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Abstract—This paper presents, HitGraph, an FPGA framework to accelerate graph processing based on the edge-centric paradigm.
HitGraph takes in an edge-centric graph algorithm and hardware resource constraints, determines design parameters and then
generates a Register Transfer Level (RTL) FPGA design. This makes accelerator design for various graph analytics transparent and
user-friendly by masking internal details of the accelerator design process. HitGraph enables increased data reuse and parallelism
through novel algorithmic optimizations, including (1) an optimized data layout that reduces non-sequential external memory accesses,
(2) an efficient update merging and filtering scheme to reduce the data communication between the FPGA and external memory, and
(3) a partition skipping scheme to reduce redundant edge traversals for non-stationary graph algorithms. Based on our design
methodology, we accelerate Sparse Matrix Vector Multiplication (SpMV), PageRank (PR), Single Source Shortest Path (SSSP), and
Weakly Connected Component (WCC). Experimental results show that HitGraph sustains a high throughput of 2076 Million Traversed
Edges Per Second (MTEPS) for SpMV, 2225 MTEPS for PR, 2916 MTEPS for SSSP, and 3493 MTEPS for WCC, respectively.
Compared with highly-optimized multi-core implementations, HitGraph achieves up to 37.9× speedup. Compared with state-of-the-art
FPGA frameworks, HitGraph achieves up to 50.7× throughput improvement.
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1 INTRODUCTION

G RAPHS have become increasingly important for rep-
resenting real-world networked data in emerging ap-

plications, such as the World Wide Web, social networks,
genome analysis, and machine learning [1], [2], [3], [4].
To facilitate the processing of large graphs, many graph
processing frameworks have been developed based on gen-
eral purpose processors. Representative examples include
GraphChi [5], X-Stream [6], GridGraph [10], and GraphMat
[11] based on multi-core general purpose processor, and
Gunrock [12], nvGRAPH [13], and CuSha [42] based on gen-
eral purpose graphics processing unit (GPGPU). However,
general purpose processors are not the ideal acceleration
platform for graph processing [21], [22], [23], [33]. They have
several inefficiencies including (1) wasted external memory
bandwidth due to inefficient memory access granularity
(i.e., loading and storing entire cacheline data while oper-
ating on only a portion of the data), (2) ineffective on-chip
memory usage due to the poor spatial and temporal locality
of graph algorithms, and (3) expensive atomic operations
(e.g., memory locks) to prevent the race condition due to
concurrent updates by distinct threads. In order to ad-
dress these inefficiencies, dedicated hardware accelerators
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for graph processing have gained lots of interest [17], [18],
[19], [20], [21], [22], [23], [25], [33], [34], [40].

With the increased interest in energy-efficient accelera-
tion, Field-Programmable Gate Array (FPGA) has become
an attractive platform to develop accelerators [14], [15],
[16]. FPGAs can achieve higher performance-per-watt than
multi-core and GPU platforms [15], [16], and have been
introduced into data centers to provide customized acceler-
ation of computation-intensive tasks [27]. Due to the abun-
dant user-controllable on-chip memory resources and the
dense programmable logic elements, FPGAs can effectively
overcome the inefficiencies inherent in the general purpose
processors and thus have been widely explored to accelerate
graph processing [28], [29], [40], [48]. However, most of the
existing FPGA-based accelerators for graph processing are
algorithm-specific and cannot be applied to general graph
algorithms. In addition, the development of an optimized
FPGA accelerator can involve the programming of Hard-
ware Description Language (HDL), resulting in high devel-
opment effort. GraphGen [20] and GraphOps [25] are FPGA-
based graph processing frameworks that can accelerate gen-
eral graph algorithms. They also provide design automation
tools to facilitate the development of accelerators. However,
these frameworks are designed based on the vertex-centric
paradigm [3], in which the edges are traversed through
pointers or vertex indices. This leads to massive random
external memory accesses as well as accelerator stalls [25],
[35].

In this paper, we propose a graph processing framework,
named HitGraph, to accelerate general graph algorithms
using FPGA. HitGraph is designed based on the edge-
centric paradigm [6], in which all the edges are sequentially
traversed in a streaming fashion, making FPGA an ideal
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acceleration platform. Given an edge-centric graph algo-
rithm and user-defined resource constraints (e.g., registers,
Block RAMs, etc.) as inputs, HitGraph first determines the
architecture parameters through design space exploration,
and then generates the RTL design of a highly-optimized
FPGA accelerator. Therefore, developers can easily and
quickly generate graph processing accelerators using our
framework. We summarize the main contributions of this
paper below.

• We propose an FPGA framework called HitGraph
to accelerate general graph algorithms based on the
edge-centric paradigm. We demonstrate the appli-
cability of HitGraph by accelerating Sparse Matrix
Vector Multiplication (SpMV), PageRank (PR), Single
Source Shortest Path (SSSP), and Weakly Connected
Component (WCC).

• We develop a design automation tool, which can
automatically produce the synthesizable Verilog
code of an highly parallel accelerator based on user’s
inputs.

• In order to improve the performance of the generated
accelerators, we propose several novel algorithmic
optimizations, including:

– graph partitioning to enable efficient vertex
buffering for data reuse

– highly parallel execution by exploiting both
inter- and intra-partition parallelism

– data layout optimization to improve external
memory performance

– update combining and filtering mechanism to
reduce data communication

– partition skipping scheme to reduce redun-
dant edge traversals

• Experimental results show that our designs achieve
an average throughput of 2076 MTEPS for SpMV,
2225 MTEPS for PR, 2916 MTEPS for SSSP, and 3493
MTEPS for WCC, respectively.

• Compared with several highly-optimized multi-core
implementations, HitGraph achieves up to 20.5×,
35.5×, 5.0×, 37.9× speedup for SpMV, PR, SSSP, and
WCC, respectively. Compared with state-of-the-art
GPU implementations, HitGraph achieves compara-
tive performance with 4.8× less memory bandwidth
and over 20× less power consumption.

• Compared with two state-of-the-art FPGA-based
graph processing frameworks, GraphOps [25] and
ForeGraph [23], HitGraph demonstrates up to 50.7×
and 2.0× throughput improvement, respectively.

The rest of the paper is organized as follows: Section 2
covers the background; Section 3 introduces the framework
overview; Section 4 discusses our algorithmic optimizations;
Section 5 describes the implementation details; Section 6
presents our design automation tool; Section 7 reports ex-
perimental results; Section 8 introduces related work; Sec-
tion 9 concludes the paper.

2 BACKGROUND

2.1 Edge-centric Graph Processing
The edge-centric (EC) paradigm [6] is a well-known graph
processing technique, flexible enough in representing a va-
riety of graph algorithms with different graph structures,
vertex attributes, and graph update functions [22], [44].
Generic EC computation follows a scatter-gather program-
ming model as illustrated in Algorithm 1. The computation
is iterative, with each iteration consisting of a scatter phase
followed by a gather phase. In the scatter phase, each edge
is traversed to produce an update based on the source vertex
of the edge. In the gather phase, each update produced in
the previous scatter phase is applied to the corresponding
destination vertex. The advantage of edge-centric paradigm
is that it sequentially traverses all the edges (updates) in
the scatter (gather) phase. Such streaming nature of edge-
centric paradigm makes FPGA an ideal acceleration plat-
form [39]. However, the edge-centric paradigm can result in
redundant edge traversals for some algorithms in which not
all the edges are necessary to be traversed in each iteration
(e.g., SSSP). Such graph algorithms are called non-stationary
graph algorithms (see Section 2.3).

Algorithm 1 Edge-centric paradigm
1: while not done do
2: Scatter phase:
3: for each edge e do
4: Produce an update u← Process edge(e, ve.src)
5: end for
6: Gather phase:
7: for each update u do
8: Update vertex vu.dest ← Apply update(u)
9: end for

10: end while

The vertex-centric paradigm [4] is also widely used to
design graph processing frameworks [20], [25]. It keeps
track of a frontier consisting of all the active vertices whose
attributes have recently been updated and need to be sent
to their neighbor vertices. Each vertex keeps a pointer to
locate its outgoing edges stored in the external memory.
Then, in each iteration, only the active vertices traverse their
outgoing edges to update the attributes of their neighbor
vertices. However, one key issue of vertex-centric paradigm
is that traversing the edges of active vertices requires ran-
dom external memory accesses through pointers. FPGA has
been shown to be inefficient for such pointer-based memory
accesses which are too irregular to be efficiently handled
by conventional memory controllers [25], [49]. In this sce-
nario, it is very likely to gain no speedup [35]. Compared
with the vertex-centric paradigm, the edge-centric paradigm
completely eliminates the random memory accesses to the
edges. Therefore, for large-scale graphs whose number of
edges is much larger than the number of vertices, the edge-
centric paradigm can lead to better performance than the
vertex-centric paradigm [6], [32].

2.2 Data Structures
The edge-centric paradigm uses the coordinate (COO) for-
mat to store the input graph. In this format, all the edges
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are stored in an edge array, with each edge represented
as a <src, dest, weight> tuple to specify the source
vertex, the destination vertex, and the weight of the edge,
respectively. All the vertices are stored in a vertex array, with
each vertex maintaining an algorithm-specific attribute (e.g.,
PageRank value of the vertex). Each update produced in the
scatter phase is represented as a <dest, value> pair, in
which dest denotes the destination vertex of the update
and value denotes the value associated with the update.
Figure 1 shows the data structures of an example graph .

Fig. 1. Example graph and its associated data structures, assuming the
value of each update is the product of the edge weight and the attribute
of the source vertex of the edge

Although the COO format requires more storage size
than the Compressed Sparse Row (CSR) format [25], it leads
to streaming accesses to the edges without any indirection
such as pointers, and therefore is more favored by hardware
accelerators [21], [22], [23]. In addition, the COO format
enables data layout optimization of the edges (see Section
4.4) since it does not require the edges to be stored in any
specific order.

2.3 Graph Algorithms
We define active vertex (in an iteration) as a vertex that has
an updated attribute to propagate to its neighbors. Based
on the characteristic of the number of active vertices across
iterations, graph algorithms can be divided into two cate-
gories: stationary and non-stationary [7]. A graph algorithm
is stationary if all the vertices are active in each iteration;
otherwise, it is non-stationary. In this paper, we accelerate
two representative stationary graph algorithms (i.e., SpMV
and PR) and two representative non-stationary graph algo-
rithms (i.e., SSSP and WCC). We have chosen these four
algorithms because their computation patterns are general

to represent a diverse range of algorithms. For example,
the computation patterns of SpMV and PR cover general
stationary graph algorithms (e.g., collaborative filtering)
and probabilistic graphical models (e.g., belief propagation);
the computation pattern of SSSP covers the non-stationary
algorithms in which the number of active vertices may
increase or decrease (e.g., graph traversal algorithms and
graph labeling algorithms), and the computation pattern
of WCC covers the non-stationary algorithms in which the
number of active vertices keeps decreasing (e.g., community
detection). This section briefly introduces the four target
algorithms in this paper and shows how to map them to
the edge-centric paradigm.

2.3.1 Sparse Matrix-Vector Multiplication
Sparse matrix-vector multiplication (SpMV) is a widely used
computational kernel in scientific applications. Generalized
SpMV iteratively computes xt+1 = Axt = + |V |−1i=0 Ai x xt,
where A is a sparse |V |×|V | adjacency matrix of a weighted
graph, Ai is the ith row vector of A (0 ≤ i < |V |), x is a
dense vector with |V | values (i.e., one value per vertex),
+ and x are algorithm specific operators, and t denotes
the number of iterations that have been completed. SpMV
is a stationary graph algorithm because in each iteration,
each vertex updates the value associated with it and thus is
active.

2.3.2 PageRank
The PageRank (PR) algorithm is a well-known graph ana-
lytics algorithm used to rank the importance of vertices in
a directed graph. Each vertex maintains an attribute called
PageRank, which indicates the likelihood that the vertex
will be reached. In each iteration, each vertex v sends its
PageRank to all the neighbors, and then updates its own
PageRank based on Equation (1), in which d is a constant
called damping factor, |V | is the total number of vertices
in the graph, vnbr represents the neighbor of v such that v
has an incoming edge from vnbr, and Lnbr is the number
of outgoing edges of vnbr. PR is stationary because all the
vertices update their PageRank values in each iteration and
thus are active in each iteration.

PageRank(v) =
1− d

|V |
+ d×

∑ PageRank(vnbr)

Lnbr
(1)

2.3.3 Single Source Shortest Path
Single Source Shortest Path (SSSP) aims to find the shortest
paths from a single source vertex to all the other vertices in
a weighted graph. It is a key kernel for urban traffic simula-
tion. In this algorithm, each vertex maintains an attribute to
record the weight of the shortest path from the source vertex
to itself. In the scatter phase of each iteration, all the active
vertices send their updated attributes to their neighbors
through outgoing edges. Then, in the gather phase, each
vertex that receives update(s) from neighbor(s) updates its
attribute if a shorter path to the source vertex is found. The
algorithm terminates when none of the vertices updates its
attribute in an iteration. SSSP is non-stationary because only
partial vertices are active in each iteration.
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TABLE 1
Mapping of graph algorithms to edge-centric paradigm

Algorithm Produce an update u← Process edge(e, ve.src) Update vertex vu.dest ← Apply update(u)

SpMV u.dest← e.dest; u.value← e.weight x attr(ve.src) attr(vu.dest)← attr(vu.dest) + u.value

PR u.dest← e.dest; u.value← d×attr(ve.src)
Num of outgoing edges(ve.src)

attr(vu.dest)← attr(vu.dest) + u.value

SSSP u.dest← e.dest; u.value← attr(ve.src) + e.weight attr(vu.dest)← min (attr(vu.dest), u.value)

WCC u.dest← e.dest; u.value← attr(ve.src) attr(vu.dest)← min (attr(vu.dest), u.value)

2.3.4 Weakly Connected Component
A Connected Component (CC) of a graph is a subgraph
such that (1) there is certain path connecting each pair
of vertices in the subgraph and (2) no additional vertices
can be reached by the vertices in the subgraph. Weakly
Connected Component (WCC) aims to find all the connected
components in an undirected graph. In this algorithm, each
vertex maintains a CC identifier as the attribute to record the
connected component that it belongs to. The CC identifier
of a connected component is the vertex that has the smallest
index in the connected component. In the scatter phase, each
active vertex sends its CC identifier to its neighbors. In the
gather phase, a vertex updates its CC identifier if it receives
a smaller CC identifier than its current CC identifier. When
the algorithm terminates, the vertices that have the same
attribute (i.e., CC identifier) form a connected component.
Since only partial vertices are active in each iteration, WCC
is a non-stationary graph algorithm.

2.3.5 Mapping Algorithms to Edge-centric Paradigm
Table 1 shows the mapping of the discussed graph algo-
rithms to the edge-centric paradigm (Algorithm 1), where
we use attr(v) to denote the algorithm-specific attribute
associated with the vertex v.

3 FRAMEWORK OVERVIEW

Figure 2 depicts a high-level view of the system architecture
of HitGraph (more details are discussed in Section 5), which
consists of external memory (i.e., DRAM) and FPGA. The
external memory stores all the graph data including vertices,
edges, and updates. On the FPGA, there are p (p ≥ 1)
Processing Engines (PEs) working in parallel to sustain high
processing throughput. Each PE is customized based on the
target graph algorithm and has a multi-pipelined architec-
ture. The memory controller handles the external memory
accesses performed by the PEs. In the scatter phase, the
PEs read edges from the external memory and write updates
into the external memory; in the gather phase, the PEs read
updates from the external memory and write updated vertices
into the external memory.

Given a graph algorithm following the edge-centric
paradigm, HitGraph maps it to the target architecture and
generates the FPGA accelerator by a design automation tool.
Figure 3 illustrates the development flow of HitGraph. First,
users provide the inputs to define the algorithm parameters
of the edge-centric graph algorithm (e.g., data width of each
edge and vertex, etc) and specify the hardware resource

Fig. 2. Target system architecture of HitGraph

constraints of the FPGA design (e.g., how many Block RAMs
can be used). Then, based on the user inputs, the framework
performs design space exploration to determine the archi-
tecture parameters (e.g, the number of processing engines)
to maximize the processing throughput. Finally, the design
automation tool outputs the Verilog code of an FPGA
accelerator, which automatically includes our optimizations
proposed in Section 4.

Fig. 3. Framework Overview

4 ALGORITHMIC OPTIMIZATIONS

In order to improve the performance of the generated ac-
celerators by HitGraph, we propose several optimizations
to (1) efficiently use the on-chip memory resources, (2)
fully take advantage of the massive parallelism provided
by FPGA, (3) optimize the performance of external memory,
and (4) reduce the data communication between the FPGA
and external memory.
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4.1 Graph Partitioning and Vertex Buffering

Since the vertex data (i.e., attr(v) in Table 1) are repeatedly
accessed and updated in each iteration, we propose to
buffer them using the on-chip RAMs of FPGA, which can
offer fine-grained low-latency accesses to the PEs. For large
graphs whose entire vertex array does not fit in the on-chip
RAMs, we use a lightweight graph partitioning approach
[22] to partition the graph, such that the vertex data of each
partition fit in the on-chip RAMs.

Assuming the data of m vertices can be stored in the on-
chip RAMs, we partition the input graph into k =

⌈ |V |
m

⌉
non-overlapping partitions, where |V | denotes the total
number of vertices in the graph. We first partition the vertex
array into k vertex sub-arrays, such that the ith vertex sub-
array contains m vertices whose vertex indices are consec-
utive and between i ×m and (i + 1) ×m − 1 (0 ≤ i < k).
We define each vertex sub-array as an interval. After parti-
tioning the vertex array, the edge array is partitioned into k
edge sub-arrays, each of which is defined as a shard; the ith

shard contains all the edges whose source vertices belong
to the ith interval (i.e., ∀ edge e ∈ Shardi, ve.src ∈ Intervali).
The ith shard and the ith interval constitute the ith partition.
Each partition also maintains an array called bin to store the
updates whose destination vertices belong to the interval of
partition (i.e., ∀ update u ∈ Bini, vu.dest ∈ Intervali). The
complexity of our partitioning approach is O(E). During
the processing, the data of each shard (i.e., edges) remain
fixed1; the data of each bin (i.e., updates) are recomputed in
each scatter phase; the data of each interval (i.e., vertices)
are updated in each gather phase.

Figure 4 shows the data layout after the graph in Figure
1 is partitioned into 2 partitions (i.e., k = 2) with each
partition having 3 vertices (i.e., m = 3). Note that the
size of each shard depends on the number of edges whose
source vertices are in the corresponding interval; the size of
each bin depends on the number of edges whose destination
vertices are in the corresponding interval.

Algorithm 2 illustrates the computation of edge-centric
paradigm after the input graph is partitioned. All the in-
tervals, shards, and bins are stored in the external memory.
Before a partition being processed, all the data of its interval
are pre-fetched and buffered into the on-chip RAMs (Lines
4 and 12). Then, edges (updates) are sequentially read from
the external memory during the scatter (gather) phase (Lines
5 and 13). Due to the vertex buffering, the processing en-
gines (PEs) on the FPGA can access the vertex data directly
from the on-chip RAMs to process edges and updates (Lines
6 and 14).

4.2 Partition Skipping

One key issue of the edge-centric paradigm is that it requires
to traverse all the edges of the graph in the scatter phase
of each iteration. This can result in lots of redundant edge
traversals for non-stationary graph algorithms, in which
traversing the edges of non-active vertices in an iteration
is unnecessary. In order to address this issue, we propose
a partition skipping scheme to reduce redundant edge traver-
sals for non-stationary graph algorithms. We define active

1. We assume the edges of the input graph do not change.

Fig. 4. Data layout after graph partitioning

Algorithm 2 Edge-centric graph processing based on graph
partitioning

1: while not done do
2: Scatter phase:
3: for i from 0 to k − 1 do
4: Store Intervali in on-chip RAMs //vertex buffering
5: for each edge e ∈ Shardi do
6: u← Process edge(e, ve.src)
7: Write u into Bin⌊

u.dest/m
⌋

8: end for
9: end for

10: Gather phase:
11: for i from 0 to k − 1 do
12: Store Intervali in on-chip RAMs //vertex buffering
13: for each update u ∈ Bini do
14: vu.dest ← Apply update(u)
15: end for
16: Write Intervali into external memory
17: end for
18: end while

partition (in an iteration) as a partition that has at least one
active vertex in its interval. For each partition, we maintain
a 1-bit status flag to indicate if the partition is active or
not. In the scatter phase, we check the status flag of each
partition. If a partition is active, the edges in its shard are
traversed; otherwise, this partition is directly skipped. In the
gather phase, when the attribute of a vertex is updated, the
corresponding partition that this vertex belongs to will be
marked as active for the next iteration.

4.3 Parallelizing Edge-centric Graph Processing
To fully utilize the massive parallelism offered by the FPGA,
we parallelize the execution of Algorithm 2 using two levels
of parallelism, including inter-partition and intra-partition
parallelism.
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4.3.1 Inter-partition Parallelism
Since HitGraph employs p (p ≥ 1) PEs on the FPGA, up
to p partitions can be processed by the PEs in parallel.
We define the parallelism to process distinct partitions by
distinct PEs in parallel as inter-partition parallelism and
denote it as p. We use a centralized load balancing scheme
[45] to allocate the computation tasks of partitions to the
PEs. In each phase (i.e., scatter phase or gather phase), the
computation tasks of all the partitions are maintained in
a task pool. When a PE completes the computation of a
partition, it is dynamically assigned another partition that
has not been processed. When all the tasks in the task
pool have been completed, the algorithm steps to the next
phase. The parallelized algorithm for edge-centric graph
processing is illustrated in Algorithm 3.

Algorithm 3 Parallel edge-centric graph processing

Let Partitioni denote the ith partition, 0 ≤ i < k
Let PEj denote the jth PE on the FPGA, 0 ≤ j < p

1: while not done do
2: Scatter phase:
3: for each Partitioni parallel do
4: if Partitioni is active then
5: if ∃ PEj : PEj is idle then
6: PEj ← Scatter phase of Partitioni

7: else
8: Wait until some PE becomes idle
9: end if

10: end if
11: end for
12: Barrier
13: Gather phase:
14: for each Partitioni parallel do
15: if Bini is non-empty then
16: if ∃ PEj : PEj is idle then
17: PEj ← Gather phase of Partitioni

18: else
19: Wait until some PE becomes idle
20: end if
21: end if
22: end for
23: Barrier
24: end while

4.3.2 Intra-partition Parallelism
Inside each processing engine, we employ q (q ≥ 1) parallel
processing pipelines (see Section 5.2). In the scatter (gather)
phase, these q processing pipelines concurrently process
q distinct edges (updates) of the same shard (bin) in a
pipelined fashion. We define the parallelism to concurrently
process distinct edges or updates inside each PE as intra-
partition parallelism and denote it as q. Since there are p
PEs on the FPGA, the total number of processing pipelines is
p×q. Hence, up to p×q edges or updates can be concurrently
processed by the accelerator in each clock cycle.

4.4 Data Layout Optimization
Let r0, r1, · · · , rh−1, rh, rh+1, · · · , denote a sequence of ex-
ternal memory accesses. We define a memory access rh as a

sequential memory access if the memory location accessed
by rh is contiguous to the memory location accessed by
rh−1; otherwise, rh is defined as a non-sequential memory
access. Non-sequential memory accesses can result in addi-
tional access latency as well as additional memory power
consumption [28], [43]. Therefore, it is desirable to optimize
the data layout to reduce the number of non-sequential
memory accesses.

In Algorithm 2, reading vertices (Lines 4 and 12), edges
(Line 5), and updates (Line 13) from external memory and
writing vertices (Line 16) into external memory all result
in sequential memory accesses. However, writing updates
into external memory (Line 7) results in non-sequential
memory accesses. This is because the produced updates
need to be written into the bins based on their destina-
tion vertices. It is likely that the destination vertices of
consecutively produced updates are in distinct intervals. In
this scenario, these updates are written into distinct bins
stored in discontinuous external memory locations, thus
resulting in non-sequential memory accesses. In the worst
case, each update can result in a non-sequential external
memory access. Therefore, assuming |S| is the number of
edges in a shard, processing all the edges in the shard can
result in O(|S|) non-sequential external memory accesses
in the scatter phase. In order to minimize the number
of non-sequential external memory accesses, we propose
an optimized data layout that is achieved by sorting the
edges in each shard based on their destination vertices.
Because the average number of edges in each shard is E

k ,
the average-case complexity to generate our proposed data
layout is O(E log E

k ).
We demonstrate that the optimized data layout signifi-

cantly reduces the non-sequential external memory accesses.

Theorem 1. In the scatter phase, based on our optimized data
layout, processing each shard results in O(k) non-sequential
external memory accesses, where k is the total number of
partitions.

Proof: The destination vertices of the updates are the same
as the destination vertices of the traversed edges (see Table
1). Since we have sorted each shard based on the destination
vertices, the updates are produced in a sorted order as well.
Therefore, the updates whose destination vertices belong to
the same interval are produced consecutively and thus are
written into the same bin. Non-sequential memory access
only occurs when an update belonging to a different bin
(i.e. other than the bin that the previous update is written
into) is produced. Therefore, writing the updates produced
by traversing one shard results in O(k) non-sequential ex-
ternal memory accesses, which is far less than O(|S|) (i.e.,
|S| >1000k).

4.5 Data Communication Reduction

Since traversing each edge will produce an update, the total
number of updates produced in the scatter phase is equal
to the number of edges (i.e., |E|). Therefore, |E| updates
are written into the external memory in the scatter phase,
and read from the external memory in the following gather
phase. This results in |E| updates transferred back and forth
between the FPGA and external memory in each iteration.
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In order to reduce such data communication, we propose
two optimizations: update combining and update filtering.

4.5.1 Update Combining
In the scatter phase, we propose to combine the updates
that have the same destination vertex before writing them
into the external memory. For example, for PR, combining
multiple updates can be performed by summing them up.
Note that the update combining scheme is enabled by our
data layout optimization discussed in Section 4.4. Since the
proposed data layout sorts each shard based on the destina-
tion vertices, in the scatter phase, the updates that have the
same destination vertex are produced consecutively. These
consecutive updates that have the same destination vertex
can be easily combined as one update. As a result, the
number of updates to be written into the external memory
in the scatter phase is reduced. Consequently, the number
of updates to be processed in the following gather phase is
reduced as well.

4.5.2 Update Filtering
We further propose an update filtering scheme for non-
stationary graph algorithms. We assign each vertex an addi-
tional active_tag to indicate whether the vertex is active
or not in the current iteration. In the scatter phase, for
each produced update, we check the active_tag of the
source vertex that the update is produced based on. If an
update is produced based on an active vertex, it is marked
as a valid update; otherwise, it is invalid. All the invalid
updates are discarded and will not be written into the
external memory, thus reducing the data communication.
Note that the update filtering optimization is not applicable
to stationary graph algorithms in which all the vertices are
active in each iteration.

5 IMPLEMENTATION DETAIL

5.1 Overall Architecture
We show the overall architecture of our design in Figure 5.
The DRAM connected to the FPGA is the external memory
to store all the intervals, shards, and bins. There are p pro-
cessing engines (PEs) on the FPGA, which process p distinct
partitions in parallel. Each PE has an individual interval
buffer and multiple processing pipelines. The interval buffer
is constructed by on-chip UltraRAMs and used to buffer the
interval data of the partition being processed by the PE. The
processing pipelines of each PE concurrently process dis-
tinct edges (updates) of the same shard (bin) in a pipelined
fashion in the scatter (gather) phase. The control logic is
responsible for scheduling the execution and allocating the
computation of partitions to the PEs. The memory controller
handles the external memory accesses made by the PEs. In
the scatter phase, the PEs read edges from the DRAM and
write updates into the DRAM. In the gather phase, the PEs
read updates from the DRAM and write updated vertices
into the DRAM.

5.2 Processing Engine
Figure 6 depicts the architecture of each PE. As shown,
each PE employs q processing pipelines (q ≥ 1), thus is

Fig. 5. Overall architecture

able to concurrently process q input data in each clock
cycle. The update combining network is used to perform
the update filtering and update combining optimizations
(Section 4.5) in the scatter phase. The vertex mutex table
is used to prevent read-after-write data hazard due to the
data dependencies in the gather phase.

Fig. 6. Architecture of processing engine

In the scatter phase, the input data represent edges. In
each clock cycle, each processing pipeline takes one edge
as input. Then, the vertex-read module reads the attribute
of the source vertex of the edge from the interval buffer.
The process-edge module produces an update based on the
edge weight and the attribute of the source vertex. Each
produced update is assigned a validity flag to indicate
whether it is produced based on an active vertex or not.
Note that the vertex-write module and vertex mutex table
are not used during the scatter phase; this is because there
are only read accesses to the vertices in the scatter phase.
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All the updates produced by the q processing pipelines
are fed into the update combining network, which employs
parallel Sort-and-Combine (SaC) units to combine the input
updates based on their destination vertices. Each SaC unit
takes two updates as input and compares their destination
vertices. If the two updates are both valid and have the
same destination vertex, they are combined and output as
one valid update; otherwise, they are sorted based on their
destination vertices and output to the next pipeline stage.
The update combining network arranges the SaC units in a
pipelined bitonic sorter fashion [30]. Therefore, it sustains a
throughput of combining q updates per clock cycle. For an
efficient implementation of the combining network, we set
the value of q as a power of 2, resulting in (1+log q)· log q·q/4
SaC units in total. Figure 7 depicts the architecture of the
update combining network for q = 4. Note that the invalid
updates output by the update combining network are dis-
carded and will not be written into the external memory.

Fig. 7. Update combining network for q = 4

In the gather phase, the input data represent updates. In
each clock cycle, each processing pipeline takes one update
as input. Then, the vertex-read module reads the attribute of
the destination vertex of the update from the interval buffer.
The apply-update module computes the updated attribute
of the destination vertex. At last, the vertex-write module
writes the updated attribute of the destination vertex into
the interval buffer. Since there are both read and write
accesses to the vertex attributes in the gather phase, Read-
After-Write (RAW) data hazard (i.e., the vertex-read module
reads the attribute of a vertex that is being computed) may
occur. In order to handle the possible RAW data hazard,
we develop a Vertex Mutex Table (VMT) based on a fine-
grained locking mechanism [45]. The VMT uses Block RAMs
(BRAMs) to maintain a 1-bit lock for each vertex of the
partition being processed. A lock with value 1 means that
the attribute of the corresponding vertex is being computed

by one of the processing pipelines, and thus cannot be read
at this time. For each input update, the VMT checks the lock
status of its destination vertex: if the lock value is 0 (i.e.,
unlocked), the update is fed into the processing pipeline and
the lock value is set to 1 (i.e., locked); otherwise, the pipeline
stalls until the lock value becomes 0. Note that when any
processing pipeline writes an updated vertex attribute into
the interval buffer, it also generates an unlock signal (see
Figure 6) to the VMT to unlock the corresponding vertex.
Therefore, deadlock will not occur. For the graph algorithms
whose Apply_update function can be performed within
a single clock cycle (e.g., SSSP and WCC), we propose to
replace the VMT with data forwarding circuits to avoid the
pipeline stalls due to data hazards. As shown in Figure 8,
the data forwarding circuits forward the vertex attribute that
is output by each processing pipeline to all the processing
pipelines. Each apply-update module checks whether the
attribute of the destination vertex of its input update is
among the forwarded data; if it is, the apply-update module
uses the forwarded data rather than the data read from
the interval buffer. To support q pipelines in a PE, q2 data
forwarding circuits are needed.

Fig. 8. Data forwarding circuits

6 DESIGN AUTOMATION TOOL

6.1 Tool Workflow

We have built a design automation tool to allow users to
rapidly generate the FPGA accelerators based on our design
methodology. Figure 9 illustrates the workflow of our design
automation tool.

As shown, users need to provide the edge-centric al-
gorithm specification and hardware resource constraints to
the tool. For example, users can specify the data type and
data width of each edge, vertex, and update, and hardware
resource constraints such as the available on-chip RAMs,
logic resources, DSP resources, and the external memory
bandwidth for implementing the target accelerator. Our
tool uses these constraint inputs to determine the design
parameters of the accelerator, including inter-partition par-
allelism (p), intra-partition parallelism (q), and the capacity
of each interval buffer in terms of vertices (m). Users can
also manually choose these design parameters. Based on the
selected design parameters, the tool generates all the design
modules (i.e., vertex mutex table, update combining net-
work, processing engines, etc.) and automatically connects
them to produce the Register Transfer Level (RTL) Verilog
code of the FPGA accelerator.
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Fig. 9. Workflow of the design automation tool

6.2 Parameter Selection

The selection of p, q, and m is through design space explo-
ration as shown in Algorithm 4 with the assumption that
the resulting accelerator operates at 200 MHz. Because our
framework traverses edges in a streaming fashion, DRAM
bandwidth is the main performance constraint. Our tool
selects p and q which can maximally utilize the available
DRAM bandwidth and maintain low architecture complex-
ity as well. Our tool first sets p to the number of DRAM
channels. This is because a larger value of p leads to the
scenario in which multiple PEs share the same DRAM
channel and currently update the vertices belonging to the
same partition, resulting in data hazards; a smaller value
of p requires a larger q in order to increase DRAM band-
width utilization, quadratically increasing the architecture
complexity of each PE (see Section 5.2). Then, our tool selects
the maximum feasible value of q that satisfies the hardware
resource requirement. After p and q are determined, our tool
selects m based on the available on-chip RAM resources.
Note that m is constrained by on-chip RAMs and our tool
selects the largest feasible m. This is because a larger value
of m results in fewer partitions (i.e., k), and thus fewer non-
sequential external memory accesses (see Section 4.4).

Algorithm 4 Design space exploration
1: Inputs: hardware resource constraints
2: p← number of DRAM channels
3: q ← 1
4: while true do
5: if any resource is insufficient then
6: q ← q/2
7: Break
8: else
9: q ← q × 2

10: end if
11: end while
12: m← mmax s.t. mmax satisfies on-chip RAM constraint
13: Outputs: p, q,m

7 PERFORMANCE EVALUATION

7.1 Experimental Setup

We conduct experiments using the Xilinx Virtex UltraScale+
xcvu5pflva2104 FPGA. The target FPGA device has 600,577
slice LUTs, 1,201,154 slice registers, 3,474 DSPs, 36Mb of
BRAMs, and 132Mb of UltraRAMs. We synthesize, place-
and-route, and simulate our designs using Xilinx Vivado
Design Suite 2018.1 [31]. We use four Micron 8GB DDR3-
1600 MT41K1G8 chips as the external memory. Each DRAM
chip runs at 800 MHz and has a peak data transfer rate of
15 GB/s. Therefore, the peak external memory bandwidth
is 60 GB/s. We evaluate the DRAM performance using
DRAMSim2 [36], a widely used tool to evaluate DRAM
performance for the target platform [23], [37]. A broad range
of graph datasets, including both real-life and synthetic
graphs, are used in the experiments. Table 2 summaries
the key characteristics of these datasets. The real-life graphs
are obtained from Stanford network dataset repository [38]
and the synthetic graphs are generated using the Graph500
graph generator [1], respectively. For SpMV, standard addi-
tion and multiplication operators are used; for PR, we set the
value of damping factor (i.e., d in Equation (1)) to 0.85; for
SSSP, we randomly choose the source vertex for 20 runs and
report the average performance in the following sections.

TABLE 2
Graph Datasets

Dataset |V | |E| Diam. Graph type

BKstan 0.7 M 7.6 M 514 Web graph

WKtalk 2.4 M 5.0 M 9 Communication

CAroad 2.0 M 5.5 M 849 Road network

LJounal 4.8 M 69.0 M 16 Social network

Twitter 41.6 M 1468.4 M 15 Social network

RMat21 2.1 M 182.1 M 6 Synthetic graph

RMat24 16.8 M 263.0 M 6 Synthetic graph

7.2 Performance Metrics

We evaluate our designs using the following performance
metrics:

• Resource utilization: the utilization of FPGA re-
sources, including logic slices, registers, on-chip
RAMs, and DSPs

• Clock rate: the clock rate sustained by the FPGA
accelerator

• Power consumption: the total power consumed by
the FPGA accelerator, including both the dynamic
power and static power

• Execution time: for stationary algorithms (i.e, SpMV
and PR), the execution time refers to the average
execution time per iteration; for non-stationary algo-
rithms (i.e, SSSP and WCC), the execution time refers
to the total execution time of the algorithm
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TABLE 3
Resource Utilization, Clock Rate, and Power Consumption

Algorithm p q LUT (%) Reg (%) DSP (%)
On-chip RAM (%)

Clock rate (MHz) Power (Watt)
Block RAM UltraRAM

SpMV

1

1 8.5 4.6 0.1 1.7 13.6 212 4.0
2 9.3 4.7 0.1 1.9 13.6 211 4.2
4 10.9 5.2 0.2 2.1 13.6 209 5.2
8 15.9 6.6 0.5 2.6 13.6 208 6.1

2

1 17.2 9.1 0.1 3.4 27.2 212 6.3
2 18.9 9.4 0.2 3.7 27.2 211 6.5
4 21.8 10.3 0.5 4.2 27.2 208 7.7
8 31.7 13.2 0.9 5.3 27.2 206 9.5

4

1 34.5 18.1 0.2 6.8 54.5 207 10.0
2 37.8 18.7 0.5 7.4 54.5 207 10.2
4 43.7 20.6 0.9 8.4 54.5 207 13.1
8 63.5 26.3 1.8 10.6 54.5 201 17.5

PR

1

1 8.7 4.5 0.1 1.7 13.6 217 3.1
2 9.7 4.7 0.1 1.8 13.6 217 3.3
4 11.4 5.2 0.2 2.0 13.6 215 3.6
8 16.9 6.6 0.5 2.3 13.6 208 4.1

2

1 17.5 9.1 0.1 3.3 27.2 209 4.5
2 19.5 9.3 0.2 3.5 27.2 209 4.6
4 22.8 10.3 0.5 3.9 27.2 208 5.0
8 34.0 13.1 0.9 4.6 27.2 204 5.8

4

1 34.6 18.1 0.2 6.6 54.5 208 6.9
2 39.0 18.6 0.5 7.0 54.5 208 7.1
4 45.6 20.5 0.9 7.8 54.5 202 7.6
8 68.1 26.1 1.8 9.2 54.5 200 10.7

SSSP

1

1 5.1 2.7 0 0.1 13.6 222 2.8
2 5.2 2.7 0 0.2 13.6 216 2.9
4 6.5 3.2 0 0.4 13.6 215 3.0
8 8.0 3.5 0 0.8 13.6 208 3.1

2

1 10.0 5.3 0 0.2 27.2 220 3.1
2 10.3 5.4 0 0.4 27.2 212 3.1
4 12.1 6.1 0 0.8 27.2 207 3.7
8 16.1 7.0 0 1.5 27.2 206 5.0

4

1 18.2 10.5 0 0.4 54.5 210 5.0
2 20.2 10.7 0 0.8 54.5 207 5.2
4 24.3 12.1 0 1.6 54.5 205 6.2
8 32.3 13.9 0 2.9 54.5 200 8.2

WCC

1

1 5.7 2.9 0 0.1 13.6 223 2.5
2 5.7 3.0 0 0.2 13.6 221 2.6
4 6.7 3.2 0 0.4 13.6 219 2.9
8 8.7 3.8 0 0.8 13.6 213 3.2

2

1 11.4 5.6 0 0.2 27.2 216 3.5
2 11.6 5.9 0 0.4 27.2 212 3.6
4 13.5 6.3 0 0.8 27.2 208 3.9
8 19.3 7.6 0 1.5 27.2 205 4.4

4

1 23.6 11.6 0 0.4 54.5 210 5.0
2 23.9 11.8 0 0.8 54.5 207 5.4
4 27.0 12.6 0 1.6 54.5 203 5.9
8 34.5 15.1 0 2.9 54.5 200 7.5
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• Throughput: the number of Traversed Edges Per
Second (TEPS), computed as the total number of
traversed edges divided by the execution time

7.3 Clock Rate, Resource Utilization, and Power Con-
sumption

We generate various FPGA designs with different architec-
ture parameters using our design automation tool. Table
3 shows the resource utilization, clock rate, and power
consumption of the generated FPGA accelerators. All the
reported results are post-place-and-route results evaluated
using Xilinx Vivado Design Suite 2018.1 [31]. Each inter-
val buffer is able to store the data of 256K vertices (i.e.,
m =256K). We observe that the clock rate slightly deteri-
orates as p and q increase. The deterioration is due to the
increasing routing complexity of the accelerator as more
hardware resources are consumed. Based on Algorithm 4
and the available resources of the target FPGA device, we
empirically set the number of PEs to 4 (p=4), the number of
pipelines in each PE to 8 (q=8), and the capacity of each in-
terval buffer to 256K vertices (m=256K) for the experiments
in the rest of the paper.

7.4 Execution Time and Throughput

We show the execution time and throughput performance
for various graph datasets in Table 4. On average, our FPGA
accelerators achieve a high throughput of 2076 MTEPS for
SpMV, 2225 MTEPS for PR, 2916 MTEPS for SSSP, and 3493
MTEPS for WCC, respectively. We also observe that the
achieved throughput for the dataset WKtalk is much less
than the average for all the four graph algorithms. This is
because approximately 90% of the edges are grouped into
the same shard after the graph is partitioned. As a result,
the distribution of the computation load among the PEs
is extremely unbalanced in the scatter phase (i.e., one PE
traverses 90% of the edges while the other PEs traverse only
10% of the edges). Previous studies [46], [47] have shown
that reordering and relabeling vertices of such graphs can
improve load balancing. For the other datasets, we do not
observe any load balancing issue; the computation load is
equally distributed among the PEs and each PE sustains an
average throughput of 563 MTEPS for SpMV, 602 MTEPS
for PR, 760 MTEPS for SSSP, and 949 MTEPS for WCC,
respectively.

7.5 Impact of the Optimizations

To show the effectiveness of the proposed optimizations in
Section 4, we compare the optimized designs with various
non-optimized FPGA-based baseline designs.

7.5.1 Impact of Partition Skipping
We first study the impact of the partition skipping op-
timization for SSSP and WCC. The baseline design does
not have this optimization and thus traverses the edges
of both active partitions and non-active partitions in each
iteration. Figure 10 shows the reduction of edge traversals
due to the partition skipping optimization. On average, this

optimization reduces the number of edge traversals by 1.4×
for SSSP and 1.3× for WCC, respectively. We also observe
that the partition skipping optimization is very effective
when the ratio of active vertices (i.e., the number of active
vertices over the total number of vertices) in an iteration is
very low (e.g., the first iteration of SSSP and the last iteration
of WCC); in such iterations, many partitions do not have
any active vertices and thus can be skipped. However, when
the ratio of active vertices in an iteration is very high (e.g.,
the first iteration of WCC), it is highly likely that all the
partitions are active; in this scenario, none of the partitions
can be skipped.

Fig. 10. Reduction of edge traversals due to partition skipping

7.5.2 Impact of Update Combining and Filtering

We further explore the effectiveness of the update combin-
ing and filtering optimization (Section 4.5) to reduce the
data communication between FPGA and external memory.
For comparison purpose, we implement a baseline design
which has the partition skipping optimization and uses
the optimized data layout, but does not have the update
combining or filtering optimization. Figure 11 illustrates the
effectiveness of the optimization. We compute the reduction
factor of updates as the total number of updates written into
DRAM for the basedline design divided by the total number
of updates written into DRAM for the optimized design.
Therefore, a higher reduction factor corresponds to better
performance. We observe that the total number of updates
written into the DRAM is reduced by 2.3× to 12.5× for
SpMV, 2.7× to 14.7× for PR, 10.6× to 548.2× for SSSP, and
6.9× to 1253.1× for WCC, respectively. This optimization
has higher impact on non-stationary graph algorithms (i.e.,
SSSP and WCC) because non-stationary graph algorithms
employ both the update combining and update filtering
schemes, while stationary graph algorithms (i.e, SpMV and
PR) only employ the update combining scheme. On average,
this optimization reduces the number of updates written
into DRAM by 6.5× for SpMV, 7.5× for PR, 104.1× for
SSSP, and 218.9× for WCC, respectively. Because of this
optimization, the execution time is reduced by 1.9× to 4.7×
for SpMV, 2.0× to 5.0× for PR, 2.8× to 11.4× for SSSP, and
1.4× to 4.9× for WCC, respectively.
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TABLE 4
Execution Time and Throughput

Algorithm Metrics
Dataset

BKstan WKtalk CAroad LJounal Twitter RMat21 RMat24 Average

SpMV
Execution time (ms) 3.2 5.0 2.8 36.2 652.5 56.7 143.5 −

Throughput (MTEPS) 2361 1004 1964 1906 2250 3217 1832 2076

PR
Execution time (ms) 3.0 4.5 2.7 32.7 590.4 53.4 140.3 −

Throughput (MTEPS) 2533 1116 2037 2110 2487 3410 1875 2225

SSSP
Execution time (ms) 782.4 25.5 1113.3 592.1 5576.8 967.1 921.3 −

Throughput (MTEPS) 3109 2156 2441 3111 2869 4304 2419 2916

WCC
Execution time (ms) 1769.0 46.2 1480.1 412.9 6617.1 450.3 1107.9 −

Throughput (MTEPS) 4949 1665 3652 3322 3395 4852 2619 3493

Fig. 11. Reduction factor of updates written into DRAM due to update combining and filtering

Fig. 12. Reduction factor of non-sequential DRAM accesses due to data layout optimization

7.5.3 Impact of Data Layout Optimization

Lastly, we study the impact of our data layout optimization
(Section 4.4). The baseline design for the comparison em-
ploys the partition skipping and communication reduction
optimizations, but uses the data layout described in Section
2.2 which does not have our data layout optimization.
Figure 12 shows the reduction factor of non-sequential
DRAM accesses, which is computed as the number of
non-sequential DRAM accesses performed by the baseline
design divided by the number of non-sequential DRAM
accesses performed by the optimized design. We observe

that this optimization reduces the number of non-sequential
DRAM accesses by 2.1× to 12.2× for SpMV, 2.4× to 15.3×
for PR, 2.4× to 8.2× for SSSP, and 2.2× to 12.2× for WCC,
respectively. As a result, the optimized designs can sustain a
high DRAM bandwidth of 36.7 GB/s to 46.8 GB/s, while the
baseline designs can only sustain 10.3 GB/s to 28.5 GB/s.

7.6 Comparison with State-of-the-art
7.6.1 Comparison with Multi-core designs
We first compare the performance of our design with several
highly-optimized multi-core implementations, including X-
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TABLE 5
Comparison with Multi-core Implementations

Algorithm Dataset Approach
Exec. time

Speedup
(ms)

SpMV LJournal
[6] 740

20.5×
This paper 36

PR

LJournal

[6] 580 1.0×
[9] 100 5.8×
[11] 45 12.9×

This paper 33 17.6×

Twitter

[8] 20950 1.0×
[9] 2050 10.2×
[11] 1800 11.6×

This paper 590 35.5×

SSSP
CAroad

[11] 5500
5.0×

This paper 1113

RMat24
[11] 1900

2.1×
This paper 921

WCC
LJournal

[6] 7220
17.5×

This paper 413

Twitter
[8] 251000

37.9×
This paper 6617

Stream [6], NXgraph [9], GraphX [8], and GraphMat [11].
X-Stream [6] runs on a 32-core AMD Opteron 6272 pro-
cessor with 25 GB/s DRAM bandwidth. NXgraph [9] runs
on a hexa-core Intel i7 processor with 160 GB/s DRAM
bandwidth. GraphX [8] runs on a cluster consisting of 16
computing nodes; each node has 8 cores. GraphMat [11]
runs on a 24-core Intel Xeon E5-2697 processor with 80 GB/s
DRAM bandwidth. Since these works do not report the
throughput performance, we conduct the comparison based
on the execution time performance. Table 5 summarizes
the results of the comparison using the same datasets. Our
FPGA designs achieve up to 20.5×, 35.5×, 5.0× and 37.9×
speedup for SpMV, PR, SSSP, and WCC, respectively. In
addition, the power consumption of our FPGA designs (<20
Watt) are much lower than the multi-core platforms (typi-
cally >80 Watt). Hence, from energy-efficiency perspective
(i.e., performance-per-watt), our framework achieves even
larger improvement.

7.6.2 Comparison with GPU Designs
We further compare our FPGA framework with three state-
of-the-art GPU-based graph processing frameworks, includ-
ing nvGRAPH [13], CuSha [42], and Gunrock [12]. The
results of the comparison are shown in Table 6. It can be
observed that our FPGA-based designs achieve comparative
performance with the GPU-based designs. Note that the
external memory bandwidth of the GPU platforms (288
GB/s) is 4.8× higher than our target platform (60 GB/s). If
we scale these GPU results by assuming a peak bandwidth
of only 60 GB/s, HitGraph will outperform the GPU designs
by 2.2× to 7.2×. In addition, the thermal design power
of the GPU platforms is over 20× higher than the power
consumption of our FPGA-based accelerators.

7.6.3 Comparison with FPGA Designs
Lastly, we compare our proposed framework with two state-
of-the-art FPGA frameworks for accelerating general graph
algorithms, including GraphOps [25] and ForeGraph [23].
GraphOps [25] is a hardware library to construct FPGA-
based accelerators for graph analytics. Its target platform
is a CPU-FPGA heterogeneous platform consisting of a 12-
core Intel Xeon X5650 host processor and a Xilinx Virtex-6
FPGA. The host processor operates at 2.66 GHz and has
192Mb cache; its peak DRAM bandwidth is 64 GB/s. The
FPGA has 475k logic cells and 37Mb of BRAMs; its peak
DRAM bandwidth is 38.4 GB/s. Table 7 summarizes the
results of the comparison with GraphOps, showing that our
framework improves the throughput performance by up to
27.6× and 50.7× for SpMV and PR, respectively.

ForeGraph [23] is a graph processing framework based
on four Virtex UltraScale FPGAs that are interconnected
in the Microsoft Catapult fashion [27]. Each FPGA device
has 1,074K LUTs, 2,148K registers, 133Mb of BRAMs, and
peak DRAM bandwidth of 19.2 GB/s. Table 8 shows the
results of the comparison with ForeGraph. Our framework
achieves 1.3× and 2.0× higher throughput for PR and WCC,
respectively. Note that ForeGraph uses four FPGAs while
our framework uses a single FPGA.

8 RELATED WORK

8.1 Software Graph Processing Frameworks
Many software-based graph processing frameworks have
been developed, such as GraphChi [5], X-Stream [6], NX-
graph [9], and GraphMat [11] on multi-core, and CuSha [42],
Gunrock [12], nvGRAPH [13], Medusa [50], and Graphie
[44] on GPU. These frameworks provide high-level pro-
gramming models to allow programmers to easily perform
graph analytics. They also focus on optimizing memory per-
formance and exploiting massive thread-level parallelism.
GraphChi [5] is the first graph processing framework devel-
oped based on a single multi-core processor. It stores all the
graph data in solid-state drive (SSD) and develops a parallel
sliding-window method to reduce the amount of random
accesses to the SSD. X-Stream [6] is designed based on the
edge-centric paradigm. It proposes a streaming partition
approach to maximize the sequential accesses to the graph
data stored in disk. GraphMat [11] maps vertex-centric com-
putations to high-performance sparse matrix operations.
NXgraph [9] develops a fine-grained partitioning approach
to break graphs into 1D-partitioned vertex blocks and 2D-
partitioned edge blocks. The objective is to enable on-the-
fly vertex updates and reduce the I/O amount. CuSha
[42] focuses on addressing the limitations of uncoalesced
global memory accesses for GPU-based graph processing.
nvGraph [13] is a graph analytics library developed by
NVIDIA based on Compute Unified Device Architecture
(CUDA). Medusa [50] develops six programming APIs,
which allow developers to define their own data structures
and graph kernels. Gunrock [12] proposes a data-centric
processing abstraction which leverages GPU to accelerate
the frontier computations (i.e., the computations of active
vertices). Graphie [44] implements the asynchronous graph-
traversal model on a single GPU to reduce the data commu-
nication.
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TABLE 6
Comparison with GPU-based Implementations

Algor. Dataset Approach Platform
Bandwidth # of cores/ Frequency Power Exec. Time

(GB/s) pipelines (MHz) (Watt) (ms)

PR
RMat21

[12] NIVIDIA Tesla K40c 288 2880 745 245.0 80.4
This paper Xilinx UltraScale+ 60 32 200 10.7 53.4

Twitter
[13] NIVIDIA Tesla M40 288 3072 1140 250.0 850.0

This paper Xilinx UltraScale+ 60 32 200 10.7 590.1

SSSP LJournal
[42] NIVIDIA GeForce GTX780 288 2304 863 250.0 346.0

This paper Xilinx UltraScale+ 60 32 200 8.2 592.1

WCC
RMat21

[12] NIVIDIA Tesla K40c 288 2880 745 245.0 428.9
This paper Xilinx UltraScale+ 60 32 200 7.5 450.3

LJournal
[42] NIVIDIA GeForce GTX780 288 2304 863 250.0 190.0

This paper Xilinx UltraScale+ 60 32 200 7.5 412.9

TABLE 7
Comparison with GraphOps

Algorithm Dataset Approach
Throughput

Improv.
(MTEPS)

SpMV

BKstan
[25] 162

14.7×
This paper 2361

WKtalk
[25] 37

27.6×
This paper 1004

RMat24
[25] 165

11.1×
This paper 1832

PR

BKstan
[25] 190

13.3×
This paper 2533

WKtalk
[25] 37

29.8×
This paper 1116

RMat24
[25] 37

50.7×
This paper 1875

TABLE 8
Comparison with ForeGraph

Algorithm Dataset Approach
Throughput

Improv.
(MTEPS)

PR Twitter
[23] 1856

1.3×
This paper 2487

WCC Twitter
[23] 1727

2.0×
This paper 3395

8.2 FPGA-based Graph Processing Accelerators

Using FPGA to accelerate graph processing has demon-
strated great success. In [34], [40], [41], Breadth First Search
(BFS) is accelerated based on FPGA-HMC platforms. The
designs achieve a high throughput of up to 45.8 GTEPS
and power efficiency of up to 1.85 GTEPS/Watt for scale-
free graphs. In [29], G. Lei et al. accelerate the Dijkstra
algorithm for SSSP using FPGA. Compared with a CPU
implementation running on the AMD Opteron 6376 proces-

sor, the FPGA accelerator achieves up to 5× speedup. In
[48], an FPGA accelerator for SpMV is proposed based on a
specialized CISR encoding approach. The design achieves
one third of the throughput performance of a GTX 580
GPU implementation with 9× lower memory bandwidth
and 7× less energy. In [26], B. Betkaoui et al. accelerate
the all-pairs shortest-paths algorithm using a CPU-FPGA
heterogeneous platform; the design achieves 10× speedup
over a quad-core CPU implementation and 5× speedup
over a AMD Cypress GPU implementation, respectively.
However, these FPGA accelerators [29], [34], [35], [40], [41],
[48] are algorithm-specific and cannot be used to accelerate
other graph algorithms.

GraphGen [20] is a vertex-centric framework to accel-
erate general graph applications. It partitions the input
graph into subgraphs and then processes one subgraph
at a time. It also provides a compiler for automatic HDL
code generation. However, GraphGen requires both the
vertex data and the edge data of each subgraph to fit
in the on-chip memory of FPGA. For large input graphs,
this requirement can lead to a large number of subgraphs
and thus significantly increase the scheduling complexity.
GraphOps [25] is an FPGA-based dataflow library for graph
processing. It provides several commonly used building
blocks for graph processing, such as reading the attributes
of all the neighbors of a vertex. The target platform of
GraphOps is a CPU-FPGA heterogeneous architecture, in
which the FPGA is used to accelerate edge traversals and the
CPU is responsible for updating vertex attributes, respec-
tively. However, GraphOps is based on the vertex-centric
paradigm and thus suffers random memory accesses to the
edges. As a result, GraphOps sustains only 18.3% of the ex-
ternal memory bandwidth. ForeGraph [23] is a multi-FPGA-
based graph processing framework. It uses the 2-D graph
partitioning technique of [10] to partition the input graph
into 2-D edge blocks and uses multiple FPGAs to process
distinct edge blocks in parallel. However, the performance
can be constrained by the communication overhead among
the FPGAs.
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9 CONCLUSION AND FUTURE WORK

In this paper, we presented an FPGA framework to accel-
erate general graph algorithms based on the edge-centric
paradigm. We partitioned the graph to enable efficient
on-chip buffering of vertex data and increase the paral-
lelism. We further optimized the data layout to reduce
non-sequential external memory accesses and data com-
munication. We also developed a design automation tool
to facilitate the generation of the Verilog code using
our framework. We accelerated four fundamental graph
algorithms, including SpMV, PR, SSSP, and WCC, to study
the performance of our framework. Experimental results
showed that our framework achieved up to 37.9× speedup
compared with state-of-the-art multi-core designs, and up
to 50.7× throughput improvement compared with state-of-
the-art FPGA designs.

The optimizations proposed in this paper are also appli-
cable to multi-core and GPU implementations to improve
their performance. Firstly, the graph partitioning approach
can be performed based on the cache size of multi-core and
GPU platforms to improve the cache performance. Secondly,
the computations can be parallelized by employing parallel
thread blocks (i.e., groups of threads) such that distinct
thread blocks concurrently process distinct partitions and
distinct threads in each thread block process distinct edges
or updates in parallel. Thirdly, our optimized data layout
can be directly used to improve the memory performance.
Fourthly, the update combining scheme can be implemented
using parallel scan operation on the multi-core and GPU
platforms to reduce the data communication.

HitGraph has supported the four algorithms studied in
this paper. In the future, we plan to extend it to support
more algorithms. Note that to support a new algorithm,
only the functions of Process_edge and Apply_update
need to be defined; while all the other design components is
applicable to general algorithms. We will maintain the up-
dates of HitGraph at http://www-scf.usc.edu/∼shijiezh/
HitGraph/. We are also interested in integrating HitGraph
with emerging memory technologies such as 3D stacked
high-bandwidth memory 2 (HBM2) [51]. This memory tech-
nology can provide 256 GB/s bandwidth to enable Hit-
Graph to employ 4× more PEs (i.e., 16 PEs) to saturate
the memory bandwidth. We anticipate that HitGraph will
achieve 4× higher throughput in this scenario.
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