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Abstract: Road injuries are rated among the top 10 causes of death 
by the World Health Organization, and the only one that is not a 
disease. The total economic cost of motor vehicle crashes in the 
United States was estimated to be $242 billion a year. This study 
examines multiple factors of accidents simultaneously with a goal of 
generating an interpretable model that can predict the occurrence of 
an accident given road conditions and driver behavior. The study 
compared 4 machine learning and deep learning modeling 
techniques on a dataset of 7707 trips collected by the Second 
Strategic Highway Research Program. A gradient boosted model was 
found to be most accurate and interpretable in accident prediction. 
This modeling technique also allows us to rank the feature 
importance of the factors in the model. The study finds that driver 
behavior, pre-incident maneuvers and secondary task duration are 
the most important variables in the predictive model. Using these 
conclusions will allow us to perform more work to infer these 
accident causes directly from vehicle sensor data in the future.  

Keywords: naturalistic driving, driving behavior, secondary tasks, 
driving disengagement, predictive analytics, vehicle injuries, injury 
prevention, big data  

I. INTRODUCTION 

Road traffic accidents remain to be one of the leading causes of 
death across the world. The World Health Organization rated 
road injury to be the eighth most deadly (2018), and the only 
one of the top 10 causes of death that is not a disease. Some 
parts of the Africa and South America continents experience 
higher mortality rate than the rest of the world. In the United 
States where our data source is collected, motor vehicle traffic 
related deaths amount to 34,439 in 2016 or 11.6 per 100,000 
population. Although the total fatal crashes have been slowly 
decreasing, the fatality rate disproportionately affects the lives 
of teenage and young adults. Furthermore, motor vehicle 
related injuries impact 600 or more lives per 100,000 
population. The total estimated economic cost of traffic crashes 
to the society was $242 billion in 2010 [1]. 

Traditional road injury research utilizes simulator-based 
observational studies. Advanced driving simulators can detect 
hands-off-wheel behaviors, track eye gazes, and monitor 
physical manifestation such as perspiration and breathing/heart 

rate. The simulated driving scenarios are customizable and 
repeatable to study human behaviors in various scenarios. While 
driving simulators are particularly helpful in studying targeted, 
known factors, such as when evaluating a new driver assistance 
system, its limitation is inherent in the absence of actual physical 
dynamics of the vehicles that is the child of complex 
environmental circumstances and human decisions. Unknown 
detriments, by definition, cannot be designed into simulated 
scenarios. Simulator-based driving studies are often limited by 
recruitment size of participants. 

In contrast, another approach to study road injuries involves 
naturalistic driving by participating subjects in real-world or 
minimally-modified conditions.  It generates data of human 
driving behaviors and vehicle response kinematics 
representative of naturally occurring scenarios experienced by 
everyday commuters. Depending on the onboard data 
acquisition system (DAS) made available in naturalistic driving 
studies (NDS), in-car driver behaviors can be captured similar to 
those in simulator-based driving assessment. Compared to 
simulator-generated results, NDS is more expensive to organize 
due to the recruitment of study participants, fitting of study 
vehicles, and administrative tasks associated with the data 
procurement process. However, NDS datasets offer an 
unprecedented opportunity to study a plethora of data attributes 
indicative of human-machine-road interactions. 

Natural driving studies generate rich data that meets the widely-
accepted dimensions of “big data” in volume, velocity, variety, 
variability, and value. NDS usually involve a large cohort of 
participants and the study period can span over multiple years. 
Time-series data collected by sensors, such as camera and radar, 
result in a large volume of data in NDS. A large variety of data 
attributes related to driver and vehicles are collected from 
natural driving trips. Depending on the individual drivers and 
road conditions, NDS data exemplify great variation. NDS data 
can also assume great velocity during an ongoing trip. Sensor 
data at 10 Hz or higher can be analyzed for real-time prediction 
of risks. The value of NDS is evident in generating high-fidelity 
data that reflects human driving in genuine conditions. 



Research efforts around the world in the past decade have been 
organizing naturalistic driving studies. In the U.S., the Virginia 
Transportation Technology Institute (VTTI) first pioneered a 
100-car study over a 12-month period generating 50,000 hours 
of naturalistic driving data. Success of the study propelled the 
Second Strategic Highway Research Program (SHRP 2), an 
expanded follow-up study recruiting more than 3,000 volunteer 
drivers whose trips over 4-24 months were recorded. The 
program installed a comprehensive data acquisition system in 
participating vehicles that include a head unit with three 
recording cameras providing four views of driver’s face, driver’s 
hands, forward roadway and rear roadway. (Fig. 1) Radar, GPS, 
and accelerometers-based data was also captured in the DAS [2]. 
The result was an NDS dataset the largest of its kind that 
included more than 5.5 million trips and 3,900 data hours of 
driving. Variables available including time-series sensor data, 
driver characteristics and road infrastructure information. In 
Europe, PROLOGUE and UDRIVE are two large-scale NDS 
implemented to evaluate driver behaviors in different EU 
regions and types of vehicles. Australia and Japan have 
undertaken similar efforts in recent years. 

 

Fig. 1.a. A head unit of the DAS recording four camera views 

 

Figure 1.b. Schematic of the four fields of view 

Our motivation is to take advantage of the rich data afforded by 
naturalistic driving datasets and to tackle the immanent 
challenges of large-scale data processing and computing. In this 
study, we sought to better understand the associations of driver 
behaviors and road injuries in natural driving conditions. 

II. LITERATURE REVIEW 
We provide a brief review of published literature focused on 
motor vehicle crash prediction. We consider the research on 
automobile injury prevention highly interdisciplinary spanning 
across engineering, medicine, public health and ultimately 
connected by mathematic algorithms. This is evident in the 
heterogeneity of data attributes commonly studied and often 
intertwined: driver behavior, vehicle kinematics, and 
environmental factors. Driver behavior attributes range from 
driver demographics, psychological evaluation and existing 
conditions to in-car activities and physiological state when 
driving. Vehicle kinematics are results of driver maneuvers but 
represented in physical unit measures. Environmental factors 
can include both naturally-occurring conditions and vehicle-to-
road, vehicle-to-vehicle dynamics.  

Many studies have been conducted on the effects of a single 
factor or a handful of factors on driver behavior and the 
probability of car accidents. Gershon et al. (2017) found the 
increased risk of accidents for new drivers by studying 90 
adolescents and 131 of their parents.[1] Precht et al. (2017) 
examined the impact of anger as a cause of accidents. This study 
looked at 10 minutes of 108 trips from the SHRP 2 dataset and 
analyzed driver behavior related to anger.  Furthermore, 
Tivesten (2015) and Seo (2004) showed an increased risk of 
accidents associated with cell phone use in their respective 
studies [3][4]. 

Recent studies using naturalistic driving datasets have shown 
findings that reinforce simulator-based studies. Dingus et al. 
using the SHRP2 dataset found that driver-related factors, 
including impairment, error, and distraction, were present in 
close to 90% of the crash cases; high-emotion driving state, 
knowledge deficiency, aggressiveness and distraction have 
strong indication [5]. Wang et al. using the SHRP2 dataset with 
324 driving events identified speeding, visual distraction and 
inclement road condition to be risk factors associated with safety 
critical events on curvy roadways [6]. Vehicle information was 
combined with driver in-car activities to predict crash. Victor et 
al. (2015) concluded that crashes arise from the “perfect storm” 
of the change rate at which vehicles closing in on each other 
and the duration of the ego driver’s last glance unrelated to 
driving before an accident [7]. 

While a large portion of studies on driver behaviors examine a 
limited number of factors and the impact of those factors on 
accidents, the main goal of this study is to produce a model that 
utilizes multiple features captured in the SHRP2 dataset. Using 



this model, we will be able to examine multiple factors 
simultaneously and prioritize the features based on their 
importance in the model.  

III. DATA SELECTION 
A. The SHRP2 Dataset 
This study uses the SHRP2 dataset. The SHRP2 dataset is a 
relational database containing data collected by VTTI [8]. The 
study contains information regarding the subjects’ preferences 
and attitudes as well as video and sensor data of all trips driven 
by the study participants. The data collected consists of four 
tables. The four tables contain: information about the vehicles 
included in the study, the trips taken by all drivers in the study, 
the drivers, and the events (including crashes, near crashes, and 
baseline trips). The drivers are identified using an anonymous 
participant ID and the events (crashes or baseline trips) are 
identified using an event ID. The sample used in this research is 
of 7707 trips from the SHRP2 dataset. 7167 of those trips were 
not accidents or near accidents and 540 of those were accidents. 
The severity of the accidents ranged from a low risk tire strike 
to a severe accident with injuries. These trips originated from 
1100 unique drivers, whose age distribution is shown in Table I. 
The dataset used in this research contains various pieces of 
information about the trip and the accident.  

TABLE I   AGE DISTRIBUTION 

Age Group Number of Trips 
16-19 3561 
35-39 914 
40-44 918 
45-49 1144 
50-54 1170 
Total 7707 

 

B. Variable Selection 
Our analysis focused on variables related to road and weather 
conditions as well as overall driver behavior, age, and number 
of years driving. The goal was to use these variables to predict 
accidents. The main motivation is to develop a model that can 
help predict in real time a potentially safety-critical event based 
on driver, vehicle, and road conditions. We included every 
annotated fields based on the in-cabin video capture that are 
available to both baseline and crash events as presented in 
Appendix I. They are 30 categorical variables and 3 selected 
numeric variables. These variables can be divided into driver 
characteristics, driver behavior and road characteristics. Driver 
characteristics are driver predispositions that are not related to 
one individual trip, such as age and years of driving experience. 
Driver behaviors include both specific driver maneuvers of 
vehicle that are considered unsafe as well as driver secondary 

tasks that are non-driving related and may be distracting. Driver 
impairment such as high-emotion state and drowsiness are also 
captured. Notably, the SHRP2 dataset provides a high-fidelity 
description of driver behaviors that were not available in 
previous studies. For example, there are over 60 different types 
of secondary tasks that were manually annotated, 10 of which 
were related to driver’s cell-phone use. Chi-square 
independence tests and Point-Biserial correlation were used to 
evaluate relationship of categorical and numeric variables with 
crash outcomes. All categorical variables except weather, 
alignment, grade, and construction zone were shown to be 
associated with crash outcome. Years of driving experience are 
shown to be negatively correlated with crashes, whereas the 
durations of secondary tasks are positively correlated with 
crash. Time series data, such as steering wheel angle, brake and 
throttle pressure, deceleration, velocity, etc., collected from 
radar and a variety of vehicle sensors is omitted in this study, 
but will be investigated in the future.  

IV. PRELIMINARY ANALYSIS 
One of the goals of this study is to determine the importance of 
secondary tasks in causing car accidents. Secondary tasks are all 
tasks not related to driving. The SHRP2 dataset contains three 
variables that describe what secondary tasks were performed by 
the driver. The secondary tasks are recorded during the five 
seconds that preceded the event for a crash or near crash. For the 
baseline events, the secondary tasks are recorded for the last 6 
seconds of the baseline epoch. This includes the last 5 seconds 
prior to the event end and one second after the event end. The 
dataset contains a total of 59 secondary tasks. Since this will 
produce a large group of sparse dummy variables in our model, 
the 59 secondary tasks have been grouped into 8 similar task 
groups. The first group is labeled no tasks. Approximately a 
third of all trips containing an incident had no tasks. The second 
task group is interaction. This task group includes interacting 
with other passengers or pets, dancing or singing. The third 
group is external secondary tasks. This group contains tasks like 
looking at pedestrians, accidents, construction, or any other 
distraction that is outside the vehicle. The fourth group of tasks 
is internal tasks, which includes adjusting the mirrors, reading or 
writing, inserting a CD, or picking up a dropped object. The fifth 
group is all phone related tasks including texting, holding or 
talking on a cellular phone. The sixth group is all tasks related 
to consuming or holding any food or beverage items. The 
seventh group of tasks is all tasks related to grooming. These 
tasks include nail biting, adjusting or removing clothing, 
adjusting glasses, applying make-up, etc. The final group is all 
tasks manually coded as unknown. When looking at the entire 
dataset, we can see that secondary tasks are involved in a large 
portion of trips, including those that did not end in an accident. 
In fact, over 55% of trips contained at least one secondary task. 
We can examine the counts of at least one secondary task 
appearing in a trip. The most common secondary task overall is 



interaction while the least common secondary task is consuming 
food or beverage.  

While most secondary tasks are infrequent, the aggregate groups 
tend to be observed as causing an accident with a similar 
probability. For example, phone usage has one of the highest 
rates of contributing to an accident while interaction and 
grooming are the least likely to contribute to an accident. This is 
illustrated in Table II.  

V. Model Selection 
In conducting this research, a number of machine learning 
models were investigated. The selected models are random 
forest, deep neural network, gradient boosted classifier, and 
gradient boosted classifier with grid search. These models have 
been widely used in predictive analytics of many different health 
conditions.  The models were compared for their performance in 
accuracy, sensitivity and specificity. 

TABLE II     COUNT OF SECONDARY TASKS BY ACCIDENT 

 

A. Random Forest  
The first model examined in this analysis is a random forest 
model. Random forests are predictive models that consist of an 
ensemble of tree classifiers [9]. The goal behind using an 
ensemble of tree classifiers is to reduce the variance of our 
model by aggregating a large number of noisy classifiers. To 
create a random forest model, we draw multiple bootstrap 
samples, construct a classifier for each sample and then find the 
prediction using the majority vote of all classification trees.  

Random Forest Algorithm 

1) For k=1...K 
a) Draw a random bootstrap sample from the sample 

data 

b) Create a tree from the bootstrapped sample using 
the following steps 

i. Select a subset of variables from the 
sample to generate a tree 

ii. Pick the optimal values to split for each 
of the m variables and split the node on 
the value 

c) Make a prediction using majority vote of the 
ensemble of trees 

Random forests have been widely used in predictive modeling 
throughout the field of health informatics. Examples include the 
prediction of in-hospital mortality in emergency department 
patients with sepsis [10], prediction of breast cancer diagnosis 
and prognosis [11], and for the detection and prediction of 
Alzheimer’s disease using MRI imaging [12]. 

B. Deep Neural Networks 
A deep neural network model (also known as a deep learning 
model) is a prediction model [13] comprised of a number of 
layers. At each layer, we perform a transformation followed by 
an activation function that acts as the decision maker for the 
layer. The output of each layer is passed in as the input to the 
next layer. Deep neural networks have improved our prediction 
capabilities in many important applications like image detection 
and speech recognition. In this paper, we will be using the Keras 
API to implement a deep learning model to our data.  

C. Gradient Boosted Classifier  
Gradient boosted classifiers are another type of ensemble 
machine learning model. This methodology has been introduced 
by Friedman [14] and proposes an improvement to ensemble 
models. Typically, ensemble methods combine classifiers by 
taking an average of the results of all classifiers. Gradient 
boosted classifiers combine “weak” learners using a technique 
called boosting. The “weak” learners are classifiers that produce 
a prediction slightly better than a random guess. Typically, each 
classifier contains a set of randomly selected vectors (𝑌 =
𝑦$, 𝑦&, … , 𝑦()  and randomly selected observations (𝑋 =
𝑥$, 𝑥&, … , 𝑥-) and produces a prediction using the sampled data. 
We combine the classifiers using a boosting algorithm. This 
means that we aggregate the learners by assigning a weight to 
each one. We iteratively optimize the weights until we achieve 
an optimal classification algorithm. As shown in Friedman 
(2001), our goal is to find an approximation F(x) of the function 
F*(x) that minimized the loss function L over all values of x and 
y. 

𝐹∗ = argmin
6

𝐸8,𝑿𝐿;𝑦, 𝐹(𝑥)<	 (1) 

To do this, we generate an additive model that is a weighted 
combination of our classifiers (or “weak” learners). This will 
produce a boosted model.  

 

No Accident Accident Total 

No Task 3184 211 3395 

Interaction 1860 132 1992 
External 803 60 863 
Phone 644 73 717 
Internal 539 58 597 
Grooming 405 32 437 
Unknown 302 37 339 
Food and Beverage 257 16 273 

Secondary 
Task 
Group 

Has an 
accident 

occurred? 







least one task. Secondary tasks have been studied as a factor 
causing accidents in a number of studies. One example is a study 
by Young et al. examining the involvement of secondary tasks 
in crashes [21]. During the manual coding, a determination was 
made whether the secondary task was involved in causing the 
accident. We can see that some tasks are more likely to cause 
accidents than others. For example, grooming is very unlikely to 
cause accidents. On the other hand, in more than half of 
accidents that involved cellular phone usage, the phone was 
determined to contribute to the accident. Here we see that 
specifically the duration of the secondary task has an impact on 
the model’s decision of whether the trip should be classified as 
an accident. In some secondary tasks, the duration of the task is 
much longer when an accident occurred. In food and beverage 
related tasks as well as phone related tasks, the mean duration of 
secondary task in an accident is significantly longer. However, 
in other tasks, the length is very similar. In internal related tasks, 
we see a similar secondary task duration. This data illustrates 
that accident prediction requires a combination of variables. 
These results are described in Table V. One limitation of this 
variable is that the maximum value of secondary task duration 
for all non-accident trips were coded to be six seconds, whereas 
trips with accidents may have secondary tasks that are coded to 
be longer than six seconds. 

D. Number of Years Driving 
The third most important factor is the number of years the driver 
has had a license. This is a factor that has been researched in the 
past by many others. One such study is the study by Gershon et 
al. that examined teen drivers [22]. We can also intuitively 
assume that inexperienced drivers are more prone to accidents.  

In summary, we can group the features in our model into 3 main 
groups: environmental factors, driver behavior related factors, 
and driver related factors. Five of the top 10 features ranked by 
importance are related to driver behavior. These features are 
Driver Behavior 1, Pre-Incident Maneuver, Secondary Task 1 
Duration, Driver Behavior 2, and Maneuver Judgement. This 
leads us to conclude that while environmental factors and road 
conditions have some impact, the most important factors in 
predicting an accident are related to the driver’s behavior and 
judgement.  

E. Future Work 

This work highlights the importance of identifying risky driver 
behaviors in crash predication and motivates direction of our 
further work, which is to classify risky driver behaviors using 
on-board sensor data. The SHRP 2 allows identification of these 
behaviors by video annotation. However, manual video 
annotation is impractical for real-life risk detection; computer 
vision algorithms, while improving by day, are highly situation-
specific and not appropriate for handling scenarios such as 
aggressive driving or high-emotion driver state. In real-world  

TABLE V   THE PROBABILITY OF A SECONDARY TASK BEING INVOLVED 
IN AN ACCIDENT AS WELL AS MEAN SECONDARY TASK DURATION 

 

driving, video cameras are not standard on-board technology 
due to manufacturing and privacy concerns. Therefore, we seek 
opportunities to link risky driver maneuver and in-cabin 
activities with built-in sensor data from the vehicle in the 
absence of video capability. For example, vehicle acceleration 
and yaw rate can be used to detect severe maneuvers and steering 
controls. Several signals may be linked to driver state of control 
and distraction, such as positions of accelerator pedal, brake 
pedal and steering wheel, turn signals, and driver head 
rotations. Activation of anti-lock braking system (ABS) and 
electronic stability control (ESC) are indicative of emergency 
braking and roadway departure. GPS-based signals as well as 
vehicle-based machine vision provide information on road 
sections. Vehicle-to-vehicle dynamics can be extracted from 
radar sensor data. 

A roadmap of our current and future work is seen in Fig. 4. Our 
current work of identifying high-risk driver behaviors based on 
video-annotated data is discussed in this paper. We dedicate 
ongoing efforts to Stage II and Stage III, which deal with 
sensor-based time series data of significant size and variability. 
In Stage II, we generate hypotheses and learning models that 
are able to classify risky driver behaviors by detecting hidden 
layers of on-board sensor data. In Stage III, we augment the 
learned models on the entire dataset of SHRP 2 (approximately 
5.5 million observations). Analytic tasks such as determining 
similarity of time-series fragments and graph mining of 
heterogeneous networks require significant computing 
resources. We establish an experimental cluster based on Spark 
and hardware optimization to achieve data parallelism and 
distributed computing. Our aspiration is to implement the  

 

No Not 
applicable 
or 
Unknown 

Yes 

Mean 
Secondary 
Task 
Duration 
for 
Baseline 
(in 
seconds) 

Mean 
Secondary 
Task 
Duration 
for 
Accidents 
(in 
seconds) 

No Task 0 1 0 0 0 
Interaction 0.76 0.08 0.17 5.34 7.07 
External 0.51 0 0.49 2.15 2.79 
Phone 0.45 0.03 0.52 5.67 7.59 
Internal 0.74 0 0.26 3.1 3.89 
Grooming 0.86 0 0.13 4.6 5.53 
Food and 
Beverage 0.62 0.08 0.31 5.64 7.99 
Unknown 0.56 0.19 0.26 1.98 2.92 

Was the 
accident 

caused by 
the task? 

Secondary 
Task Group 



Fig. 4. Our analytics roadmap to reduce road injuries 

 

optimized algorithm as part of the on-board advanced driver 
assistance systems so that vehicles can be informed of driver 
state and provide just-in-time driver support. 

VIII. CONCLUSION 
The main goal of this study is to uncover the primary causes of 
car accidents. In this study, a gradient boosted decision tree 
model has been generated using decision trees as “weak” 
learners. This methodology outperforms other models in the 
accuracy of predicting both crashes and non-crash trips. The 
machine learning method selected for this study produces a 
model that allows us to rank the importance of each factor in 
causing car accidents.  

Our results prove that this modeling technique can predict a 
general accident risk probability based on road conditions and 
some information regarding the driver and their behavior during 
the trip. These are pieces of information that can be collected 
and used to help drivers drive more carefully. For example, this 
information can be used to calibrate the sensitivity of driver 
assistance systems in newer vehicles.  

The analysis in this study contains many variables that are hand 
coded. While the technology to infer this information from the 
video using machine learning currently exists, our goal in 
subsequent research is to uncover the relationship between these 
hand coded variables and the sensor data emitted from the 
vehicle. This will provide us with a solution for integrating with 
on-board signals and detecting risky behaviors in real time that 
are more likely to cause an accident. Borrowing from the 
Internet of Things (IoT) framework, the algorithms will enable 
machine awareness of its driver. The algorithms will provide 
utility not only to drivers in the form of alerts, but also to 
advanced driver assistance systems as signals to activate 
protection mechanisms.  
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APPENDIX  I   LIST OF  MODEL VARIABLES AND THEIR DESCRIPTION 

Categorial Variable Description Source Chi-square 
Statistics p-value 

ageGroup Driver age groups Driver Table 89.4107 0 

alignment Roadway curvature at the time of event capturing Event Table 0.553 0.7584 

constructionZone 
Whether vehicle was in or approaching a construction zone at the 
time of event capturing Event Table 2.8348 0.5858 

contigTravelLanes Total number of contiguous travel lanes Event Table 277.8812 0 

driverBehavior1 
Driver behaviors that contributed or could contribute to an accident 
in the order of criticalness. Event Table 2863.0955 0 

driverBehavior2 
Driver behaviors that contributed or could contribute to an accident 
in the order of criticalness. Event Table 976.1454 0 

driverBehavior3 
Driver behaviors that contributed or could contribute to an accident 
in the order of criticalness. Event Table 282.2853 0 

driverImpairments Possible causes that impair driver judgment or driving ability Event Table 163.3685 0 
driverSeatbeltUse Driver’s use of seatbelt Event Table 59.1721 0 
grade Roadway uphill/downhill Event Table 3.6249 0.4591 
handsOnTheWheel Number and side of hands placed on the steering wheel Event Table 32.5187 0.0002 

intersectionInfluence Influence of intersections on subject vehicle’s movement Event Table 433.7971 0 

lighting Lighting condition at the time of event capturing Event Table 16.2976 0.0026 
locality Type of vehicle surroundings such as business/school/residential Event Table 122.5916 0 
maneuverJudgment Whether driver maneuver of vehicle is safe and legal Event Table 327.0328 0 
preIncidentManeuver Driver’s last maneuver of vehicle before an event capturing Event Table 2043.8206 0 

relationToJunction Relation of subject vehicle to a junction where 2+ roadways meet Event Table 329.8020 0 

secondaryTask1 
Driver’s in-cabin activity not related to driving in chronological 
order Event Table 186.5126 0 

secondaryTask2 
Driver’s in-cabin activity not related to driving in chronological 
order Event Table 135.7452 0 

secondaryTask3 
Driver’s in-cabin activity not related to driving in chronological 
order Event Table 69.6335 0.0006 

secondaryGroup1 Driver’s first secondary task grouped into 8 types Derived from 
Event Table 24.5994 0.0009 

secondaryGroup2 Driver’s second secondary task grouped into 8 types Derived from 
Event Table 49.9279 0 

secondaryGroup3 Driver’s third secondary task grouped into 8 types Derived from 
Event Table 20.2711 0.005 

surfaceCondition 
Roadway surface condition affecting vehicle friction at the time of 
event capturing Event Table 44.6632 0 

throughTravelLanes Number of through travel lanes in the subject vehicle direction Event Table 350.7616 0 
trafficControl Type of traffic control at the time of event capturing Event Table 118.4419 0 

trafficDensity Level of traffic density based on manual analysis Event Table 62.1712 0 
trafficFlow Roadway design Event Table 298.8629 0 

vehicle1LaneOccupied 
Lane in which the subject vehicle occupied at the time of event 
capturing Event Table 357.3775 0 

weather Weather condition Event Table 7.4527 0.3833 

Numeric Variable Description Description Correlation 
Coefficient p-value 

years_driving Number of years driving Driver Table -0.1043 0 

secondaryTask1Duration Duration of the first secondary task Derived from 
Event Table 0.0886 0 

secondaryTask2Duration Duration of the second secondary task Derived from 
Event Table 0.0872 0 

secondaryTask3Duration Duration of the third secondary task Derived from 
Event Table 0.0357 0.0017 

 


