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Abstract: In this work, we present a new theoretical model for use in contact resonance atomic force
microscopy. This model incorporates the effects of a long, massive sensing tip and is especially useful
to interpret operation in the so-called trolling mode. The model is based on traditional Euler–Bernoulli
beam theory, whereby the effect of the tip as well as of the sample in contact, modeled as an elastic
substrate, are captured by appropriate boundary conditions. A novel interpretation of the flexural
and torsional modes of vibration of the cantilever, when not in contact with the sample, is used
to estimate the inertia properties of the long, massive tip. Using this information, sample elastic
properties are then estimated from the in-contact resonance frequencies of the system. The predictive
capability of the proposed model is verified via finite element analysis. Different combinations
of cantilever geometry, tip geometry, and sample stiffness are investigated. The model’s accurate
predictive ranges are discussed and shown to outperform those of other popular models currently
used in contact resonance atomic force microscopy.
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1. Introduction

Contact Resonance (CR) atomic force microscopy (AFM) is a relatively new, popular measurement
technique used to characterize nanoscale material properties. CR AFM relies on analyzing the coupled
vibrations of an AFM cantilever probe that is resonated while in permanent, net-repulsive contact with
a sample of interest. CR AFM has been used to characterize the properties of thin metallic films [1]
and polymer blends [2]. CR AFM has also been used to measure the viscoelastic loss tangents of
polymer blends [3], study the effect of relative humidity on the viscoelastic properties of organic
thin films [4], and conduct photorheological measurements to study curing kinetics of polymers [5].
Additionally, CR AFM has been used to measure buried, subsurface nanostructures [6–9] that are
not visible in typical topographic AFM measurements. Finally, the principles of contact resonance
have been used to enhance other popular modes of AFM, such as electrochemical strain microscopy
(ESM) [10–12] and piezoresponse force microscopy [13,14] (PFM), and researchers have developed new
experimental measurement procedures and techniques for CR AFM that aim to increase the accuracy
of these coupled methods [15].

The underlying theoretical model of CR AFM utilizes the Euler–Bernoulli (EB) beam model.
To date, researchers have included the effects of tip offset [16], tip height effects [17], normal and lateral
contact springs [17], Poisson’s ratio of the sample material [18], and sample viscoelasticity effects [19].
More recent modeling efforts have included the effect of using U-shaped cantilever probes [20] and
using a Timoshenko beam model in the theoretical framework [21].

Recently, AFM cantilever sensor designs have included large sensing tips. For example, the qPlus
sensor [22] uses a massive tip affixed to a quartz tuning fork tine and is capable of conducting
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extremely sensitive measurements. Long, massive tips have been affixed to AFM cantilevers and
are used in operational modes such as “Trolling Mode” [23,24] to measure material properties of
polymers and living cells. By using long sensing tips, researchers are able to remove the main
cantilever body from liquid environments [25–27], thereby reducing unwanted hydrodynamic forces
on the cantilever [28–34] and reducing extraneous noise sources prevalent in liquid AFM imaging
environments [35]. Notwithstanding the practical importance that these techniques are gaining and
their potential to open up new sensing modalities in CR AFM, rigorous analyses of the effect that the
long, massive tip has on the system dynamics are so far lacking in the established literature. Therefore,
incomplete understanding of the behavior and idiosyncrasies of cantilever-based sensors endowed
with long, massive tips is limiting their applications and adoption in key sensing areas.

To bridge this knowledge gap, in this work, we analyze the behavior of AFM cantilever probes
with long, massive tips to determine their effect on the surface-coupled vibrations of the system.
To this aim, we modify the traditional EB model for cantilever vibration with a new set of boundary
conditions that models both the presence of a long, massive tip (via the transverse force and moment
that the tip, modeled as a rigid body, exerts on the cantilever) and contact with an elastic sample.
Since the effect of the tip is only included in the boundary conditions, possible dynamics of the tip
are not explicitly captured. However, a procedure to estimate the effective inertia and moment of
inertia of the tip, as seen by the cantilever, is proposed based on a novel interpretation of flexural and
torsional modes of vibration of the structure when not in contact with the sample. Contact with an
elastic sample is modeled via an orthogonal set of springs, coupled to the cantilever tip, capable of
linear elastic response in the transverse and in-plane directions.

An estimation procedure for the sample stiffness is then proposed based on analysis of the free
and in-contact resonance frequencies of the system. The dynamics of the system are also investigated
using a finite element model simulation to verify the proposed model and assess the impact of the
modeling hypotheses. Particular interest is placed on the flexibility of the tip and its effect on the
accuracy of the prediction. The proposed model is shown to be superior to traditional models which
ignore inertia and moment of inertia of the long, massive tip for a broad range of system dimensions
and stiffness parameters. Thus, the proposed model paves the way for correct interpretation of trolling
mode CR AFM experiments.

The remainder of the paper is organized as follows. In Section 2, we develop the theoretical model
for flexural and torsional vibrations and introduce the characteristic equations on which the estimation
procedure hinges. In Section 3, we detail our numerical experiments conducted in lieu of physical
experiments on fabricated cantilever sensors. Results and discussions are presented in Section 4, where
we discuss the limits of applicability of the proposed model. Conclusions are reported in Section 5.

2. Theory and Model Development

In this section, we develop a simple model for a cantilever beam endowed with a long, massive tip
in contact with an elastic substrate, representative of typical CR AFM configurations in trolling
mode operations. To maintain a realistic model, with manageable complexity, we introduce a
set of assumptions whose validity will be analyzed in the rest of the paper. Figure 1 depicts
a schematic representation of the idealized system under study. Small amplitude vibrations are
considered throughout.
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Figure 1. Euler–Bernoulli beam model of a cantilever with a long, massive tip in contact with an elastic
substrate. Here, the tip is assumed to be rigid. The substrate is modeled through linear springs.

2.1. The Flexural Problem

With reference to Figure 1, we first focus on flexural vibrations of the beam in the xz-plane,
exclusively. The beam is assumed to be of an isotropic and homogeneous material, with Young’s
modulus E and Poisson’s ratio ν. Furthermore, ρ denotes the mass density (per unit volume) of the
beam; A is the rectangular cross-sectional area, assumed to be constant along the axis; and L is the
length of the beam. In this model, the long sensing tip is fixed at the end of the beam, with length
Lt, mass density ρt, and circular cross-sectional area At. At this stage, the tip is assumed to be
rigid, and connected to two one-dimensional linear springs of constants k and k′ in the z- and
x-directions, respectively. These springs model the normal and lateral stiffness of the sample in
contact. The equations of motion for the transverse vibrations of the unforced system are given by [36]

ρA
∂2w(x, t)

∂t2 + EI
∂4w(x, t)

∂x4 = 0, (1)

where I is the second area moment of inertia of the cantilever beam and w(x, t) represents the transverse
displacement of the beam at a given location x along the axis and a specified time t.

Translational and rotational inertia effects of the massive tip, along with sample stiffness,
are incorporated into the model in Equation (1) via the following boundary conditions [36]:

w(0, t) = 0, (2a)

∂w
∂x

(0, t) = 0, (2b)

EI
∂2w(L, t)

∂x2 = −It
∂3w(L, t)

∂x∂t2 − k′L2
t

∂w(L, t)
∂x

, (2c)

EI
∂3w(L, t)

∂x3 = mt
∂2w(L, t)

∂t2 + kw(L, t), (2d)

where It is the rotational inertia and mt is the total mass of the sensing tip. In Equation (2c,d), the sensing
tip has effectively been modeled as a point-mass and point-inertia. Specifically, in Equation (2c),
the cantilever end is subject to a bending moment due to the rotational inertia of the tip, along with the
reaction from the lateral stiffness of the sample. Similarly, in Equation (2d), the cantilever end is subject
to a shear force due to the translational inertia of the massive tip and to the normal stiffness of the
sample. Note that, consistent with the assumptions of small displacements and deformations, higher
order contributions to tip shear force and bending moment due to changes in length of the cantilever
are neglected. It is also important to observe that any effects that may be related to deformability of
the tip are ignored.
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For free vibrations at a given frequency ω, the boundary condition in Equation (2c) is equivalent
to the effect of a torsional spring connected to the cantilever tip, with effective torsional (dynamic)
stiffness given by KT = k′L2

t −ω2 It. Similarly, the boundary condition in Equation (2d) is equivalent
to the effect of a normal spring connected to the cantilever tip, with effective (dynamic) stiffness given
by KN = k − ω2mt. These effective dynamic stiffnesses will be used later in the discussion of the
model’s performance.

Through dimensional analysis of the equations of motion and associated boundary conditions,
we identify the following governing nondimensional parameters: α is the nondimensional ratio of
the normal spring stiffness k to the cantilever static stiffness kc = (3EI)/L3, so that α = k/kc; ∆ is
the nondimensional tip mass given by ∆ = mt/(ρAL); Ît is the nondimensional rotational inertia of
the tip given by Ît = It/(ρAL3); φ is the ratio of the lateral to the normal spring stiffnesses φ = k′/k;
and ` = Lt/L is the ratio between the tip length and cantilever length. The limit of α = 0 corresponds
to the case of an “unsprung” cantilever, and the limit of ∆ = Ît = 0 corresponds to the case of an
ideally massless tip.

Next, as in standard practice [36], we assume that the solution for w(x, t) is separable, that is
w(x, t) = W(x)T(t). Substituting this ansatz into Equation (1) results in a fourth order ordinary
differential equation (ODE) in the spatial dimension x and a second order ODE in the time dimension t.
The general form of the spatial solution is given by W(x) = C1 cos(λx) + C2 sin(λx) + C3 cosh(λx) +
C4 sinh(λx), where λ is the separation constant. The general spatial solution along with the
boundary conditions in Equation (2) form the eigenvalue problem (EVP) that governs the eigenmodes
and eigenfrequencies of the system. Solution of the EVP generates the characteristic equation
f (λL, α, ∆, Ît, φ, `) = 0, which describes the relationship between the natural frequencies of the system
and the governing nondimensional parameters. Here, λL are the countably infinite nondimensional
natural frequencies of the system given by (λL)4 = ω2(ρAL4)/(EI), where ω is the dimensional
natural frequency. The complete characteristic equation for transverse vibrations of the system is
given by[(

− 2∆ Ît(λL)8 + (2 + (6∆`2φ + 6 Ît)α)(λL)4 − 18`2α2φ

)
cos(λL)

+6(λL) sin(λL)
(
− Ît(λL)6/3 + φ`2α(λL)2 − ∆(λL)4/3 + α

)]
cosh(λL)+

6(λL)
(
− Ît(λL)6/3 + φ`2α(λL)2 + ∆(λL)4/3− α

)
sinh(λL) cos(λL) + 2∆ Ît(λL)8+(

2 + (−6∆`2φ− 6 Ît)α

)
(λL)4 + 18`2α2φ = 0.

(3)

Equation (3) defines the relationship between the transverse natural frequencies of vibration
of the system, the sample stiffness in both the normal and lateral directions, and the tip mass and
rotational inertia.

2.2. The Torsional Problem

In the development of the model, we use the freely vibrating, unsprung torsional modes of
vibration of the system to estimate the rotational inertia of the massive tip. Within this approach,
we continue to assume that the tip is rigid. Note that, because of its circular cross section, the tip is
symmetric about the axes of rotation excited in transverse and torsional bending motions. This means
that the tip rotational inertia identified from torsional oscillation can reasonably be used as a proxy for
the tip rotational inertia needed in Equation (2) and, thus, in Equation (3).

With reference to the schematics in Figure 1, and focusing exclusively on torsional vibrations
about the x-axis of the beam, the equations of torsional motion of the free, unsprung system are given
by [36]

ρJ
∂2θ(x, t)

∂t2 = C
∂2θ(x, t)

∂x2 , (4)
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where J is the polar moment of inertia of the beam cross section, θ(x, t) is the twist angle of the beam,
and C is the torsional rigidity of the beam. For a rectangular cross section of thickness h and width b,
C is given by C = κGh3b, where κ is given by [37]

κ =
1
3

(
1− 192

π5
h
b

∞

∑
i=1,3,5,...

1
i

tanh(iπ
b
h
)

)
(5)

and G = E/[2(1 + ν)] is the shear modulus of the beam. For thin cross sections with h� b, κ is well
approximated by the value 1/3, see for example [34]. The boundary conditions for Equation (4) are
given by

θ(0, t) = 0, (6a)

C
∂θ(L, t)

∂x
= −It

∂2θ(L, t)
∂t2 , (6b)

which show that the free end of the cantilever is subject to a twisting torque caused by the rotational
inertia of the tip. Equation (6b) suggests the existence of an additional nondimensional parameter,
namely, Îtor = It/(ρJL), which represents the nondimensional rotational inertia of the tip.

By assuming a separable solution for θ(x, t), we obtain the following characteristic equation

(βL) cot(βL)− Îtor(βL)2 = 0, (7)

where βL are the nondimensional natural frequencies of torsional vibration given by
βL = ωtor

√
ρJ/CL, and ωtor are the dimensional natural frequencies of torsional vibration.

Equation (7), in the symbolic form g(βL, Îtor) = 0, defines the relationship between the freely vibrating
torsional modes and the rotational inertia of the massive tip.

2.3. Sample Stiffness Identification Procedure

Figure 2 schematically depicts the identification procedure used in this work. Assuming the
availability of certain unsprung and sprung natural frequencies from an experiment, as well as of
some basic material and geometry parameters, the proposed procedure is capable of identifying the
unknown sample stiffness.

In the first step, the first freely vibrating torsional frequency T1 = ωtor,1 (assumed to be
measured from an experiment or otherwise available) is used as an input to solve Equation (7)
for the nondimensional rotational inertia of the tip Îtor. The measured value T1 is converted to the
nondimensional eigenvalue β1L via the relationship given above in the discussion of Equation (7).
Then, from Equation (7), we have

Îtor = (β1L)−1 cot(β1L). (8)

The nondimensional value Îtor, once determined, is then converted to the nondimensional
value Ît using the relation Ît = Îtor[(b2 + h2)/(12L2)], where we have used the definitions of these
nondimensional quantities and the fact that A = bh and J = (bh3 + hb3)/12 for a rectangular cross
section with width b and thickness h.
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Figure 2. Schematic flowchart of the estimation procedure. At each step, the quantities highlighted in
red are the unknowns to be estimated.

Next, Ît and the first freely vibrating unsprung transverse natural frequency B1 = ω1 (assumed to
be measured from an experiment or otherwise available) are used as input to solve Equation (3) with
α = 0, φ = 0, and ` = 0 for the nondimensional tip mass ∆. Specifically, we find from Equation (3)

∆ =
[1 + cos(λL) cosh(λL)]− Ît(λL)3[sin(λL) cosh(λL) + cos(λL) sinh(λL)]

λL{ Ît(λL)3[cos(λL) cosh(λL)− 1] + [sin(λL) cosh(λL)− cos(λL) sinh(λL)]}
, (9)

where λL should be evaluated at the λ1L value determined from B1 = ω1. The value B1 is converted
to the nondimensional natural frequency λ1L via the relationship given above in the discussion of
Equation (3). In the proposed framework, the nondimensional tip length ` only affects the moment
generated by the lateral spring in Equation (2c) and does not influence the rotational inertia of the tip.

Finally, the estimated nondimensional mass ∆ and rotational inertia Ît are used, along with the
in-contact transverse natural frequency of vibration Bc

1 = ωc
1, the lateral to normal stiffness ratio φ,

and the tip length to cantilever ratio ` to solve Equation (3) for the nondimensional stiffness of the
sample α. Equation (3) can be rearranged into the following quadratic equation in α:

c2α2 + c1α + c0 = 0, (10)

where the coefficients of this polynomial are

c2 =9`2φ

[
cosh(λcL) cos(λcL)− 1

]
, (11a)

c1 =− 3(λcL)
[(

(λcL)3(∆`2φ + Ît) cos(λcL) + sin(λcL)(φ`2(λcL)2 + 1)
)

cosh(λcL)+

sinh(λcL)(φ`2(λcL)2 − 1) cos(λcL)− (λcL)3(∆`2φ + Ît)

]
, (11b)

c0 =(λcL)4
[(

(∆ Ît(λ
cL)4 − 1) cos(λcL) + (λcL) sin(λcL)( Ît(λ

cL)2 + ∆)
)

cosh(λcL)+

(λcL) sinh(λcL)( Ît(λ
cL)2 − ∆) cos(λcL)− ∆ Ît(λ

cL)4 − 1
]

. (11c)
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Here, λc represents the in-contact eigenvalue of the problem which is related to ωc
1, as described

above in the discussion of Equation (3). It should be noted that, in this analysis, we assume that the
stiffness ratio φ and the length ratio ` are known, to simplify the estimation procedure. However,
Equation (3) could be solved with multiple measured in-contact natural frequencies to provide
simultaneous estimates of φ, `, and α, similar to the approaches discussed in [2,18,19,38].

When assuming the values of φ and ` and using a single measured in-contact natural frequency
to estimate α, situations arise in which two real solutions of α may exist for Equation (10). This occurs
when two distinct pairs of k and k′ values, such that k′ = φk, satisfy Equation (10) for the same
in-contact natural frequency. This apparent paradox is resolved by considering the mode shape of
vibration for each solution. For different pairs of k and k′, different mode shapes at the same frequency
can satisfy the equations of the system. Figure 3 shows such a case, where the mode shape for the
larger α solution is plotted in solid black and the mode shape for the smaller α solution is plotted
with a dash-dotted line. It is apparent that the solution for the lower α value is being generated by a
higher order mode. Using the mode shape data from the model, along with the knowledge of which
specific in-contact natural frequency is being used for property estimation, will ensure the proper α

branch selection.

Figure 3. Mode shapes for two distinct α value solutions, at the same frequency, of Equation (10). These
solutions represent distinct pairs of k and k′ values. The mode shapes have been normalized such that
the tip displacement equals one and the x-coordinate has been nondimensionalized by the cantilever
length L such that x̃ = x/L.

3. Numerical Experiments

To verify our identification procedure, in lieu of experimental data on the unsprung and in-contact
flexural and torsional vibrations of the prototype cantilever in Figure 1, we conduct numerical
experiments to simulate the system vibrational behavior via finite element analysis. A similar approach
was previously employed by our group in [39]. The simulations are conducted within the ANSYS
Mechanical APDL v. 17 commercial software package. Four different systems are analyzed in detail,
as discussed below. The first few modes of vibration are identified for these systems, for a variety
of sample stiffnesses. Finite element results on the unsprung flexural and torsional frequencies, as
well as on the in-contact flexural frequencies, are then used as input in the identification procedure, as
depicted in the flowchart in Figure 2.

The cantilever beam system, schematically depicted in Figure 1, is implemented in the finite
element analysis via three-dimensional 2-node beam elements, with six degrees of freedom per node.
The beam elements are based on Timoshenko beam theory [36] with shear deformability. Timoshenko
beam theory is selected in the numerical experiments as it is expected to accurately model the vibration
behavior of the real system. However, since only linear modal analyses are conducted, we do not
anticipate significant discrepancies between the Timoshenko and the EB theories for the lowest modes
of vibration of sufficiently slender beams.
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The sample stiffness during in-contact operation is implemented via one-dimensional linear
springs. Note that, as opposed to Figure 1, where we focus on a two-dimensional problem, since this
implementation is completely three-dimensional we incorporate two lateral springs k′ in the x- and
y-directions. The origin of the Cartesian coordinate system coincides with the centroid of the cross
section of the fixed end of the beam.

We assume that the cantilever material is silicon with the following properties: E = 169 GPa,
ρ = 2330 kg/m3, and ν = 0.25. Similarly, we assume that platinum is used for the tip, with the
following material properties: Et = 171 GPa, ρt = 21, 450 kg/m3, and νt = 0.39. Note that, different
from our work in Section 2, in our numerical experiment, we assume that the tip is deformable, as it
would be in a real AFM scenario. We will comment on the effect of these modeling assumptions
in the next section. Throughout the numerical campaign, we set b = 30µm and h = 2µm for the
cross-sectional dimensions of the beam and d = 3µm for the diameter of the circular cross section of
the tip. We further select φ = k′/k = 0.8 for the lateral to normal stiffness of the sample. This value is
within the theoretically allowed bounds [40,41] and is uniquely determined given the so-called reduced
Young’s modulus E∗ and reduced shear modulus G∗ of the system. For example, assuming the sample
under test is silicon, with the aforementioned properties, and that both tip and sample are comprised
of linearly elastic, homogeneous, and isotropic materials, the theoretical value for φ = 4G∗/E∗ ≈ 0.8.

Four combinations of beam length L and tip length Lt are explored as reported in Table 1. These
combinations are a long cantilever with a long tip (LCLT), a long cantilever with a short tip (LCST),
a short cantilever with a long tip (SCLT), and a short cantilever with a short tip (SCST). Table 1
also reports the nomenclature adopted in the rest of the paper as well as the pertinent values of the
nondimensional parameter `. The table further reports the so-called static and dynamic stiffness ratios,
denoted as Rs and Rd, respectively, between the tip stiffness and the cantilever stiffness. Specifically,
Rs = kc/kt, where the tip stiffness is calculated as kt = 3Et It/L3

t and represents the ratio of the

cantilever to the tip stiffnesses in static conditions. Similarly, Rd =
√
(EIρt AtL4

t )/(Et ItρAL4) gives a
measure of the overlap between the spectrum of the cantilever and of the tip as if they were independent
uncoupled systems. A small or large value of Rd indicates essentially decoupled dynamics between
the cantilever and the tip. Conversely, Rd ≈ 1 indicates large coupling between the two. In the ideal
case of a rigid tip, we have Rs = 0 and Rd = 0. Thus, the larger the corresponding numbers in Table 1,
the further the departure from the initial hypotheses of a rigid tip. However, significant numerical
departure from these values do not necessarily indicate poor predictions, as explained later.

Table 1. Geometries explored in the numerical experiments and associated nomenclature, along with
resulting values of the nondimensional parameter ` and of static and dynamic stiffness ratios Rs and
Rd, respectively.

Tip Length Lt= 10µm Lt= 50µmBeam Length

L = 150µm
SCST (` = 0.067) SCLT (` = 0.333)
Rs = 7.36× 10−4 Rs = 9.21× 10−2

Rd = 7.30× 10−3 Rd = 1.82× 10−1

L = 300µm
LCST (` = 0.033) LCLT (` = 0.167)
Rs = 9.21× 10−5 Rs = 1.15× 10−2

Rd = 1.82× 10−3 Rd = 4.56× 10−2

The cantilever and the tip are meshed with beam elements with a uniform length of 0.1µm. For the
shortest tip length considered in this study Lt = 10µm, this choice still leaves 100 elements along the
axis of the tip (and significantly more along the axis of the beam), which is deemed satisfactory to
capture the first few structural modes of the system. Since we are interested in the first flexural and the
first torsional frequency, for each simulation case, we extract the lowest 10 structural modes. Although
the exact ordering in the spectrum of flexural, torsional, and other out-of-plane vibrations depends on
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the particular geometric configuration, as well as on the values of the sample stiffness, the frequencies
B1, T1, and Bc

1 that are used as input in our model are always within the first ten modes and are thus
available from the simulations.

Simulations are conducted for the four geometries for α = 0, representative of the unsprung case
as well as for values of α spanning the values [10−3, 103], thus capturing a broad range of sample
stiffnesses, from very soft to very stiff, when compared to the static cantilever stiffness kc.

4. Results and Discussion

4.1. Parameter Identification

Table 2 shows the predictions of the nondimensional added mass ∆ and rotational inertia Ît for
the four cantilever cases tested using the estimation method depicted in Figure 2. In this table, we also
report values for the added mass parameter calculated as if the tip were a point mass m′t = ρt AtLt,
and the rotational inertia parameter calculated as if the tip were a rigid rod pinned at one of its ends,
so that I′t = mtL2

t /3. Note that m′t and I′t are, in general, different from the values used in the boundary
conditions in Equation (2) and lead to nondimensional parameters, respectively indicated in Table 2 as
∆′ and rotational inertia Î′t . These parameters are defined as

∆′ =
m′t
mc

=
ρt AtLt

ρAL
, (12a)

Î′t =
I′t

ρAL3 =
mtL2

t /3
ρAL3 . (12b)

It is important to observe that the estimated nondimensional parameters are point-mass and
point-inertia representations of the physical tip. The physical tip has spatial dimensions and inherent
flexibility. Poor agreement of the estimated values with the prediction from Equation (12) does not
necessarily indicate poor model performance. Specifically, for the ∆ determinations, the discrepancy
between the values estimated and the values determined with Equation (12a) are within 10% of each
other for the long tip cases, but are very different for the short tip cases. Similarly, while discrepancies
on the Ît determinations are within approximately 30% for the long tip cases, negative values are,
surprisingly, observed for Ît for the short tip cases. This behavior is likely due to the model trying to
capture unmodeled effects caused by the dynamics of the tip that, in simulations, can lead to negative
values for Îtor in Equation (8).

Table 2. Estimated values of nondimensional added mass and rotational inertia (∆, Ît) using the
method in Figure 2 for the four cantilever cases tested. Nondimensional values (∆′, Î′t) are calculated
directly from assigned geometric and material properties from the previous section using Equation (12).

Cantilever ∆ ∆′ Ît Î′t

SCST 5.55× 10−2 7.23× 10−2 −1.30× 10−5 1.07× 10−4

SCLT 3.98× 10−1 3.62× 10−1 2.01× 10−2 1.34× 10−2

LCST 2.10× 10−2 3.62× 10−2 −2.39× 10−5 1.34× 10−5

LCLT 1.66× 10−1 1.81× 10−1 2.28× 10−3 1.67× 10−3

Figure 4 shows the model results of the estimation of the nondimensional stiffness α versus the
assigned values of α used in the FEA simulations discussed in Section 3. Blue circles represent results
from the current method (CM), as described in Figure 2, which includes the effect of tip length, mass,
and rotational inertia. Red triangles represent results of the current method in which added mass and
rotational inertia effects are neglected, henceforth referred to as the “massless tip model”. The massless
tip model can be found in works such as [18]. Finally, green squares represent the results of the current
method in which tip length, mass, and rotational effects are neglected, henceforth referred to as the
“no-tip model”. No-tip models can be found in works such as [2,19]. Figure 5 shows the corresponding
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percentage error of each model relative to the prescribed α values (verification data) for the four
explored cantilever geometries in Table 1.

Figure 4. Model predictions versus FEA assigned values (verification data) for the four cantilever
geometries in Table 1. Panels (a–d) correspond to different cantilever/tip geometries indicated by the
inset figures. Black x’s represent the prescribed verification data, blue circles represent the current
model proposed in this work, red triangles represent the current model with no added mass and no
rotational inertia, and green squares represent the current model with no added mass, no rotational
inertia, and zero tip length.

In the discussion of these results, we will first focus on the performance of the current method
which incorporates tip length, added mass, and rotational inertia effects. We will then review the
effects of neglecting tip length, added mass, and rotational effects.

4.2. Detection Range

The characteristic behavior of the current method result curves (blue circles) in Figure 4 can be
summarized by observing that, independent of the particular geometry or cantilever case studied,
the current method offers accurate detection of the assigned α value in the neighborhood of α = 1.
The range of accurate estimation varies for every case studied. In particular, we see the emergence
of saturation tails at the low- and high-α ranges. The high-α saturation phenomenon was previously
observed in a variety of studies, including for example [39], and is similar to the effect of replacing the
free end of the cantilever with a simply supported end, as the sample stiffness increases with respect
to the cantilever stiffness. That is, after a sufficiently high sample stiffness, the cantilever can no longer
detect subsequent increases in stiffness and all higher stiffness can be described by the same fixity
condition. Similar to the high-α range, in which the saturation effect is due to the low stiffness of the
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cantilever system, we posit that in the low-α range, the saturation effect is due to the low stiffness of
the sample with respect to the cantilever system.

Figure 5. Percent error of the model predictions. Panels (a–d) correspond to different cantilever/tip
geometries indicated by the inset figures.

Thus, the detection range with its two characteristic asymptotic tails, which can be identified as
the range of values of α for which the current method yields essentially an “exact” prediction, see also
Figure 5, can be interpreted and estimated as follows. In a fundamental sense, and neglecting several
second order effects, the current method stipulates that the overall stiffness of the system, as described
in Equations (1) and (2), can be described by the stiffness of the cantilever kc in parallel with the
normal and tangential (dynamic) stiffnesses KN and KT , introduced in the discussion of Equation (2).
Neglecting, for simplicity, the contribution of the torsional spring, the overall stiffness of the system
can thus be written as kc + KN . On the other hand, the finite element model, which for the purpose
of this study is a proxy for a real experiment, introduces a slightly more complicated arrangement,
whereby the tip stiffness kt is to be considered in series with the (dynamic) stiffness KN . The situation
is schematically depicted in Figure 6.

Since the proposed model is required to interpret the simulation results within its assumptions,
the estimation performance can be understood by equating the analytical model and the simulation
stiffnesses, so that

kc +
ktK

(a)
N

kt + K(a)
N

= kc + K(e)
N , (13)
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where the superscripts (a) and (e) stand for assigned and estimated, respectively. After some
manipulation, and using the definition of KN , we have

k(e) =
kt(k(a) −ω2m(a)

t )

kt + k(a) −ω2m(a)
t

+ ω2m(e)
t . (14)

Figure 6. (a) Lumped parameter schematic of the current method’s analytical model and (b) of the
finite element model used for verification.

This formula allows us to explain the behavior of the estimation performance displayed in Figure 4.
First, it is intuitive to assume that the model will yield better predictions as kt → ∞ or, in other words,
as Rs → 0. Indeed, if kt dominates the denominator of Equation (14), we obtain the ideal case

α(e) ≈ α(a) +
ω2(m(e)

t −m(a)
t )

kc
, (15)

which shows that the estimated value of α differs from the assigned value of α of a quantity that
depends on the tip mass properties estimation error. It can be observed that such error is magnified for
larger values of ω2/kc. This indicates that the estimation is expected to be more accurate for relatively
stiff cantilevers (“SC” cases) and for shorter tips (“ST”) cases, for which the tip mass mt is small. This is
in agreement with what was observed in Figure 4a,c for which, with the tip stiffness being equal,
the case SCST displays higher values of kc. A secondary effect further complicates this argument,
as the quantity ω2/kc can be presumed to be close to the reciprocal of the system lumped mass M.
Thus, the estimation is expected to be more accurate for relatively massive systems, which partially
explains the better performance of the model for the LCLT case versus the SCLT case, in Figure 4b,d,
respectively.

Let us now examine the case where k→ ∞, in other words, the high-α range, to uncover the reason
for the saturation tails. In this case, k(a) dominates both numerator and denominator of Equation (14),
which thus reduces to k(e) = kt + ω2m(e)

t . Dividing through by kc, we obtain

α(e) = R−1
s + ω2m(e)

t /kc. (16)

Since Rs � 1, this first term dominates and the asymptotic value of estimated α is equal to
α(e) = R−1

s . For the four cases depicted in Figure 4, the values of R−1
s are approximately 1359 for the

SCST case in Figure 4a, 10.9 for the SCLT case in Figure 4b, 10, 858 for the LCST case in Figure 4c, and 87
for the LCLT case in Figure 4d. These values also roughly identify the starting point of the asymptotic
high-α tails. Indeed, more generally, the saturation tails start occurring for a value of α(a) roughly equal
to R−1

s . This observation, confirmed by the results in Figure 4, can be simply explained by observing
that the horizontal asymptote should begin as k(a) in the denominator of Equation (14) and becomes
comparable in magnitude to kt or, equivalently, when k(a)/kc ≈ kt/kc. As expected, model agreement
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becomes much poorer for the long tip cases (SCLT, LCLT), for which kt is comparatively lower and
R−1

s is relatively large.
Finally, we examine the case where k→ 0, that is, the asymptotic horizontal branch in the low-α

region. Once again, our point of departure is Equation (14) which, in the limit of zero sample stiffness,
upon dividing through by kc reduces to

α(e) =
−ω2m(a)

t /kc

1− Rsω2m(a)
t /kc

+ ω2m(e)/kc. (17)

Note that, in Equation (17), the value of α(a) does not appear explicitly and, therefore, the model
cannot be expected to correctly estimate its value. In the hypothesis of Rs � 1, Equation (17) reduces
to α(e) ≈ ω2(m(e) − m(a))/kc and, presuming that ω2/kc ≈ 1/M as above, α(e) ≈ (m(e) − m(a))/M.
In the “ST” cases, (m(e) − m(a)) < 0, as can be appreciated from the values for ∆ and ∆′ in Table 2.
Indeed, for very low values of α(a), the model yields negative values for α(e), not displayed in Figure 4.
More generally, broader accurate prediction ranges can be expected for the cases with larger kc, as the
saturation value α(e) can take on smaller values. This is confirmed in Figure 4, where the SCST case
in Figure 4a demonstrates better accuracy at low-α(a) when compared to the LCST case in Figure 4c.
The prominent low-α tails in Figure 4b,d are probably due to the massive tips causing Equation (17) to
saturate for moderately large values of α(a).

While the proposed analysis of the performance of the model is based on simplistic assumptions,
our conclusions seem to be justified in view of the numerical experiments. It should also be observed
that we have neglected the effect of rotational inertia and rotational stiffness embodied by KT in the
derivation of this simple argument. Including the rotational (dynamic) stiffness, however, is not
expected to change the qualitative nature of the results.

In addition to the discussion above, in the low-α region, we believe that the large added mass
of the tip has the effect of reducing the frequency sensitivity to changes in sample stiffness. Using a
one-dimensional approximation of the system, and neglecting the tip stiffness, i.e., presuming kt → ∞,
the natural frequency of the system is estimated as ω =

√
(k + kc)/M. The frequency sensitivity to

changes in the system stiffness is then given by dω/d(k + kc) = 1/[2
√

M
√

k + kc]. Increasing the
system mass or stiffness results in a decrease in frequency sensitivity. Thus, we expect the LCLT
case, with lower added mass and stiffness, to outperform the SCLT case, as depicted in Figure 4b,d,
and Figure 5b,d.

Importantly, model agreement for the SCLT and LCLT cases is also reduced due to the dynamic
behavior of the long tip, which can no longer be treated as rigid. For long tips, new models
incorporating the dynamics of the tip must be derived. This can be accomplished by considering an
explicit EB-type equation for the tip to be coupled with the current governing dynamics in Equation (3).
This derivation is however outside the scope of this paper, and will be tackled in subsequent work.

4.3. Performance of the Current Model Versus Traditional Models and Outlook

As discussed previously, the current method performs very well within its expected predictive
range. For the long cantilever with short tip (LCST) case in Figure 4c, both the massless tip model
and the no-tip model accurately predict within ±10% of the assigned α values for assigned α values
centered around 10. In fact, their performance is nearly identical for much of the α range. This indicates
that added mass and inertia are the primary effects to be considered for much of the α range. At high-α
values, the massless tip model performs nearly identically with the current method. This indicates that
as α is increased and the free bending mode of the cantilever tends to a highly constrained (or pinned)
configuration, the primary effect in this range is due to tip length and not added mass or rotational
inertia. Similar performance and behavior of the massless tip and no-tip model can be seen in the short
cantilever with short tip (SCST) case in Figure 4a.
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In the long tip cases (SCLT and LCLT), both the no-tip and massless tip models perform poorly.
The current method performs well for the long cantilever with long tip case (LCLT) for moderate
values of α and moderately well for the short cantilever with long tip (SCLT) case for moderate α

values. As discussed above, we believe the prediction discrepancies are mainly due to unmodeled
tip dynamics.

In the previous discussion, we have assumed perfect knowledge of the system parameters.
However, uncertainties in the parameter estimation may exist in a realistic experimental setup.
To assess the robustness of the proposed model, we have performed analyses to quantify the effect of
uncertainty in the system parameters on the numerical predictions. Table 3 shows these results for
one representative assigned αa value, well within the detection range of the model, for the SCST case.
In the analyses, we have individually varied each system parameter used in the prediction algorithm
by ±10% and calculated the resulting estimation for αe and compared it with the original estimate
using the nominal system parameters. For low values of αa (αa < 10) we see that a ±10% uncertainty
in the system parameters has a negligible effect (less than 4%) on the prediction results. The effect
of uncertainty in the system parameters increases as αa is increased, especially in the range where
model predictions with nominal parameters are already much less accurate. The largest prediction
discrepancies are associated with uncertainty in the value of L. However, we do not expect difficulties
in the experimental determination of this particular parameter within less than 10% uncertainty, for
example, via optical microscopy.

Table 3. Effect of uncertainty in system parameters on prediction results for one assigned αa = 0.8685
for the SCST case. The estimation based on nominal system parameters is αe = 0.8720.

Parameter Parameter +10% % Difference Parameter −10% % Difference
αe Estimate Predicted αe Estimate Predicted

b 0.8638 −0.94% 0.8787 0.77%
t 0.8675 −0.51% 0.8818 1.13%
L 0.9067 3.98% 0.8588 −1.51%
Lt 0.8709 −0.13% 0.8730 0.12%
ρ 0.8755 0.41% 0.8693 −0.31%
E 0.8695 −0.29% 0.8760 0.46%
ν 0.8713 −0.08% 0.8728 0.09%

Based on the results of this study, in cases where contact resonance microscopy will be used in
conjunction with cantilevers that have tips of appreciable length and mass, it is recommended to use
the current method for modeling and analysis purposes. It can be appreciated that, even for tips that
introduce relatively small added mass, rotational inertia, and tip length effects (see for example the
LCST case), the current method extends the predictive α range to very low α values. Thus, the proposed
model will be particularly desirable when imaging soft samples in liquids, such as biological materials,
using cantilevers with long tips in the trolling mode configuration.

5. Conclusions

In this work, we have introduced an updated theoretical model for contact resonance atomic force
microscopy, incorporating the effects of a large, massive tip. The model employs a few geometric
and material parameters, in conjunction with the knowledge of a limited number of unsprung
resonance frequencies for both low-order torsional and flexural modes, for identification of some
effective parameter of the system. These identified parameters are then used in the determinations
of the in-contact sample stiffness from the knowledge of the in-contact resonance frequencies.
The performance of the proposed model has been numerically verified using, in lieu of experimental
data, results from high-fidelity finite element simulations. The updated model shows good agreement
with the verification data. In general, when performing contact resonance atomic force microscopy
using cantilevers with long, massive tips the bending stiffness of the tip should far exceed the bending
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stiffness of the cantilever. Additionally, the larger the added mass imparted to the cantilever by the tip,
the larger the cantilever stiffness should be to ensure accurate measurements.

The model presented in this work has been specifically designed to be simple and easy to use,
with only a minimum number of measured parameters to be obtained from an experimental campaign.
However, the model is also amenable to several extensions currently in use in the field of contact
resonance AFM, which may include incorporating sample viscoelasticity, including an adjustable tip
position, and using multiple modes simultaneously for parameter estimation. We expect this model
to be the first step in paving the way towards long tip, or trolling mode, configurations of contact
resonance atomic force microscopy.
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