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Abstract:  Digital electronics are becoming the limiting factor in signal processing areas
such as radio. Photonic integration offers new potential for moderate-scale photonic systems.
Neuromorphic Photonics bridges integrated photonic physics and neural models of informa-
tion processing.
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The success of digital electronics has created a data-hungry consumer society, which in turn, reinvested in more
capable, faster and cheaper machines. For decades, the transistor count of CPUs doubled every two years, a trend
which became known as Moore’s law. Microprocessor clock rates also increased exponentially, but current leakage in
nanometric nodes became prevalent, causing a halt to this growth at about 4 GHz [1]. At the same time, the past decade
has seen the breakdown of Dennard scaling [2]—the power density of microelectronic chips no longer stays constant as
they get denser, i.e. smaller transistors do not consume less power. The recent shift to multi-core scaling alleviated these
constraints, but the breakdown of Dennard scaling has limited the number of cores than can simultaneously be powered
on with a fixed power budget and heat extraction rate—giving rise to the dark silicon phenomenon [3]. Projections
for the 8 nm node indicate that over 50% of the chip will be dark [3]. Fundamentally, these issues can be traced to
two primary physical bottlenecks: the bandwidth limitations of metal interconnects, and the energy consumption—and
subsequently, heat generation of digital switching [4]. In summary, operating speed and power efficiency of CPUs have
reached physical barriers that cannot be addressed through Dennard scaling. Consequently, this has opened up new
opportunities in unconventional information processing architectures, which include an array of different processing
modalities [5].

Respecting power budgets is now a top priority for digital processors. Data centers, Wi-Fi routers and Internet traffic
represent a tremendous electric energy consumption. Current trends indicate a shift of electricity usage from consumer
device use to network and data centers [6, 7]. In the worst case scenario, at the rate at which societal consumption
and production of data is growing, it is predicted that fixed-access networks (Wi-Fi and LAN) and data centers will
consume up to 33% of world’s energy use [7].

To counter that trend, power-aware large-scale integration techniques in photonics are just emerging, being pushed
forward by data communication applications and a market need for increased information flow between processors,
both on the macro and micro scale [6, 8]. This has led to an explosion in photonic integrated circuit (PICs), which are
already finding their way into fast ethernet switches for servers and supercomputers, and will likely emerge in more
traditional processor architectures as electronic interconnects fail to keep up with data volume. The average energy
efficiency of the world’s fastest supercomputers lies in the order of 1nJ/FLOP [9], where FLOP stands for floating-
point operation, a standard computing unit. In green data centers and high-performance computers, there is an urgent
need for unconventional, special-purpose co-processors with efficiencies beyond 1 nJ/FLOP, with a caveat: these co-
processors must operate at the same throughput handled by the high-speed digital and analog circuits it interfaces with,
so they do not become a bottleneck.

This efficiency level is not fundamentally impossible. In fact, the human brain is estimated to being able to com-
pute an amazing 102° MAC /s using only 20 W of power [10] (MAC: multiply and accumulate operation, similar to
FLOP but more appropriate for digital signal processors). It does this with 10'! neurons with spike firing rate of
~1 Hz but with a large number of interconnects per neuron (10*), highlighting the importance of distributed process-
ing. The calculated computational efficiency for the brain is therefore 9 orders of magnitude beyond that of current
supercomputers (< aJ/MAC). Neuromorphic computing offers hope to building large-scale “bio-inspired” hardware
for specialized processing while attempting computational efficiencies toward those of a human brain.

We will review our recent progress in neuromorphic photonics research [11-16], focusing especially on integrated
photonic devices. An elegant parallel between neural networks and optoelectronic devices such as excitable lasers
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can be established and exploited for processing. We will introduce the concept of a photonic neuron, followed by a
discussion on its feasibility. Finally, we will also present a scalable neurmorphic networking architecture that efficiently
channelizes the spectrum of an integrated waveguide.

Photonics has revolutionized information transmission (communication and interconnects), while electronics, in
parallel, has dominated information transformation (computation). This leads naturally to the following question: how
can we unify the advantages of the two as effectively as possible? [17]. CMOS gates only draw energy from the
rail when and where called upon; however, the energy required to driving an interconnect from one gate to the next
dominates CMOS circuit energy use. Relaying a signal from gate to gate, especially using a clocked scheme, induces
penalties in latency and bandwidth compared to an optical waveguide passively carrying multiplexed signals.

This suggests that starting up a new architecture from a photonic interconnection fabric supporting nonlinear opto-
electronic devices can be uniquely advantageous in terms of energy efficiency, bandwidth, and latency, sidestepping
many of the fundamental tradeoffs in digital and analog electronics. It may be one of the few practical ways to achieve
ultrafast, complex on-chip processing without consuming impractical amounts of power [18].

Complex photonic systems have been largely unex- 108 —_—
plored due to the absence of a robust photonic integration 107 (futuretrend
industry. Recently, however, the landscape for manufac- - Newromorphic
turable photonic chips has been changing rapidly and
now promises to achieve economies of scale previously
enjoyed solely by microelectronics. In particular, a new
photonic manufacturing hybrid platform that combines
in the same chip both active (e.g. lasers and detectors),
and passive elements (e.g. waveguides, resonators, mod-
ulators) is emerging [20]. A neuromorphic photonic ap-
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virtualizing interconnects [19] (cf. Fig. 1). Fig. 1: Speed and efficiency metrics that are accessible

Key criteria for nonlinear elements to enable a scal- by various neuromorphic hardware platforms. On the top-
able computing platform include [17,25-27]: threshold-  right: the photonic neuron platforms studied in Ref. [18].
ing, fan-in, and cascadability. Past approaches to opti- Hybrid III-V/Si stands for III-V/Silicon hybrid platform
cal computing have met challenges realizing these crite-  spiking neural network photonic integrated circuit. Sub-A
ria, and, so far, no optical logic device satisfying all of = stands for sub-wavelength photonics. The other points refer
them has been proposed. More recent investigations, in-  to recent electronic neuromorphic hardware, discussed in
troduced in the following sections, have concluded that Ref. [19]. The regions highlighted in the graph are approx-

a photonic neuromorphic processor could satisfy them jmate, based on qualitative tradeoffs of each technology.
by implementing a model of a neuron, as opposed to the

model of a logic gate.

Neuromorphism implies a strict isomorphism between artificial neural networks and optoelectronic devices. There
are two research challenges necessary to establish this isomorphism: the nonlinearity (equivalent to thresholding) in
individual neurons, and the synaptic interconnection (related to fan-in and cascadability) between different neurons.
Once the isomorphism is established and large networks are fabricated, we anticipate that the computational neuro-
science and software engineering will have a new optimized processor for which they can adapt their methods and
algorithms.

The emerging field of neuromorphic photonics has received tremendous interest and continues to receive fur-
ther developments as PICs increase in performance and scale. As novel applications requiring real-time, ultrafast
processing—such as the exploitation of the RF spectrum—become more critical, we expect that these systems will
find use in a variety of high performance, time-critical environments.
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