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Abstract: Road injuries are rated among the top 10 causes of death
by the World Health Organization, and the only one that is not a
disease. The total economic cost of motor vehicle crashes in the
United States was estimated to be $242 billion a year. This study
examines multiple factors of accidents simultaneously with a goal of
generating an interpretable model that can predict the occurrence of
an accident given road conditions and driver behavior. The study
compared 4 machine learning and deep learning modeling
techniques on a dataset of 7707 trips collected by the Second
Strategic Highway Research Program. A gradient boosted model was
found to be most accurate and interpretable in accident prediction.
This modeling technique also allows us to rank the feature
importance of the factors in the model. The study finds that driver
behavior, pre-incident maneuvers and secondary task duration are
the most important variables in the predictive model. Using these
conclusions will allow us to perform more work to infer these
accident causes directly from vehicle sensor data in the future.

Keywords: naturalistic driving, driving behavior, secondary tasks,
driving disengagement, predictive analytics, vehicle injuries, injury
prevention, big data

1. INTRODUCTION

Road traffic accidents remain to be one of the leading causes of
death across the world. The World Health Organization rated
road injury to be the eighth most deadly (2018), and the only
one of the top 10 causes of death that is not a disease. Some
parts of the Africa and South America continents experience
higher mortality rate than the rest of the world. In the United
States where our data source is collected, motor vehicle traffic
related deaths amount to 34,439 in 2016 or 11.6 per 100,000
population. Although the total fatal crashes have been slowly
decreasing, the fatality rate disproportionately affects the lives
of teenage and young adults. Furthermore, motor vehicle
related injuries impact 600 or more lives per 100,000
population. The total estimated economic cost of traffic crashes
to the society was $242 billion in 2010 [1].

Traditional road injury research utilizes simulator-based
observational studies. Advanced driving simulators can detect
hands-off-wheel behaviors, track eye gazes, and monitor
physical manifestation such as perspiration and breathing/heart
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rate. The simulated driving scenarios are customizable and
repeatable to study human behaviors in various scenarios. While
driving simulators are particularly helpful in studying targeted,
known factors, such as when evaluating a new driver assistance
system, its limitation is inherent in the absence of actual physical
dynamics of the vehicles that is the child of complex
environmental circumstances and human decisions. Unknown
detriments, by definition, cannot be designed into simulated
scenarios. Simulator-based driving studies are often limited by
recruitment size of participants.

In contrast, another approach to study road injuries involves
naturalistic driving by participating subjects in real-world or
minimally-modified conditions. It generates data of human
driving behaviors and vehicle response kinematics
representative of naturally occurring scenarios experienced by
everyday commuters. Depending on the onboard data
acquisition system (DAS) made available in naturalistic driving
studies (NDS), in-car driver behaviors can be captured similar to
those in simulator-based driving assessment. Compared to
simulator-generated results, NDS is more expensive to organize
due to the recruitment of study participants, fitting of study
vehicles, and administrative tasks associated with the data
procurement process. However, NDS datasets offer an
unprecedented opportunity to study a plethora of data attributes
indicative of human-machine-road interactions.

Natural driving studies generate rich data that meets the widely-
accepted dimensions of “big data” in volume, velocity, variety,
variability, and value. NDS usually involve a large cohort of
participants and the study period can span over multiple years.
Time-series data collected by sensors, such as camera and radar,
result in a large volume of data in NDS. A large variety of data
attributes related to driver and vehicles are collected from
natural driving trips. Depending on the individual drivers and
road conditions, NDS data exemplify great variation. NDS data
can also assume great velocity during an ongoing trip. Sensor
data at 10 Hz or higher can be analyzed for real-time prediction
of risks. The value of NDS is evident in generating high-fidelity
data that reflects human driving in genuine conditions.



Research efforts around the world in the past decade have been
organizing naturalistic driving studies. In the U.S., the Virginia
Transportation Technology Institute (VTTI) first pioneered a
100-car study over a 12-month period generating 50,000 hours
of naturalistic driving data. Success of the study propelled the
Second Strategic Highway Research Program (SHRP 2), an
expanded follow-up study recruiting more than 3,000 volunteer
drivers whose trips over 4-24 months were recorded. The
program installed a comprehensive data acquisition system in
participating vehicles that include a head unit with three
recording cameras providing four views of driver’s face, driver’s
hands, forward roadway and rear roadway. (Fig. 1) Radar, GPS,
and accelerometers-based data was also captured in the DAS [2].
The result was an NDS dataset the largest of its kind that
included more than 5.5 million trips and 3,900 data hours of
driving. Variables available including time-series sensor data,
driver characteristics and road infrastructure information. In
Europe, PROLOGUE and UDRIVE are two large-scale NDS
implemented to evaluate driver behaviors in different EU
regions and types of vehicles. Australia and Japan have
undertaken similar efforts in recent years.

Fig. l.a. A head unit of the DAS recording four camera views
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Figure 1.b. Schematic of the four fields of view

Our motivation is to take advantage of the rich data afforded by
naturalistic driving datasets and to tackle the immanent
challenges of large-scale data processing and computing. In this
study, we sought to better understand the associations of driver
behaviors and road injuries in natural driving conditions.

II. LITERATURE REVIEW

We provide a brief review of published literature focused on
motor vehicle crash prediction. We consider the research on
automobile injury prevention highly interdisciplinary spanning
across engineering, medicine, public health and ultimately
connected by mathematic algorithms. This is evident in the
heterogeneity of data attributes commonly studied and often
intertwined: driver behavior, vehicle kinematics, and
environmental factors. Driver behavior attributes range from
driver demographics, psychological evaluation and existing
conditions to in-car activities and physiological state when
driving. Vehicle kinematics are results of driver maneuvers but
represented in physical unit measures. Environmental factors
can include both naturally-occurring conditions and vehicle-to-
road, vehicle-to-vehicle dynamics.

Many studies have been conducted on the effects of a single
factor or a handful of factors on driver behavior and the
probability of car accidents. Gershon et al. (2017) found the
increased risk of accidents for new drivers by studying 90
adolescents and 131 of their parents.[1] Precht et al. (2017)
examined the impact of anger as a cause of accidents. This study
looked at 10 minutes of 108 trips from the SHRP 2 dataset and
analyzed driver behavior related to anger. Furthermore,
Tivesten (2015) and Seo (2004) showed an increased risk of
accidents associated with cell phone use in their respective
studies [3][4].

Recent studies using naturalistic driving datasets have shown
findings that reinforce simulator-based studies. Dingus et al.
using the SHRP2 dataset found that driver-related factors,
including impairment, error, and distraction, were present in
close to 90% of the crash cases; high-emotion driving state,
knowledge deficiency, aggressiveness and distraction have
strong indication [5]. Wang et al. using the SHRP2 dataset with
324 driving events identified speeding, visual distraction and
inclement road condition to be risk factors associated with safety
critical events on curvy roadways [6]. Vehicle information was
combined with driver in-car activities to predict crash. Victor et
al. (2015) concluded that crashes arise from the “perfect storm”
of the change rate at which vehicles closing in on each other
and the duration of the ego driver’s last glance unrelated to
driving before an accident [7].

While a large portion of studies on driver behaviors examine a
limited number of factors and the impact of those factors on
accidents, the main goal of this study is to produce a model that
utilizes multiple features captured in the SHRP2 dataset. Using



this model, we will be able to examine multiple factors
simultaneously and prioritize the features based on their
importance in the model.

III. DATA SELECTION

A. The SHRP2 Dataset

This study uses the SHRP2 dataset. The SHRP2 dataset is a
relational database containing data collected by VTTI [8]. The
study contains information regarding the subjects’ preferences
and attitudes as well as video and sensor data of all trips driven
by the study participants. The data collected consists of four
tables. The four tables contain: information about the vehicles
included in the study, the trips taken by all drivers in the study,
the drivers, and the events (including crashes, near crashes, and
baseline trips). The drivers are identified using an anonymous
participant ID and the events (crashes or baseline trips) are
identified using an event ID. The sample used in this research is
of 7707 trips from the SHRP2 dataset. 7167 of those trips were
not accidents or near accidents and 540 of those were accidents.
The severity of the accidents ranged from a low risk tire strike
to a severe accident with injuries. These trips originated from
1100 unique drivers, whose age distribution is shown in Table I.
The dataset used in this research contains various pieces of
information about the trip and the accident.

TABLE I AGE DISTRIBUTION
Age Group Number of Trips
16-19 3561
35-39 914
40-44 918
45-49 1144
50-54 1170
Total 7707

B. Variable Selection

Our analysis focused on variables related to road and weather
conditions as well as overall driver behavior, age, and number
of years driving. The goal was to use these variables to predict
accidents. The main motivation is to develop a model that can
help predict in real time a potentially safety-critical event based
on driver, vehicle, and road conditions. We included every
annotated fields based on the in-cabin video capture that are
available to both baseline and crash events as presented in
Appendix 1. They are 30 categorical variables and 3 selected
numeric variables. These variables can be divided into driver
characteristics, driver behavior and road characteristics. Driver
characteristics are driver predispositions that are not related to
one individual trip, such as age and years of driving experience.
Driver behaviors include both specific driver maneuvers of
vehicle that are considered unsafe as well as driver secondary

tasks that are non-driving related and may be distracting. Driver
impairment such as high-emotion state and drowsiness are also
captured. Notably, the SHRP2 dataset provides a high-fidelity
description of driver behaviors that were not available in
previous studies. For example, there are over 60 different types
of secondary tasks that were manually annotated, 10 of which
were related to driver’s cell-phone wuse. Chi-square
independence tests and Point-Biserial correlation were used to
evaluate relationship of categorical and numeric variables with
crash outcomes. All categorical variables except weather,
alignment, grade, and construction zone were shown to be
associated with crash outcome. Years of driving experience are
shown to be negatively correlated with crashes, whereas the
durations of secondary tasks are positively correlated with
crash. Time series data, such as steering wheel angle, brake and
throttle pressure, deceleration, velocity, etc., collected from
radar and a variety of vehicle sensors is omitted in this study,
but will be investigated in the future.

IV. PRELIMINARY ANALYSIS

One of the goals of this study is to determine the importance of
secondary tasks in causing car accidents. Secondary tasks are all
tasks not related to driving. The SHRP2 dataset contains three
variables that describe what secondary tasks were performed by
the driver. The secondary tasks are recorded during the five
seconds that preceded the event for a crash or near crash. For the
baseline events, the secondary tasks are recorded for the last 6
seconds of the baseline epoch. This includes the last 5 seconds
prior to the event end and one second after the event end. The
dataset contains a total of 59 secondary tasks. Since this will
produce a large group of sparse dummy variables in our model,
the 59 secondary tasks have been grouped into 8 similar task
groups. The first group is labeled no tasks. Approximately a
third of all trips containing an incident had no tasks. The second
task group is interaction. This task group includes interacting
with other passengers or pets, dancing or singing. The third
group is external secondary tasks. This group contains tasks like
looking at pedestrians, accidents, construction, or any other
distraction that is outside the vehicle. The fourth group of tasks
is internal tasks, which includes adjusting the mirrors, reading or
writing, inserting a CD, or picking up a dropped object. The fifth
group is all phone related tasks including texting, holding or
talking on a cellular phone. The sixth group is all tasks related
to consuming or holding any food or beverage items. The
seventh group of tasks is all tasks related to grooming. These
tasks include nail biting, adjusting or removing clothing,
adjusting glasses, applying make-up, etc. The final group is all
tasks manually coded as unknown. When looking at the entire
dataset, we can see that secondary tasks are involved in a large
portion of trips, including those that did not end in an accident.
In fact, over 55% of trips contained at least one secondary task.
We can examine the counts of at least one secondary task
appearing in a trip. The most common secondary task overall is



interaction while the least common secondary task is consuming
food or beverage.

While most secondary tasks are infrequent, the aggregate groups
tend to be observed as causing an accident with a similar
probability. For example, phone usage has one of the highest
rates of contributing to an accident while interaction and
grooming are the least likely to contribute to an accident. This is
illustrated in Table II.

V. Model Selection

In conducting this research, a number of machine learning
models were investigated. The selected models are random
forest, deep neural network, gradient boosted classifier, and
gradient boosted classifier with grid search. These models have
been widely used in predictive analytics of many different health
conditions. The models were compared for their performance in
accuracy, sensitivity and specificity.

TABLE II COUNT OF SECONDARY TASKS BY ACCIDENT
Has an
accident
ccurred?
No Accident | Accident | Total
Secondary
Task
Group
No Task 3184 211 3395
Interaction 1860 132 1992
External 803 60 863
Phone 644 73 717
Internal 539 58 597
Grooming 405 32 437
Unknown 302 37 339
Food and Beverage | 257 16 273

A.  Random Forest

The first model examined in this analysis is a random forest
model. Random forests are predictive models that consist of an
ensemble of tree classifiers [9]. The goal behind using an
ensemble of tree classifiers is to reduce the variance of our
model by aggregating a large number of noisy classifiers. To
create a random forest model, we draw multiple bootstrap
samples, construct a classifier for each sample and then find the
prediction using the majority vote of all classification trees.

Random Forest Algorithm

1) Fork=1..K
a) Draw a random bootstrap sample from the sample
data

b) Create a tree from the bootstrapped sample using
the following steps

1. Select a subset of variables from the
sample to generate a tree

il. Pick the optimal values to split for each
of the m variables and split the node on
the value

c¢) Make a prediction using majority vote of the
ensemble of trees

Random forests have been widely used in predictive modeling
throughout the field of health informatics. Examples include the
prediction of in-hospital mortality in emergency department
patients with sepsis [10], prediction of breast cancer diagnosis
and prognosis [11], and for the detection and prediction of
Alzheimer’s disease using MRI imaging [12].

B.  Deep Neural Networks

A deep neural network model (also known as a deep learning
model) is a prediction model [13] comprised of a number of
layers. At each layer, we perform a transformation followed by
an activation function that acts as the decision maker for the
layer. The output of each layer is passed in as the input to the
next layer. Deep neural networks have improved our prediction
capabilities in many important applications like image detection
and speech recognition. In this paper, we will be using the Keras
API to implement a deep learning model to our data.

C. Gradient Boosted Classifier

Gradient boosted classifiers are another type of ensemble
machine learning model. This methodology has been introduced
by Friedman [14] and proposes an improvement to ensemble
models. Typically, ensemble methods combine classifiers by
taking an average of the results of all classifiers. Gradient
boosted classifiers combine “weak” learners using a technique
called boosting. The “weak’ learners are classifiers that produce
a prediction slightly better than a random guess. Typically, each
classifier contains a set of randomly selected vectors (Y =
Y1,Y2, -, Vm) and randomly selected observations (X =
X1, X4, -, X, ) and produces a prediction using the sampled data.
We combine the classifiers using a boosting algorithm. This
means that we aggregate the learners by assigning a weight to
each one. We iteratively optimize the weights until we achieve
an optimal classification algorithm. As shown in Friedman
(2001), our goal is to find an approximation F(x) of the function
F*(x) that minimized the loss function L over all values of x and

y.
F* = argmin Ey'XL(y,F(x)) (D
F
To do this, we generate an additive model that is a weighted

combination of our classifiers (or “weak” learners). This will
produce a boosted model.
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The function h(x;a) is typically a learner with parameters
ay, ..., ay. The vector f4,..., By contains the weights that are
generated by the boosting algorithm.

D. Gradient Boosted Classification with Grid Search

We can further improve our gradient boosted model by
optimizing the model parameters with grid search [15]. Grid
search is a form of hyperparameter tuning. The gradient boosted
model has a number of parameters and we examine all possible
combinations of these parameters. The model selected is one that
optimizes all metrics.

E.  Model Selection

After examining all four models, a gradient boosted model with
grid search was chosen since it has the highest sensitivity. Since
the data contains more baseline observations than accidents, it is
crucial to produce a model that performs well in classifying both
accidents and baseline observations. Although the deep neural
network achieved equal sensitivity, the gradient boosted model
has the advantage of interpretability in that we are able to
evaluate feature importance. Gradient boosting builds
classification trees iteratively. Each tree relies on the
classification error from the previous tree. Therefore, the
algorithm continues to adjust iteratively to reduce the error. As
a result, there is a significant improvement in the correct
classification of accidents. An attempt was made to classify the
data using a random forest algorithm and a neural network.
Random forests have been explored in the study of accidents
[16] [17]. However, our study has found them to perform less
optimally than the gradient boosted model. Similarly, the deep
learning model also did not perform as well as the gradient
boosted model specifically in its sensitivity. While the non-
accidents were classified correctly at a rate of over 95% for all
models, accidents were classified correctly between 69-77% of
the time for random forest, deep learning and the gradient
boosted model without gird search. It seems that both random
forests and neural networks were picking up on the general trend
that most of the data was from the non-accident baseline. Despite
numerous attempts to optimize the algorithms, we still could not
beat the correct classification rate for accidents in gradient
boosting. We can see this result in Table III.

VI. ANALYSIS

A.  The model

In this study, a gradient boosted model was fitted to the data.
Since approximately 93% of the observations in our data are
non-accidents, creating the model with the entire dataset may
produce a model that will predict all observations to be non-
accidents and still have a very high accuracy score. Therefore,
the sample has been down-boosted. The proportion of non-
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Fig. 2. Feature importance in the gradient boosted model

accidents in the sample used to generate the model is 76.84%.
This model produces a much-improved prediction rate for
accidents. The data is then split into training and test datasets.
The model is produced using the training data and all metrics are
generated using the test data. Additionally, the parameters of
gradient boosted algorithm are optimized using a grid search
algorithm. Selecting the max features per tree and the minimum
samples per leaf using a grid search further optimizes the
performance of the algorithm.

B.  Feature Importance

A useful piece of information that we can extract from the model
is the feature importance. The feature importance is a score
between zero and one that tells us how useful the feature was in
constructing the model. In random forests and gradient boosted
tree models, we measure the importance by the improvement in
the model at each split in each tree, the improvement is
aggregated over all trees in the model [9]. In the gradient boosted
model, we observe that the most important features are driver
behavior, pre-incident maneuvers, secondary task duration, and
number of years driving. (Fig. 2)

TABLE II1 MODEL PERFORMANCE METRICS
Accuracy | Sensitivity | Specificity

Random Forest 0.906 0.6923 0.9835
Deep Neural 0.9657 0.7692 0.978
Network
Gradient Boosting | 0.9188 0.7692 0.956
Gradient Boosting | 0.9274 0.8076 0.9505
with Grid Search

Driver behavior is a categorical variable that describes the
driver’s overall demeanor while driving. The driver could be
driving safely, or act distracted. The driver could be performing
improper turns or driving too fast for road conditions. These are
all captured in this variable. Secondary tasks are all tasks the
driver performs that are not directly related to driving. The most
common tasks are interaction with other passengers in the



vehicle and cell phone usage. The SHRP2 data records up to 3
secondary tasks and up to 3 driver behaviors.

Secondary tasks are a type of distracted driving. Therefore, they
are captured both in general in the driver behavior variables and
in the secondary task variables. While this may point to a
relationship between variables, this does not pose a problem
when using ensemble methods like gradient boosting or random
forests. These techniques are more robust, and their results are
not affected by correlated variables. This will simply cause the
model to have redundant information but will not affect the
results.

C. Model Accuracy

When plotting the ROC curve for this model, we see that the area
under the curve is 0.9433. (Fig. 3) This is a good estimate for a
relatively small sample of data. We also withhold a validation
set to ensure there is no overfitting.
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Fig. 3 The ROC curve of the gradient boosted model

VII. DISCUSSION OF FEATURES

Our model allows us to uncover interesting insights regarding
the importance of certain features in determining the probability
of a car accident.

A. Driver Behavior

According to the model, the most important factor in causing car
accidents is driver behavior. According to the SHRP2 data
dictionary, driver behavior is described as actions “that include
what the driver did to cause or contribute to the crash or near-
crash” [8]. There is a total of 3 variables that describe driver
behavior. Each of the three is a categorical variable and all three
have the identical categories. Since the data is manually coded,
the person coding the data can select up to three behaviors that a
driver exhibits during the trip. The behaviors exhibited by the
driver are typically apparent in the video. Examples of driver
behavior are aggressive driving, drowsiness, exceeding the
speed limit, etc. These behaviors are recorded in the non-
accident baseline trips as well. Not only is driver behavior the
most important factor in determining whether an accident will

occur, we also see that the 4" most important factor is the second
driver behavior. This means that displaying more than one
behavior increases our ability to predict an accident even further.
There are several studies that support this finding and show that
driver behavior is a significant factor in causing accidents. One
example is the study by Dingus et al. showing the prevalence of
driver related factors in accidents [18].

B.  Pre-Incident Maneuver

This variable describes the type of action or maneuver that the
driver was engaged in prior to the accident. If this is a baseline
trip, then this variable describes the maneuver prior to the end of
the recorded period [8]. There are 21 possible values in this
categorical variable. These values describe whether the driver
was driving straight or turning, whether they were reversing out
of a parking spot, or making a U-turn or another maneuver. This
variable is coded by a human watching the video of the trip. A
study by Mitra et al. [19] supports this finding. Though this
study focuses primarily on accidents in intersections, it shows
that the type of maneuver has an impact on the occurrence of a
crash. Our study looked at crashes in all driving situations
including in intersections. Another study by Box [20] indicates
that entering a parking position is a significant cause of
accidents. Table IV shows that the most common pre-incident
maneuver that ended in an accident is a right turn followed by
entering a parking position and going straight at a constant
speed. What this table shows is that some maneuvers seem to
appear proportionately in both the accident and non-accident
trips (like going straight, constant speed) while others are more
highly represented in the accident group (like turning right or
entering a parking position).

C. Secondary Task Duration

Secondary tasks are defined in the SHRP2 data dictionary as any
distractions that are not driving related such as talking, singing,
eating, or looking at one’s cellular phone [8].

TABLE IV COUNTS OF THE TOP 5 PRE-INCIDENT MANEUVERS FOR
ACCIDENT AND BASELINE TRIPS

Pre- Has an accident No

Incident occurred? | Accident Accident

Maneuver

Turning right 143 149

Entering a parking position 68 66

Going straight, constant speed 61 3680

Negotiating a curve 55 825

Decelerating in traffic lane 46 1211

There are three secondary tasks categorical variables that all
contain the same categories. Due to the nature of the data, the
person coding the data could record up to three tasks per driver,
though most drivers engaging in a task only performed one task.
About two thirds of drivers involved in an accident performed at



least one task. Secondary tasks have been studied as a factor
causing accidents in a number of studies. One example is a study
by Young et al. examining the involvement of secondary tasks
in crashes [21]. During the manual coding, a determination was
made whether the secondary task was involved in causing the
accident. We can see that some tasks are more likely to cause
accidents than others. For example, grooming is very unlikely to
cause accidents. On the other hand, in more than half of
accidents that involved cellular phone usage, the phone was
determined to contribute to the accident. Here we see that
specifically the duration of the secondary task has an impact on
the model’s decision of whether the trip should be classified as
an accident. In some secondary tasks, the duration of the task is
much longer when an accident occurred. In food and beverage
related tasks as well as phone related tasks, the mean duration of
secondary task in an accident is significantly longer. However,
in other tasks, the length is very similar. In internal related tasks,
we see a similar secondary task duration. This data illustrates
that accident prediction requires a combination of variables.
These results are described in Table V. One limitation of this
variable is that the maximum value of secondary task duration
for all non-accident trips were coded to be six seconds, whereas
trips with accidents may have secondary tasks that are coded to
be longer than six seconds.

D. Number of Years Driving

The third most important factor is the number of years the driver
has had a license. This is a factor that has been researched in the
past by many others. One such study is the study by Gershon et
al. that examined teen drivers [22]. We can also intuitively
assume that inexperienced drivers are more prone to accidents.

In summary, we can group the features in our model into 3 main
groups: environmental factors, driver behavior related factors,
and driver related factors. Five of the top 10 features ranked by
importance are related to driver behavior. These features are
Driver Behavior 1, Pre-Incident Maneuver, Secondary Task 1
Duration, Driver Behavior 2, and Maneuver Judgement. This
leads us to conclude that while environmental factors and road
conditions have some impact, the most important factors in
predicting an accident are related to the driver’s behavior and
judgement.

E. Future Work

This work highlights the importance of identifying risky driver
behaviors in crash predication and motivates direction of our
further work, which is to classify risky driver behaviors using
on-board sensor data. The SHRP 2 allows identification of these
behaviors by video annotation. However, manual video
annotation is impractical for real-life risk detection; computer
vision algorithms, while improving by day, are highly situation-
specific and not appropriate for handling scenarios such as
aggressive driving or high-emotion driver state. In real-world

TABLE V THE PROBABILITY OF A SECONDARY TASK BEING INVOLVED
IN AN ACCIDENT AS WELL AS MEAN SECONDARY TASK DURATION

‘Was the
accident
caused by Mean Mean
he task? Secondary | Secondary
No Not Task Task
applicable Y Duration Duration
or es for for
Unknown Baseline Accidents
(in (in
seconds) seconds)
Secondary
Task Group
No Task 0 1 0 0 0
Interaction | 0.76 | 0.08 0.17 1 5.34 7.07
External 051 (0 0.49 | 2.15 2.79
Phone 0.45 | 0.03 0.52 ] 5.67 7.59
Internal 0.74 | 0 0.26 | 3.1 3.89
Grooming | 0.86 | 0 0.13 ] 4.6 5.53
Food and
Beverage | 0:62 | 0.08 0.31 | 5.64 7.99
Unknown 0.56 | 0.19 0.26 | 1.98 2.92

driving, video cameras are not standard on-board technology
due to manufacturing and privacy concerns. Therefore, we seek
opportunities to link risky driver maneuver and in-cabin
activities with built-in sensor data from the vehicle in the
absence of video capability. For example, vehicle acceleration
and yaw rate can be used to detect severe maneuvers and steering
controls. Several signals may be linked to driver state of control
and distraction, such as positions of accelerator pedal, brake
pedal and steering wheel, turn signals, and driver head
rotations. Activation of anti-lock braking system (ABS) and
electronic stability control (ESC) are indicative of emergency
braking and roadway departure. GPS-based signals as well as
vehicle-based machine vision provide information on road
sections. Vehicle-to-vehicle dynamics can be extracted from
radar sensor data.

A roadmap of our current and future work is seen in Fig. 4. Our
current work of identifying high-risk driver behaviors based on
video-annotated data is discussed in this paper. We dedicate
ongoing efforts to Stage II and Stage III, which deal with
sensor-based time series data of significant size and variability.
In Stage II, we generate hypotheses and learning models that
are able to classify risky driver behaviors by detecting hidden
layers of on-board sensor data. In Stage III, we augment the
learned models on the entire dataset of SHRP 2 (approximately
5.5 million observations). Analytic tasks such as determining
similarity of time-series fragments and graph mining of
heterogeneous networks require significant computing
resources. We establish an experimental cluster based on Spark
and hardware optimization to achieve data parallelism and
distributed computing. Our aspiration is to implement the



Fig. 4. Our analytics roadmap to reduce road injuries
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optimized algorithm as part of the on-board advanced driver
assistance systems so that vehicles can be informed of driver
state and provide just-in-time driver support.

VIII. CONCLUSION

The main goal of this study is to uncover the primary causes of
car accidents. In this study, a gradient boosted decision tree
model has been generated using decision trees as “weak”
learners. This methodology outperforms other models in the
accuracy of predicting both crashes and non-crash trips. The
machine learning method selected for this study produces a
model that allows us to rank the importance of each factor in
causing car accidents.

Our results prove that this modeling technique can predict a
general accident risk probability based on road conditions and
some information regarding the driver and their behavior during
the trip. These are pieces of information that can be collected
and used to help drivers drive more carefully. For example, this
information can be used to calibrate the sensitivity of driver
assistance systems in newer vehicles.

The analysis in this study contains many variables that are hand
coded. While the technology to infer this information from the
video using machine learning currently exists, our goal in
subsequent research is to uncover the relationship between these
hand coded variables and the sensor data emitted from the
vehicle. This will provide us with a solution for integrating with
on-board signals and detecting risky behaviors in real time that
are more likely to cause an accident. Borrowing from the
Internet of Things (IoT) framework, the algorithms will enable
machine awareness of its driver. The algorithms will provide
utility not only to drivers in the form of alerts, but also to
advanced driver assistance systems as signals to activate
protection mechanisms.
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APPENDIX [

LIST OF MODEL VARIABLES AND THEIR DESCRIPTION

. . L Chi-square
Categorial Variable Description Source Statistics p-value
ageGroup Driver age groups Driver Table 89.4107 0
alignment Roadway curvature at the time of event capturing Event Table 0.553 0.7584
. Whether vehicle was in or approaching a construction zone at the
constructionZone time of event capturing Event Table 2.8348 0.5858
contigTravelLanes Total number of contiguous travel lanes Event Table 277.8812 0
driverBehaviorl Drlver behav1orsl that contributed or could contribute to an accident Event Table 2863.0955 0
in the order of criticalness.
driverBehavior2 Drlver behav1ors. that contributed or could contribute to an accident Event Table 9761454 0
in the order of criticalness.
driverBehavior3 Drlver behav1orsl that contributed or could contribute to an accident Event Table 2822853 0
in the order of criticalness.
driverImpairments Possible causes that impair driver judgment or driving ability Event Table 163.3685 0
driverSeatbeltUse Driver’s use of seatbelt Event Table 59.1721 0
grade Roadway uphill/downhill Event Table 3.6249 0.4591
handsOnTheWheel Number and side of hands placed on the steering wheel Event Table 32.5187 0.0002
intersectionInfluence Influence of intersections on subject vehicle’s movement Event Table 433.7971 0
lighting Lighting condition at the time of event capturing Event Table 16.2976 0.0026
locality Type of vehicle surroundings such as business/school/residential Event Table 122.5916 0
maneuverJudgment Whether driver maneuver of vehicle is safe and legal Event Table 327.0328 0
prelncidentManeuver Driver’s last maneuver of vehicle before an event capturing Event Table 2043.8206 0
relationToJunction Relation of subject vehicle to a junction where 2+ roadways meet Event Table 329.8020 0
secondaryTask] ODrr(;Zfr s in-cabin activity not related to driving in chronological Event Table 186.5126 0
secondaryTask? ODrr(;\e/fr s in-cabin activity not related to driving in chronological Event Table 135.7452 0
secondary Task3 ODrr(;\e/fr s in-cabin activity not related to driving in chronological Event Table 69.6335 0.0006
g . Derived from
secondaryGroupl Driver’s first secondary task grouped into 8 types Event Table 24.5994 0.0009
g . Derived from
secondaryGroup2 Driver’s second secondary task grouped into 8 types Event Table 49.9279 0
e the . Derived from
secondaryGroup3 Driver’s third secondary task grouped into 8 types Event Table 20.2711 0.005
R m — - - — -
surfaceCondition oadway surface condition affecting vehicle friction at the time of Event Table 44,6632 0
event capturing
throughTravelLanes Number of through travel lanes in the subject vehicle direction Event Table 350.7616 0
trafficControl Type of traffic control at the time of event capturing Event Table 118.4419 0
trafficDensity Level of traffic density based on manual analysis Event Table 62.1712 0
trafficFlow Roadway design Event Table 298.8629 0
vehiclel LaneOccupied Lane in which the subject vehicle occupied at the time of event Event Table 3573775 0
capturing
weather Weather condition Event Table 7.4527 0.3833
. . L L Correlation
Numeric Variable Description Description Coefficient p-value
years_driving Number of years driving Driver Table -0.1043 0
. . Derived from
secondaryTask1Duration | Duration of the first secondary task Event Table 0.0886 0
. . Derived from
secondaryTask2Duration | Duration of the second secondary task Event Table 0.0872 0
secondaryTask3Duration | Duration of the third secondary task Derived  from 0.0357 0.0017

Event Table




