
A Flexible Design Automation Tool for
Accelerating Quantized Spectral CNNs

Rachit Rajat∗
University of Southern California

rrajat@usc.edu

Hanqing Zeng∗
University of Southern California

zengh@usc.edu

Viktor Prasanna
University of Southern California

prasanna@usc.edu

Abstract—CNNs have proven to be extremely powerful in
various computer vision applications. To alleviate the compu-
tation burden and improve hardware efficiency, low-complexity
convolution algorithms (e.g., spectral convolution) and data quan-
tization schemes have been implemented on FPGAs. However,
to translate the reduced algorithm complexity into improved
hardware performance, we need significant manual tuning of
mapping parameters specific to the CNN model and the target
FPGA device. We propose a flexible tool to automate the process
of generating high throughput accelerators for quantized, spectral
CNNs. The tool takes as input high level specification of the CNN
model, the data quantization scheme and the target hardware
architecture. It outputs synthesizable Verilog after fast explo-
ration of the complete design space. Our tool is flexible in three
dimensions: 1) data representation, 2) FPGA architecture, and
3) CNN models. To support arbitrary quantization bit width,
we propose a resource-efficient multiplier design, which uses the
fixed, high bit-width DSPs to implement various low bit-width
complex multiplications needed in spectral CNNs. To support
FPGAs with limited on-chip memory, we propose a systolic
array-based architecture for spectral convolution, which exploits
high computation parallelism in DSPs without stressing BRAM
resources. To support CNNs with various layer parameters, we
tile and permute data blocks to saturate the communication
and computation capacity. Finally, we propose a fast design
space exploration algorithm to complete the end-to-end Verilog
generation. The whole design space exploration and verilog
generation takes less than 1 second on an Intel Core i5 laptop.
We perform evaluation on Stratix-10 and Stratix-V FPGAs, using
AlexNet and VGG16. The generated accelerators achieve 2× to
4× higher throughput than state-of-the-art, for 8-bit and 16-bit
data quantization.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are powerful deep

learning models widely used in the field of computer vision

[1], [2]. The following challenges exist while performing

inference on FPGA:

1) Computation load: sliding window type of spatial convo-

lution requires large number of operations.

2) Design effort: manual hardware implementation and de-

sign space exploration is time consuming.

For the first challenge, accelerators designed for spectral

CNNs (using frequency domain convolution) have been im-

plemented on FPGAs [3]–[5]. The designs demonstrate sig-

nificantly higher throughput (up to 5×) than the spatial CNN

accelerators, due to the decrease in arithmetic operations. The

work in [6] further proposes data quantization to address the

∗Equal contribution
This work was supported in part by Intel Strategic Research Alliance

and in part by National Science Foundation award number CNS-1643351.

drawback of increased model size (due to enlarged convolu-

tional kernels) in the spectral CNN. Overall, quantized spectral

CNNs demonstrate the ability to overcome the challenge of

high computational requirement of spatial CNNs.

As for the second challenge, various design automation

tools [7]–[10] have been proposed to generate high perfor-

mance inference accelerators. While these efforts significantly

alleviate the burden on hardware designers, they face various

limitations as well. Most design automation tools [7], [9] target

computation kernels of spatial convolution. And the only tool

generating spectral CNN accelerators [8] does not support

low bit-width arithmetic operations. In addition, the pipeline

generated in [8] results in high pressure on BRAMs to support

the DSP computation. Such designs may suffer from low clock

speed on FPGAs with massive DSP resources [11].

We propose a tool to generate high throughput CNN infer-

ence accelerators which solves the aforementioned problems.

Our tool is inspired by the performance analysis for spectral

quantized CNNs [3], [6].

This paper makes the following contributions:

• We propose an automation tool for quantized spectral

CNN accelerators. The tool has the following flexibility:

– Quantization schemes: We propose a low overhead im-

plementation for low bit-width complex multiplication.

Our design utilizes the built-in high bit-width DSPs to

support a wide range of quantization schemes.

– FPGA architecture: To achieve high throughput under

BRAM resource constraints, we reduce spectral con-

volution to matrix multiplication, and parallelize by

systolic arrays. The corresponding accelerator can scale

to large FPGA devices without clock rate degradation.

– CNN models: To avoid expensive runtime reconfigura-

tion on convolution layers of various model parameters,

we perform data tiling and data permutation to ensure

high utilization of the computation pipeline.

• The tool generates the complete inference accelerator

in synthesizable Verilog. The fast design space ex-

ploration algorithm derived from a precise performance

model quickly identifies the optimal design point.

• We evaluate our tool on various FPGAs (Stratix-10,

Stratix-V), CNNs (AlexNet, VGG16) and data quanti-

zation schemes (16-bit to 2-bit). Compared with state-

of-the-art spectral and spatial CNN implementation, our

designs consistently operate under high clock rate and

achieve 2× to 4× higher throughput.

144

2019 29th International Conference on Field Programmable Logic and Applications (FPL)

1946-1488/19/$31.00 ©2019 IEEE
DOI 10.1109/FPL.2019.00031

II. BACKGROUND AND RELATED WORK

A. Spectral CNNs

Convolutional layers are the focus of this work. For a spatial

convolutional layer handling a batch of b images, its ith input

(output) activation, Xi (Yi), has cin (cout) channels, where each

channel is a hact×hact 2D matrix. The layer weights W contain

cout × cin number of spatial kernels, each being a small hkrn ×
hkrn 2D matrix. We can use Fast Fourier Transform (FFT)

to convert a spatial layer to its equivalent form in spectral

domain. Use F (·) and F−1 (·) to denote the 2D-FFT operation

and its inverse. Thus, the spectral weights W̃k,j = F (Wk,j),
where 1 ≤ k ≤ cout and 1 ≤ j ≤ cin. The spectral input

activation X̃i,j = F (Xi,j), where 1 ≤ i ≤ b and 1 ≤ j ≤ cin.

A convolutional layer operates as follow:

Yi,k =

cin∑
j=1

Xi,j ∗Wk,j = F−1

⎛
⎝ cin∑

j=1

X̃i,j ◦ W̃k,j

⎞
⎠ (1)

where “∗” denotes spatial convolution (sliding window); “◦”

denotes 2D Hadamard product (element-wise multiplication).

Equation 1 holds whenever the FFT size n is larger than

the spatial kernel size hkrn. Partitioning or padding of X
may be required (Overlap-Add technique [3]) when sizes of

n and hact do not match. The value of n affects the overall

computation complexity of the spectral CNN, as well as the

hardware communication and computation load-balance. Thus,

n should be carefully chosen given the target CNN and FPGA.

Spectral CNNs have been implemented on FPGAs as a

faster alternative of spatial CNNs. [5] compares both variants

with comprehensive theoretical analyses. [3] shows that using

spectral convolution algorithm reduces the overall number of

arithmetic operations by 5× for large CNNs. [12] proposes a

hybrid FPGA implementation combining Winograd-based and

FFT-based convolution algorithms for layers of large kernels.

B. Data Quantization

Fixed-point data quantization on CNNs has been widely

explored. Bit width to represent the values of W and X
can be dramatically reduced with suitable quantization and

re-training algorithms. Quantization by the pioneering work

[13] achieves high accuracy on a digit recognition dataset with

1- to 4-bit fixed-point numbers. [14] allocates the number of

bits according to the characteristic of each layer. Its algorithm

works well for AlexNet [1] and VGG16 [2]. [15], [16] explore

the potential of fully binarized CNNs. Binary representation

of weights, while increasing inference speed-up, may lead to

significant accuracy drop for large dataset and CNN models.

As for spectral CNNs, [12] quantizes spectral weights W̃
to 8 bits, without reporting accuracy. [6] proposes a theoretical

framework to systematically quantize W̃ and X̃ .

C. Design Automation Tools

To facilitate inference accelerator development, design au-

tomation tools have been proposed. In [7], synthesis techniques

have been proposed for systolic array-based architecture. How-

ever, to the best of our knowledge, systolic array-based designs

have not been used for spectral CNNs yet. In [10], a RTL

compiler has been proposed to accelerate all layers of a CNN.

[17] proposes a framework for mapping CNNs onto FPGAs

by RTL-HLS templates. Recent work [9] proposes a highly

optimized automation tool for generating high throughput in-

ference engines, by intelligent resource allocation algorithms.

Note that, all the above works target spatial CNNs only.

[3], [8] present design automation tools for spectral CNNs.

The tool by [8] uses a fast code generation algorithm by

decomposition of the large design space. However, the algo-

rithm selects the FFT size n to only minimize operation count

of spectral convolution. The actual hardware performance

may not be optimal, due to communication-computation load-

imbalance on FPGAs. The tool by [3] further improves upon

[8]. It proposes first-order approximations to the performance

model, so that fast design space exploration directly optimizes

inference throughput. Although the tool generates high quality

designs on small devices such as Stratix V, its architecture may

not scale to larger FPGAs, due to the parallelization strategy on

the tensors X̃ and W̃ (see details in Section III-B). Moreover,

both [3], [8] only support 16-bit quantization on W̃ and X̃ .

In summary, there is an urgent need for a flexible design

automation tool targeting quantized spectral CNNs. The tools

for spatial CNNs cannot generate spectral CNN accelerators

due to the different computation and data flow patterns. The

existing tools for spectral CNNs are not flexible to handle

various quantization schemes and hardware constraints.

III. TOOL FOR QUANTIZED SPECTRAL CNNS

A. Overview

Our tool takes as input the specification of a pre-trained

spectral CNN with quantized weights, the FPGA architecture

and the quantization scheme. The tool generates synthesizable

Verilog for the inference hardware based on an architecture

template (Section III-B). Leveraging fast design space explo-

ration (Section III-C), the tool identifies the optimal mapping

parameters (including data parallelism of hardware modules,

batch size and data tiling factor). A Python script assembles

the hardware modules into a complete inference pipeline.

In our model, target FPGA architecture is specified by:

• DSP parameters QP, NQP

DSP : QP defines bit width sup-

ported by the multiplier. NQP

DSP defines the total number

of QP-bit multipliers on chip. For example, in Stratix 10

GX2800 [11], N 18
DSP = 11520 or N 27

DSP = 5760 for 18-bit

or 27-bit multiplication supported by the DSP blocks.

• BRAM parameters QB, NQB

BRAM : QB defines the width

of a BRAM block (bits per row). NQB

BRAM defines the

number of width-QB BRAM blocks on chip. For Stratix-

10 GX2800 with M20K BRAMs, N 20
BRAM = 11721.

• External DRAM parameters QM, NQM

DRAM : For example,

N 16
DRAM = 8 means in each FPGA clock cycle, eight 16-

bit words can be read from or written to DRAM.

Each convolutional layer of the CNN is specified by:

• hact — spatial dimensions of each layer’s activation X .

• hkrn — spatial dimensions of each layer’s kernel map W .

145

• cin — number of input channels of each layer.

• cout — number of output channels of each layer.

• n — 2D FFT size to transform X to X̃ .

Finally, the quantization scheme is specified by:

• qact — quantization bit width for spatial activation X .

• q̃act — quantization bit width for spectral activation X̃ .

• q̃krn — quantization bit width for spectral weights W̃ .
B. Spectral Convolution Engine

Parallelization strategies targeting different dimensions of

the tensors X̃ , W̃ result in various computation and commu-

nication tradeoffs. Our analysis leads to a flexible architecture

template that sustains high throughput on a variety of CNNs,

FPGAs and quantization schemes. Starting from Equation 1,

the operations by a spectral convolutional layer are1:

OP1: X̃i,j = F (Xi,j) , ∀i ∈ [1, b], j ∈ [1, cin]

OP2: Ỹi,k =

cin∑
j=1

X̃i,j ◦ W̃k,j , ∀i ∈ [1, b], k ∈ [1, cout]

OP3: Yi,k = F−1
(
Ỹi,k

)
, ∀i ∈ [1, b], k ∈ [1, cout]

From [3], among the three operations, OP2 dominates the

computation workload. Below we present two different inter-

pretations (correspondingly, two parallelization strategies) of

OP2. Figure 1a shows a more intuitive view using Hadamard

product as the computation primitive. One layer requires

cin · cout number of n× n Hadamard products, each operating

on a
(
X̃i,j , W̃k,j

)
pair. Since Hadamard product incurs no

dependency among the pixels of X̃ and W̃ , a 1D multiplier

array may effectively parallelize OP2 by unfolding the n × n
dimensions [3], [8]. In Figure 1a,

(
1 · 2 · 3 · n2

)
number of

multipliers can finish OP2 in one cycle. Unfortunately, such

straightforward parallelization strategy does not work well for

state-of-the-art large FPGAs. On one hand, the lack of data de-

pendency in the Hadamard product simplifies the control logic

and data flow. On the other hand, it results in high pressure on

BRAMs to meet the data parallelism requirement. In Figure

1a, each cycle, the multiplier array initiates (2 · 1 + 2 · 3) · n2

distinct reads into BRAMs. On an FPGA with thousands of

DSPs [11], the data parallelism to be supported by BRAMs is

in the order of thousand to ten thousand. Such a design may

suffer from clock rate degradation and low BRAM utilization.

To reduce the pressure on BRAMs, we parallelize OP2

along other dimensions (i.e., channels cin, cout and batch b).
In Figure 1b, OP2 on the spectral weights and activations is

computed using dot product (instead of Hadamard product)

as the primitive. The following are equivalent to compute

Ỹ ∈ R
b×cout×n×n:

Ỹi,k,·,· =
cin∑
j=1

(
X̃i,j ◦ W̃k,j

)
, ∀i ∈ [1, b], k ∈ [1, cout] (2a)

Ỹ·,·,d,e =
(
W̃·,·,d,e

)
·
(
X̃·,·,d,e

)T

, ∀d, e ∈ [1, n] (2b)

1Note that since the kernel weights W and ˜W are fixed during inference,

we prepare ˜W offline and do not consider the cost of ˜W = F (W).

X̃1,2X̃1,2X̃1,1X̃1,1 X̃1,2X̃1,1

W̃1,1W̃1,1 W̃1,2W̃1,2W̃1,1 W̃1,2

W̃2,1W̃2,1 W̃2,2W̃2,2W̃2,1 W̃2,2

W̃3,1W̃3,1 W̃3,2W̃3,2W̃3,1 W̃3,2

W̃1,1 W̃1,2

W̃2,1 W̃2,2

W̃3,1 W̃3,2

n

n

n

 n

 n

cin=2

cin=2

c o
ut

=
3

b=
1

X̃1,1◦W̃1,1 + X̃1,2◦W̃1,2

W̃1,1W̃1,1W̃1,1 W̃1,2W̃1,2W̃1,2W̃1,1 W̃1,2

X̃1,1◦W̃1,1 + X̃1,2◦W̃1,2

W̃1,1 W̃1,2

X̃1,1◦W̃2,1 + X̃1,2◦W̃2,2

W̃2,1W̃2,1W̃2,1 W̃2,2W̃2,2W̃2,2W̃2,1 W̃2,2

X̃1,1◦W̃2,1 + X̃1,2◦W̃2,2

W̃2,1 W̃2,2

X̃1,1◦W̃3,1 + X̃1,2◦W̃3,2

W̃3,1W̃3,1W̃3,1 W̃3,2W̃3,2W̃3,2W̃3,1 W̃3,2

X̃1,1◦W̃3,1 + X̃1,2◦W̃3,2

W̃3,1 W̃3,2

X̃1,1◦W̃1,1 + X̃1,2◦W̃1,2

W̃1,1 W̃1,2

X̃1,1◦W̃2,1 + X̃1,2◦W̃2,2

W̃2,1 W̃2,2

X̃1,1◦W̃3,1 + X̃1,2◦W̃3,2

W̃3,1 W̃3,2

(a) Expressed as Hadamard

cin

cout

PS PS

c

c

b=PS

n2

n2

Spec. weights (reshaped) Spec. act. (reshaped)

PS

c

PS

c

cin

NSNS
NSNS

(b) Expressed as dot product

Fig. 1: Two views of spectral convolution of a layer

In Equation 2b, OP2 is decomposed into n2 number of (in-

dependent) dot products between cout×cin matrices and cin×b
matrices. Matrix dot product can be efficiently implemented on

FPGAs by systolic arrays. Note that a 2D N×N systolic array

performs N ×N MAC operations each cycle, while requiring

only 2N data from on-chip memory. Thus, comparing Design

1 (from Equation 2a) and Design 2 (from Equation 2b):

• Both have simple dataflow and low logic overhead.

• Design 2 reduces the needed data parallelism from

BRAMs by orders of magnitude, compared with Design

1.

We describe the architecture based on Equation 2b below.

Input Buffer Kernel Buffer Output Buffer

SPN SPN

Dot Product

Systolic arraySystolic arraySystolic array
Systolic arraySystolic arraySystolic array
Systolic arraySystolic arraySystolic array

NS
 PS

Systolic arraySystolic arraySystolic array

NS
 PS

SPN
1D 1D

SPN
1D 1DSPN
1D 1D

SPN
1D 1DSPN
1D 1D

SPN
1D 1D

SPN
1D 1DSPN
1D 1DSPN
1D 1D

NF

SPN
1D 1DSPN
1D 1DSPN
1D 1D

NF

PF

SPN
1D 1DSPN
1D 1DSPN
1D 1D

NF

PF

2D FFT

SPN
1D 1DSPN
1D 1DSPN
1D 1D

NF

PF

2D FFT

SPN
1D 1D

SPN
1D 1DSPN
1D 1D

SPN
1D 1DSPN
1D 1D

SPN
1D 1D

SPN
1D 1DSPN
1D 1DSPN
1D 1D

NF

SPN
1D 1DSPN
1D 1DSPN
1D 1D

NF

 PF

SPN
1D 1DSPN
1D 1DSPN
1D 1D

NF

 PF

2D IFFT

SPN
1D 1DSPN
1D 1DSPN
1D 1D

NF

 PF

2D IFFT

Size: 2·b·c·n2 Size: 2·b·c·n2Size: c·c·n2

FPG
A

Output
Activation

Input
Activation

Input Buffer Kernel Buffer Output Buffer

SPN SPN

Dot Product

Systolic arraySystolic arraySystolic array

NS
 PS

SPN
1D 1DSPN
1D 1DSPN
1D 1D

NF

PF

2D FFT

SPN
1D 1DSPN
1D 1DSPN
1D 1D

NF

 PF

2D IFFT

Size: 2·b·c·n2 Size: 2·b·c·n2Size: c·c·n2

FPG
A

Output
Activation

Input
Activation

Fig. 2: Overview of the spectral convolution engine
As shown in Figure 2, the pipeline in the spectral convolu-

tion engine consists of three memory modules (input buffer,

kernel buffer and output buffer), three computation modules

(2D FFT, dot product and 2D IFFT) and four data permutation
network. As in overview, a tile of spatial activations X is

streamed into the 2D FFT module from external DRAM.

Output of 2D FFT (i.e., X̃) is permutated and then stored into

the corresponding memory banks of the input buffer. Majority

of computation is performed by the dot product module. The

module consists of multiple equal-size 2D systolic arrays. Each

cycle, these systolic arrays read data from input and kernel

buffers, compute Ỹ and store outputs in the output buffer.

Finally, the 2D IFFT module reads Ỹ from output buffer in a

streaming fashion, computes the inverse Fourier transform, and

transfers the result Y back to external DRAM. Note that we

use double buffering on input and output buffers to overlap the

external DRAM communication with the on-chip computation.

2D FFT / IFFT module: n× n 2D FFT can be decomposed

into n n-point 1D FFTs (row major), followed by another

n number of n-point 1D FFTs (column major). We use the

1D FFT pipeline from [18]. Between the two stages of 1D

146

qzerop qzerop
x bitsy bitsx bits x bitsy bitsx bits

qzerop
x bitsy bitsx bits

nzerom nzerom
y bitsx bitsy bits y bitsx bitsy bits

nzerom
y bitsx bitsy bits

q·np·n + q·mp·m q·np·n + q·mp·m
(x+y) bits(x+y) bits(x+y) bits (x+y) bits(x+y) bits(x+y) bits

qzerop
x bitsy bitsx bits

nzerom
y bitsx bitsy bits

q·np·n + q·mp·m
(x+y) bits(x+y) bits(x+y) bits

p q m n

p·m - q·n p·n + q·m

qzerop
x bitsy bitsx bits

nzerom
y bitsx bitsy bits

q·np·n + q·mp·m
(x+y) bits(x+y) bits(x+y) bits

p q m n

p·m - q·n p·n + q·m

Fig. 3: Multiplier for quantized complex numbers

FFT, we use a Streaming Permutation Network (SPN) [19]

to transpose the n × n intermediate result. We parameterize

the data parallelism of the 1D FFT pipelines as PF. We also

allow the module to process NF number of n×n 2D FFTs in

parallel, corresponding to data from different input channels.

Dot product module: This module deploys NS number of

PS ×PS 2D systolic arrays to compute Equation 2b. Visually,

this module handles data tiles bounded by the dashed lines in

Figure 1b. The processing of all the tiles follows the schedule

specified by the block matrix multiplication algorithm [20] —

i.e., the systolic arrays read tiles of W̃ along the cin dimension,

and then along the cout and n2 dimensions. The memory layout

and the performance analysis are presented later on.

Arithmetic unit: We propose a simple technique to multiply

low bit-width complex numbers, using the built-in high bit-

width DSPs. Consider the complex multiplication (p+ jq) ×
(m+ jn), where p, q are of x-bit and m, n are of y-bit

(w.l.o.g., x ≥ y). As shown in Figure 3, we construct two

inputs to the hardware multiplier, one with (2x+ y) bits (y
bits of zeros between the real part p and the imaginary part q),

and the other with (2y + x) bits (x bits of zeros between m
and n). The output of the (2x+ y)-bit multiplier consists of

three parts — the first (x+ y) bits contain results of q ·n, the

second (x+ y) bits contain p·n+q·m, and the last (x+ y) bits

contain p ·m. With an additional (x+ y)-bit adder to substract

p ·m and q · n, we obtain the real part (p ·m− q · n) and the

imaginary part (p · n+ q ·m) of the desired result. In Section

III-C, we demonstrate that the above technique enhances the

flexibility of our tool in terms of quantization schemes.

Kernel buffer: For large convolutional layers, it may not be

feasible to store the entire weight tensor W̃ on chip. Thus,

we perform channel tiling (similar to [3]) to divide the cin and

cout dimensions into size-c partitions. The kernel buffer stores

a W̃ tile of shape c × c × n2 during inference (Figure 1b).

To facilitate data access of the dot product module, we further

partition the tile of W̃ into shape PS × PS × NS sub-tiles.

Each sub-tile follows the input-channel-major and pixel-major

memory layout, so that the BRAMs of the kernel buffer supply

PS ×NS distinct data per cycle to the systolic arrays.

Input / Output buffer: Consistent with the tiling on W̃ , we

divide the cin dimension of X̃ and cout dimension of Ỹ into

size-c partitions. With batch size b and double buffering, both

the input and output buffers are of size 2 ·b ·c ·n2 (Figure 1b).

Similar to the design of kernel buffer, we further partition

the tile of X̃ and Ỹ into shape PS × PS × NS sub-tiles2.

Each sub-tile of X̃ (Ỹ) follows input-channel-major (output-

channel-major) and pixel-major memory layout.

Streaming permutation network (SPN): SPNs [19] are in-

cluded for matrix transformation. SPNs in the 2D FFT module

enable streaming processing of the row and column FFTs. The

SPNs between 2D FFT and input buffer, and between 2D IFFT

and output buffer are essential due to different data layout of

these modules. Resource consumption of SPNs is negligible.

C. Design Space Exploration

We use the parameters defined in Section III-A to derive the

performance model. Design space exploration is performed to

identify mapping parameters3: NF, PF, NS, PS, b and c.

Batching constraint: Batch processing is necessary for our

dot product based spectral CNN design. Large batch size

results in higher BRAM consumption in input and output

buffers. Small batch size may cause under-utilization of the

systolic arrays. Ideally, batch size should satisfy constraint C0:

C0 : b = PS (3)

DSP constraint: Due to the technique in Figure 3, when

the quantization bit width q̃act and q̃krn is low, FPGA

can perform more than NQP

DSP number of multiplication

per cycle. We define Ñ dot
DSP as the effective number

of complex multipliers on chip, given the quantization

scheme. Further, define q̃′ = max {2q̃act + q̃krn, q̃act + 2q̃krn},

q̃′′ = max {4q̃act + 5q̃krn, 5q̃act + 4q̃krn}. So the effective

amount of DSP resources is given by4: Ñ dot
DSP =

max
QP

{(
1
3NQP

DSP

)
,
(
1q̃′≤QP

· NQP

DSP

)
,
(
2 · 1q̃′′≤QP

· NQP

DSP

)}
.

We thus derive the constraint C1 due to limited DSPs:

C1 : NS · PS · PS ≤ Ñ dot
DSP (4)

BRAM constraint: Due to data quantization, one row of a

BRAM block may store multiple data points of the spectral

tensors. Define the effective number of BRAM blocks for the

input and output buffers: Ñ act
BRAM = 1

2

⌊
QB

q̃act

⌋
N (1)

BRAM; and effec-

tive BRAMs for the kernel buffer: Ñ krn
BRAM = 1

2

⌊
QB

q̃krn

⌋
N (2)

BRAM.

Also N (1)
BRAM + N (2)

BRAM = NQB

BRAM. Below, C2, C3 capture

the constraints due to limited BRAMs on-chip. C4 should

be satisfied so that the data parallelism provided by the data

buffers are sufficient to keep the systolic arrays busy.

C2 : 2 · (2 · b · c · n2
) ≤DBRAM · Ñ act

BRAM (5a)

C3 : c · c · n2 ≤DBRAM · Ñ krn
BRAM (5b)

C4 : NS · PS ≤min

{
1

4
· Ñ act

BRAM, Ñ krn
BRAM

}
(5c)

2We always choose the batch size b = PS. See Section III-C.
3We assume the spectral kernels as the tool’s input are quantized based

on some given n, so n is not a design parameter. The design space exploration
below can be trivially extended to incorporate n as an additional parameter.

4First term: 3 built-in multipliers perform 1 complex multiplication [21];
Second term: 1 built-in multiplier performs 1 complex multiplication (Figure
3); Third term: 1 built-in multiplier performs 2 complex multiplications
(generalization of Figure 3, applied to extremely low quantization bit width).

147

Define one round as the processing of all data in the input

buffer. Total number of clocks (trnd) to finish one round is:

trnd = max

⎧⎨
⎩ 2 · b · c · n2

1
2

⌊
QD

qact

⌋
NQD

DRAM

,
b · c · n2

PF ·NF

,
(c · c · b) · n2

NS · PS · PS

⎫⎬
⎭

(6)

Total cycles to finish one layer (averaged over batch b) is5:

tlyr =
⌈cin

c

⌉
·
⌈cout

c

⌉
·
⌈

hact

n− hkrn + 1

⌉2

· trnd

2b
(7)

The design space exploration thus solves the below opti-

mization problem, to identify the optimal mapping parameters

(N∗
F , P

∗
F , N

∗
S , P

∗
S , b

∗, c∗). We constrain all parameters to be

power of two. As a reasonable assumption, each of the optimal

parameters falls between 20 to 29, so the total number of

design points to be evaluated is less than 106. Equation 8

can be solved within one second on a laptop (Intel Core i5).

minimize
NF,PF,NS,PS,b,c

L∑
�=1

t
(�)
lyr , subject to C0,C1,C2,C3,C4

(8)

Note that the design space exploration algorithm identifies

a single design point (N∗
F , P

∗
F , N

∗
S , P

∗
S , b

∗, c∗) for all the

convolutional layers of the input CNN. Therefore, no runtime

reconfiguration is needed during inference.

IV. EXPERIMENTS

A. Experimental Setup

We evaluate our tool6 on two target FPGAs (Intel Stratix-

V GXA7 and Stratix-10 GX2800), using two state-of-the-

art CNNs (AlexNet [1] and VGG16 [2]). We implement

quantization schemes ranging from 2-bit to 16-bit quantization.

The Stratix-10 GX2800 FPGA is suitable for data center

workloads. It has 229 Mb BRAM, 5760 DSPs and 3,732,480

ALMs. Each DSP supports either one 27-bit or two 18-bit fixed

point multiplications. Stratix-V GXA7 has 50 Mb BRAM, 256

DSPs and 234,720 ALMs. We use Quartus Prime Pro 18.1 for

synthesis. The results are post place-and-route results.

Our metric is inference throughput, measured by images-

per-second. We adopt a CPU-FPGA co-processing model.

The spectral convolution layers are executed on FPGA, and

all other layers (e.g., ReLU, pooling, fully-connected) are

executed by CPU. Also, for both AlexNet and VGG16, since

the first convolutional layer has only three input channels

(R.G.B. color channels), the channel tiling mechanism may

not achieve high efficiency on FPGAs. Thus, we execute the

first convolutional layer of the two CNNs on CPU. Under such

a schedule, for AlexNet and VGG16, CPU is responsible for

less than 15% and 2% of the total computation respectively.

While our tool supports spectral CNNs with any FFT size n,

in all the experiments below, we keep n to be the optimal

value (i.e., 16) from the design space exploration in [3].

5The factor 2 in denominator is due to the technique in [3] to feed both
real and imaginary channels at FFT input with spatial activations.

6Open sourced at: https://github.com/ZimpleX/FPGA-Spec-CNN-FPL19

B. Flexibility w.r.t. Quantization Scheme

Since the DSPs of the Stratix family only supports 18-bit

or 27-bit fixed-point multiplication, the arithmetic unit design

proposed in Section III-B can efficiently improve throughput

when the CNN is quantized to low bit-width data. Figure

4 shows the number of complex multiplications supported

by DSPs of Stratix-10 GX2800 under various bit widths7.

Reduced quantization bit width leads to increased number of

multiplications, and thus higher throughput on a given device.

2 4 6 8 10 12 14 16
0

1

2

×104

Bit width

M
u
lt

ip
li

ca
ti

o
n
s

b
y

D
S

P

Fig. 4: Number of complex multiplications vs. bit width

C. Flexibility w.r.t. CNN Models

CNN parameters hact, hkrn, cin and cout vary significantly

for convolutional layers within and across CNN models.

Accelerators generated by our tool can sustain high throughput

under most of the model parameter settings. Specifically, the

variation in the activation size hact is handled by the Overlap-

Add technique in software [3], [4]. The variation in the

spatial kernel size hkrn is inherently resolved by the spectral

convolution algorithm (since the spectral kernel size is n,

regardless of hkrn). The variation in the number of channels is

handled by the tiling technique described in Section III-B.

Figure 5 shows the performance breakdown for each con-

volutional layer. The measured throughput of each layer is

normalized by the theoretical peak throughput (the ideal

throughput when all DSPs on the chip are 100% utilized).

The generated accelerators achieve close to peak throughput

for most convolutional layers. Throughput of layer 2 (AlexNet)

and layers 2,3 (VGG16) are relatively low on Stratix-10. The

accelerators implemented on FPGAs with massive DSP and

BRAM resources often require larger data tiles, which may not

be fully filled by initial layers with small number of channels.

2 3 4 5

0

0.2

0.4

0.6

0.8

1

N
o
rm

al
iz

ed
th

ro
u
g
h
p
u
t AlexNet

2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

VGG16

Stratix-10

Stratix-V

Fig. 5: Performance breakdown by convolutional layers

7For presentation conciseness, we assume qact = q̃act = q̃krn.

148

TABLE I: Comparison with state-of-the-art AlexNet and VGG16 implementations

AlexNet VGG16

[3] [9] [9] Proposed Proposed [3] [9] [9] Proposed Proposed

FPGA
Stratix-10 UltraScale UltraScale Stratix-10 Stratix-10 Stratix-10 UltraScale UltraScale Stratix-10 Stratix-10
GX2800 KU115 KU115 GX2800 GX2800 GX2800 KU115 KU115 GX2800 GX2800

Frequency (MHz) 120 220 220 200 200 120 235 235 200 200
Quantization 16-bit 16-bit 8-bit 16-bit 8-bit 16-bit 16-bit 8-bit 16-bit 8-bit
DSP Usage 3264 (56%) 4854 (88%) 4854 (88%) 3264 (56%) 4480 (78%) 3264 (56%) 4318 (78%) 4318 (78%) 3264 (56%) 4480 (78%)

Logic Usage 413K (45%) 262K (40%) 262K (40%) 140K (15%) 150K (16%) 419K (47%) 258K (39%) 258K (39%) 140K (15%) 150K (16%)
BRAM blocks 6129 (52%) 986 (46%) 986 (46%) 2616 (22%) 5232 (45%) 6133 (52%) 1578 (81%) 1578 (81%) 2616 (22%) 5232 (45%)

Throughput (img/sec) 1704 1126 2252 2841 9114 77 65 130 129 308

D. Flexibility w.r.t. FPGA Architecture

To show flexibility of the tool we did design space ex-

ploration by placing constraints on the amount of DSPs and

BRAMs that can be used by the accelerator. In Figure 6,

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of DSPs available

N
o
rm

al
iz

ed
th

ro
u
g
h
p
u
t AlexNet

0.2 0.4 0.6 0.8 1

VGG16

Stratix-10

Stratix-V

Peak

Fig. 6: Throughput vs. limited DSP resources

we allow the tool to use all BRAM resources and only

restrict the amount of DSPs available. Again, we normalize

the throughput by the theoretical peak throughput when 100%

of DSPs are available. Ideally, the peak throughput should be

proportional to the amount of DSPs available (dashed line).

On Stratix-V, the measured throughput matches well with

the peak throughput. On Stratix-10 with VGG16, measured

throughput is over 50% of the ideal throughput when 80%

to 100% of the total DSPs are available. In such cases, the

external DRAM does not have high enough bandwidth to

match the computation speed of DSPs. In Figure 7, we allow

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of BRAMs available

N
o
rm

al
iz

ed
th

ro
u
g
h
p
u
t AlexNet

0.2 0.4 0.6 0.8 1

VGG16

Stratix-10

Stratix-V

Fig. 7: Throughput vs. limited BRAM resources

the tool to use all DSPs, but limit the number of M20K BRAM

blocks. Due to data tiling and our BRAM efficient architecture

based on streaming systolic array, the overall throughput is

not sensitive to the amount of available BRAMs. Throughput

degradation is only observed when the amount of allowed

BRAMs is restricted to less than 50% of the required BRAMs.

E. Comparison with State-of-the-Art
Table I summarizes the comparison with other design

automation tools. [3] is the state-of-the-art tool for spectral

CNNs, and [9] is the state-of-the-art tool for spatial CNNs.

Both UltraScale KU115 and Stratix-10 GX2800 are high-end

devices with about the same amount of resources. Comparing

with [9], we achieve 2.5× (16-bit) and 4.0× (8-bit) higher

throughput on AlexNet, and 2.0× (16-bit) and 2.4× (8-bit)

higher throughput on VGG16. The throughput improvement is

due to the low complexity of spectral convolution algorithm,

as well as the highly optimized systolic array-based design.

Note that the designs generated by our tool consume 1) small

amount of logic resources due to the resource efficient systolic

array pipeline, and 2) not much BRAM resources, which is

consistent with the evaluation in Section IV-D. Also note that

[9] can generate designs with low latency. However, latency

optimization is not the focus of this paper. As for [3], since

only results on Stratix-V devices are available in the original

paper, we re-implement its design on Stratix-10 for a fair

comparison with our design. Clearly, [3] requires much more

routing resources for BRAM connection to support the DSP

computation. Thus, its parallelization strategy results in severe

clock rate degradation (120 MHz) on Stratix-10. On the other

hand, our designs can maintain high clock rate (200 MHz),

because the streaming nature of systolic arrays significantly

reduces the required number of BRAM reads/writes per cycle.

Note that the DSP consumption in our design is dominated

by the dot product module and not by the FFT / IFFT modules.

For the 16-bit design, 3072 (94%) DSPs are used to perform

dot product, and 192 (6%) are used to perform FFT / IFFT.

For the 8-bit design, 4096 (91%) DSPs are used to perform

dot product, and 384 (9%) are used to perform FFT / IFFT.

V. CONCLUSION

We presented a flexible design automation tool to generate

high throughput inference accelerators for quantized, spectral

CNNs. We demonstrated the flexibility of the tool in terms of

CNN models, FPGA architectures and quantization schemes.

In the future we plan to extend the tool to support hybrid

processing of spatial and spectral convolutional layers, under

a unified systolic array-based architecture. As spectral convo-

lution may not be beneficial on 1 × 1 kernels in CNNs such

as [22]–[25], it is justifiable to compute the layers requiring

1 × 1 kernels by the native spatial convolution. We will

also develop spectral quantization algorithms to incorporate

accuracy evaluation into the tool.

149

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS’12, 2012.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[3] H. Zeng, R. Chen, C. Zhang, and V. Prasanna, “A framework for gener-
ating high throughput cnn implementations on fpgas,” in Proceedings of
the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’18. New York, NY, USA: ACM, 2018.

[4] C. Zhang and V. Prasanna, “Frequency domain acceleration of
convolutional neural networks on cpu-fpga shared memory system,”
in Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’17. New York,
NY, USA: ACM, 2017, pp. 35–44. [Online]. Available: http:
//doi.acm.org/10.1145/3020078.3021727

[5] T. Abtahi, C. Shea, A. Kulkarni, and T. Mohsenin, “Accelerating
convolutional neural network with fft on embedded hardware,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 9, pp. 1737–1749, Sep. 2018.

[6] W. Sun, H. Zeng, Y. E. Yang, and V. Prasanna, “Throughput-optimized
frequency domain cnn with fixed-point quantization on fpga,” in 2018
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Dec 2018, pp. 1–8.

[7] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for
high throughput cnn inference on fpgas,” in Proceedings of the 54th
Annual Design Automation Conference 2017, ser. DAC ’17. New
York, NY, USA: ACM, 2017, pp. 29:1–29:6. [Online]. Available:
http://doi.acm.org/10.1145/3061639.3062207

[8] H. Zeng, C. Zhang, and V. Prasanna, “Fast generation of high throughput
customized deep learning accelerators on fpgas,” in 2017 International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
Dec 2017, pp. 1–8.

[9] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“Dnnbuilder: An automated tool for building high-performance dnn
hardware accelerators for fpgas,” in Proceedings of the International
Conference on Computer-Aided Design, ser. ICCAD ’18. New
York, NY, USA: ACM, 2018, pp. 56:1–56:8. [Online]. Available:
http://doi.acm.org/10.1145/3240765.3240801

[10] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo, “An automatic rtl compiler
for high-throughput fpga implementation of diverse deep convolutional
neural networks,” in 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), Sept 2017, pp. 1–8.

[11] “Intel stratix 10,” https://www.intel.com/content/dam/www/programmable
/us/en/pdfs/literature/pt/stratix-10-product-table.pdf, accessed: 2019-03-
12.

[12] C. Zhuge, X. Liu, X. Zhang, S. Gummadi, J. Xiong, and
D. Chen, “Face recognition with hybrid efficient convolution algorithms
on fpgas,” CoRR, vol. abs/1803.09004, 2018. [Online]. Available:
http://arxiv.org/abs/1803.09004

[13] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” CoRR, vol. abs/1606.06160, 2016. [Online]. Available:
http://arxiv.org/abs/1606.06160

[14] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen, “Design flow of
accelerating hybrid extremely low bit-width neural network in embedded
fpga,” in 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), Aug 2018, pp. 163–1636.

[15] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “Fp-bnn: Binarized neural
network on fpga,” Neurocomputing, vol. 275, pp. 1072–1086, 2018.

[16] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional neural
networks with software-programmable fpgas,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 2017, pp. 15–24.

[17] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “Fp-dnn: An automated framework for mapping deep
neural networks onto fpgas with rtl-hls hybrid templates,” in 2017 IEEE
25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), April 2017, pp. 152–159.

[18] M. Puschel, J. M. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko et al., “Spiral:

Code generation for dsp transforms,” Proceedings of the IEEE, vol. 93,
no. 2, pp. 232–275, 2005.

[19] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient
mapping of bitonic sorting on fpga,” in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’15. New York, NY, USA: ACM, 2015, pp. 240–249.
[Online]. Available: http://doi.acm.org/10.1145/2684746.2689068

[20] G. Nimako, E. J. Otoo, and D. Ohene-Kwofie, “Fast parallel algorithms
for blocked dense matrix multiplication on shared memory architec-
tures,” in Algorithms and Architectures for Parallel Processing, Y. Xiang,
I. Stojmenovic, B. O. Apduhan, G. Wang, K. Nakano, and A. Zomaya,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 443–
457.

[21] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital
numbers by automatic computers,” in Doklady Akademii Nauk, vol. 145,
no. 2. Russian Academy of Sciences, 1962, pp. 293–294.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[23] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[24] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[25] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

150

