], Galois[22], would seem natural choices.

However, a fundamental problem associated with these structures is

that upon a vertex deletion, they only delete the incident edges and

do not reclaim the complete memory associated with that vertex

(eg. pointers to adjacency list). Directly using them requires at least

θ (V) main memory. Moreover, we can utilize a simplified structure

that just satisfies the requirements of our streaming algorithm and

avoids performance overheads of a comprehensive database.

To solve both problems together, we propose to use an unordered

array of size θ (k) to store Vs , tightly coupled with a sparse set data

structure for rapid vertex search, specifically, a concurrent hash

table. The coupling between the two structures ensures consistent
insertions/deletions from both Vs and the hash table so that at any

point in time, a vertex is perceived as either present or absent in

both (by concurrent threads).

There are several separate chaining based parallel hash tables[21,

26, 29] that could potentially be used for this purpose. However,

such hash tables store linked lists that require pointer chasing

for search and constant memory management to allocate and free

the elements in the list. While hopscotch hashing[15] and phase

concurrent deterministic hash tables[27] provide very fast searches

and updates, insertions and deletions in such hash tables displace

pre-existing elements and hence, concurrent replace operations

required in sampling are not supported. Some open addressing

based hash tables can process concurrent insertions, deletions and

searches[10, 23]. However, the hash table of[23] is very complex

and cannot implement a dictionary. In [10], deletions are soft and

create "tombstones" that insertion and search skip over. Since we

1
This data structure is required for the intermediate and final output of sampling. It is

not to store the input dynamic graph which is streamed in as an edge list.

require a large number of inserts and deletes in our streaming edge-

sampling algorithm, such a table will quickly get filled mandating

frequent rehashing which can become a performance bottleneck.

3.2 Dynamic Graph Data Structure
Our design of a space-efficient and fast dynamic graph structure is

motivated by the following key observations about subgraph up-

dates in the parallel streaming edge-sampling algorithm: 1) All edge
deletions are initiated by a vertex deletion. 2) The first k vertex op-

erations are unbalanced insertions, followed by only replacements.

Keeping the above algorithm properties in mind, we propose to

store the dynamic graph Gs as a k length array of structs - vA[]
and relabel the vertices on-the-fly before they are inserted. The new

label of a vertex is simply its location (index) in thevA[] array. Each
element of vA[] contains the following:

• vId → the original id of the vertex in G. The vId of all elements

in vA[] constitute the sampled vertex set Vs .
• <> adj → a dynamic array containing current set of vertices in

Vs that are adjacent to vId , labeled using their original ids in G.
Note that this is only the set of adjacent vertices discovered in

the edges induced since vId’s last (re)insertion into Vs . The adj
of all elements in vA[] constitute the induced edge set Es .

• lock → a thread must acquire the lock before modifying adj.

The dynamic graph interface provides several functions to mod-

ify Vs and Es :
1) insertVs: adds vertices toVs if |Vs | < k or else return −1 indicat-

ing completion of initial phase. The mechanism to reserve locations

for threads in vA[] is similar to algorithm 1.

2) replaceVs: replaces the vertex at a given location with input

vertex v and deletes the adjacency list of replaced vertex.

In addition, it also has a push_edge(pos,v) function to append v
to vA[pos].adj; a lockSpec/lockRand functions to acquire lock at

a specified/random location; and an unlock function to release the

lock at a specified location.

Since vA[] is unordered, we use a hash table for efficient vertex

search. Note that the hash table must function as a dictionary, not

only confirming the presence/absence of a vertex in Vs , but also
storing its new label (location in vA[]).

3.3 Hash Table
Clearly, a hash table suitable for streaming edge-sampling must

support concurrent insertions, searches and replacements. More-

over, consistency in the number of copies visible in both hash table

and vA[] (either 0 or 1) is essential for correct functioning of the

sampling algorithm. To ensure consistent thread-safe updates be-

tween Vs and the hash table, we need to resolve several challenges.

For example, during replacements, multiple threads may want to

add a vertex u to Vs and might attempt to replace different vertices

in vA[], on behalf of the same vertex u. In such cases, we must

prevent multiple incorrect deletions from vA[] and the hash table

along with multiple insertions of u. Further, any operations in the

interval between committing a replacement in the hash table and

commiting in thevA[] should not result in erroneous updates toGs .

Thus, our lightweight hash table design is tailored towards our

specific stream sampling problem. Delete operations are designed to
create empty cells that can be reclaimed by future insertions (rather

Parallel Edge-based Sampling for Static and Dynamic Graphs CF ’19, April 30-May 2, 2019, Alghero, Italy

than creating tombstones[10]) and clean cells where a search can ter-

minate. Given that there are only replacements after first k vertices

are sampled, such hash table will not require rehashing throughout

sampling. To this purpose, we create our hash table as an array of

structs-HT [], in which each element has the following components:

• status ∈ {V ,E,B} → indicating the presence (V) or absence

(E) of a vertex at the location or Busy (B), indicating a dele-
tion/insertion in progress.

• vId → original vertex label in G; used as hash table key.

status and vId are stored as a single word.

• label → location of vId in vA[] (i.e new label of vId).
• lock → for fine-grained locking of the element.

• cnt → the running count of the number of vertices currently

present in the hash table that hashed on the respective or a

preceding location but are stored further ahead.

Let HT [pos] denote an arbitrary element in the hash table. We

define an element as clean if HT [pos].cnt = 0.

Claim 1. A search must terminate if it encounters a clean element.

Algorithm 2 describes our main hash table functions.

1) search starts from location h and terminates at either a valid

(success) or clean (failure-ref. Claim 1) element.

2) replace inserts a given input vertex v and removes a randomly

selected vertex from both hash table and Vs . Starting from the

hashed positionHT [hash(v)], it first locks it to prevent a concurrent
thread from inserting the same vertex and then searches for an

empty location. If it encounters v , it terminates, returning the label
of v . Otherwise, if an empty location pos is found, it atomically sets

it to busy and searches further ahead for v (this is needed only if a

clean element was not found earlier) If the search for v succeeds

it resets the lock and status and returns the label (line 28-29). If

the search fails (lines 19-27), it locks a random location in vA[] and
replaces the vertex prev occupying it with the new vertex v . prev
is then deleted and v inserted in the hash table. cnt is incremented

at appropriate locations in the hash table before releasing the lock

on HT [hash(v)] to reflect the insertion of v .
3) delete searches for and deletes the input vertexv from the hash

table. If hash(v) = h and v is found at pos = h + x , it atomically

decrements HT [i].cnt ∀ i ∈ {h, ...,h + x − 1}.

The hash table also has an insert function to be used in the ini-

tial phase of the streaming algorithm. Under any sequence of calls to

insert and replace, the following will hold true (we define a ver-

tex as searchable if search can successfully find it in the hash table):

Claim 2. Any vertex committed in Vs is searchable.

Proof. Since insertion is completed in the hash table before

unlocking vA[], any vertex in Vs is definitely present in the hash

table. Let v be a vertex such that hash(v) = h and v is placed at

HT [h + x] and consider HT [i].cnt ∀ i ∈ {h, ...h + x − 1}. Clearly,

in the absence of deletions, HT [i] ≥ 1 and hence, v is searchable.

In the presence of deletions, consider a vertex u , v to be deleted

such that hash(u) = h′ and u is placed at HT [h′ + x ′]. Deletion of

u , v can decrease HT [i].cnt by at most 1 if i ∈ {h′, ...h′ + x ′ − 1}.

Before delete(u) executes, HT [i].cnt ≥ 2 because insertion of u
and v have incremented HT [i].cnt by 1, each. Hence, after deletion

of u, HT [i].cnt ≥ 1 and v is still searchable. □

Algorithm 2 Hash Table functions

Gs → dynamic graph; hash() → hashing function

1: function search(v)
2: pos = hash(v)
3: do
4: if HT [pos].⟨vId, status⟩ = ⟨v,V ⟩ then
5: return HT [pos].label

6: if HT [pos].cnt = 0 then return −1

7: pos = pos + 1
8: while pos , hash(v)
9: return −1

10: function replace(v , Gs)

11: pos = hash(v), h = hash(v)
12: while CAS(&HT [h].lock, 0, 1) = 0 {}

13: do
14: e = HT [pos]
15: if e .⟨vId, status⟩ = ⟨v,V ⟩ then
16: HT [h].lock = 0

17: return e .label
18: if CAS(&e .⟨vId, status⟩, ⟨∗,E⟩, ⟨∗,B⟩) then
19: vlabel = search(v)
20: if vlabel < 0 then
21: e .label = Gs .lockRand()
22: prev = Gs .replaceVs(v, e .label)
23: delete(prev)
24: e .⟨vId, status⟩ = ⟨v,V ⟩

25: for loc = h,h + 1, ...,pos − 1 do
26: FAA(&HT [loc].cnt , 1)

27: HT [h].lock = 0, Gs .unlock(e .label)
28: return e .label
29: e .status = E, HT [h].lock = 0

30: return vlabel
31: pos = pos + 1
32: while pos , h
33: HT [h].lock = 0, return − 1

34: function delete(v)
35: pos = hash(v), h = hash(v)
36: do
37: e = HT [pos]
38: if CAS(e .⟨vId, status⟩, ⟨v,V ⟩, ⟨∗,E⟩) then
39: for loc = h,h + 1, ...,pos − 1 do
40: FAA(&HT [loc].cnt ,−1)

41: if HT [pos].cnt = 0 then return

42: pos = pos + 1
43: while pos , h

Claim 3. There exists exactly one copy of vertex v in the Hash
table if and only if v ∈ Vs .

Proof. If v ∈ Vs , by claim 2, v is searchable and hence, exists in

the hash table. Assume that there are multiple copies of a vertex

v in the hash table. Since replace and insert lock HT [hash(v)],
the multiple copies must have been inserted sequentially one-by-

one. By claim 2, after first insertion of v , subsequent attempts to

insert v will find the existing copy and abort. Hence, no other copy

CF ’19, April 30-May 2, 2019, Alghero, Italy Kartik Lakhotia et al.

of v would be created in the hash table. If v < Vs , either v was

never inserted in which case, it is not in the hash table, or v was

replaced fromVs . Ifv was removed, by claim 2, the delete function
would have successfully found and deleted one copy of v . Since,
there existed only one copy of v , after deletion, v must have been

completely removed from the hash table. □

Claim 3 implies that vertices in the hash table will always be consis-

tent with vA[]. During the transient phase of a function, vertices in
vA[]may differ from the hash table but since the corresponding loca-

tion in vA[] is locked, it does not result in erroneous updates toGs .

3.4 Parallel Partially Induced Edge Sampling
Using the data structures described above, we develop a high through-

put parallel Partially Induced Edge Sampling (parPIES) algorithm

for sampling streaming dynamic graphs(algorithm 3). parPIES uses

hash table functions to manipulate vertices inVs and dynamic graph

functions to populate Es .
Each thread, when idle, exclusively reads a small batch of edges

from the incoming stream and then processes them. In the first

phase, parPIES calls insert for vertices of all edges (u,v), which
inserts the vertices in vA[] if they were not already present. All

edges (u,v) are induced by pushing v to the adjacency list at lo-

cation of u in va[]. When k vertices have been sampled, insert
returns −1 terminating this phase.

In the second phase, for every edge (u,v), parPIES first calls

search(u). If the search fails, with probability
m

uvid
, it inserts u

in Vs by calling replace(u). The same procedure is repeated for

v as well. If u and v are either found or inserted in Vs , the edge is
induced. However, before pushing v to the adjacency of ul (new
label of u), a check is performed on vA[ul].vId as a concurrent

replace may have changed it.

Note that ifu is deleted, all edges {(u, ∗)} are removed (algorithm

3). However, spurious edges (v,u) | v ∈ Vs continue to exist in Es as
they are stored in the adjacency of v . To prevent memory overflow

from spurious edges, we perform a cleanup if clean_cond is asserted.

clean_cond can be set if either a given number of edges have been

processed since the last cleanup or if |Es | crosses a threshold (de-

termined by available memory). During a cleanup, vertices in all

adjacencies are searched for in the hash table and removed if not

found . Reading an exclusive batch of edges from the graph stream,

tracking uvid , |Vs | and |Es | variables and the global clean_cond
condition uses checkpointing described in algorithm 1.

Extensions: Algorithm 3 can be easily tweaked for total induc-

tion on static graphs with only streaming access (eg. massive disk-

resident graphs). If the graph is not changing, we can run multiple

passes over the edge stream. The first pass will simply execute

sampling using algorithm 3 without induction. The second pass

will induce edges incident on vertices in the hash table, executing

total induction over Vs .

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup
We conduct experiments on a 16-core machine with 2 × 2.6GHz

8-core Intel Xeon E5-2650 processors (256KB L2 and 20MB L3 cache)

and 128GB main memory. The processors are enabled with 2-way

Algorithm 3 parPIES pseudocode

Gs → dynamic graph object, vSet → hash table object

uvid → position of edge (u,v) in input edge stream

clean_cond = 0, Vs = ϕ, Es = ϕ
1: for i ∈ 0, 1...p − 1 do in parallel ▷ first phase

2: while |Vs | < k do
3: read E ′ exclusive edges from stream

4: for each (u,v) ∈ E ′

5: ul = vSet .insert(u,Gs)

6: if ul < 0 then goto line 11

7: Execute lines 5-6 for v
8: Gs .lockSpec(ul)
9: Gs .pushEdge(ul ,v)
10: Gs .unlockSpec(ul)

11: m = |Es |
12: for i ∈ 0, 1...p − 1 do in parallel ▷ second phase

13: while дraph is streaminд do
14: while clean_cond = 0 do
15: read E ′ exclusive edges from stream

16: for each (u,v) ∈ E ′

17: r = uni f orm_random(0, 1)

18: ul = vSet .search(u)
19: if (r < m/uvid) ∧ (ul < 0) then
20: ul = vSet .replace(u,Gs)

21: else if ul < 0 then process next edge

22: Execute lines 18-21 for v
23: Gs .lockSpec(ul)
24: if (Gs .vA[ul].vId = u) then
25: Gs .pushEdge(ul ,v)

26: Gs .unlockSpec(ul)

27: __synchronize()__
28: clean spurious edges

29: reset clean_cond
30: __synchronize()__

hyperthreading (total 32 threads). The memory bandwidth of our

machine as measured by the STREAM benchmark, is 55.2GBps

for Copy and 61.4GBps for Add. All codes are written in C++ and

compiled using G++ 4.7.1 with OpenMP v3.1 on Ubuntu 14.04 OS.

We use 7 large real world and synthetic graph datasets for per-

formance evaluation; table 1 summarizes their characteristics. We

only focus on undirected graphs and report time and memory per-

formance of the algorithms discussed in this paper.

Implementation Details: In parTIES, edge deletion (line 13, algo-

rithm 1) is only implemented if sampling fraction
k
V ≥ 0.5. This is

because overlap in randomly selected edges is significant only if a

large fraction of total edges are needed to sample target number of

vertices. In parPIES, we instantiate the hash table with size 2k and

thus, the maximum load factor is 0.5. This was done to mimic the

strict memory constraints for a streaming algorithm. The adjacency

lists are implemented using C++ STL vectors. Unless specified oth-

erwise, the programs run on all 16 cores with hyperthreading (16h),

sample 20% vertices i.e. k = 0.2|V | and parPIES executes 1 cleanup

just before writing the output.

Parallel Edge-based Sampling for Static and Dynamic Graphs CF ’19, April 30-May 2, 2019, Alghero, Italy

Table 1: Graph Datasets

Dataset Description #Nodes(M) #Edges(M) Degree
soclj [17] LiveJournal (social) 4.85 68.48 14.1

gplus [11] Google Plus (social) 28.94 462.99 16

rmat25 [6] Synthetic graph 33.55 536.87 16

pld [20] Paylevel-Domain (hyperlink) 42.89 623.06 14.53

rmat26 [6] Synthetic graph 67.11 1073.74 16

twitter [17] Follower network (social) 61.58 1468.36 23.84

sd1 [20] Subdomain graph (hyperlink) 94.95 1937.49 20.4

For measuring the throughput of parPIES, we randomly shuffle the

edges and store them in a queue. To emulate the streaming aspect of

dynamic graphs, threads only pop edges from the top of the queue

until the queue is empty.

4.2 Results
Table 2 shows the performance of different phases of the sampling

algorithms in parIES. For parTIES, we report the time of sampling

and induction phases. For parPIES, table 2 reports the overall exe-

cution time of algorithm 3 (in_sampling) and a modified streaming

algorithm that only executes edge sampling without induction

(sampling). We also measure the time for search with sampling

(s_sampling) by allowing vertex search for all the edges but re-

moving memory operations i.e populating/clearing adjacency lists.

For reference, we also report the execution time of an optimized

sequential PIES algorithm
2
.

We observe that sequential and parallel ASparTIES outperforms

the corresponding versions of SparTIES, for all the datasets. The

sequential implementation of ASparTIES benefits from the in-place

storage of samples that eliminates memory operations required

by dynamic vectors. The parallel speedup over all datasets aver-

ages 14.2× for asynchronous ASparTIES compared to 4× for syn-

chronous parTIES. This is because of the inherent dynamic task

allocation policy of ASparTIES that minimizes load imbalance and

ensures that all threads work till the end of each phase. For the

largest dataset sd1, ASparTIES creates a sampled subgraph of size

1442M edges (fig.2) in < 2.5 seconds. For further evaluation of

totally induced sampling, we will only use ASparTIES and refer to

it as simply parTIES. We also note that parTIES spends > 75% of

the execution time in induction. This is because sampling reaches

its target after touching a small subset of edges incident on Vs but
induction has to probe all the edges incident on any vertex in Vs .
Further, parTIES is able to induce upto 74% of the total edges inG
by sampling only 20% of the vertices.

parPIES processes dynamic graph streams with a large aver-

age throughput of 63.6 million edges per second (MEPS). With 4B

indices for vertices, this translates to ≈ 0.5GB of graph stream pro-

cessed every second. parPIES also exhibits high parallel efficiency

by achieving an average 14.74× speedup on 16 hyperthreaded cores.

Compared to seqPIES, single threaded execution of parPIES is upto

30% slower on small graphs and comparable on large graphs. With

32 threads, parPIES executes 11.6 × −17.2× faster than seqPIES.

2
Among the several hash maps tried (C++ STL, Boost, Google, hopscotch), Tessil hop-

scotch [1] was fastest and was used in sequential version of PIES (seqPIES). However, it

does not support concurrent writes and cannot be used for parallel sampling. Execution

time of sequential TIES implementation is almost same as single-threaded ASparTIES

and we do not separately report it for brevity.

0

10

20

30

40

50

60

70

80

soclj gplus rmat32 pld rmat64 twitter sd1

P
e

rc
e

n
ta

ge
 e

d
ge

s
in

 s
am

p
le

d
 g

ra
p

h

parTIES

parPIES

Figure 2: Total edges induced by parTIES and parPIES

For soclj, parPIES is able to process as much as 86.7MEPS. This is

because it induces fewer edges for soclj compared to other datasets

and hence, performs less memory operations associated with insert-

ing and clearing edges. Conversely, for twitter and sd1, parPIES is
able to induce > 45% of the edges in spite of only partial induction

(fig.2). It is also evident from the fact that for sampling only, through-

put achieved for twitter (619MEPS) and sd1 (602MEPS) is compa-

rable to soclj (571MEPS). For large datasets, we also observe that

execution time of s_sampling is < 40% of the time of in_sampling.

This implies that > 60% of the time in parPIES is spent on pushing

edges and freeing the memory occupied by adjacency lists.

Quality of Sampled Graph: Also note that the number of edges

induced by parPIES is lesser than parTIES (fig.2). The difference

arises due to partial induction in parPIES where edges once dropped

are not recovered even if the corresponding vertices are present in

the final sampled vertex set.

Interestingly for very sparse graphs, partial induction in parPIES

may result in better representative subgraphs than parTIES because

total induction can overestimate the degree distribution[3]. Fig. 3

shows the degree distribution (cumulative density function) of the

five real world datasets and their corresponding sampled versions.

For all of these datasets, degree distribution of parPIES sampled

subgraph is closer to the original, in comparison to the parTIES

sampled subgraph. We also note that the distribution of sampled

graphs obtained by parTIES and parPIES is almost identical to

the corresponding sequential algorithms given in [3]. Thus, we

obtain parallel speedup from parTIES and parPIES without altering

the quality of sampled subgraph. For a detailed analysis of output

quality, we refer the readers to [3].

Scaling: Tables 3 and 4 show the parallel speedup with increasing

number of threads, for parTIES and parPIES, respectively. Both

of our parallel algorithms are highly scalable and achieve close

to 16× speedup when executed on 16 cores with hyperthreading

(16(h)). We observe that the average speedup with 2 threads is only

1.5−1.6×. This is because sequential implementation does not incur

any parallelism overheads. As mentioned in sections 2 and 3, we

use shared variables between threads to checkpoint the global state

of the program. For a multithreaded execution, the shared variables

are updated by multiple cores incurring costs associated with cache

coherency mechanisms. From 2 to 16 cores, the scaling is linear

with speedup almost doubling with every 2-fold increase in the

number of threads. Hyperthreading on 16 cores further accelerates

CF ’19, April 30-May 2, 2019, Alghero, Italy Kartik Lakhotia et al.

Table 2: Time (in seconds) for different phases in parTIES and parPIES for k = 0.2|V |. (16h) indicates 16 cores with 2-way
hyperthreading and (1) indicates single-threaded execution

Algorithm Phase

socLj gplus rmat25 pld rmat26 twitter sd1

(1) (16h) (1) (16h) (1) (16h) (1) (16h) (1) (16h) (1) (16h) (1) (16h)

SparTIES

sampling 0.11 0.02 0.89 0.12 1.08 0.13 2.07 0.21 2.35 0.29 4.66 0.37 6.07 0.61

induction 0.64 0.23 5.16 1.32 6.66 1.9 10.2 2.77 16.47 3.78 24.6 6.73 33 9.2

total 0.75 0.25 6.05 1.44 7.74 2.03 12.27 2.98 18.82 4.07 29.26 7.1 39.07 9.81

ASparTIES

sampling 0.1 0.01 0.93 0.06 1.09 0.07 2.24 0.14 2.55 0.15 4.47 0.27 7.23 0.43

induction 0.52 0.03 4.1 0.26 5.7 0.35 8.2 0.65 13.13 0.98 17.75 1.46 23.66 2

total 0.62 0.04 5.03 0.32 6.77 0.42 10.45 0.78 15.67 1.13 22.2 1.73 30.88 2.43

seqPIES in_sampling 9.17 - 88.3 - 110.2 - 149.9 - 247.5 - 386.5 - 621.8 -

parPIES

sampling 1.82 0.12 13.19 0.88 14.5 0.97 19.03 1.26 29.32 1.84 35.19 2.37 52.18 3.22

s_sampling 8.55 0.4 63.6 3.76 63.92 4.38 70.54 4.78 130.9 9.06 148.6 10.18 194.6 13.58

in_sampling 12 0.79 105.1 7.06 122.3 8.28 150.7 10.64 266.8 18.18 376.9 26.08 541.4 35.94

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000

Degree

gplus

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000

P
(D

eg
 >

=
x)

Degree

socLj

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000

Degree

twitter

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000

Degree

pld

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000

Degree

sd1

Figure 3: Degree CDF of original graphs and subgraphs sampled by sequential and parallel PIES and TIES algorithms

Table 3: parTIES parallel speedup over single thread

Number of threads

(1) (2) (4) (8) (16) (16h)

socLj 1 1.57 3.19 5.91 10.42 15.81

gplus 1 1.61 3.27 6.40 10.99 15.70

rmat32 1 1.62 3.19 5.85 10.59 16.06

pld 1 1.54 3.19 5.48 9.97 13.30

rmat64 1 1.63 3.23 6.09 11.15 13.88

twitter 1 1.59 3.12 5.60 10.15 12.86

sd1 1 1.60 3.19 5.84 10.51 14.33

Table 4: parPIES parallel speedup over single thread

Number of threads

(1) (2) (4) (8) (16) (16h)

socLj 1 1.51 2.87 5.73 9.61 15.10

gplus 1 1.58 2.94 5.57 10.01 14.89

rmat32 1 1.48 2.78 5.38 9.66 14.78

pld 1 1.45 2.76 5.31 9.48 14.16

rmat64 1 1.44 2.83 5.42 9.52 14.68

twitter 1 1.48 2.76 5.41 9.58 14.45

sd1 1 1.44 2.82 5.51 10.06 15.06

parPIES by an average of 1.52× and parTIES by 1.37×. The scaling

is also quite consistent for all the datasets.

Sampling Fraction: is the ratio of the number of sampled vertices

to the total vertices in original graph i.e.
k
|V |

. Fig.4 and 5 depict the

variation in execution time with sampling fraction, for parTIES and

parPIES, respectively. Note that the execution time increases more

rapidly for parTIES than parPIES. This is because unlike parTIES

that only processes edges incident on a sampled node, parPIES

processes all the edges irrespective of the sampling fraction.

For parPIES, the increase in execution time is mostly a conse-

quence of larger number of edges induced and the resultingmemory

operations. For soclj, induction increases drastically with sampling

fraction and so does the execution time. For large graphs twitter
and sd1, > 45% edges are induced with k = 0.2|V | only and further

increase in k marginally affects |Es |. Hence, the execution time

increases only 2× with an 8-fold increase in the sampling fraction.

Within parTIES, we observed that the execution time of sampling

phase increases more rapidly as compared to induction. Intuitively,

this happens because if a lot of vertices are already sampled, it

becomes harder for a randomly selected edge to sample new vertices.

On the other hand, induction phase probes lot of edges even with

small k because edge sampling preferentially selects high degree

vertices. As k is increased, the new vertices sampled have relatively

small expected degree. For all our test cases, execution time of

induction phase was still significantly higher than sampling.

parPIES Cleanups: As shown in algorithm 3, parPIES performs

periodic cleanups of spurious edges to avoid memory overflow. Let

Es (t) be the edge set at any time t (inclusive of spurious edges) dur-
ing the execution of parPIES andT be the total execution time. Since

Parallel Edge-based Sampling for Static and Dynamic Graphs CF ’19, April 30-May 2, 2019, Alghero, Italy

0

0.5

1

1.5

2

2.5

0.05 0.1 0.2 0.3 0.4

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Sampling Fraction

gplus.bin

pld.bin

twitter.bin

sd1.bin

soclj.bin

rmat32.bin

rmat64.bin

Figure 4: parTIES execution time (normalized for every
dataset with time for k = 0.2|V |) vs sampling fraction

0

0.5

1

1.5

2

2.5

0.05 0.1 0.2 0.3 0.4

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Sampling Fraction

gplus.bin

pld.bin

twitter.bin

sd1.bin

soclj.bin

rmat32.bin

rmat64.bin

Figure 5: parPIES execution time (normalized for every
dataset with time for k = 0.2|V |) vs sampling fraction

a cleanup is always done just before outputting Gs , Es (T) has no
spurious edges. To evaluate the effect of number of cleanups Nc on

(1) Storage (fig.6) → we measure

maxt∈(0,T] |Es (t) |
|Es (T) |

vs Nc . We ob-

served that ≈ 90% of the total space requirement of parPIES

is due to induced edges and hence, maxt ∈(0,T] |Es (t)| is a
good indicator of main memory consumed.

(2) Performance (fig.7) → we measure T vs Nc

The storage required for edges reduces as Nc increases. We

observe that cleanups have a large impact on the Es (t) for soclj
which requires 20% extra edge storage if no intermittent cleanup

is done. This can be intuitively explained by the small fraction

of edges in the output subgraph for soclj (fig.2) that increase the
relative overhead of spurious edges. Contrarily, large graphs twitter
and sd1 require very little extra storage for spurious edges.

For almost all datasets, the execution time grows by only 50−70%

with an 11× increase in Nc . This empirically shows the efficiency

of search operations in our hash table data structure.

5 CONCLUSION & FUTURE WORK
In this paper, we introduced parIES - the first parallel Induced Edge

Sampling framework that uses synchronization avoiding strategies

and novel data structures to overcome the parallelization chal-

lenges in sampling and memory constraints of a streaming algo-

rithm. For future work, we will explore better memory management

1

1.04

1.08

1.12

1.16

1.2

1 2 3 6 11

M
ax

 |
𝐸
𝑠(
𝑡)

|/
|𝐸
𝑠(
𝑇

)|
 d

u
ri

n
g

ex
e

cu
ti

o
n

Number of cleanups 𝑁𝑐

gplus.bin

pld.bin

twitter.bin

sd1.bin

soclj.bin

rmat32.bin

rmat64.bin

Figure 6: Maximum edges stored during execution of
parPIES (normalized by output edge count) vs Nc

0.5

1

1.5

2

2.5

1 2 3 6 11

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Number of cleanups 𝑁𝑐

gplus.bin

pld.bin

twitter.bin

sd1.bin

soclj.bin

rmat32.bin

rmat64.bin

Figure 7: Execution time of parPIES (normalized by time
with only one cleanup) vs Nc

schemes for the dynamic subgraph structure (such as thread-safe

non-blocking vector containers[4]).

Also, there are several interesting directions to pursue in terms

of different sampling algorithms and objectives , such as extensions

to distributed implementations. Note that sampling on distributed

memory systems poses a different set of challenges. Locking and

global atomics may become amajor bottleneck. A bulk synchronous

approach such as sparTIES may be more suitable in such a scenario.

For sampling a streaming graph, instead of processing small chunks

from the graph stream, edges could be batched in larger groups and

distributed across the machines for processing.

Acknowledgements: We thank the anonymous reviewers for their careful reading

of our manuscript and their insightful suggestions. We also express gratitude to our

shepherd Dr. Ana Lucia Varbanescu, whose comments and advice have been of great

help in improving the quality of this paper.

This material is based on work supported by the Defense Advanced Research Projects

Agency (DARPA) under Contract Number FA8750-17-C-0086, National Science Foun-

dation (NSF) under Contract Numbers CNS-1643351 and ACI-1339756 and Air Force

Research Laboratory under Grant Number FA8750-18-2-0034. Any opinions, findings

and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of DARPA, NSF or AFRL. The U.S. Govern-

ment is authorized to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation here on.

CF ’19, April 30-May 2, 2019, Alghero, Italy Kartik Lakhotia et al.

REFERENCES
[1] 2016. https://tessil.github.io/2016/08/29/hopscotch-hashing.html. (Aug. 2016).

[2] Nesreen K Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. 2014.

Graph sample and hold: A framework for big-graph analytics. In Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 1446–1455.

[3] Nesreen K Ahmed, Jennifer Neville, and Ramana Kompella. 2014. Network

sampling: From static to streaming graphs. ACM Transactions on Knowledge
Discovery from Data (TKDD) (2014).

[4] Antal Buss, Ioannis Papadopoulos, Olga Pearce, Timmie Smith, Gabriel Tanase,

Nathan Thomas, Xiabing Xu, Mauro Bianco, Nancy M Amato, Lawrence Rauch-

werger, et al. 2010. STAPL: standard template adaptive parallel library. In Pro-
ceedings of the 3rd Annual Haifa Experimental Systems Conference. ACM.

[5] Vito Giovanni Castellana, Alessandro Morari, Jesse Weaver, Antonino Tumeo,

David Haglin, Oreste Villa, and John Feo. 2015. In-memory graph databases for

web-scale data. Computer 48, 3 (2015), 24–35.
[6] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM.

[7] Kathryn Dempsey Cooper, Kanimathi Duraisamy, Hesham Ali, and Sanjukta

Bhowmick. 2011. A parallel graph sampling algorithm for analyzing gene corre-

lation networks. Procedia Computer Science (2011).
[8] Kathryn Dempsey, Kanimathi Duraisamy, Sanjukta Bhowmick, and Hesham Ali.

2012. The development of parallel adaptive sampling algorithms for analyzing

biological networks. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum. IEEE.

[9] David Ediger, Robert McColl, Jason Riedy, and David A Bader. 2012. Stinger: High

performance data structure for streaming graphs. In High Performance Extreme
Computing (HPEC), 2012 IEEE Conference on. IEEE.

[10] Hui Gao, Jan Friso Groote, and Wim H Hesselink. 2005. Lock-free dynamic hash

tables with open addressing. Distributed Computing (2005).

[11] Neil Zhenqiang Gong, Wenchang Xu, Ling Huang, Prateek Mittal, Emil Stefanov,

Vyas Sekar, and Dawn Song. 2012. Evolution of social-attribute networks: mea-

surements, modeling, and implications using google+. In Proceedings of the 2012
Internet Measurement Conference. ACM.

[12] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. Powergraph: distributed graph-parallel computation on natural graphs.. In

OSDI, Vol. 12. 2.
[13] Douglas Gregor and Andrew Lumsdaine. 2005. The parallel BGL: A generic

library for distributed graph computations. Parallel Object-Oriented Scientific
Computing (POOSC) (2005).

[14] Minyang Han and Khuzaima Daudjee. 2015. Giraph unchained: barrierless asyn-

chronous parallel execution in pregel-like graph processing systems. Proceedings
of the VLDB Endowment 8, 9 (2015), 950–961.

[15] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. 2008. Hopscotch hashing. In

International Symposium on Distributed Computing. Springer.
[16] Vaishnavi Krishnamurthy, Michalis Faloutsos, Marek Chrobak, Jun-Hong Cui, Li

Lao, and Allon G Percus. 2007. Sampling large Internet topologies for simulation

purposes. Computer Networks (2007).
[17] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of

the 22nd International Conference on World Wide Web. ACM.

[18] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[19] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-

scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 135–146.

[20] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2015.

The graph structure in the web: Analyzed on different aggregation levels. The
Journal of Web Science (2015).

[21] Maged M Michael. 2002. High performance dynamic lock-free hash tables and

list-based sets. In Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures. ACM.

[22] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight

infrastructure for graph analytics. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 456–471.

[23] Chris Purcell and Tim Harris. 2005. Non-blocking hashtables with open address-

ing. In International Symposium on Distributed Computing. Springer.
[24] Davood Rafiei. 2005. Effectively visualizing large networks through sampling. In

Visualization, 2005. VIS 05. IEEE. IEEE.
[25] Ryan A Rossi, Rong Zhou, and Nesreen K Ahmed. 2018. Estimation of Graphlet

Counts in Massive Networks. IEEE Transactions on Neural Networks and Learning
Systems (2018).

[26] Ori Shalev and Nir Shavit. 2006. Split-ordered lists: Lock-free extensible hash

tables. Journal of the ACM (JACM) (2006).
[27] Julian Shun and Guy E Blelloch. 2014. Phase-concurrent hash tables for deter-

minism. In Proceedings of the 26th ACM symposium on Parallelism in algorithms

and architectures. ACM.

[28] Usman Tariq, Umer I Cheema, and Fahad Saeed. 2017. Power-efficient and highly

scalable parallel graph sampling using FPGAs. In ReConFigurable Computing and
FPGAs (ReConFig), 2017 International Conference on. IEEE.

[29] Josh Triplett, Paul E McKenney, and Jonathan Walpole. 2011. Resizable, Scal-

able, Concurrent Hash Tables via Relativistic Programming.. In USENIX Annual
Technical Conference, Vol. 11.

[30] Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. 2009.

Doulion: counting triangles in massive graphs with a coin. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 837–846.

[31] Bin Wu, Ke Yi, and Zhenguo Li. 2016. Counting triangles in large graphs by

random sampling. IEEE Transactions on Knowledge and Data Engineering 28, 8

(2016), 2013–2026.

[32] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.

Graphx: A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems. ACM, 2.

[33] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. 2018. Accurate, Efficient and Scalable Graph Embedding. arXiv preprint
arXiv:1810.11899 (2018).

[34] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:

A Computation-Centric Distributed Graph Processing System.. In OSDI. 301–316.

h
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Sampling Static Graphs
	2.1 Background
	2.2 Asynchronous parallel Totally Induced Edge Sampling (ASparTIES)

	3 Sampling Dynamic Graphs
	3.1 Background & Challenges
	3.2 Dynamic Graph Data Structure
	3.3 Hash Table
	3.4 Parallel Partially Induced Edge Sampling

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion & Future Work
	References

