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Abstract—Multi-antenna radio systems exploit spatial
inhomogeneity to share wireless resources. Blind source
separation is a powerful capability that can reduce many
received signals into a salient estimate of independent
transmitters. Performing blind source separation in the analog,
physical layer promises significant performance improvements
but presents a problem in that not all received signals can be
observed at the same time. We propose a novel algorithm that
synthesizes univariate statistics to reconstruct the multivariate
statistical properties required for blind source separation.
Using analog photonic hardware, we demonstrate experimental
techniques for obtaining the required information while
remaining true to realistic constraints on observability. Finally,
we provide an example application for using the physical layer
to preserve privacy in spectrum monitoring operations. The
concepts and techniques developed lay a groundwork for further
research in blind multivariate analysis in the high-performance
analog domain.

I. INTRODUCTION

The accelerating demands on wireless resources are pushing
radio operations towards new regimes of performance and new
modalidies of access [1], [2]. Multi-antenna systems exploit
spatial inhomogeneity in the electromagnetic field, promising
a new degree of freedom with which to share wireless
resources [3]. Signals received by different antennas are
typically highly correlated. These redundant, high-dimensional
signals are projected into a salient, few-dimensional
representation. Weighted addition (i.e. vector dot product) is
the elemental multi-input, single-output function underlying
dimensionality reduction. A key challenge is determining the
weight vectors that produce a salient output.

Principal component analysis (PCA) and independent
component analysis (ICA) are eminent strategies for reducing
correlated multivariate signals to more salient signals [4]. Each
output, called a principal/independent component (PC/IC), is
a linear projection of the original inputs onto a corresponding
principal/independent component vector (PC/IC vector). PCA
yields decorrelated output signals, sorted in descending order
of statistical relevance. The highest PCs can be discarded
to reduce overall dimensionality while losing the minimum
salient overall information.

ICA is more useful in the RF context because it
separates independent signals corresponding to multiple source
transmitters that have been mixed over a wireless channel.
The problem of blind source separation (BSS) is tremendously
useful and widely applicable in radio and has been studied
extensively using digital signal processing [5]. ICA employs
the central limit theorem, which states that the statistical

distribution of multiple independent random variables is
always more Gaussian that those of the originals. Gaussianity
is measured by the 4th-order moment (a.k.a. kurtosis),
which is 3 for an ideal Gaussian. The ICs are thus the
vectors that maximize the relative kurtosis. Normally, radio
sources are separated based on a priori knowledge of their
characteristics. For example, sources of different and known
center frequencies can be separated by a filter, and sources
of differnt and known arrival angles can be separated by a
phased-array antenna. In constrast, BSS assumes no a priori
knowledge about the sources besides independence. In this
paper, we constrain study to an instantaneous mixing channel,
noting that approaches to multipath ICA could be explored in
future work [6].

In the blind source separation problem, received signals,
~x, are an unknown mixture, A, of unknown source signals, ~s:
~x(t) = A ·~s(t). On the receiver front-end, there is a projection
of these signals along the weight vector, ~w to produce the
output m: m(t) = ~w · ~x(t). The goal of BSS is to find the
independent component vectors, ~wIC,n, such that this output
is an estimate of the original sources:

ŝn(t) = ~wIC,n · ~x(t) ∀ n ∈ {1, . . . , N} (1)

where ŝn is the optimal estimate of the nth original source, and
subscripts (IC, n) correspond to the independent components
of the received signals.

In state-of-the-art digital signal processing (DSP), the
IC vectors are estimated by examining the covariance and
cokurtosis matrices of the received signals. Each antenna
requires its own ADC, even though most of this digitized
data is then discarded (Fig. 1a). ADC is a dominant power
consumer because it’s rate scales in proportion to the number
of antennas and the sampling frequency [7], [8]. Performing
dimensionality reduction in the analog domain can circumvent
the ADC performance bottleneck. A single ADC digitizes
only the demixed signal of interest. Hybrid analog-digital
beamformers employing analog weighted addition have been
explored [9]–[11] and were reviewed in Ref. [12]. Fig. 1b
shows a photonic implementation of analog weighted addition.
In this paper, we use RF photonic hardware to demonstrate
key principles experimentally; however, the concepts and
algorithms introduced here are applicable to other analog
circuitry.

A. Hybrid channel estimation
Simultaneous samples of the received signals are typically

required to perform PCA and ICA [13]; however, the
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Fig. 1. Comparison of multi-antenna radio front-ends followed by
dimensionality reduction. a) Dimensionality reduction with electronic DSP
in which each antenna requires an ADC. b) Dimensionality reduction in the
analog domain (a.k.a physical layer) in which only one ADC is required.
A photonic implementation of weighted addition is pictured, consisting of
electrooptic modulation, WDM filtering, and photodetection.

performance advantages of analog dimensionality reduction
stem directly from not digitizing and observing all inputs.
Ghauch et al. [14] offered a potent statement of the problem:
“Channel estimation and precoding in hybrid analog-digital
millimeter-wave (mmWave) MIMO systems is a fundamental
problem that has yet to be addressed, before any of the
promised gains can be harnessed.” Recent strides have
been made to address this problem in cooperative scenarios
with bidirectional communication, typically referred to as
MIMO [14]–[18]. Many of these approaches use training
signals sent during an estimation phase (exception by Dahl et
al. [18]) and/or a channel sparsity assumption (exception by
Zanjani et al. [17]). Iltis et al. [19] studied a non-cooperative
scenario using a game theoretic approach, which must assume
that all transceivers abide by a common protocol.

II. THEORY

In contrast to prior work, we study the BSS scenario in
which no a priori assumptions are made about transmitters’
signal format, behavior, or cooperation. We propose an
algorithm for identifying the ICs of an unknown mixture
based only on the observations of a single projected output.
The strategy is to reconstruct the multivariate statistics by
synthesizing univariate statistics of the projected signal over
multiple projection vectors. The significance of this algorithm
is its compatibility with the constraints of analog and hybrid
multi-antenna front-ends.

A. Projected moment information

At a given time, only one projection is observed digititally.
When the projection vector is an IC, the output is an
estimate of a source. The challenge lies in finding the ICs. In
DSP, all received inputs are sampled at the same time. The
joint distribution of these samples is sufficicent to recover
the ICs. In the analog case, one could imagine scanning
through the received signals and storing their waveforms, as
in [20]–[22]; however, waveform content changes upon each
successive measurement. Since multivariate samples are not
synchronized, the joint distribution cannot be observed.

Fig. 2. Concept of building multivariate statistics based on observable
univariate statistics for different covariance parameters, alpha. (Top) Black
points: synchronously sampled 2-channel data plotted against one another.
Synchronous samples are observed by conventional algorithms, but not
observable after physcical layer dimensionality reduction. Black dashed
curves: variance of the projected signal

〈
m2

〉
t

vs. projection angle θ. Colored
lines: measurements of the projected signal variance for 5 angles. (Bottom)
Histograms of the projected signal, m = ~w · ~x, at the corresponding angles.

Instead of attempting to recover waveforms, our approach
uses measurements of univariate statistical properties
described by moments: the expectation value or time-average
of the variable raised to a power. The bth moment of the output
is denoted as

〈
mb
〉
t
, where 〈·〉t is a time average. Moments

are time-invariant when the channel mixing is stationary. In
an RF context, stationary times are on timescales related
to environmental and channel fluctuations, which are orders
of magnitude slower than the signals themselves. Since no
attempt to reconstruct signal waveforms is required, the
additional sampling needed to measure moments can be
deeply below the Nyquist rate.

The 2nd-order moment can be parameterized by weight
vector angle using unit normal weight vectors. In this case, the
moment vs. angle relationship follows a model of the form:

~w(θ) = [cos θ, sin θ] (2)〈
m2
〉
t
(θ) = q1 + q2 cos [2(θ − θ0)] (3)

where q1, q2, and θ0 are time-invariant parameters. Eq. (3),
referred to as a two-petal epitrochoid, has a clear relation to the
principal components. The magnitude of the first component
is q1 + q2, and that of the second is q1 − q2. The first PC
vector angle is θ0, and the second is orthogonal. The q and
θ parameters describe all of the covariance properties of the
joint distribution.

This model in polar coordinates is shown in Fig. 2 over a
range of correlation values, alpha. As the correlation between
x1 and x2 increases, the distribution becomes more stretched
and narrow, and the angular moment model begins to show two
petals. The relationship between the joint sample distribution
and the epitrochoid are clear; however, the joint samples
require simultaneous measurement of all channels. Given our
constraints, the joint samples are unobservable, while the
epitrochoid is observable.
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B. Successive Moment Fitting Algorithm

The algorithm proceeds by reconfiguring an analog weight
bank to project the inputs onto a chosen succession of
projection angles and then measuring the projection moment.
These measurements are represented in Fig. 2 (top) as colored
vectors. For different correlation parameters, the histogram of
the projected signal (bottom) changes in different ways vs.
projection angle. These variance measurements can be fit with
the model of Eq. (3) by breaking the fitting problem down
into a linear pseudo-inverse problem and a convex nonlinear
optimization problem. For multiple measurements, Eq. (3)
becomes a linear system of the form〈m2

〉
t
(θ1)

· · ·〈
m2
〉
t
(θK)

 =

 1 cos [2(θ1 − θ0)]
· · · · · ·
1 cos [2(θK − θ0)]

 · [q1
q2

]
(4)

where K is the number of measurements. A guess of θ0
is posited, and then the q vector can be found quickly
using the pseudo-inverse, resulting in a fitting error. The
Gauss/Legendre pseudo-inverse is used for an efficient solution
for fitting noisy measurements with optimal error in systems
of this formulation. The fitting error is mimized over θ0
using gradient descent, straightforward in this case because the
model is convex in θ0 and θ0 bounded on the [0, π) interval.

Normalizing the principal components results in a new
set of whitened signals, whose variance is equal over all
projection angles in the whitened basis. The whitening process
is mathematically described by a scaling transform: UΣU−1,
where U is a rotation matrix by angle θ0, and Σ is a diagonal
scaling matrix whose first element is 1 and last element is
(q1 + q2)/(q1 − q2).

After whitening, the independent components are identified
using a similar moment fitting method. We parameterize by a
new angle, φ, in the whitened basis. The 4th-order moments
then take the form of a 4-petal epitrochoid.

~w = UΣU−1 [cosφ, sinφ] (5)〈
m4
〉
t
(φ) = p1 + p2 cos [2(φ− φ0)] (6)

. . .+ p3 cos [4(φ− φ0)] (7)

φ0 is determined by the Gauss/Legendre and gradient descent
method described above. Finally, the transformations are
composed as Â−1 whose row vectors are the weights that
demix the source signals.

Â−1 = VUΣU−1 =

[
~wIC,1

~wIC,2

]
(8)

The successive moment fitting algorithm is verified though
simulation in Fig. 3. In each case, the sources occupy the
same frequency bands, so they cannot be filtered. The columns
represent the steps of the algorithm: (i) received basis, (ii)
whitened basis, (iii) separated basis. The 4 element mixing
matrices are chosen randomly. In (i), the orange curve are
observable measurements of the variance vs. projection angle:〈
m2
〉
t
(θ). Each row represents a different type of kurtosis in

the signals. Gaussian distributions have a kurtosis of 3, shown
as a black dashed circle and used as a baseline. Uniform
distributions are sub-Gaussian, meaning they have kurtosis

Fig. 3. Simulations of the successive moment fitting algorithm with different
source statistics. Row a) uniform/uniform; Row b) uniform/Gaussian; Row
c) Gaussian/Gaussian is not separable; Row d) AM/Gaussian. In (i-iii), blue
dots: synchronous samples (unobservable) for reference. Column (i) are the
signals received at the antennas. Orange curve: 2nd-order moments (variance)
vs. projection angle. Column (ii) are the same signals plotted in the whitening
basis. Orange curve: 4th-order moments (kurtosis) vs. projection angle. Black
dashed circle: Gaussian kurtosis of 3. Column (iii) are the signals in the
independent component basis. In this basis, projecting along the x or y axes
gives the estimates of the original sources.

less than 3. The distribution of an amplitude modulated
(AM) signal is super-Gaussian. In (ii), the orange curves are
fourth-order moment measurements made in the transformed
basis:

〈
m4
〉
t
(φ). In (iii), the distributions appear orthonormal,

indicating success of the algorithm. Each signal can be
recovered by projecting along [0, 1] or [1, 0] in this basis.

III. DEMONSTRATION

To demonstrate proof-of-concept, we use RF photonic
weighted addition setup, although results also apply to RF
electronic weighted addition. RF photonics has attracted
recent interest because it can provide advantages to
bandwidth, dynamic range, tunability, and power use. In
an RF photonic processor, incoming signals are modulated
onto an optical carrier wave, processed in some way,
detected, and, only then, digitized. Integrated RF photonics
has offered performance improvements for programmable
filtering [23], [24], time delays [25], [26], and waveform
generation [27], [28]. Photonic weighted addition is
implemented using power-modulated, mutually incoherent
optical carriers impinging on a photodetector. Microring
(MRR) weight banks [29] bring photonic weighted addition
to silicon photonics. They are capable of applying weights
that are balanced [30], continuous [31], and independent [32].

A. Methods

We fabricate silicon waveguides (WGs) with 220nm
thickness and 500nm width on top of a buried oxide layer.
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Fig. 4. Demonstration of recovering univariate statistics while obscuring
waveforms using photonic hardware. a) Experimental setup showing signal
generation, WDM weighting, and measurement (Oscope). Each subsystem is
controlled by computer (CPU). The Oscope is triggered by either the pattern
sync (PATT. SYNC) of the signal generator or by a free-running clock. b-d)
Oscope views over both synchronization states. The effective sample rate is
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async state (right column). Signal histograms (red) are identical even though
waveform information is lost. Three weight vectors are chosen to obtain source
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Ti/Au tuning contacts were then deposited on top of an oxide
passivation layer. The device consists of two bus waveguides
and two MRRs in a parallel add/drop configuration, each with
a thermal tuning element (Fig. 4a). Fibers are coupled to
chip using focusing subwavelength grating couplers [33]. The
multi-wavelength (multi-λ) signal generator modulates a single
RF waveform onto two wavelengths with a relative delay
offset of 60ns. Modulating waveforms have 900MHz center
frequency with bitrate of 50 Mbps (limited by instruments).
The signal generator produces a pattern synchronization
(PATT. SYNC) trigger that is time-locked to the waveform,
which repeats every 2.56µs (107 bit periods). These outputs
are wavelength division multiplexed (WDM/MUX) and sent
to the MRR weight bank. A computer (CPU) controls the
signal pattern and applied photonic weights, also observing
the samples taken by the Oscope.

B. Constraining observability

We introduce an experimental method for emulating
blindness, constraining what can be observed to correspond
to a realistic scenario. In a field (i.e. real life) scenario,
waveforms are non-periodic. The only way to obtain an
accurate digital waveform is to take samples in a real-time
order at a real-time rate greater than the Nyquist frequency.
In a laboratory setting, periodic waveforms are often used so
that samples can be taken over multiple periods at different

phases of the repeating waveform. In this way, a “sampling
scope” can synthesize a digital waveform equivalent to that
which would be obtained by a much faster “real-time scope.”
We refer to that rate as the synthetic sampling rate.

Examples of not sufficiently realistic strategies are
found in past work on RF photonic PCA with fiber
components [20]–[22]. To ascertain the original inputs, these
works scanned through identity projections of the form
[1, 0, 0, . . .], thereby making the unrealistic assumption that
inputs are synchronized and repeating with a period known
precisely to the receiver performing PCA.

To experimentally evaluate a blind source separation
algorithm, the input and converged signals of course must
be observed. At the same time however, we must ensure
that the artificial synchronization between signal generator
and sampling scope is not exploited by the algorithm. We
accomplish these goals on the hardware level by toggling
the triggering state of a sampling oscilliscope, a Tektronix
DSA8300. The trigger switching setup is shown in the diagram
in Fig. 4a. In the synchronous state, the pattern sync output
triggers the scope, allowing it to emulate a super-Nyquist
real-time ADC (here 14GS/s). In the asynchronous state, a free
running clock triggers the scope, creating a situation equivalent
to deeply sub-Nyquist real-time ADC (here, 2×10−4GS/s). In
the asynchronous state, the scope loses the ability to synthesize
an accurate digital waveform.

C. Results

Fig. 4 illustrates the difference in observability caused
by the trigger switching. In moving from synchronous to
asynchronous sampling, waveform information is lost, but
voltage histograms (red) are maintained. This illustrates
that deeply sub-Nyquist, asynchronous sampling provides
sufficient statistical information for successive subspace
moment algorithms. The observability of stationary statistics
but not waveforms enforces a correspondence between the
laboratory and field scenarios on a hardware level. In the third
row, a weight vector is applied to represent a mixture of the
two inputs. We observe that the mixtures of two independent
test signals is more Gaussian than either constituent, and that
this is observable without waveform knowledge.

IV. APPLICATION TO PRIVACY IN SPECTRUM MONITORING

Cognitive radio or opportunistic spectrum sharing promises
to radically increase dynamic spectral efficiency in distributed,
non-cooperative environments [34]. Opportunistic access
requires advanced hardware and signal processing techniques
that are more likely to malfunction or fail to meet compliance
by disrupting the operation of other users [35]. Spectrum
monitoring, analysis, and enforcement operations will become
an indispensable safeguard against a chaotic descent into a new
“tragedy of the commons” [36]. At the same time, spectrum
monitoring represents a privacy threat to compliant users [37].
The physical layer provides a strong protection against the
incessant cyber threats permeating the digital domain.

A common goal of spectrum monitoring operations is to
detect the presence of non-compliance that interferes with
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priority spectrum access, such as that between a licensed
cellular base station and customer. An example scenario is
depicted in Fig. 5a, which includes a licensed user (blue),
two compliant opportunistic users (orange, purple), and one
non-compliant opportunistic user (red). Fig. 5b-c represent
the time-resolved spectrum as seen at the base station.
Detection alone does not provide a mitigation solution. Some
form of actionable evidence must be gathered to prove the
non-compliance of the identified transmitter, thereby providing
justification for enforcement actions.

Monitoring opportunistic users is challenging due to
the unpredictability and transience of time-frequency
transmission blocks, compounded with the presence of
multiple simultaneous transmitters [38]. Simply recording
the entire spectrum can detect but not identify sources of
interference. This case of failure to identify is illustrated
in Fig. 5b. Attributing transmission blocks to individual
users requires advanced analysis that cannot be performed in
real-time. Instead, this analysis can be performed offline after
recording all spectral data. The offline approach introduces
a serious privacy risk to the content and/or metadata of all
users [39]. This situation of failure to protect is pictured
in Fig. 5c. As soon as information is recorded to disk,
its security is considered compromised [40]–[42]. Even if
the monitoring operator is considered benign, it may be
unknowingly harboring malware that can then access the
content of all spectrum users [43].

BSS in the physical layer can preserve widespread privacy
by isolating non-compliant transmissions in the analog
domain, thereby preventing compliant user signals from
reaching the disk, as shown in Fig. 5c. The privacy of
compliant users (orange and purple) is strongly preserved,

while the monitoring operation can gather sufficient evidence
on the non-compliant user (red). The privacy threat to the
non-compliant user should be considered acceptable because
it is the minimum application-specific information required to
complete the enforcement task.

V. DISCUSSION

Further work on the algorithm could include studies of
convergence and extension to arbitrary dimensions. It is
expected that there will be some threshold of signal-to-noise
ratio at which point the algorithm fails to converge. The
concept of physical layer BSS could extend to more
dimensions. Separating mixtures of N channels would require
N antennas, at least N measurements, and an N dimensional
generalization of the model. An important question will be
how to efficiently perform optimization of the nonlinear parts
of the fitting algorithm. Above, we found this optimization to
be convex and bounded. It is probable that gradient descent
will still succeed in higher dimensions.

This paper calls for further work in experimental
demonstration. For experimental PCA, a signal generator
capable of producing correlated signals will be needed, as well
as a weight bank that can set weights accurately given desired
projection angles. For experimental ICA, the generated signals
must come from independent sources and then mixed in a
hardware mixing network or channel emulator. Furthermore,
the various algorithm enhancements discussed above should
be experimentally studied.

VI. CONCLUSION

While offering transformative performance characteristics,
the analog multi-input front-end introduces a barrier to
finding the weight vectors of interest. We introduced a novel
compatible algorithm for using univariate subspace statistics to
reconstruct the multivariate statistical properties required for
PCA, ICA, and BSS. This approach makes minimal a priori
assumptions about the source signals and could be extended
to more complex scenarios. We also demonstrated a method
for emulating realistic receiver blindness in experiment,
indispensible in further experimental work in this area. Blind
source separation is widely applicable to RF scenarios where
source signals are mixed over the air. As an example, we
outlined an application in spectrum monitoring in which
compliant user metadata is protected in the physical layer.
BSS in the physical layer offers substantial advantages for
performance and new techniques for preserving privacy in
multi-antenna systems.
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