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Abstract— Fifth generation wireless standards require much
lower latency than what current wireless systems can guaran-
tee. The main challenge in fulfilling these requirements is the
development of short packet transmission, in contrast to most of
the current standards, which use a long data packet structure.
Since the available training resources are limited by the packet
size, reliable channel and interference covariance estimation with
reduced training overhead are crucial to any system using short
data packets. In this paper, we propose an efficient receiver that
exploits useful information available in the data transmission
period to enhance the reliability of the short packet transmission.
In the proposed method, the receive filter (i.e., the sample
covariance matrix) is estimated using the received samples from
the data transmission without using an interference training
period. A channel estimation algorithm to use the most reliable
data symbols as virtual pilots is employed to improve quality of
the channel estimate. Simulationresults verify that the proposed
receiver algorithms enhance the reception quality of the short
packet transmission.

Index Terms— 5G wireless communications, short data
packets, low latency, Internet of Things, energy harvesting,
virtual pilots.

I. INTRODUCTION

FIFTH generation (5G) communication networks will bea key enabler in realizing the Internet of Things (IoT)
era and hyper-connected society [2]–[4]. To support real-
time applications with stringentdelay requirements and mas-
sive machine-type devices, communication systems supporting
ultra low latency are needed [5]–[7]. For this reason, Interna-
tional telecommunication union (ITU) defined ultra reliable
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and low latency communication (uRLLC) as one of key use
cases for 5G wireless communications.1One direct way to
meet the stringent low latency requirements is to use a short-
sized packet. This is in contrast to most current wireless
systems whose sole purpose is to transmit long data packets
efficiently. Indeed, most current physical layer design relies
heavily on long codes to approach Shannon capacity. Sensors
and devices in an IoT networks transmit a very small amount
of information such as environmental data (e.g., temperature,
humidity, and pollution density), locations, and emergency
alarm, and thus asymptotic capacity-achieving principles are
not relevant to the transmission of short packets. In view
of this, 5G physical layer design (e.g., pilot transmission
strategy, coding scheme, hybrid automatic repeat request)
needs to be reevaluated and potentially redesigned as a whole.
Many papers have been dedicated to analyze performance
metrics that are relevant to short packet communication,
including the maximal achievable rate at finite packet length
and finite packet error probability instead of using two classic
information-theoretic metrics, the ergodic capacity and the
outage capacity [8]–[11]. Finite block-length analysis has been
extended to spectrum sharing networks using rate adapta-
tion [12] and wireless energy and information transmission
using feedback [13].
In this paper, we consider practical constraints that are
encountered when implementing a short packet transmission
framework. First, massive and simultaneous communications
among autonomous devices will induce inter-device interfer-
ence at the receiver in an IoT network. In order to control the
inter-device interference, a technique to use multiple receive
antennas has been proposed by utilizing the spatial degrees
of freedom (DoF) provided by multiple receive antennas to
balance interference suppression and desired signal power
improvement [14]. To implement this approach, the receiver
needs to acquire the desired CSI and the interference plus
noise covariance. While the desired CSI can be estimated
using pilot signals, direct estimation of the interfering CSI
is difficult due to the large number of interfering devices in
the IoT network. One way to tackle this problem is to use an

1Three key use cases include enhance mobile broadband (eMBB), massive
machine-type communications (mMTC), and ultra reliable and low latency
communication (uRLLC) [6].
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interference training periodin which the interference (plus
noise) covariance matrix can be estimated by listening to
interference-only transmissions [15]. The main drawback of
this approach is that it incurs a severe transmission rate loss
since the target transmit device should remain silent during
the interference training period. Also, the interference training
period would not be large enough in obtaining the reliable
estimate of the interference covariance for this short-sized
packets, resulting in severe degradation in performance.
Moreover, since current systems are designed to carry

long data packets, the pilot transmission period can be made
relatively small even though the actual period of pilot signals
is large. However, the portion of time used for pilot signals
is unduly large in a short-sized packet framework if the
training period is not reduced. On the other hand, if the pilot
length is shortened, there would be a significant degradation
in performance. Since there is a trade-off between the duration
of the pilot training period and the data transmission period,
the main challenge is to perform a reliable channel estimation
while affecting the minimal impact on the duration of data
transmission period.
An aim of this paper is to propose an efficient receiver

technique that exploits information obtained during thedata
transmission periodto improve the reception quality of the
system in the short packet transmission. Intuitively, when time
resources are limited, we need to useallreceived data to
optimize the receiver performance. With this goal in mind,
we propose a receive filtering algorithm that estimates the
interference covariance matrix using the received signal from
the normal data transmission period in the IoT network. In
doing so, the interference training period becomes unnecessary
and the transmission rate loss caused by the interference
training period can be avoided. We show from analysis and
numerical experiments that the proposed method achieves a
linear scaling of SINR in the number of receive antennas.
Next, we propose a low latency frame structure adequate
for the one-shot random access where pilot and data are
transmitted simultaneously. We propose a strategy to exploit
the data symbols received from the target transmit device to
improve the channel estimation quality at the receiver. There
have been previous studies exploiting data signals for channel
estimation including the non-OFDM system with frequency-
selective channel [16], wireless LAN (IEEE 802.11n) [17], and
LTE systems with long packet [18] In this paper, we choose
the most reliable received data symbols, referred to asvirtual
pilots, among all possible soft decision data symbols and then
use them to re-estimate the channel. Our proposed method
is distinct from previous efforts in the sense that select a
virtual pilot group making a dominant contribution to the
channel estimation quality. Towards this end, we design a
mean square error (MSE) based virtual pilot selection strategy.
We show from numerical simulations that the proposed method
outperforms the conventional receiver technique in the short
packet transmission (e.g., packet size is set to tens of bytes).
The remainder of the paper is organized as follows.
In Section II, we describe the structure of a packet and review
conventional receiver techniques. In Section III, we present
the proposed interference covariance matrix estimation

Fig. 1. A paired AP receives the desired signal from a target device and is
subject to interference (dashed lines) from neighboring devices.

technique suited to the short packet transmission.
In Section IV, we describe the proposed virtual pilot
based channel estimation technique. In Section V, we present
simulation results to verify the performance of the proposed
scheme. We conclude the paper in Section VI.
We briefly summarize notation used in this paper.
We employ uppercase boldface letters for matrices and lower-
case boldface letters for vectors. The superscripts(·)Hand(·)T

denote the conjugate transpose and transpose, respectively.
Cdenotes the field of complex numbers. · pindicates
thep-norm.IN is theN×Nidentity matrix.E[·]is the
expectation operator.⊗ is the Kronecker product operator.
CN(m,σ2)denotes a complex Gaussian random variable with
meanmand varianceσ2.

II. SYSTEMDESCRIPTION

A. System Model and Packet Structure

We consider uplink communication in an IoT networks
such as wireless sensor networks, ad hoc network, and energy
harvesting network, with an example setup shown in Fig. 1.
We assume that the target transmit device has a single antenna
and the paired access point (AP) receiver hasNantennas.
Since there are a large number of devices in the radio
transmission range, the received signal contains interference
from adjacent devices as well asthe desired information.2

We assume a block-fading channel model, and each block
consists ofNbchannel uses, among whichNpuses are for
the pilot training andNduses are for the data transmission
(see Fig. 2(a)).
In this setup, the received signal for the-th channel use in
thei-th fading block is given by

yi[]=β0h0,is0,i[]+

J

j=1

βjhj,isj,i[]+ni[] (1)

2In this work, we assume that the AP receiver experiences interference
from devices in neighboring cells for both channel estimation phase and data
transmission phase. In short packet transmission, the packet length would be
far shorter than the channel coherenttime and thus the channel can be fairly
static and at least slowly varying within a packet. Therefore, in the short packet
regime, impact of mis-aligned coherence block would not be significant. For
the sake of simplicity, we assume that the coherence times of the desired
channel and interfering channels are equal.
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Fig. 2. Packet structure of (a) the conventional MMSE receiver for long
data packets, (b) the conventional MMSE receiver for short data packets, and
(c) the proposed linear receiver for short data packets.

whereβ0= d
−α/2
0 is the attenuation factor for the target

transmit device (β0>0),αis the path-loss exponent (α>2),
h0,i∈C

N×1is the channel vector between the target transmit
device and AP receiver,s0,i[]is the symbol transmitted by
the target transmit device (E[|s0,i[]|

2]=ρ),Jis the number

of interfering devices from neighboring cells,βj= d
−α/2
j

is the attenuation factor for thej-th interferer(βj> 0),
hj,i∈C

N×1is the channel vector between thej-th interferer
and AP receiver,sj,i[]is the symbol transmitted by the
j-th interferer(E[|sj,i[]|

2] =ρ),andni[]∈C
N×1is

the complex Gaussian noise vector(ni[] ∼CN(0,σ
2I)).

Also, without loss of generality, we assume that the distances
d0,d1,...,dJare sorted in ascending order. In this work,
we assume that the channel remains unchanged within a
block and changes independentlyfrom block-to-block. In the
sequel, we skip the fading block indexifor notational
convenience.

B. Conventional Receiver Technique

If a unit norm receive filtervis applied to the received
signal vectory[], an estimate of the desired symbol iŝs0[]=
vHy[]and the resulting SINR is

SINR(v)=
ρvHh0h

H
0v

vH(σ2I+ρ
J

j=1
βjhjh

H
j)v

. (2)

Under the condition that the target rate of the transmit device is
R=log2(1+τ), we say a communication is successful if the
received SINR is larger thanτ. Hence, the outage probability
at SINR thresholdτis expressed asPout=P[SINR(v)≤τ].
Note that the receive filtervcan be designed to remove
the interference or to boost the power of the desired signal.
In order to minimize the outage probability, a receive filter
weight should be designed to maximize the SINR of the
receiver. This receiver is commonly dubbed as anMMSE

receiver[19]–[27].3Denoting the covariance of the interfer-
ence plus noise as =σ2I+ρ

j
βjhjh

H
j, the receive filter

of the conventional MMSE receiver is [28]

v∗=argmax
v

vHh0h
H
0v

vH v
=

−1h0
−1h02

. (3)

Plugging (3) into (2), we obtain the best achievable SINR as

SINR∗=
ρ(hH0

−1h0)
2

hH0
−1(σ2I+ρ

J

j=1
βjhjh

H
j)

−1h0

=ρhH0
−1h0. (4)

Note that the conventional MMSE receiver usually requires
an interference training period to estimate . Recall that the
covariance matrix is a statistic of the noise and interfer-
ence. Since orthogonality among the large number of pilot
sequences cannot be guaranteed, it is not easy to estimate the
interfering channelshj(j=1,···,J)individually. To handle

this issue, an approach to estimate the sample covarianceˆ

using a specially designed interference training period was
proposed [15]. In order to observe the covariance associated
with the interference and noise, the target transmit device
should remain silent in this period. The sample covariance
ˆobtained in the interference training period is

=̂
1

K

K

i=1

r[i]r[i]H (5)

where K is the duration of the training period andr[i]

is thei-th received sample (r[i] =
J

j=1
βjhjsj[i]+n[i]).

By replacing withˆin (3), i.e., usinĝv=
−̂1h0
−̂1h02

instead

ofv∗, we obtain the SINR estimate

SINR=
ρ(hH0

−̂1h0)
2

hH0
−̂H −̂1h0

. (6)

Using a Gaussian approximation for the interference,4the
expected SINR5of (6) becomes [29]

Ê [SINR]=Ê
ρ(hH0

−̂1h0)
2

hH0
−̂H −̂1h0

= 1−
N−1

K+1
SINR∗. (7)

Note that the expected SINR in(7) contains an additional
scaling factor 1−N−1K+1. Since the interference training periodK

3The conventional performance measures such as ergodic capacity may not
be suitable for short-packet communication systems because these metrics
pertain to the asymptotic regime of long data packets [10], [11]. Nonetheless,
this quantity is still simple and useful tool to analyze the behavior of the
proposed scheme.
4Gaussian approximation of interferences becomes more accurate when the
density of machine-type devices becomes higher.
5Since the average analysis is relevant only if there are sufficiently many
packets, the expected SINR might not be an ideal metric for the short
packet based communication systems. Nevertheless, unless the packet length
is extremely short, hundreds of samples might be used in the computation of
the expected SINR and thus average SINR is still meaningful.
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for the short packet framework would be very small,E[SINR]
would be much smaller than SINR∗, the best achievable SINR
in (4). Further, when the number of antennasNincreases,
there would also be a loss in the SINR and achievable rate,
which makes this approach unsuitable for the small packet
transmission.

III. RECEIVERDESIGN

Recall that two main ingredients of the receive filter in (3)
are the channel vectorh0and the covariance matrix of the
interference and noise. In this section, we present a strategy to
estimate the covariance matrix using measurements in the
data transmission period and show that the achievable SINR
of this strategy equals SINR∗. By estimating the covariance
matrix in the normal data transmission period instead of the
interference training period, we can avoid the transmission rate
loss caused by the interference training period.
Note that the received signal y[] = h0 s0[] +
J

j=1
βjhjsj[]+n[]contains interference from adjacent

devices and noise as well as the desired signal. Using the

receive filterv=
−1
0 h0
−1
0 h02

, the estimate of the desired symbol

becomes

ŝ0[]=v
Hy[]

=
ρhH0(ρh0h

H
0+ρ

J
j=1βjhjh

H
j+σ

2I)−1

ρhH0(ρh0h
H
0+ρ

J
j=1βjhjh

H
j+σ

2I)−12
y[]

=
hH0

−1
0

hH0
−1
0 2

y[] (8)

where 0= +ρh0h
H
0. In the following theorem, we show

that the best possible SINR in (4) can be achieved even with
the inclusion of the desired signal in the covariance matrix.6

Theorem 1: When the covariance matrix 0is employed

in the receive filterv=
−1
0 h0
−1
0 h02

, the SINR of the proposed

strategy isSINR∗=ρhH0
−1h0.

Proof:Let SINRpropbe the SINR of the proposed strategy.
Then, using (2), we have

SINRprop=
ρ hH0 +ρh0h

H
0
−1
h0

2

hH0 +ρh0h
H
0
−1

+ρh0h
H
0
−1
h0
.(9)

We first consider the numerator. Using the matrix inversion
lemma,7we have

+ρh0h
H
0

−1
= −1−

−1h0h
H
0

−1

ρ+hH0
−1h0

. (10)

6In this section, we focus on the effect of covariance matrix 0and the
sample covariance matrix 0̂on SINR under the assumption thath0is
perfectly known at the receiver. We discuss the effect of estimated channel
ĥ0in the next section.
7Note that (10) can be obtained by letting A= ,B=h0,C=h

H
0

andD=ρIin the matrix inversion lemma A−BD−1C
−1
= A−1+

A−1B D−CA−1B
−1
CA−1.

From (9) and (10), we have

hH0 +ρh0h
H
0

−1
h0

2

= hH0
−1h0−

(hH0
−1h0)

2

ρ+hH0
−1h0

2

=
ρhH0

−1h0

ρ+hH0
−1h0

2

=
ρSINR∗

ρ2+SINR∗

2

(11)

where SINR∗=ρhH0
−1h0(see (4)). Now, by plugging (10)

into the denominator of (9), we have

hH0 +ρh0h
H
0

−1
+ρh0h

H
0

−1
h0

=hH0
−1−

−1h0h
H
0
−1

ρ+hH0
−1h0

−1−
−1h0h

H
0

−1

ρ+hH0
−1h0

h0

= hH0−
hH0

−1h0h
H
0

ρ+hH0
−1h0

−1h0−
−1h0h

H
0

−1h0

ρ+hH0
−1h0

=
ρ2hH0

−1h0

ρ+hH0
−1h0

2
=

ρ3SINR∗

(ρ2+SINR∗)2
. (12)

Plugging (11) and (12) into (9), we have

SINRprop=
ρ ρSINR∗

ρ2+SINR∗

2

ρ3SINR∗

(ρ2+SINR∗)2

=SINR∗, (13)

which is the desired result.
It is worth noting that the main goal of Theorem 1 is
to validate the method of estimating the covariance matrix
in using only normal data transmission. By achieving the
maximum SINR and avoiding the interference training period,
the proposed method canexploit an additionalKchannel uses
for the data transmission period compared to the conventional
MMSE receiver.
By slightly modifying this result and using a Gaussian

approximation for the interference, we can obtain the SINR
expression for a realistic scenario where the sample covari-
ance matrix is employed. In this scenario, we use 0̂ =
ˆ+ρ̂h0̂h

H
0 instead of 0, and thus the modified receive

filter is8

v̂=
−̂1
0 h0
−̂1
0 h02

. (14)

Theorem 2: When the sample covariance in (14) is
employed, the expected SINR of the proposed linear MMSE
receiver is

Ê
0
SINRprop =Ê

0

ρ(hH0
−̂1
0 h0)

2

hH0
−̂1
0

−̂1
0 h0

= 1−
N−1

Nd+1
SINR∗. (15)

8Here we useĥ0instead ofh0in 0̂in order to observe the effect of 0̂
on SINR.
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Proof: By the direct substitution of 0̂= ˆ+ρ̂h0̂h
H
0

into (6), we have

SINR=
hH0

−̂1
0 h0

2

hH0
−̂1
0

−̂1
0 h0

. (16)

Let = +̂ρ(̂h0̂h
H
0−h0h

H
0),then̂ 0= +ρh0h

H
0 and

−̂1
0 = −1−

−1h0h
H
0

−1

ρ+hH0
−1h0

by the matrix inversion lemma.

Therefore,

SINR=

ρ hH0
−1−

−1h0h
H
0
−1

ρ+hH0
−1h0

h0

2

hH0
−1−

−1h0h
H
0
−1

ρ+hH0
−1h0

−1−
−1h0h

H
0
−1

ρ+hH0
−1h0

h0

=

ρ
ρhH0

−1h0

ρ+hH0
−1h0

2

ρ2hH0
−1 −1h0

(ρ+hH0
−1h0)2

=
ρhH0

−1h0
2

hH0
−1 −1h0

. (17)

Further, by denotingκ= SINR
SINR∗, =(SINR

∗

ρ )
−12 −12h0,

and 1̂=
−12 −12,wehave

κ=
1

SINR∗

ρ hH0
−̃1h0

2

hH0
−̃1 −̃1h0

=

H −̂1
1

2

H −̂2
1

. (18)

Note that the joint distribution of the elements ofˆfollows
the central complex Wishart distributionCW(M,N; )[30].

Hence,E[̂1] =
−12E[]−

1
2 = −12 −12 = I,and

1̂is a complex Wishart distributionCW(Nd,N;I).The
probability density function ofκis given by [29]

P(κ)=
(Nd+1)

(N−1)(Nd+2−N)
κ(Nd+2−N)−1

(1−κ)(N−1)−1 (19)

whereκfollows the regularized incomplete beta distribution.
Since (i)= (i−1)!for an integeri, the expectation
ofκis

E[κ]=
1

0
κP(κ)dκ

=
Nd!

(Nd−2)!(Nd+1−N)!

1

0
κNd+2−N(1−κ)N−2dκ

=1−
N−1

Nd+1
. (20)

Recalling thatκ= 1
SINR∗

ρhH0
−̂1
0 h0

2

hH0
−̂1
0

−̂1
0 h0
, we further have

Ê
0
SINRprop =Ê

0

ρ(hH0
−̂1
0 h0)

2

hH0
−̂1
0

−̂1
0 h0

= 1−
N−1

Nd+1
SINR∗.

Fig. 3. The received SINR of the proposed method and conventional MMSE
receiver forNb=100 and 1000. We setJ=30, SNR=0dB,Np=0.1Nb,
K=0.1Nb,Nd=0.8Nb,Nd=0.9Nb.

Since the interference training period is unnecessary,
the data transmission period is improved fromNd to
Nd=Nd+K and at the same time the covariance matrix
is estimated using samples in the data transmission period
(see Fig. 2). Therefore, we obtain a more accurate estimation
of the interference covariance in the short packet framework.
The effect of the sample covariance matrix on the received
SINR shows the efficacy of the proposed receiver by obtaining

a larger scaling factor 1− N−1
Nd+1

.InFig.3,weplotthe

received SINR as a function of the number of receive antennas
N. When the packet sizeNbis large (e.g.,Nb=1000),which
corresponds to the packet length of current wireless systems,
K = 0.1Nbis also sufficiently larger than the number of
antennasNso that scaling factor of the proposed scheme

1− N−1
Nd+1

and the conventional MMSE receiver1−N−1K+1

are not much different. This behavior, however, does not
hold true for short-sized packet regime. In fact, as shown
in Fig. 3(a), we see that the performance of the proposed
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scheme improves linearly withN. Since the interference train-
ing is needed for the conventional MMSE receiver, we observe
that whenNbis small (e.g.,Nb=100) the performance of the
conventional MMSE SINR receiver with sample covariance
matrix does not scale withN.

IV. JOINTPILOT ANDDATASYMBOL
BASEDCHANNELESTIMATION

In the previous sections, we assumed that the desired chan-
nelh0is perfectly known. As mentioned, when we consider
the short packet transmission, the training period should also
be reduced to avoid an excessive amount of training overhead.
In this section, we propose a channel estimation technique
that jointly uses the pilot signals and data symbols to improve
channel estimation quality. In a nutshell, the proposed channel
estimation technique picks a small number of reliable data
symbols among all available data symbols.
Using the chosen data symbols (which we callvirtual pilots)
together with the pilot signals in the re-estimation of the
channel vector, we achieve great improvement of the channel
estimation performance in the short packet regime.

A. The Joint Pilot and Data Symbol Based
Channel Estimation

Before we proceed, we briefly review conventional MMSE-
based channel estimation. The received pilot signals in the
training period are expressed as

y(1)=h0p
(1)
0 +

J

j=1

βjhjs
(1)
j +n

(1)

...

y(Np)=h0p
(Np)
0 +

J

j=1

βjhjs
(Np)
j +n(Np) (21)

wherey(i)is thei-th observation,n(i)is thei-th noise,p(i)0 is
thei-th pilot signal in the target transmit device, andNpis the
total number of pilot observations. TheNpN×1 vectorized
received pilot signals are

yp=P0h0+zp (22)

whereP0 = p0⊗IN isNpN×N-dimensional training

matrix with p0 = [p(1)0,...,p
(Np)
0 ]T, andzp =

( J
j=1βjhjs

(1)
j +n

(1))T···( J
j=1βjhjs

(Np)
j +n(Np))T

T

is the interference plus noise vector over the training
period. We assume thath0 follows a circular symmetric
complex normal distribution, i.e.,h0∼ CN(0,Chh)where
Chh=Cov(h0,h0). The MMSE weight matrix minimizing
the mean square error between the original channel vectorh0
and the estimateĥ0=Wypis [31]

W =Covh0,ypCovyp,yp
−1

=E[h0y
H
p]E[ypy

H
p] (23)

=E[h0h
H
0P
H
0+h0z

H
p]

×E[P0h0h
H
0P
H
0+P0h0z

H
p+zph

H
0P
H
0+zpz

H
p]

=ChhP
H
0 P0ChhP

H
0+ηpIN

−1
(24)

where (23) is due to Cov(a,b)= E[abH]−E[a]E[bH]
andηpis the variance of the interference plus noise.

9The

corresponding MMSE-based channel estimateĥ0is

ĥ0=ChhP
H
0 P0ChhP

H
0+ηpIN

−1
P0h0+zp

=(NpChh+ηpIN)
−1ChhP

H
0(P0h0+zp)

=
ηp

Np
IN+Chh

−1

Chh h0+
1

Np
PH0zp . (25)

We observe from (25) that the estimated channel vector ĥ0
converges to the original channel vectorh0as the training
periodNp increases. This clearly demonstrates that there
would be a degradation in the channel estimation quality for
the short packet regime. To enhance the channel estimation
quality without increasing the pilot overhead, we exploit the
virtual pilots in the re-estimation of channels. Using the delib-
erately chosen virtual pilots together with the conventional
pilots, the channel is re-estimated, and the newly generated
channel estimate will be used for the symbol detection. When
Nvdata symbols are selected for the virtual pilot purpose,
the received signals are

y(1)=h0s
(1)
0 +

J

j=1

βjhjs
(1)
j +n

(1)

...

y(Nv)=h0s
(Nv)
0 +

J

j=1

βjhjs
(Nv)
j +n(Nv) (26)

wherey(i)is thei-th observation,n(i)is thei-th noise,s(i)0 is

the data symbol of the target transmit device, ands(i)j is the
data symbol of thej-th interferer. TheNvN×1 vectorized
virtual pilot observations can be expressed as

yv=S0h0+zv (27)

where S0 = s0⊗IN (of sizeNvN× N) is the vir-
tual pilot matrix wheres0=[s

(1)
0 ,...,s

(Nv)
0 ]T is the data

symbol sequence andzv = ( J
j=1βjhjs

(1)
j +n

(1))T···

( J
j=1βjhjs

(Nv)
j +n(Nv))T

T
is the interference plus noise

signal vector in the virtual pilot transmission period. By
stacking the pilot observation vectorypand virtual pilot
observation vectoryv, we obtain the composite observation
vectorycfor the channel re-estimation as

yc=
yp
yv
=
P0
S0
h0+

zp
zv
. (28)

The MMSE estimate of the proposed scheme is expressed as

ĥ0=Cov(h0,yc)Cov(yc,yc)
−1yc

= −1yc (29)

9Since it is hard to obtain exact variance J
j=1β

2
jNρ+σ

2, we instead

useηp= J̄β
2Nρ+σ2where β̄= d̄α/2is obtained by using the cell-

radiusd̄under the assumption that the interferers are closer to the receiver
(i.e.,β̄ >βj). Thus, the channel estimation might be slightly pessimistic.
Also, the reason to treat interference as noise in (24) is because it is difficult
to acquire the covariance of the interference. Note that the MSE formula
in (37) is obtained under the assumption thath0as well as the interfering
channels are spatially uncorrelated.
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Fig. 4. Block diagram of the receiver using virtual pilot and pilot signal in the re-estimation of the channel. Among all the data symbols, symbols with
small MSE are chosen as virtual pilots. Note that symbols with small MSE are green colored.

where

=Cov(h0,yc)

= E[h0y
H
p] E[h0y

H
v]= ChhP

H
0 Chh̄S

H
0 (30)

and

=Cov(yc,yc)

=
E[ypy

H
p] E[ypy

H
v]

E[yvy
H
p] E[yvy

H
v]

=
P0ChhP

H
0+ηpI P0Chh̄S

H
0

S̄0ChhP
H
0 0⊗diag(Chh)+ηvI

.(31)

Note thatS̄0=E[S0]=̄s0⊗INwheres̄0=[̄s
(1)
0 ,...,̄s

(Nv)
0 ]T

is obtained from the first order moment ofs
(i)
0 [32]. That is,

s̄(i)0 =E[s
(i)
0]=

θ∈

θ

Q

k=1

1

2
1+c(i)0,ktanh

1

2
L(c(i)0,k)

(32)

where is a constellation set,c
(i)
0,kis the k-th coded bit,

Q is the number of (coded) bits mapped to a data symbol

s(i)0 in 2
Q-ary quadrature amplitude modulation (QAM) con-

stellations, andL(c
(i)
0,k)is the log-likelihood ratio (LLR) of

thek-th coded bit mapped from a data symbols
(i)
0. 0=

[̄λ
(1)
0,...,̄λ

(Nv)
0 ]Tis the vector of the second order moments

ofs(i)0 given by

λ̄(i)0 =E[|s
(i)
0|
2]

=
θ∈

|θ|2
Q

k=1

1

2
1+c(i)0,ktanh

1

2
L(c(i)0,k) .(33)

Plugging (29) and (30) into (28), we obtain the channel
estimateĥ0as

ĥ0= ChhP
H
0 Chh̄S

H
0

×
P0ChhP

H
0+ηpI P0Chh̄S

H
0

S̄0ChhP
H
0 0⊗diag(Chh)+ηvI

−1
yp
yv
.

While the conventional MMSE estimate in (25) uses only the
received pilot sequence for the channel estimation, the pro-
posed channel estimator in (29) utilizes the most reliable
data symbols, i.e., the soft symbol estimateS̄0and second
order moments 0, as virtual pilots. Clearly, reliability of
the soft symbols directly affects the quality of the proposed
channel estimation so that we need to choose virtual pilots
with caution.

B. Virtual Pilot Selection

Since the virtual pilots can improve the channel estimation
quality of the proposed method, the best way to select virtual
pilots would be to compare the performance metric (e.g., MSE
of the estimated channel) of all possible Nd

Nv
data symbol

combinations and then choose the combination achieving
the minimum MSE. Since this procedure is computationally
demanding and hence not pragmatic, we use a simple subopti-
mal approach to compute the MSE when single data symbol is
used for the virtual pilot. Among all data symbols, we choose
theNv-best data symbols generating the smallest MSE as
virtual pilots (see Fig. 4). Although this approach does not
consider the correlation among virtual pilot symbols and hence
is not optimal, computational complexity is much smaller than
the approach using all possible symbol combinations. Also,
this approach is effective in improving the quality of channel
re-estimation.

Letĥ
(n)
0 be the estimated channel vector when then-th data

symbol is used as a virtual pilot, then the MSE metricεn
for the hypothetical selection of then-th data symbol is
expressed as

εn=E h0−ĥ
(n)
0

2
2 =trCov h0− ˜̃

−1 zp
y(n)v

=trCov(h0)−Cov ˜̃ −1 yp
y(n)v

=trCov(h0)−˜̃
−1˜H (34)
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where

˜=Cov h0,
yp
y(n)v

= E[h0y
H
p]E[h0y

(n)H
v ]

= ChhP
H
0 (̄s

(n)
0 )
∗Chh (35)

and

˜=Cov
yp
y
(n)
v

=
E[ypy

H
p]E[ypy

(n)H
v ]

E[y
(n)
v y

H
p]E[y

(n)
vy

(n)H
v ]

=
P0ChhP

H
0+ηpI(̄s

(n)
0 )
∗P0Chh

(̄s
(n)
0 )
∗ChhP

H
0 λ̄

(n)
0 Chh+ηvI

(36)

usingy(n)v =s
(n)
0 h0+z

(n)
v is the virtual pilot observation vector

for then-th data symbol. From (34), (35), and (36),εnis
expressed as (see Appendix)

εn=N(1−γ
2
p(1+γp)

λ̄
(n)
0

λ̄(n)0 +ηv
(̄λ
(n)
0 )
2

−γ2p
2ηv̄λ

(n)
0 +η

2
v

λ̄(n)0 +ηv
λ̄
(n)
0 +γp

(̄λ(n)0 )
3

(̄λ(n)0 +ηv)
3

+
(̄λ
(n)
0 )
2

(̄λ
(n)
0 +ηv)

2

N2p

γp
+

λ̄
(n)
0

λ̄
(n)
0 +ηv

(2γp+N
2
p−1)−γp)

(37)

whereγp=
Np
Np+ηp

. Note thatεndepends on the reliability of

soft decisions (i.e., the second order statistic of data symbol
λ̄
(n)
0 in (33)). Hence, in order to achieve the minimum MSE,

the desired data symbol maximizinḡλ
(n)
0 should be chosen as

the virtual pilot. Onceεnfor allnare computed, we choose
Nvdata symbols minimizingεn(see Fig. 7). Observations of
virtual pilots and normal pilots are used for the re-estimation
of the channel vector.

V. SIMULATIONRESULTS ANDDISCUSSIONS

In this section, we evaluate the performance of the proposed
algorithm. In our setup, we assume that adjacent interfering
devices are randomly located on a square (of area 100m2).
The target receiver is located at center and the target transmit
device is located 1 meter away from the receiver. The packet
size is set to 100 bits.10As a performance measure, we con-
sider a packet error rate (PER). We assume that elements of
channel vector for each device are i.i.d. zero mean complex
Gaussian random variables with unit variance.
In our simulations, we study the performance of the follow-

ing receiver techniques:

1) MMSE receiver with estimated CSI (conventional
MMSE receiver) [15]: we set the interference training
period asK.

10In order to meet the stringent delay requirements, packet size of the
uRLLC use case is set to 100∼200 bits [35], [36].

Fig. 5. PER performance of receiver techniques as a function of SNR. We set
r=1/2,N=6,J=6,Np=10,K=10,Nd=40,Nd=50,Nb=60,
Nv=20.

2) Proposed method with estimated CSI: we set the inter-
ference training period asNd=Nb−Np.

3) Proposed method with virtual pilot signals (VPS): we
chooseNv-best virtual pilots with the smallest MSE for
the channel re-estimation.

4) Proposed method with accurate VPS: we use
Nv-accurate data symbols as virtual pilots in the
re-estimation of the channel vector.

In Fig. 5, we plot the PER performance of all techniques
under consideration. In this simulations, we use the half
rate (r= 1

2) convolutional code with feedback polynomial

1+D+D2and feedforward polynomial 1+D2.11In the
proposed method, 20 data symbols are used as VPS (Nv=20).
We set J=6 as dominant neighboring interfering devices.
We observe that the proposed method with VPS achieves more
than 2 dB gain over the conventional MMSE receiver at 10−3

PER point. We also observe that the addition of VPS achieves
more than 1 dB gain over the proposed method without VPS.
In Fig. 6, we plot the PER performance with code rater=34
convolutional code with feedback polynomial 1+D2+D3and
feedforward polynomial 1+D+D3. We observe from the
figure that the performance gain of the proposed method with
VPS is 2 dB over the conventional MMSE receiver and more
than 0.8 dB over the proposed method without VPS at 10−3

PER point.
In Fig. 8, we plot the PER performance result of the
schemes we considered with polar code and convolutional
codes. We set the block lengthNbas 64 since the block length
of the polar code should be always a power of 2. We observe
from the figure that the proposed method with polar code is
superior to the convolutional code based schemes. Specifically,
we observe that use of polar code will bring one dB over the
convolutional code at 10−3PER point.

11In IoT systems, convolutional codes are preferred over turbo or LDPC
codes [5].
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Fig. 6. PER performance of receiver techniques as a function of SNR. We set
r=3/4,N=6,J=6,Np=10,K=10,Nd=40,Nd=50,Nb=60,
Nv=20.

Fig. 7. PER performance of receiver techniques as a function of SNR over
the Rician fading channel. We setr=1/2,N=6,J=6,Np=10,K=10,
Nd=40,Nd=50,Nb=60,Nv=20.

We next consider the performance of the proposed method
over the Rician fading channel. Note that Rician fading
includes the line-of-sight (LOS) signal propagation, which
can be more general and realistic than Rayleigh fading [33].
In this simulations, we use the Rician K-factorK=6dB.
Due to the LOS components of the interference channels,
we observe from Fig. 7 that the performance of all receivers
under consideration is worse than the case using the Rayleigh
fading channel. From numerical results, the proposed method
with VPS is still effective and achieving more than 1.5 dB
gain over the conventional MMSE receiver at 10−3PER point.
We also observe that the addition of VPS achieves around
0.8 dB gain over the proposed method without VPS.
In Fig. 9, we plot the throughput as a function of the number

of receive antennasN for temporally correlated channels.

Fig. 8. PER performance of receiver techniques as a function of SNR with
polar code and convolutional codes. We setr=1/2,N=6,J=6,Np=10,
Nd=54,Nb=64,Nv=20.

Fig. 9. Throughput of receiver techniques as a function of number of
receive antennas N for temporally-correlated block fading channel. We set
SNR=0dB,r= 1

2,J=6,Np=10,K=10,Nd=40,Nd=50,
Nb=60,Nv=20.

We consider temporally correlated channels that are modeled
by a first order Gauss-Markov process [34] ash[k] =ξh
[k−1]+ 1−ξ2g[k]whereg[k]is the innovation process,
which is modeled as having i.i.d entries distributed with
CN(0,1)and 0≤ ξ ≤ 1 is the temporal correlation
coefficient. In this simulations, we useξ=0.9881 for the
moderate mobile speed. To evaluate the throughput, we present
Monte-Carlo simulation results with 10000 iterations. Since
each iteration consists of 10 fading blocks, the maximum
throughput is about 5 Mbps. As observed in (7) and (15),
when the number of receive antennasNincreases, the training
period used for the sample covariance matrix computation
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Fig. 10. Throughput of receiver techniques as a function of interfering devices
for temporally-correlated block fading channel. We setSNR=10 dB,r=12,
N=6,Np=10,K=10,Nd=40,Nd=50,Nb=60,Nv=20.

Fig. 11. Throughput of receiver techniques as a function ofNbfor
temporally-correlated block fading channel. We setJ=6, SNR=0dB,
N=8,Np=0.1Nb,K=0.1Nb,Nd=0.8Nb,Nd=0.9Nb,Nv=0.2Nd.

should also be increased to attain the target SINR. Thus, when
the interfering training periodKis fixed, the scaling factor

1−N−1K+1 decreases with the number of receiver antennasN.

As a result, we observe the throughput degradation on the con-
ventional MMSE receiver when number of receive antennas is
large (N≥7). Whereas, the throughput of the proposed VPS
scheme increases with the number of receive antennasN.
In Fig. 10, we plot the throughput as a function of the

number of adjacent interfering devicesJ. Since the accuracy
of the covariance matrix estimation deteriorates as the number
of interfering devicesJgrows large, we see that the throughput
decreases withJfor all methods simulated. We observe that

the proposed method using VPS performs close to the MMSE
receiver using the perfect CSI (5∼7% throughput loss) and
also provides 21% gain over the conventional MMSE receiver
whenJ≤30.
Finally, in Fig. 11, we show the throughput as a function
of packet sizeNb. We observe that the rate loss of the
proposed method over the MMSE receiver with perfect CSI
is around 6%∼13%, which is far better than the rate loss
of the conventional MMSE receiver (12%∼ 32%). These
results demonstrate that the proposed method has clear benefit
over the conventional MMSE receiver in the short packet
transmission.

VI. CONCLUSION

Short packet transmission systems are critical to fulfilling
the stringent low latency requirements of the fifth genera-
tion (5G) wireless standards. We proposed a receiver technique
suited to short packet transmission. Our work was motivated
by the observation that the insufficient training period resulting
from a small packet structure causes severe degradation in the
desired channel and interference covariance matrix estimation.
By exploiting reliable symbols in the data transmission period,
the proposed receiver algorithmachieves improved estimation
and eventual throughput gain. Although our study in this
work focused on the low latency communication, the main
concept can be readily extended to massive machine-type com-
munications scenario (mMTC use case) and high throughput
massive MIMO scenario (eMBB use case) of 5G wireless
communications. In both scenarios, the channel estimation
quality would be crucial to achieve the desired goal. Also a
noncoherent approach that does not rely on the pilot signal
might be alternative option for uRLLC communication.

APPENDIX
DERIVATION OF(37)

Recall from (34) thatεnis given by

εn=trCov(h0)− ˜̃
−1˜H (38)

where

=̃Cov h0,
yp
y
(n)
v

= ChhP
H
0 (̄s(n)0 )

∗Chh (39)

and

˜=Cov
yp
y
(n)
v
,
yp
y
(n)
v

=
P0ChhP

H
0+ηpI P0Chh(̄s

(n)
0 )
∗

s̄(n)0 ChhP
H
0 λ̄(n)0 Chh+ηvI

. (40)

For convenience, we let

1 2 = ChhP
H
0 (̄s

(n)
0 )
∗Chh , (41)

11 12

21 22
=
P0ChhP

H
0+ηpI P0Chh(̄s

(n)
0 )
∗

s̄
(n)
0 ChhP

H
0 λ̄

(n)
0 Chh+ηvI

, (42)

and

11 12

21 22
= 11 12

21 22

−1

, (43)
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then

εn=trChh− 1 2
11 12

21 22
1 2

H

=tr(Chh− 1 11
H
1− 2 21

H
1

− 1 12
H
2− 2 22

H
2). (44)

Using the inversion formula of partitioned matrices [20],
we have

11=(11− 12
−1
22 21)

−1

12=−
−1
11 12(22− 21

−1
11 21)

−1

21=−
−1
22 21(11− 12

−1
22 21)

−1

22=(22− 21
−1
11 12)

−1. (45)

Using (45), we further have

1 11
H
1 =ChhP

H
0 11P0Chh

2 21
H
1 =(̄s

(n)
0 )
∗Chh 21P0Chh

1 12
H
2 =̄s

(n)
0 ChhP

H
0 12Chh

2 22
H
2 =λ̄

(n)
0 Chh 22Chh. (46)

Using the matrix inversion lemma ((A−BD−1C)−1=A−1+
A−1B(D−CA−1B)CA−1) and noting that

=PH0 11P0

=PH0
−1
11P0

=λ̄(n)0 22

=λ̄
(n)
0

−1
22, (47)

we further have

1 11
H
1 =Chh (I+Chh Chh −(̄λ(n)0 )

2Chh

× ChhChh )Chh

2 21
H
1 =−Chh Chh(I+ Chh Chh−(̄λ

(n)
0 )
2 Chh

×Chh ChhChh) Chh

1 12
H
2 =−Chh Chh(I+ Chh Chh−

×C2hh C2hh) Chh

2 22
H
2 =Chh (I+Chh Chh −C2hh C2hh )Chh.

(48)

Under the assumption that there is no correlation among
receive antennas,Chh=I, and hence (47) becomes

=PH0(P0P
H
0+ηpI)P0=Np(Np+ηp)I

=PH0(P0P
H
0+ηpI)

−1P0=
Np

Np+ηp
I

=(̄s
(n)
0 )
∗I(̄λ

(n)
0 I+ηvI)̄s

(n)
0 I=λ̄

(n)
0 (̄λ

(n)
0 +ηv)I

=(̄s
(n)
0 )
∗I(̄λ

(n)
0 I+ηvI)

−1s̄
(n)
0 I=

λ̄(n)0

λ̄(n)0 +ηv
I. (49)

Plugging (48) and (49) into (44) and after some manipulations,
we have

εn=tr(I− ( )
2 +( )2 −(̄λ(n)0 )

2(( )3 +( )2)

+ I− ( )3+ ( )2−I− −2 − )

=N(1−γ2p(1+γp)
λ̄(n)0

λ̄
(n)
0 +ηv

(̄λ(n)0 )
2−γ2p(

2ηv̄λ
(n)
0 +η

2
v

λ̄
(n)
0 +ηv

)

×λ̄(n)0 +γp
(̄λ
(n)
0 )
3

(̄λ
(n)
0 +ηv)

3
+
(̄λ
(n)
0 )
2

(̄λ
(n)
0 +ηv)

2

N2p

γp

+
λ̄(n)0

λ̄(n)0 +ηv
(2γp+N

2
p−1)−γp) (50)

whereγp=
Np
Np+ηp

.
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