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Abstract—CNNs have proven to be extremely powerful in
various computer vision applications. To alleviate the compu-
tation burden and improve hardware efficiency, low-complexity
convolution algorithms (e.g., spectral convolution) and data quan-
tization schemes have been implemented on FPGAs. However,
to translate the reduced algorithm complexity into improved
hardware performance, we need significant manual tuning of
mapping parameters specific to the CNN model and the target
FPGA device. We propose a flexible tool to automate the process
of generating high throughput accelerators for quantized, spectral
CNNs. The tool takes as input high level specification of the CNN
model, the data quantization scheme and the target hardware
architecture. It outputs synthesizable Verilog after fast explo-
ration of the complete design space. Our tool is flexible in three
dimensions: 1) data representation, 2) FPGA architecture, and
3) CNN models. To support arbitrary quantization bit width,
we propose a resource-efficient multiplier design, which uses the
fixed, high bit-width DSPs to implement various low bit-width
complex multiplications needed in spectral CNNs. To support
FPGAs with limited on-chip memory, we propose a systolic
array-based architecture for spectral convolution, which exploits
high computation parallelism in DSPs without stressing BRAM
resources. To support CNNs with various layer parameters, we
tile and permute data blocks to saturate the communication
and computation capacity. Finally, we propose a fast design
space exploration algorithm to complete the end-to-end Verilog
generation. The whole design space exploration and verilog
generation takes less than 1 second on an Intel Core i5 laptop.
We perform evaluation on Stratix-10 and Stratix-V FPGAs, using
AlexNet and VGG16. The generated accelerators achieve 2x to
4x higher throughput than state-of-the-art, for 8-bit and 16-bit
data quantization.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are powerful deep
learning models widely used in the field of computer vision
[1], [2]. The following challenges exist while performing
inference on FPGA:

1) Computation load: sliding window type of spatial convo-
Iution requires large number of operations.

2) Design effort: manual hardware implementation and de-

sign space exploration is time consuming.

For the first challenge, accelerators designed for spectral
CNNSs (using frequency domain convolution) have been im-
plemented on FPGAs [3]-[5]. The designs demonstrate sig-
nificantly higher throughput (up to 5x) than the spatial CNN
accelerators, due to the decrease in arithmetic operations. The
work in [6] further proposes data quantization to address the
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drawback of increased model size (due to enlarged convolu-
tional kernels) in the spectral CNN. Overall, quantized spectral
CNNs demonstrate the ability to overcome the challenge of
high computational requirement of spatial CNNs.

As for the second challenge, various design automation
tools [7]-[10] have been proposed to generate high perfor-
mance inference accelerators. While these efforts significantly
alleviate the burden on hardware designers, they face various
limitations as well. Most design automation tools [7], [9] target
computation kernels of spatial convolution. And the only tool
generating spectral CNN accelerators [8] does not support
low bit-width arithmetic operations. In addition, the pipeline
generated in [8] results in high pressure on BRAMs to support
the DSP computation. Such designs may suffer from low clock
speed on FPGAs with massive DSP resources [11].

We propose a tool to generate high throughput CNN infer-
ence accelerators which solves the aforementioned problems.
Our tool is inspired by the performance analysis for spectral
quantized CNNs [3], [6].

This paper makes the following contributions:

o We propose an automation tool for quantized spectral
CNN accelerators. The tool has the following flexibility:

— Quantization schemes: We propose a low overhead im-
plementation for low bit-width complex multiplication.
Our design utilizes the built-in high bit-width DSPs to
support a wide range of quantization schemes.

FPGA architecture: To achieve high throughput under
BRAM resource constraints, we reduce spectral con-
volution to matrix multiplication, and parallelize by
systolic arrays. The corresponding accelerator can scale
to large FPGA devices without clock rate degradation.
CNN models: To avoid expensive runtime reconfigura-
tion on convolution layers of various model parameters,
we perform data tiling and data permutation to ensure
high utilization of the computation pipeline.

o The tool generates the complete inference accelerator
in synthesizable Verilog. The fast design space ex-
ploration algorithm derived from a precise performance
model quickly identifies the optimal design point.

e We evaluate our tool on various FPGAs (Stratix-10,
Stratix-V), CNNs (AlexNet, VGG16) and data quanti-
zation schemes (16-bit to 2-bit). Compared with state-
of-the-art spectral and spatial CNN implementation, our
designs consistently operate under high clock rate and
achieve 2x to 4x higher throughput.

cps™

Conference Publishing Services



II. BACKGROUND AND RELATED WORK
A. Spectral CNNs

Convolutional layers are the focus of this work. For a spatial
convolutional layer handling a batch of b images, its i input
(output) activation, X; (Y;), has ci, (con) channels, where each
channel is a hye X hyer 2D matrix. The layer weights W contain
Cout X Cin number of spatial kernels, each being a small Ay, X
him 2D matrix. We can use Fast Fourier Transform (FFT)
to convert a spatial layer to its equivalent form in spectral
domain. Use F (-) and F ! (-) to denote the 2D-FFT operation
and its inverse. Thus, the spectral weights Wy, ; = F (W}, ;),
where 1 < k < cou and 1 < j < ¢jp. The spectral input
activation X; ; = F (X, ;), where 1 <i<band 1 < j < ¢p.
A convolutional layer operates as follow:

Y;’k = ZXi’j * Wkﬁj = ]:71 ZE,J‘ o Wk,j (1)
i=1 i=1

9

where “x” denotes spatial convolution (sliding window); “o”
denotes 2D Hadamard product (element-wise multiplication).

Equation 1 holds whenever the FFT size n is larger than
the spatial kernel size hymy. Partitioning or padding of X
may be required (Overlap-Add technique [3]) when sizes of
n and h,y do not match. The value of n affects the overall
computation complexity of the spectral CNN, as well as the
hardware communication and computation load-balance. Thus,
n should be carefully chosen given the target CNN and FPGA.

Spectral CNNs have been implemented on FPGAs as a
faster alternative of spatial CNNSs. [5] compares both variants
with comprehensive theoretical analyses. [3] shows that using
spectral convolution algorithm reduces the overall number of
arithmetic operations by 5x for large CNNs. [12] proposes a
hybrid FPGA implementation combining Winograd-based and
FFT-based convolution algorithms for layers of large kernels.

B. Data Quantization

Fixed-point data quantization on CNNs has been widely
explored. Bit width to represent the values of W and X
can be dramatically reduced with suitable quantization and
re-training algorithms. Quantization by the pioneering work
[13] achieves high accuracy on a digit recognition dataset with
1- to 4-bit fixed-point numbers. [14] allocates the number of
bits according to the characteristic of each layer. Its algorithm
works well for AlexNet [1] and VGG16 [2]. [15], [16] explore
the potential of fully binarized CNNs. Binary representation
of weights, while increasing inference speed-up, may lead to
significant accuracy drop for large dataset and CNN models.

As for spectral CNNs, [12] quantizes spectral weights W
to 8 bits, without reporting accuracy. [6] proposes a theoretical
framework to systematically quantize W and X.

C. Design Automation Tools

To facilitate inference accelerator development, design au-
tomation tools have been proposed. In [7], synthesis techniques
have been proposed for systolic array-based architecture. How-
ever, to the best of our knowledge, systolic array-based designs

have not been used for spectral CNNs yet. In [10], a RTL
compiler has been proposed to accelerate all layers of a CNN.
[17] proposes a framework for mapping CNNs onto FPGAs
by RTL-HLS templates. Recent work [9] proposes a highly
optimized automation tool for generating high throughput in-
ference engines, by intelligent resource allocation algorithms.
Note that, all the above works target spatial CNNs only.

[3], [8] present design automation tools for spectral CNNs.
The tool by [8] uses a fast code generation algorithm by
decomposition of the large design space. However, the algo-
rithm selects the FFT size n to only minimize operation count
of spectral convolution. The actual hardware performance
may not be optimal, due to communication-computation load-
imbalance on FPGAs. The tool by [3] further improves upon
[8]. It proposes first-order approximations to the performance
model, so that fast design space exploration directly optimizes
inference throughput. Although the tool generates high quality
designs on small devices such as Stratix V, its architecture may
not scale to larger FPGAs, due to the parallelization strategy on
the tensors X and W (see details in Section III-B). Moreover,
both [3], [8] only support 16-bit quantization on W and X.

In summary, there is an urgent need for a flexible design
automation tool targeting quantized spectral CNNs. The tools
for spatial CNNs cannot generate spectral CNN accelerators
due to the different computation and data flow patterns. The
existing tools for spectral CNNs are not flexible to handle
various quantization schemes and hardware constraints.

III. TOOL FOR QUANTIZED SPECTRAL CNNS
A. Overview

Our tool takes as input the specification of a pre-trained
spectral CNN with quantized weights, the FPGA architecture
and the quantization scheme. The tool generates synthesizable
Verilog for the inference hardware based on an architecture
template (Section III-B). Leveraging fast design space explo-
ration (Section III-C), the tool identifies the optimal mapping
parameters (including data parallelism of hardware modules,
batch size and data tiling factor). A Python script assembles
the hardware modules into a complete inference pipeline.

In our model, target FPGA architecture is specified by:

o DSP parameters Qp, N]%‘i) : Qp defines bit width sup-
ported by the multiplier. N]%‘}, defines the total number
of Qp-bit multipliers on chip. For example, in Stratix 10
GX2800 [11], N3§ = 11520 or N2T, = 5760 for 18-bit
or 27-bit multiplication supported by the DSP blocks.

o BRAM parameters Qg, Nggay : @p defines the width
of a BRAM block (bits per row). Nﬁ{’AM defines the
number of width-Q)g BRAM blocks on chip. For Stratix-
10 GX2800 with M20K BRAMSs, V&, = 11721.

o External DRAM parameters Qum, Npiyy : For example,
NZ8am = 8 means in each FPGA clock cycle, eight 16-
bit words can be read from or written to DRAM.

Each convolutional layer of the CNN is specified by:

o hy — spatial dimensions of each layer’s activation X.
e hym — spatial dimensions of each layer’s kernel map W.



e cin — number of input channels of each layer.

e Cou — number of output channels of each layer.

e« n — 2D FFT size to transform X to X.

Finally, the quantization scheme is specified by:

* (act — quantization bit width for spatial activation X.

e Gat — quantization bit width for spectral activation X.

e Gk — quantization bit width for spectral weights W.
B. Spectral Convolution Engine

Parallelization_strategies targeting different dimensions of
the tensors X, W result in various computation and commu-
nication tradeoffs. Our analysis leads to a flexible architecture
template that sustains high throughput on a variety of CNNs,
FPGAs and quantization schemes. Starting from Equation 1,
the operations by a spectral convolutional layer are':

0OP;: Xi,j = ]:(AXZJ)7 Vi € [1,[)],] S [1,6111]
Cin
> Xijo Wi,
j=1
0P;: Y =F ! (f’zk) ;

0Py Y = Vi e [1,b],k € [1, Cou

Vi € [].,b],k‘ S [Lcout]

From [3], among the three operations, OP, dominates the
computation workload. Below we present two different inter-
pretations (correspondingly, two parallelization strategies) of
0P,. Figure la shows a more intuitive view using Hadamard
product as the computation primitive. One layer requires
Cin - Cot NUMber of n X n Hadamard products, each operating
on a (E,jaﬁ-}k,j)

dependency among the pixels of X and W, a 1D multiplier
array may effectively parallelize OP, by unfolding the n x n
dimensions [3], [8]. In Figure la, (1-2-3-n?) number of
multipliers can finish 0P, in one cycle. Unfortunately, such
straightforward parallelization strategy does not work well for
state-of-the-art large FPGAs. On one hand, the lack of data de-
pendency in the Hadamard product simplifies the control logic
and data flow. On the other hand, it results in high pressure on
BRAMSs to meet the data parallelism requirement. In Figure
1a, each cycle, the multiplier array initiates (2-1+42-3)-n?
distinct reads into BRAMs. On an FPGA with thousands of
DSPs [11], the data parallelism to be supported by BRAMs is
in the order of thousand to ten thousand. Such a design may
suffer from clock rate degradation and low BRAM utilization.

To reduce the pressure on BRAMs, we parallelize 0P,
along other dimensions (i.e., channels ci,, coy and batch b).
In Figure 1b, OP, on the spectral weights and activations is
computed using dot product (instead of Hadamard product)
as the primitive. The following are equivalent to compute
? c becﬂutxnxn:

Cin _ N

Vi =Y (Xz-,j ° Wk,j) . Vi€ LBk €L, cou] ()

j=1

Y. e (W de) : (f,-,d,e>Ta

pair. Since Hadamard product incurs no

Vd,e € [1,n] (2b)

'Note that since the kernel weights W and W are fixed during inference,
we prepare W offline and do not consider the cost of W = F (W).

Xn W11+X12 Wl,z
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(a) Expressed as Hadamard (b) Expressed as dot product

Fig. 1: Two views of spectral convolution of a layer
In Equation 2b, 0P, is decomposed into n? number of (in-
dependent) dot products between coy X cip matrices and ci, X b
matrices. Matrix dot product can be efficiently implemented on
FPGAs by systolic arrays. Note that a 2D N x N systolic array
performs N x N MAC operations each cycle, while requiring
only 2N data from on-chip memory. Thus, comparing Design
1 (from Equation 2a) and Design 2 (from Equation 2b):
« Both have simple dataflow and low logic overhead.
e Design 2 reduces the needed data parallelism from
BRAMSs by orders of magnitude, compared with Design
1.

We describe the architecture based on Equation 2b below.

Size: 2:b-cn’ Size: c-en? Size: 2:b-cn’
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Fig. 2: Overview of the spectral convolution engine

As shown in Figure 2, the pipeline in the spectral convolu-
tion engine consists of three memory modules (input buffer,
kernel buffer and output buffer), three computation modules
(2D FFT, dot product and 2D IFFT) and four data permutation
network. As in overview, a tile of spatial activations X is
streamed into the 2D FFT module from external DRAM.
Output of 2D FFT (i.e., X) is permutated and then stored into
the corresponding memory banks of the input buffer. Majority
of computation is performed by the dot product module. The
module consists of multiple equal-size 2D systolic arrays. Each
cycle, these systolic arrays read data from input and kernel
buffers, compute Y and store outputs in the output buffer.
Finally, the 2D IFFT module reads Y from output buffer in a
streaming fashion, computes the inverse Fourier transform, and
transfers the result Y back to external DRAM. Note that we
use double buffering on input and output buffers to overlap the
external DRAM communication with the on-chip computation.
2D FFT / IFFT module: n x n 2D FFT can be decomposed
into n n-point 1D FFTs (row major), followed by another
n number of n-point 1D FFTs (column major). We use the
1D FFT pipeline from [18]. Between the two stages of 1D
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Fig. 3: Multiplier for quantized complex numbers

FFT, we use a Streaming Permutation Network (SPN) [19]
to transpose the n X n intermediate result. We parameterize
the data parallelism of the 1D FFT pipelines as Pz. We also
allow the module to process Nr number of n x n 2D FFTs in
parallel, corresponding to data from different input channels.

Dot product module: This module deploys Ng number of
Ps x Ps 2D systolic arrays to compute Equation 2b. Visually,
this module handles data tiles bounded by the dashed lines in
Figure 1b. The processing of all the tiles follows the schedule
specified by the block matrix multiplication algorithm [20] —
i.e., the systolic arrays read tiles of W along the c;, dimension,
and then along the ¢,y and n? dimensions. The memory layout
and the performance analysis are presented later on.

Arithmetic unit: We propose a simple technique to multiply
low bit-width complex numbers, using the built-in high bit-
width DSPs. Consider the complex multiplication (p + jg) x
(m +jn), where p, g are of z-bit and m, n are of y-bit
(w.lLo.g., x > y). As shown in Figure 3, we construct two
inputs to the hardware multiplier, one with (2x + y) bits (y
bits of zeros between the real part p and the imaginary part q),
and the other with (2y + ) bits (z bits of zeros between m
and n). The output of the (2x + y)-bit multiplier consists of
three parts — the first (z + y) bits contain results of ¢ - n, the
second (x 4 y) bits contain p-n+q-m, and the last (z + y) bits
contain p-m. With an additional (z + y)-bit adder to substract
p-m and q - n, we obtain the real part (p-m — ¢ -n) and the
imaginary part (p - n + g - m) of the desired result. In Section
III-C, we demonstrate that the above technique enhances the
flexibility of our tool in terms of quantization schemes.

Kernel buffer: For large convolutional layers, it may not be
feasible to store the entire weight tensor W on chip. Thus,
we perform channel tiling (similar to [3]) to divide the ¢;, and
Coyr_dimensions into size-c partitions. The kernel buffer stores
a W tile of shape ¢ x ¢ x n? during inference (Figure 1b).
To facilitate data access of the dot product module, we further
partition the tile of W into shape Ps x Ps x Ng sub-tiles.
Each sub-tile follows the input-channel-major and pixel-major
memory layout, so that the BRAMs of the kernel buffer supply
Ps x Ng distinct data per cycle to the systolic arrays.

Input / Output buffer: Consistent with the tiling on f)[:/, we
divide the ¢;, dimension of X and ¢y, dimension of Y into
size-c partitions. With batch size b and double buffering, both
the input and output buffers are of size 2-b-c-n? (Figure 1b).
Similar to the design of kernel buffer, we further partition
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the tile of X and }N’; into shape Ps x Ps x Ng sub-tiles?.
Each sub-tile of X (Y") follows input-channel-major (output-
channel-major) and pixel-major memory layout.

Streaming permutation network (SPN): SPNs [19] are in-
cluded for matrix transformation. SPNs in the 2D FFT module
enable streaming processing of the row and column FFTs. The
SPNs between 2D FFT and input buffer, and between 2D IFFT
and output buffer are essential due to different data layout of
these modules. Resource consumption of SPNs is negligible.

C. Design Space Exploration

We use the parameters defined in Section III-A to derive the
performance model. Design space exploration is performed to
identify mapping parameters’: Ny, Ps, Ns, Ps, b and c.
Batching constraint: Batch processing is necessary for our
dot product based spectral CNN design. Large batch size
results in higher BRAM consumption in input and output
buffers. Small batch size may cause under-utilization of the
systolic arrays. Ideally, batch size should satisfy constraint Cy:

(C()I bIPs (3)

DSP constraint: Due to the technique in Figure 3, when
the quantization bit width @, and Gy is low, FPGA
can perform more than I%PP number of multiplication
per cycle. We define /\Nfggj, as the effective number
of complex multipliers on chip, given the quantization
scheme. Further, define ¢ = max {2qact + Gk Gact + 2k }»
q’ max {4Gact + 5Gkm, 5Gact + 4Gum }. So the _effective
amount of DSP resources is given by*: NI =
max { (%Ng&) (to<ar 'M?s'}) ; (2 <o 'NDQSPPB }
We thus derive the constraint C; due to limited DSPs:

(Cll Ns-PS

A /dot

PSS DSP

“)

BRAM constraint: Due to data quantization, one row of a
BRAM block may store multiple data points of the spectral
tensors. Define the effective number of BRAM blocks for the

input and output buffers: Vi§ = % % Néé)/\M; and effec-

tive BRAMs for the kernel buffer: Ak, = 1 {@J N

2 | dkm
Also J\féfl{)AM + NéﬁLM = N]%AM. Below, C,, C3 capture
the constraints due to limited BRAMs on-chip. C4 should
be satisfied so that the data parallelism provided by the data
buffers are sufficient to keep the systolic arrays busy.

Cy: 2-(2-b-c- n2) <Dgram ~./\7§‘1’{AM (52)

(C3 : cC-C- n2 SDBRAM . K/];({QHAM (Sb)
. 1 -, A rkrn

Cy: Ns - Ps < mln{z : é‘fztAMaNllakaM} (5¢)

2We always choose the batch size b = Ps. See Section III-C.

3We assume the spectral kernels as the tool’s input are quantized based
on some given n, so n is not a design parameter. The design space exploration
below can be trivially extended to incorporate n as an additional parameter.

4First term: 3 built-in multipliers perform 1 complex multiplication [21];
Second term: 1 built-in multiplier performs 1 complex multiplication (Figure
3); Third term: 1 built-in multiplier performs 2 complex multiplications
(generalization of Figure 3, applied to extremely low quantization bit width).



Define one round as the processing of all data in the input
buffer. Total number of clocks (¢;,q) to finish one round is:

; e 2-b-c-n? b-c-n? (c-c-b)-n?
= max
" L% [Ny BNl Ns BB
2 | qaa DRAM
(6)
Total cycles to finish one layer (averaged over batch b) is>:
2
Cin Cout hact tind
o[22 ] g o
byr c c n— hm + 1 2b 7

The design space exploration thus solves the below opti-
mization problem, to identify the optimal mapping parameters
(Ng, Pg,Ng, PE,b*, c*). We constrain all parameters to be
power of two. As a reasonable assumption, each of the optimal
parameters falls between 20 to 29, so the total number of
design points to be evaluated is less than 10%. Equation 8
can be solved within one second on a laptop (Intel Core i5).

subject to Cg,Cq1,Cs,C3,Cy

; ()
[
Z tlyr )
=1
(3)

Note that the design space exploration algorithm identifies
a single design point (N7, P, N§, P¢,b*,c¢*) for all the
convolutional layers of the input CNN. Therefore, no runtime
reconfiguration is needed during inference.

minimize
Ng, Pr,Ns, Ps,b,c

IV. EXPERIMENTS
A. Experimental Setup

We evaluate our tool® on two target FPGAs (Intel Stratix-
V GXA7 and Stratix-10 GX2800), using two state-of-the-
art CNNs (AlexNet [1] and VGG16 [2]). We implement
quantization schemes ranging from 2-bit to 16-bit quantization.
The Stratix-10 GX2800 FPGA is suitable for data center
workloads. It has 229 Mb BRAM, 5760 DSPs and 3,732,480
ALM:s. Each DSP supports either one 27-bit or two 18-bit fixed
point multiplications. Stratix-V GXA7 has 50 Mb BRAM, 256
DSPs and 234,720 ALMs. We use Quartus Prime Pro 18.1 for
synthesis. The results are post place-and-route results.

Our metric is inference throughput, measured by images-
per-second. We adopt a CPU-FPGA co-processing model.
The spectral convolution layers are executed on FPGA, and
all other layers (e.g., ReLU, pooling, fully-connected) are
executed by CPU. Also, for both AlexNet and VGG16, since
the first convolutional layer has only three input channels
(R.G.B. color channels), the channel tiling mechanism may
not achieve high efficiency on FPGAs. Thus, we execute the
first convolutional layer of the two CNNs on CPU. Under such
a schedule, for AlexNet and VGG16, CPU is responsible for
less than 15% and 2% of the total computation respectively.
While our tool supports spectral CNNs with any FFT size n,
in all the experiments below, we keep n to be the optimal
value (i.e., 16) from the design space exploration in [3].

SThe factor 2 in denominator is due to the technique in [3] to feed both
real and imaginary channels at FFT input with spatial activations.
6Open sourced at: https:/github.com/ZimpleX/FPGA-Spec-CNN-FPL19
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B. Flexibility w.r.t. Quantization Scheme

Since the DSPs of the Stratix family only supports 18-bit
or 27-bit fixed-point multiplication, the arithmetic unit design
proposed in Section III-B can efficiently improve throughput
when the CNN is quantized to low bit-width data. Figure
4 shows the number of complex multiplications supported
by DSPs of Stratix-10 GX2800 under various bit widths’.
Reduced quantization bit width leads to increased number of
multiplications, and thus higher throughput on a given device.

x104
5 \
A
> 2f |
Nal
8
=
= 0L I I I 1 0 0 1
S 7 2 4 6 8§ 10 12 14 16
Bit width

Fig. 4: Number of complex multiplications vs. bit width

C. Flexibility w.r.t. CNN Models

CNN parameters h, him, Cin and coy vary significantly
for convolutional layers within and across CNN models.
Accelerators generated by our tool can sustain high throughput
under most of the model parameter settings. Specifically, the
variation in the activation size h, is handled by the Overlap-
Add technique in software [3], [4]. The variation in the
spatial kernel size hyy, is inherently resolved by the spectral
convolution algorithm (since the spectral kernel size is n,
regardless of hy,). The variation in the number of channels is
handled by the tiling technique described in Section III-B.

Figure 5 shows the performance breakdown for each con-
volutional layer. The measured throughput of each layer is
normalized by the theoretical peak throughput (the ideal
throughput when all DSPs on the chip are 100% utilized).
The generated accelerators achieve close to peak throughput
for most convolutional layers. Throughput of layer 2 (AlexNet)
and layers 2,3 (VGG16) are relatively low on Stratix-10. The
accelerators implemented on FPGAs with massive DSP and
BRAM resources often require larger data tiles, which may not
be fully filled by initial layers with small number of channels.

- AlexNet VGG16
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ANNFTNO~0ND — AN
— e —

Fig. 5: Performance breakdown by convolutional layers

For presentation conciseness, we assume act = Gact = Gkrn-



TABLE I: Comparison with state-of-the-art AlexNet and VGG16 implementations

AlexNet VGG16
[3] [9] [9] Proposed Proposed [3] [9] [9] Proposed Proposed
FPGA Stratix-10 UltraScale UltraScale Stratix-10 Stratix-10 Stratix-10 UltraScale UltraScale Stratix-10 Stratix-10
GX2800 KUI115 KUI15 GX2800 GX2800 GX2800 KUI15 KUI115 GX2800 GX2800
Frequency (MHz) 120 220 220 200 200 120 235 235 200 200
Quantization 16-bit 16-bit 8-bit 16-bit 8-bit 16-bit 16-bit 8-bit 16-bit 8-bit
DSP Usage 3264 (56%) 4854 (88%) 4854 (88%) 3264 (56%) 4480 (78%) 3264 (56%) 4318 (78%) 4318 (78%) 3264 (56%) 4480 (78%)
Logic Usage 413K (45%) 262K (40%) 262K (40%) 140K (15%) 150K (16%) 419K (47%) 258K (39%) 258K (39%) 140K (15%) 150K (16%)
BRAM blocks 6129 (52%) 986 (46%) 986 (46%) 2616 (22%) 5232 (45%) 6133 (52%) 1578 (81%) 1578 (81%) 2616 (22%) 5232 (45%)
Throughput (img/sec) 1704 1126 2252 2841 9114 77 65 130 129 308

D. Flexibility w.rt. FPGA Architecture

To show flexibility of the tool we did design space ex-
ploration by placing constraints on the amount of DSPs and
BRAMs that can be used by the accelerator. In Figure 6,

- AlexNet VGG16

= 1 =
%: Stratix-10 | -

8 0.8 - —— Stratix-V s - —
5}::, 0.6 - - - - Peak |
3 04| - ]
= | L N
é 0.2 -

) 0 z | | | | z | | | |

z 02 04 06 038 1 02 04 06 038 1

Fraction of DSPs available
Fig. 6: Throughput vs. limited DSP resources

we allow the tool to use all BRAM resources and only
restrict the amount of DSPs available. Again, we normalize
the throughput by the theoretical peak throughput when 100%
of DSPs are available. Ideally, the peak throughput should be
proportional to the amount of DSPs available (dashed line).
On Stratix-V, the measured throughput matches well with
the peak throughput. On Stratix-10 with VGG16, measured
throughput is over 50% of the ideal throughput when 80%
to 100% of the total DSPs are available. In such cases, the
external DRAM does not have high enough bandwidth to
match the computation speed of DSPs. In Figure 7, we allow
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the tool to use all DSPs, but limit the number of M20K BRAM
blocks. Due to data tiling and our BRAM efficient architecture
based on streaming systolic array, the overall throughput is
not sensitive to the amount of available BRAMs. Throughput
degradation is only observed when the amount of allowed
BRAMs is restricted to less than 50% of the required BRAMs.
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E. Comparison with State-of-the-Art

Table I summarizes the comparison with other design
automation tools. [3] is the state-of-the-art tool for spectral
CNNs, and [9] is the state-of-the-art tool for spatial CNNs.
Both UltraScale KU115 and Stratix-10 GX2800 are high-end
devices with about the same amount of resources. Comparing
with [9], we achieve 2.5x (16-bit) and 4.0x (8-bit) higher
throughput on AlexNet, and 2.0x (16-bit) and 2.4x (8-bit)
higher throughput on VGG16. The throughput improvement is
due to the low complexity of spectral convolution algorithm,
as well as the highly optimized systolic array-based design.
Note that the designs generated by our tool consume 1) small
amount of logic resources due to the resource efficient systolic
array pipeline, and 2) not much BRAM resources, which is
consistent with the evaluation in Section IV-D. Also note that
[9] can generate designs with low latency. However, latency
optimization is not the focus of this paper. As for [3], since
only results on Stratix-V devices are available in the original
paper, we re-implement its design on Stratix-10 for a fair
comparison with our design. Clearly, [3] requires much more
routing resources for BRAM connection to support the DSP
computation. Thus, its parallelization strategy results in severe
clock rate degradation (120 MHz) on Stratix-10. On the other
hand, our designs can maintain high clock rate (200 MHz),
because the streaming nature of systolic arrays significantly
reduces the required number of BRAM reads/writes per cycle.

Note that the DSP consumption in our design is dominated
by the dot product module and not by the FFT / IFFT modules.
For the 16-bit design, 3072 (94%) DSPs are used to perform
dot product, and 192 (6%) are used to perform FFT / IFFT.
For the 8-bit design, 4096 (91%) DSPs are used to perform
dot product, and 384 (9%) are used to perform FFT / IFFT.

V. CONCLUSION

We presented a flexible design automation tool to generate
high throughput inference accelerators for quantized, spectral
CNNs. We demonstrated the flexibility of the tool in terms of
CNN models, FPGA architectures and quantization schemes.

In the future we plan to extend the tool to support hybrid
processing of spatial and spectral convolutional layers, under
a unified systolic array-based architecture. As spectral convo-
lution may not be beneficial on 1 x 1 kernels in CNNs such
as [22]-[25], it is justifiable to compute the layers requiring
1 x 1 kernels by the native spatial convolution. We will
also develop spectral quantization algorithms to incorporate
accuracy evaluation into the tool.
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