
978-1-7281-1968-7/18/$31.00 c©2018 IEEE

Throughput-Optimized Frequency Domain CNN
with Fixed-Point Quantization on FPGA

Weiyi Sun
Department of Microelectronics and Nanoelectronics

Tsinghua University
swy15@mails.tsinghua.edu.cn

Hanqing Zeng
Ming Hsieh Departmnet of Electrical Engineering

University of Southern California
zengh@usc.edu

Yi-hua Edward Yang
Machine Intelligence Technology

Alibaba Group
edward.yang@alibaba-inc.com

Viktor Prasanna
Ming Hsieh Department of Electrical Engineering

University of Southern California
prasanna@usc.edu

Abstract—State-of-the-art hardware accelerators for large
scale CNNs face two challenges: high computation complex-
ity of convolution, and high on-chip memory consumption by
weight kernels. Two techniques have been proposed in the
literature to address these challenges: frequency domain con-
volution and space domain fixed-point quantization. In this
paper, we propose frequency domain quantization schemes to
achieve high throughput CNN inference on FPGAs. We first
analyze the impact of quantization bit width on the accu-
racy of a frequency domain CNN, via the metric of Signal-
to-Quantization-Noise-Ratio (SQNR). Taking advantage of the
reconfigurability of FPGAs, we design a statically-reconfigurable
and a dynamically-reconfigurable architecture for the quantized
convolutional layers. Then, based on the SQNR analysis, we
propose quantization schemes for both types of architectures,
achieving optimal tradeoff between throughput and accuracy.
The proposed quantizer allocates the number of bits for each
convolutional layer under various design constraints, including
overall SQNR, available DSP resources, on-chip memory and off-
chip bandwidth. Experiments on AlexNet show that our designs
improve the CNN inference throughput by 1.45× to 8.44×, with
negligible (< 0.5%) loss in accuracy.

Index Terms—Convolutional Neural Networks; FPGA; Fixed-
Point Quantization; Frequency Domain Convolution;

I. INTRODUCTION

Convolutional deep neural networks (CNNs) have shown
outstanding performance in non-trivial machine learning prob-
lems such as image classification and object detection. How-
ever, the improved performance of state-of-the-art CNNs
comes at the cost of higher computation complexity and
hardware resource consumption. These expenses hinder the ap-
plication of CNNs in real-time embedded systems, where both
computation time and memory size are strictly constrained.

Two approaches have been developed to lower the barrier of
deploying CNNs on embedded hardware: (1) reduce the com-
putation complexity of a CNN through the use of frequency-
domain convolution [1]; and (2) reduce both computation

This work was supported by the US NSF under grants CNS-1643351 and
ACI-1339756. Equipment grant from Intel Hardware Accelerator Research
Program is gratefully acknowledged.

complexity and memory size of a CNN with fixed-point
quantization [2]. While individually each approach has been
shown to improve the computation and memory efficiency of
CNNs, few efforts have been made to combine the strengths
of both in a single framework. On the other hand, we observe
that both approaches are not mutually exclusive. In fact, the
increased memory usage of a frequency-domain CNN (by the
FFT and IFFT matrices) makes the optimization of its fixed-
point quantization an even more critical issue.

Motivated by the observations above, we adapt the fixed-
point quantization method proposed in [2] and utilize it to
enhance the convolution throughput of the frequency-domain
CNN architecture in [1]. We analyze the effect of quantization
on the frequency domain CNNs in terms of both increased
Signal-to-Quantization-Nose-Ratio (SQNR) and reduced re-
source utilization. The analysis allows us to represent both
the quantization error and the inference throughput as func-
tions of quantization bitwidths across all convolutional layers.
We then solve for the maximum throughput of the CNN,
given constraints on SQNR and available resource, and derive
optimal bitwidth allocations and design parameters for the
fixed-point quantized CNN architecture in [1]. Finally, we
verify the predicted accuracy-throughput improvements with
experimental results from actual CNN designs.

The main contributions of this work are:
• We propose a fixed-point quantization scheme for fre-

quency domain CNNs on FPGAs. The scheme allocates
bit widths optimally to various convolutional layers, to
optimize throughput under the constraints on SQNR loss,
available hardware resources, and dynamic reconfigura-
bility.

• We quantitatively analyze the noise introduced by the
hardware Fast Fourier Transform (FFT) module, and
propose a design that uses minimal additional hardware
resources to achieve little SQNR loss when performing
FFT.

• We tailor the accelerator in [1] design for the proposed
data quantization scheme. The accelerator includes high

TABLE I
MODEL PARAMETERS FOR THE 5 CONVOLUTIONAL LAYERS OF ALEXNET

Layer
i

Image size
l
(i)
img

Kernel size
l
(i)
kern

Input channels
f
(i)
in

Output channels
f
(i)
out

1 227 11 3 96
2 28 5 96 256
3 13 3 256 384
4 13 3 384 384
5 13 3 384 128

precision FFT and flexible Hadamard product modules
that work for various bit widths.

• We implement the proposed accelerator on Intel Stratix-
V. For AlexNet, our design achieves throughputs 1.45x to
8.44x of state-of-the-art designs, with negligible increase
in classification error (< 0.5%).

II. BACKGROUND

A. Convolutional Neural Networks

In general, a CNN consists of multiple convolutional layers,
each optionally followed by a pooling layer and an activation
layer of simple non-linear functions. The outputs of the
convolutional layers are then fed into subsequent fully con-
nected layers to complete the classification procedure. Among
the various operations performed by a CNN, convolution
dominantly contributes to most of the computation workload.
Therefore, in this work, we focus on accelerator optimization
for convolutional layers by applying fixed-point quantization.

We select AlexNet [3] as a representative of the various
state-of-the-art large-scale CNNs [4], [3], [5]. Table I sum-
marizes the model parameters for the 5 convolutional layers
of AlexNet. Convolutional layer i is defined by 4 parameters:
image size l(i)img, kernel size l(i)kern, number of input channels f (i)in ,
and number of output channels f (i)out (where f

(i)
out = f

(i+1)
in).

During inference, layer i takes as input an image with f
(i)
in

channels. Each channel contains a matrix of width and height
l
(i)
img. The input image is convolved with f

(i)
in × f

(i)
out number

of kernel filters. Each filter is of width and height l(i)kern. The
output of layer i is the filtered image with f (i)out channels, where
each channel consists of a l(i)img × l

(i)
img matrix. A convolutional

layer has two optional parameters for kernel striding and image
padding. These two parameters are not involved in this paper.

B. Frequency Domain CNN Accelerator

The biggest challenge in accelerating CNN inference lies
in the high computation complexity of spatial convolution. It
is known that performing convolution in frequency domain
largely reduces the number of operations of a CNN [6].
Recently, authors in [1] propose a high throughput accelerator
optimized for frequency domain CNNs, which, for AlexNet
and VGG16, achieves about 5× higher throughput compared
with other state-of-the-art designs using spatial convolution.
The design and analysis in [1] form the basis of our work.

The innovations of [1] lie in various data tiling and parti-
tioning techniques that greatly improve hardware efficiency.

! "#
=
2

!&'(= 4

*+,-#

*+,-#

.

.

! = 2

!
=
2

①

! "#
=
2

*"01

*"0
1

… ②

Pre-processing on CPU

Images
streaming in

FPG
A

 A
ccelerator

…

Partitioning & tiling on CPU

!
=
2

③

.

.

Fig. 1. Illustration of the design in [1]

The design involves collaboration between a CPU and an
FPGA, which is illustrated in Figure 1. Suppose we would
like to compute convolutional layer i using N (i)-point FFT in
hardware. First, the CPU performs pre-processing and light-
weight data layout rearrangements to prepare data blocks for
the FPGA. As shown by Step 1 in Figure 1, CPU computes
N (i)-point 2D FFT on all of the f

(i)
in × f

(i)
out kernel filters,

and then performs tiling along the f (i)in , f (i)out dimensions. The
f
(i)
in × f

(i)
out × l

(i)
kern × l

(i)
kern kernel data then becomes tiles of

f (i)× f (i)×N (i)×N (i) data blocks, ready to be loaded onto
FPGA. Note that although the Fourier transform on kernels
is computationally intensive, this is only a pre-processing
step due to the immutability of kernels during inference.
Afterwards, to process images of shape f (i)in × l

(i)
img × l

(i)
img that

are pipelined into the system, the CPU performs partitioning
and tiling of the images (Step 2). The partitioning step uses the
Overlap-and-Add (OaA) technique [7], [8], and the tiling on
images is along the f (i)in dimension. Step 2 outputs image data
blocks of shape f (i) × N (i) × N (i), which are continuously
loaded onto FPGA via double buffering. Steps 1 and 2
transform kernels and images of various f (i)in , f (i)out , l(i)img, l(i)kern
parameters into data blocks whose shape exploits most of the
FPGA processing efficiency. Therefore, the FPGA computes
frequency domain convolution with high throughput (Step 3).

The illustration above involves two design parameters: the
layer i FFT size N (i) and the tiling factor f (i). It is shown
in [1] that, a throughput-optimal design should exhaust all
types of available resources on board (external bandwidth B,
logic/DSP resources L and on-chip memory M). Therefore,
on a target device with constant amount of resources B, L, M ,
given a choice of N (i), the value of f (i) is correspondingly
selected. Thus, N (i) is the only independent design parameter
to be tuned based on the target FPGA device and CNN model.

Throughput of the system depends on f
(i)
in , f (i)out , l(i)img and

l
(i)
kern of the CNN, B, L and M of the target FPGA, and the

design parameter N (i). Specifically, the system throughput
of layer i is bottlenecked by either the computation bound
T

(i)
comp or the communication bound T

(i)
comm, such that T (i)

sys =

min{T
(i)
comp,T

(i)
comm},where1:

T(i)
comp=

1

K
(i)
CNN

·L·
N(i)−l

(i)
kern+1

N(i)

2

(1)

T(i)
comm=

1

K
(i)
CNN

·
B

√
M

2N(i)
·

N(i)−l
(i)
kern+1

N(i)

2

(2)

andK
(i)
CNN isaCNNmodelconstantdefinedas:

K
(i)
CNN=f

(i)
in ·f

(i)
out·l

(i)
img+l

(i)
kern−1

2

(3)

C.Fixed-PointQuantizationonCNNs

Mostofthestate-of-the-artCNNmodelscontaintensofmil-
lionsofparametersthatcannotfiton-chip.Thus,itisnecessary
tocompressthe modelparameterstoboosttheperformance
ofFPGAdevices. Quantizationofkernelfiltersandinput
imagesisanefficientwaytoachievesignificantcompression.
Theworkin[2]proposesatheoreticalframeworktoanalyze
theoverallSignal-to-Quantization-Noise-Ratio(SQNR)ofthe
quantized CNNs. Theyalsodiscussastrategytoallocate
bit widthaccordingtothenumberof modelparametersof
eachconvolutionallayer.Theirbit widthallocationscheme
achievesoptimalmodelcompressionrateunderagivenbudget
ofSQNR. The workin[9]proposesanotherquantization
algorithmthatappliestobothconvolutionallayersandfully
connectedlayers.Theirtargetplatform,however,isgeneral
purposeprocessorsratherthanapplicationspecificaccelera-
tors.Therefore,theirquantizationschemeissub-optimalif
applieddirectlytoFPGAs.The workin[10]proposesan
FPGA-acceleratordesignedforquantized CNNs. Although
theiracceleratorisoptimizedforcomputingquantizedCNN,
theirquantizationschemeisempiricaland maynotapplyto
avarietyofCNNmodels.

Itisworthnoticingthattheabove3projectsallfocuson
quantizinglayersusingspatialconvolution.Tothebestofour
knowledge,ourworkisthefirstintheliteraturetostudythe
effectofquantizationonfrequencydomainconvolution.

III.PROBLEMDEFINITION

Givena multi-layerCNNandatargetFPGAdevicewith
fixedamountofresources,findabitwidthallocationscheme
foreachconvolutionallayer(infrequencydomain)sothat:

1) TheSignal-to-Quantization-Noise-Ratioofthequantized
CNNdoesnotexceedagivenbudget;and

2)InferencethroughputofthewholeCNNismaximized.

Thereareafewpointsworthnoticing.Firstofall,Signal-to-
Quantization-Noise-Ratio(SQNR)isanimportantmetriceval-
uatingthequalityofadataquantizationscheme.Ingeneral,
thehighertheSQNR,thelesseradditionalwrongclassification
willbeoutputbythequantizedCNN[2].Secondly,tradeoff

1Theexpressionof T
(i)
comm isslightlydifferentfromthatin[1]. The

differenceisduetoanextraapproximationN lkern+1
N

≈ 1proposedin
[1]. Weneglectthisapproximationforconvenienceofanalysis.

existstoallocatedifferentnumberofbitstodifferentcon-
volutionallayers.Intuitively,fromthehardwareperformance
perspective, we wouldliketouselessnumberofbitsto
quantizelayerswithmoreamountofmodelparameters,since
itwillyieldhighercompressionrate. WewillshowinSection
VIhowtoverifythisintuitionina mathematicallyrigorous
manner.Thirdly,forthetargetFPGA,westudytwohardware
models:theDynamically-ReconfigurableModelandStatically-
ReconfigurableModel.TheStatically-ReconfigurableModelis
morerestrictivetoourbitwidthallocationschemethanthe
Dynamically-Reconfigurable Model. Wediscussbothindetail
inSection VI,andpresentthecorrespondingexperimental
evaluationinSectionVII.

IV.SQNRANALYSISONFREQUENCY-DOMAINCNNS

A.Preliminary

Quantizer: Weconsidersymmetricuniformquantizer,
which meansthatthe mid-levelstandsforvalue0andeach
quantizationlevelcoversthesameamountofvaluerange.A
dataquantizationschemeisdeterminedby:bitwidth,stepsize
anddynamicrange,whereRange=Stepsize·2Bidwidth.

SQNRγ:Supposeasetofvaluesxiisquantizedtovalue

xi.SQNRγ:=
E[x2

i]
E[(xi−xi)2],whereEgivestheexpectation.

OptimalQuantizerforGaussianData: Supposethatthe
originaldatafollowsazero-meanGaussiandistribution.For
thesymmetricuniformquantizer,empiricaloptimalstepsize
foragivenabitwidthβisshowin[2].Approximately,SQNR
γdB (intheunitofDecibel)islinearwiththebitwidth:

γdB≈κ·β (4)

whereγdB=10log10(γ)andκ≈3dB/bit.
Forspatialconvolution,itisshownthattheinputimagesand

kernelweightsofeachconvolutionallayerfollowsazero-mean
Gaussiandistribution[2]. WeshowinSectionIV-Bthatthis
conclusionholdsforfrequencydomainconvolutionaswell.

SQNRofaLinearSystem:LetusstartfromtheSQNR
analysisformultiplication.Giventwovariablesa,bandtheir
SQNRγa,γb,thenSQNRγc oftheproductc= a·bis
1
γc

= 1
γa

+ 1
γb

[2].ForaLinearTime-Invariant(LTI)system
y=h(x,w)=Σxi·wi,itfollowsdirectlythat:

1

γy
=

1

γx
+

1

γw
(5)

NowwecomposetwoLTIsystems:y=h2 h1(x,w1),w2 .
NotethatthecomposedsystemisstillLTI. Wehave:

1

γy
=

1

γx
+

1

γw1

+
1

γw2

=
1

γx
+

1

γLTI
(6)

whereγLTIistheSQNRintrinsictothecomposedLTIsystem.
Wemakethefollowingobservations:

1) AconvolutionallayerisanLTIsystem,andaCNNis
approximatelycompositionof multipleLTIsystems(if
weignoretheactivationlayers,asassumedin[2]).

2) SQNRγLTI dependsonthedistributionofweightswi,
andisindependentofthenumberofweightparameters.

Fig. 2. Kernel value distribution of the 5 convolutional layers of AlexNet.
The left 5 sub-plots show the PDF function of kernel values in space domain.
The right 5 sub-plots are for the kernel values in frequency domain (real and
imaginary parts of the complex numbers are plotted correspondingly).

Observation 1 forms the basis of Section IV-D. Regarding
Observation 2, as an example, consider a convolutional layer
1 with 1M kernel weight parameters and a convolutional layer
2 with only 1K kernel weight parameters. If we use β bits to
quantize weights for both layers, and these weights follow the
same Gaussian distribution, then the resulting SQNRs of the
two layers are identical. This observation directly motivates
our optimization in Section VI: the amount of weight param-
eters of a layer affects hardware performance, not SQNR.

SQNR After Re-Quantization: Suppose high-bit-width
data x with SQNR γ1 is processed by a β2-bit quantizer with
SQNR γ2 (calculated by Equation 4). By [2], SQNR after the
two quantization is:

1

γoverall
=

1

γ1
+

1

γ2
(7)

B. Value Distribution of Kernel Weights and Input Images
As discussed above in section IV.A, the accuracy of our

SQNR analysis depends on the fact that the data (weights,
inputs and outputs) are zero mean Gaussian distributed.

Lemma 1. Let X1, . . . , Xn be n jointly multivariate Gaussian
distributed random variables with zero mean. Let Y1, . . . , Yn
be outputs of an n-dimensional linear transformation on
X1, . . . , Xn. Then, Y1, . . . , Yn are also jointly multivariate
Gaussian and have zero mean. Specifically, if X1, . . . , Xn are
independent and have identical variance, and if the transfor-
mation is orthogonal, then Y1, . . . , Yn are also independent
and have identical variance.

Lemma 1 directly follows from Equation 7.3 in [11].
Therefore, both the space domain images and weights [2],

and their frequency domain counterparts are approximately
multivariate, zero-mean, Gaussian random variables.

Figure 2 shows the empirical distributions of the kernel
weights in space domain as well as in frequency domain for
the 5 convolutional layers of AlexNet. The distribution plots
for images are omitted here due to space constraints.

Therefore, we use the optimal quantizer for Guassian data
(Section IV-A) for quantization on frequency domain CNNs.

C. SQNR of a Convolutional Layer

According to Figure 1, the procedure to compute a convo-
lutional layer in frequency domain is summarized as:

Ioutput = F−1
(
F(I input) ◦K freq

)
(8)

where K freq is the pre-processed kernel data in frequency
domain, I input is the image data in space domain. F and F−1
stands for Fourier transform and its inverse. Symbol ◦ stands
for Hadamard product (element-wise matrix multiplication).

One convolutional layer is the composition of three LTI sub-
systems, responsible for FFT, Hadamard product and IFFT re-
spectively. Note that there can be various data re-quantization
steps among the three sub-systems as well (Section V-A). By
Equations 6 and 7, SQNR of the layer output is:

1

γlayer
=

1

γinput
+

(
1

γFFT
+

1

γHadamard
+

1

γIFFT

)
+

1

γre-quan
(9)

Next, we derive the expressions for γFFT, γHadamard and γIFFT
respectively. We derive the expression of γre-quan in Section V.

SQNR Analysis on 2D FFT: A N -point FFT can be
decomposed into two N

2 -point FFTs. Applying this idea recur-
sively, an efficient hardware implementation of FFT involves
logN computation stages [12], [13]. Each stage of the FFT
computation applies constant weights called “twiddle factors”.
Taking into account the data re-quantization between adjacent
stages, SQNR intrinsic to the FFT module is:

1

γFFT
=

logN−1∑ 1

γre-quan
+

logN∑ 1

γtwiddle
(10)

SQNR γFFT decreases as N grows. This restricts the choices
of the design parameter N . To overcome this limitation, we
adopt a high-precision FFT module in our design (Section V).

Also notice that Equation 10 applies to 2D FFT as well,
since 2D FFT is the concatenation of a N -point 1D FFT for
rows and a N -point 1D FFT for columns [1].

SQNR Analysis on Hadamard Product: Different from
2D FFT, the Hadamard product operation involves only one
stage of multiplication. Thus, the SQNR of the sub-system is:

γHadamard = γKfreq (11)

where γKfreq is the SQNR for quantizing kernel filters K freq.

D. SQNR of a CNN

Using the same assumption as [2] to ignore the activation
and pooling layers, a CNN is the composition of multiple
convolutional layers. SQNR of a l-layer CNN follows directly:

1

γCNN
=
(1

γinput

)(1)
+

l∑
i=1

(1

γFFT
+

1

γHadamard
+

1

γIFFT
+

1

γre-quan

)(i)
(12)

There are differences between SQNRs of spatial and fre-
quency domain CNNs. The middle term of Equation 12
captures the SQNR intrinsic to the system (target CNN).
For spatial CNNs, the intrinsic SQNR is only contributed by
the kernel quantization [2]. However, for frequency domain

Pipeline on FPGA

Q
uantizer1

Q
uantizer2

Q
uantizer3

Im
age B

uffer

Twiddle

FFT

Twiddle

IFFT

Kernel

Hadamard2"# "$"#"#′ "&
= "$ + ")

2"& "*

2"&")2"#

Fig. 3. Overall FPGA Architecture

CNNs, the intrinsic SQNR is due to both kernel quantization
(γHadamard = γKfreq) and the FFT process. In other words,
given the same quantization bit width, frequency domain
CNNs likely suffer higher quantization noise. We address this
problem by an architecture carefully designed with the tradeoff
of SQNR and throughput in mind (Section V-A).

V. ACCELERATOR DESIGN AND PERFORMANCE MODEL

A. Overall System Architecture

Figure 3 shows the overall architecture design on FPGA,
which largely follows the design in [1]. The processing
pipeline on FPGA performs the computation specified by
Equation 8. Input image data is pre-processed by CPU as
specified by Figure 1. Using the same notations as defined
in Section II-B, below is a concise description of the com-
putation procedure on FPGA, while a detailed description
is presented in [1]. Assume tiling factor f (i) and FFT size
N (i) for layer i. Before FPGA starts processing, a tile of
f (i) × f (i) ×N (i) ×N (i) of kernel is pre-loaded into on-chip
buffer of FPGA. Image tiles of shape f (i) × N (i) × N (i) is
then sequentially fed into the FFT module, one tile at a time.
The image tile on-chip is buffered so that it can be reused
when the Hadamard module computes using kernel tiles and
image tiles. The results of Hadamard product are processed by
the IFFT module, whose outputs flow directly back to external
memory. Note that to consume an image tile of f (i) channels,
the Hadamard module needs to iterate over f (i)×f (i) channels
of kernel data. This indicates that the workload performed by
Hadamard module is much larger than that by the FFT or
IFFT module. To match the throughput of the three modules
on the pipeline, it is necessary to allocate much more hardware
resources to the Hadamard module than to the FFT and IFFT
modules. This observation is consistent with the analysis in
[1]. We will compare the actual resource consumption of the
three modules in our implementation in Section VII-C.

Note that FFT and IFFT modules are not resource hungry,
and the bit widths of these two modules have a significant
impact on the overall SQNR (Equation 10). Therefore, we
use high-precision FFT/IFFT designs in our system. In other
words, if the input image tile to the FPGA is represented by
β-bit data, then all the internal logN stages of the FFT/IFFT
pipeline use 2β data for computation. The twiddle factors are
also quantized by 2β bits. Due to the large bit width within
the FFT/IFFT modules, the intrinsic SQNR γtwiddle and the
re-quantization SQNR γre-quan in Equation 10 are effectively
orders of magnitudes lower than the other SQNR terms of the
system. Therefore, as an approximation, 1

γFFT
= 1

γIFFT
≈ 0.

The Hadamard module performs most of the on-chip com-
putation. Thus, it is essential to make the hardware design
flexible enough to handle various bit widths efficiently. Since
there is no data dependency during the Hadamard product
operation, we simply design the Hadamard module as a length
h array of Multiply-ACcumulate (MAC) units. To achieve
higher throughput for lower bit widths, we increase the array
length h. For example, for our experimental platform, h = 128
for 16-bit quantization and h = 256 for 11-bit quantization.

There are three quantizers in Figure 3. Quantizer 1 is
inserted so that adjacent convolutional layers don’t necessarily
have the same bit width. The motivation for Quantizer 2 is that
Hadamard module consumes most of the logic/DSP resources
on chip. It is not resource efficient to directly compute mul-
tiplication on the 2β1 data output by FFT. Quantizer 3 helps
save the resource on external bandwidth, since the output of
Quantizer 3 is transferred directly to external memory. Notice
that there is no quantizer between the Hadamard and IFFT
modules, since the IFFT module can process 2β5-bit input
data without consuming much of the total on-chip resources.

B. Performance Model

This section derives the throughput performance model for
quantized frequency domain CNNs. Define β0 as the bit width
where we consider a CNN as un-quantized. For quantized bit
widths, use the same notations (β1, β2, β3 and β4) as defined
in Figure 3. Denote variables for layer i by superscript (i).

First, recall the performance model of the un-quantized fre-
quency domain CNNs defined by Equation 2. Optimal design
parameter N (i) should be chosen at the intersection point of
computation and communication bounds (T (i)

comp, T (i)
comm):

N
(i)
opt =

1

2
· B
√
M

L
(13)

To derive the performance model for quantized CNNs based
on Equation 2, we define the concept of effective resources.
Image a device 1 with resources B, L and M , executing the
quantized CNN, and a device 2 with resources Beff, Leff and
Meff, executing the un-quantized CNN. The effective resources
of B, L and M are said to be Beff, Leff and Meff, if throughput
of devices 1 equals that of device 2.

Effective resources are easily derived by noting that:
• Bandwidth and memory consumption of a data word is

proportional to the bit width of the data.
• Logic or DSP consumption is proportional to the bit

widths of the multiplicand and the multiplier (since mul-
tiplication consumes most of the logic/DSP resources).

• Most of the on-chip memory is used to store kernel tiles,
and most of the logic/DSP resources are used to calculate
Hadamard product (see Section V-A and [1] for details).

Therefore, the effective resources are:

B
(i)
eff = B · 2β0

β
(i)
1 + β

(i)
4

(14)

L
(i)
eff = L · β2

0

β
(i)
2 · β

(i)
3

(15)

M
(i)
eff = M · β0

β
(i)
3

(16)

Substituting B
(i)
eff , L(i)

eff and M
(i)
eff into Equation 13, we get

the optimal FFT size N (i) for quantized CNN:

N
(i)
opt =

1

2
· B
√
M

L
·

√
β
(i)
3

β0

2β
(i)
2

β
(i)
1 + β

(i)
4

(17)

The resulting throughput of the quantized CNN is thus:

T (i)
sys,quan = min{T (i)

comp,quan, T
(i)
comm,quan} (18)

where T (i)
comp,quan and T (i)

comm,quan is derived by directly plugging
in Equation 2 the updated B(i)

eff , L(i)
eff and M (i)

eff .
The optimal throughput takes place at N (i)

opt :

T
(i)
sys-opt,quan = T

(i)
comp-opt,quan(N

(i)
opt) = T

(i)
comm-opt,quan(N

(i)
opt) (19)

VI. THROUGHPUT-OPTIMIZED BIT WIDTH ALLOCATION
SCHEME

Based on the SQNR analysis and the performance model of
the quantized CNN, we can formulate an optimization problem
to allocate different bit widths to different convolutional layers.
Specifically, we identify the optimal β(i)

1 , β(i)
2 , β(i)

3 and β
(i)
4

to maximize Equation 18 under the constraint of Equation 12.

A. Simplification on the Bit Width Allocation Scheme

Notice that the current bit width allocation scheme involves
4 independent variables for each layer. By simplification and
approximation, we can reduce the number of independent
variables without sacrificing the quality of our design.

Consider the effect of quantization on the optimal FFT
size. In practice, hardware requires the FFT size to be power
of 2. Therefore, the quantizer has to change its bit width
significantly to round the optimal N value from the current
2c point to the adjacent 2c±1 point (where c is a positive
integer). In other words, quantization barely affects the value
of N (i)

opt under a reasonable quantizer. On the other hand, due to
the configurability of memory, logic and DSP blocks on chip,
quantization does greatly affect the B(i)

eff , L(i)
eff , M (i)

eff values.
Therefore, to analyze the effect of quantization on T (i)

comp,quan

and T
(i)
comm,quan, we approximately treat the common term

N
(i)
opt −l

(i)
kern+1

N
(i)
opt

as a constant under various bit widths. Addition-

ally, note that β(i)
2 and β(i)

3 play a symmetric role on L(i)
eff (and

thus T (i)
comp,quan); β(i)

1 and β
(i)
4 play a symmetric role on B

(i)
eff

(and thus T (i)
comm,quan). We reasonably conclude that:

β
(i)
1 = β

(i)
4 ; β

(i)
2 = β

(i)
3 (20)

B. Model of the Target Hardware

We consider two models of the target FPGA:
• Statically-Reconfigurable Model: The on-chip memory,

logic and DSP of the target FPGA cannot be reconfigured
across layers. Thus, β(i)

1 = β
(j)
1 and β(i)

2 = β
(j)
2 .

• Dynamically-Reconfigurable Model: The on-chip mem-
ory, logic and DSP are fully reconfigurable across layers.

β
(i)
1 and β(i)

2 are independent variables (no dependencies
between β(i)

1 , β(j)
1 and β(i)

2 , β(j)
2 , for i 6= j).

C. Bit Width Allocation for Statically-Reconfigurable Model

As stated in [1], FFT size N (i)
opt should be much larger than

l
(i)
kern−1 to make frequency domain convolution efficient. Thus,

x =
l
(i)
kern−1
Nopt

� 1, which validates the approximation:

(1 + x)n ≈ 1 + n · x; (1− x)n ≈ 1− n · x (21)

Applying Equation 21 and the simplifications in Section
VI-A to Equation 19, average time for layer i to compute an
input image can be calculated as:

t
(i)
opt = 1

T
(i)
sys-opt,quan

≈ K
(i)
CNN
L

((
β2

β0

)2
+

4(l
(i)
kern−1)

B·M1/2·L−1

√
β2

β0

β1

β0

)
(22)

We ignore superscript for β due to statically-reconfigurable
model.

Average time for a CNN to process an input image is:

topt-CNN =
l∑
i=1

t
(i)
opt (23)

which forms the objective of our optimization problem.
The constraint to the optimization problem is the overall

SQNR specified by Equation 12. Note that 1
γFFT

= 1
γIFFT

= 0
(Section V-A); γHadamard = γKfreq = γβ2 (Equation 11);

1
γre-quan

= 1
γβ1

+ 1
γβ2

+ 1
γβ4

= 2
γβ1

+ 1
γβ2

(Figure 3). Therefore:

1

γCNN
=
(1

γinput

)(1)
+

2l

γβ1

+
2l

γβ2

=
2l

γβ1

+
2l

γβ2

(24)

where
(

1
γinput

)(1)
= 0 since the original image is not quantized

before feeding into layer 1 of the CNN.
The optimization problem for the statically-reconfigurable

model is formulated as:

minimize
β1,β2

topt-CNN(β1, β2)

subject to
2l

γβ1

+
2l

γβ2

≤ 1

γ0
.

where γ0 is a given budget for SQNR.
To solve the optimization problem, we first need Equation

4 to relate bit width β with SQNR γ. By applying further first
order approximations on the objective function, we use the
Lagrange multiplier method to derive an analytical solution to
the optimization problem. We derive a simple and insightful
relation between β1 and β2:

β1 ≈
10 log10 η

κ
+ β2 (25)

where η = B
√
M
L ·

∑
K

(i)
CNN∑

K
(i)
CNN·2(l

(i)
kern−1)

; Equation 4 defines κ.
We conclude that the bit width for images should be

10 log10 η
κ higher than that for kernels. For example, when

η = 10 and κ = 3 dB/bit, β1 = β2 + 3.

D. Bit Width Allocation for Dynamically-Reconfigurable
Model

Assuming dynamically-reconfigurable model, it is not nec-
essary that β(i)

1 = β
(j)
1 and β(i)

2 = β
(j)
2 for i 6= j. This is the

only difference from the statically-reconfigurable scenario.
The optimization problem in this case can be easily derived:

minimize
β
(i)
1 ,β

(i)
2

topt-CNN(β
(i)
1 , β

(i)
2)

subject to
l∑
i=1

2

γ
(i)
β1

+
l∑
i=1

2

γ
(i)
β2

≤ 1

γ0
.

Using the same Lagrange multiplier technique, we derive
the relation between β(i)

1 and β(i)
2 (where C is a constant):

β
(i)
1 ≈

10 log10 η
(i)

κ
+ β

(i)
2

β
(i)
2 +

10 log10

(
β
(i)
2 K

(i)
CNN

)
κ

= C (26)

Base on Equation 26, we first observe that kernels and
images of the same layer should be quantized using different
number of bits. The difference in bit width is captured by
10 log10 η

(i)

κ , where η(i) = B
√
M
L · 1

2(l
(i)
kern−1)

. This result is
consistent with the analysis on the statically-reconfigurable
model. Secondly and more importantly, layers with larger
number of CNN model parameters (categorized by KCNN)
should be assigned with less number of bits. This conclusion
is consistent with the intuition in Sections III and IV-A.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We use Intel Stratix-V GXA7 device as our experimental
FPGA platform, which has 6 MB on-chip memory, 534720
ALMs and 256 DSPs. We use the Quartus 18.0 tool for
synthesis. We choose AlexNet as the CNN model under
evaluation. Table I shows the specifications. As a reference,
the floating point Top 5 accuracy of AlexNet is 78.2%.

Same as [1], we assume an FPGA-CPU heterogeneous
execution model, where FPGA computes the convolutional
layers and CPU computes the other layers. When measuring
throughput, we only consider the FPGA execution. Thus, we
use “throughput” to refer to throughput of convolutional layers.
In addition, we calculate throughput as the total number of
operations for spatial convolution, divided by the average
execution time per image for our frequency domain design.
Such definition of throughput is proposed by [1], and enables
fair comparison with other designs using spatial convolution.

Apart from throughput, classification accuracy is another
important metric. We have developed a software tool in
Python3 , which precisely simulates the execution of our
accelerator and the corresponding hardware quantizers. The
accuracy results below are obtained from our tool.

(a) Error rate and throughput under
various bit-widths

(b) Comparison of various quantiza-
tion schemes

Fig. 4. Statically-reconfigurable architecture

B. Optimization for Statically-Reconfigurable Architecture

In this section, we evaluate the proposed quantization
scheme for statically-reconfigurable architecture. We set κ as
3 dB/bit (Equation 4). Thus, β1 = β2 + 2.

Figure 4(a) shows the throughput and accuracy under var-
ious bit widths using our optimized quantization scheme.
The left y-axis shows the overall classification error rates
of AlexNet, which are obtained from our software simulator.
The right y-axis shows the throughput of FPGA, which are
obtained from performance modeling of the hardware. The
dashed line shows the theoretical throughput based on the
performance model in Section V-B. The solid blue line shows
the evaluated throughput based on a much more precise per-
formance model with additional hardware constraints (such as
power of two FFT sizes, integer Hadamard array length, etc.)
in mind. Note that throughput in this plot is normalized by the
throughput of the 16-bit design. Figure 4(a) shows the tradeoff
between accuracy and throughput. We observe 1.4× speedup
in throughput with negligible error rate penalty (< 0.5%)
when quantized from 16-bit to 11-bit, and 1.7× speedup in
throughput with limited accuracy loss (< 5%) when quantized
to 8-bit. Once the bit-width falls below 8-bit, throughput
increases significantly at the cost of error rates infeasible to
practical applications. In addition, the evaluated throughput
matches reasonably well with the theoretical throughput. The
discrepancy is mainly due to the limited flexibility in hardware.

Figure 4(b) shows the advantage of the proposed quan-
tization scheme over other unoptimized schemes. We show
the tradeoff between accuracy and throughput for various bit
widths. The proposed scheme sets β1 = β2 + 2. Scheme 1
sets β1 = β2 − 2. Scheme 2 sets β1 = β2 + 4. Clearly,
our proposed quantization scheme achieves the best accuracy
and throughput. Throughput of Scheme 2 is limited by the
communication bound. Scheme 1 suffers high accuracy loss at
low bit widths. Such results are consistent with our analysis.

C. 11-Bit Statically-Reconfigurable CNN Accelerator

Because of the lack of flexibility in DSP blocks, we only
implement the 11-bit statically-reconfigurable accelerator. Be-
low we present the post place-and-route results.

TABLE II
COMPARISON WITH STATE-OF-THE-ART ALEXNET IMPLEMENTATIONS

[15] [14] [1] Proposed

Approach Space Frequency Frequency Frequency

FPGA Stratix-V Stratix-V Stratix-V Stratix-V
GXA7 GXA7 GXA7 GXA7

Frequency (MHz) 100 200 200 200
Precision (Fixed-point) 16-bit 16-bit 16-bit 11-bit

DSP Usage 256 (100%) 256 (100%) 256 (100%) 256 (100%)
Logic Usage (ALM) 121K (52%) 70K (30%) 107K (46%) 133K (57%)

On-chip RAM 1152 (61%) 1679 (89%) 1377 (73%) 1415 (75%)
Throughput (GOPS) 134.1 274.5 780.6 1131.9

Table II summarizes the comparison with state-of-the-art de-
signs. The keyword ”Space” denote implementations based on
space domain convolution, and ”Frequency” denote implemen-
tations based on frequency domain convolution. All designs
are based on Stratix V GXA7 device. All of the three baseline
designs use 16-bit fixed point arithmetic, while ours uses 11-
bit. Throughput improvement of our implementation is due to
both quantization and the low complexity frequency domain
convolution algorithm. We achieve 1.45×, 4.12× and 8.44×
speedup compared with [1], [14] and [15]. Our 11-bit design
incurs negligible accuracy loss (< 0.5%). Besides, FFT and
IFFT modules only contribute to 18% of the total ALM/DSP
consumption, which verifies the Section V-A analysis.

D. Optimization for Dynamically-Reconfigurable Architecture

In this section, we evaluate the proposed quantization
scheme for dynamically-reconfigurable architecture. We as-
sume that dynamic reconfiguration across CNN layers can be
done with low cost. Thus, in this section, we ignore all of the
resource and time overhead due to dynamic reconfiguration.

Figure 5(a) shows the throughput and error rate under
various bit widths. For the sake of notation, here “bit width” of
x-axis refers to the bit width of the layer 2 Hadamard module.
Similar as Figure 4(a), the left y-axis shows the classification
error rate of the overall CNN, and the right y-axis shows
the FPGA throughput (normalized by the throughput of the
16-bit design). 11-bit quantization leads to 1.65× speedup in
throughput with negligible error rate increment (< 0.5%). 8-
bit quantization leads to 3.57× speedup in throughput with
limited accuracy loss (< 5%). The accelerator becomes infea-
sible to practical applications for bit width lower than 8.

Figure 5(b) shows the advantage of our dynamically-
reconfigurable architecture over the optimized statically-
reconfigurable architecture discussed in Section VII-B.
Clearly, the dynamically-reconfigurable architecture leads to
better performance in terms of accuracy as well as throughput.
It remains a question, however, how to implement such dy-
namic reconfiguration with little resource and time overhead.

VIII. CONCLUSION

In this paper, we presented a high throughput CNN acceler-
ator using fixed-point quantization in frequency domain. Based
on the SQNR analysis and performance model, high through-
put is achieved due to the optimized quantization schemes for
statically and dynamically reconfigurable architectures.

(a) Error rate and throughput un-
der various bit-widths

(b) Comparison of statically
and dynamically-reconfigurable
schemes

Fig. 5. Dynamically-reconfigurable architecture

In the future, we will explore system design that efficiently
realizes dynamic reconfiguration for various bit widths. Be-
sides, we will also explore sparsity in frequency domain ker-
nels of CNNs. Compression on the high frequency components
of frequency domain kernels potentially leads to even higher
throughput without significant accuracy loss.

REFERENCES

[1] H. Zeng, R. Chen, C. Zhang, and V. Prasanna, “A framework for gener-
ating high throughput cnn implementations on fpgas,” in Proceedings of
the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’18. New York, NY, USA: ACM, 2018.

[2] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantiza-
tion of deep convolutional networks,” in Proceedings of the 33rd Inter-
national Conference on International Conference on Machine Learning.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” CoRR, vol. abs/1411.4038, 2014.

[6] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through ffts,” CoRR, vol. abs/1312.5851, 2013.

[7] A. Daher and et al., “Overlap-save and overlap-add filters: Optimal
design and comparison,” vol. 58, no. 6. IEEE, 2010.

[8] C. Zhang and V. Prasanna, “Frequency domain acceleration of convo-
lutional neural networks on cpu-fpga shared memory system,” in Pro-
ceedings of the 2017 ACM/SIGDA Intl. Symp. on Field-Programmable
Gate Arrays, ser. FPGA ’17, 2017.

[9] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[10] M. Sit, R. Kazami, and H. Amano, “Fpga-based accelerator for loss-
lessly quantized convolutional neural networks,” in 2017 International
Conference on Field Programmable Technology (ICFPT), Dec 2017.

[11] S. Ross, A First Course in Probability. Collier Macmillan, 2014.
[12] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua,

M. Veloso, and R. W. Johnson, “Spiral: A generator for platform-adapted
libraries of signal processing algorithms,” Int. J. High Perform. Comput.
Appl., vol. 18, no. 1, pp. 21–45, Feb. 2004.

[13] R. Chen, H. Le, and V. K. Prasanna, “Energy efficient parameterized
fft architecture,” in 2013 23rd International Conference on Field pro-
grammable Logic and Applications, Sept 2013, pp. 1–7.

[14] H. Zeng, C. Zhang, and V. Prasanna, “Fast generation of high throughput
customized deep learning accelerators on fpgas,” in 2017 International
Conference on ReConFigurable Computing and FPGAs (ReConFig).

[15] Y. Ma, N. Suda, Y. Cao, J. Seo, and S. Vrudhula, “Scalable and
modularized rtl compilation of convolutional neural networks onto fpga,”
in 2016 26th International Conference on Field Programmable Logic
and Applications (FPL), Aug 2016, pp. 1–8.

