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Abstract— Millimeter-wave will be a key technology in next-
generation wireless networks thanks to abundant bandwidth
availability. However, the use of large antenna arrays with
beamforming demands precise beam alignment between the
transmitter and the receiver and may entail huge overhead in
mobile environments. This paper investigates the design of an
optimal interactive beam alignment and data communication
protocol, with the goal of minimizing power consumption under
a minimum rate constraint. The base station selects beam align-
ment or data communication and the beam parameters, based on
the feedback from the user end. Based on the sectored antenna
model and uniform prior on the angles of departure and arrival
(AoD/AoA), the optimality of a fixed-length beam-alignment
phase followed by a data-communication phase is demonstrated.
Moreover, a decoupled fractional beam-alignment method is
shown to be optimal, which decouples the alignment of AoD and
AoA over time, and iteratively scans a fraction of their region
of uncertainty. A heuristic policy is proposed for non-uniform
prior on AoD/AoA, with provable performance guarantees, and
it is shown that the uniform prior is the worst-case scenario.
The performance degradation due to detection errors is studied
analytically and via simulation. The numerical results with analog
beams depict up to 4dB, 7.5dB, and 14dB gains over a state-
of-the-art bisection method and conventional and interactive
exhaustive search policies, respectively, and demonstrate that the
sectored model provides valuable insights for beam-alignment
design.

Index Terms— Millimeter-wave, beam-alignment, initial access,
Markov decision process.

I. INTRODUCTION

MOBILE traffic has witnessed a tremendous growth over
the last decade, 18-folds over the past five years alone,

and is expected to grow with a compound annual growth rate
of 47% from 2016 to 2021 [2]. This rapid increase poses a
severe burden to current systems operating below 6 GHz, due
to limited bandwidth availability. Millimeter-wave (mm-wave)
is emerging as a promising solution to enable multi-Gbps
communication, thanks to abundant bandwidth availability [3].
However, high isotropic path loss and sensitivity to blockages
pose challenges in supporting high capacity and mobility [4].
To overcome the path loss, mm-wave systems will thus lever-
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age narrow-beams, by using large antenna arrays at both base
stations (BSs) and user-ends (UEs).

Nonetheless, narrow transmission and reception beams are
susceptible to frequent loss of alignment, due to mobil-
ity or blockage, which necessitate the use of beam-alignment
protocols. Maintaining beam-alignment between transmitter
and receiver can be challenging, especially in mobile sce-
narios, and may entail significant overhead, thus potentially
offsetting the benefits of mm-wave directionality. Therefore,
it is imperative to design schemes to mitigate its overhead.

To address this challenge, in our previous work [5]–[8],
we address the optimal design of beam-alignment protocols.
In [5], we optimize the trade-off between data communication
and beam-sweeping, under the assumption of an exhaustive
search method, in a mobile scenario where the BS widens
its beam to mitigate the uncertainty on the UE position.
In [6] and [7], we design a throughput-optimal beam-alignment
scheme for one and two UEs, respectively, and we prove the
optimality of a bisection search. However, the model therein
does not consider the energy cost of beam-alignment, which
may be significant when targeting high detection accuracy. It is
noteworthy that, if the energy consumption of beam-alignment
is small, bisection search is the best policy since it is the
fastest way to reduce the uncertainty region of the angles of
arrival (AoA) and departure (AoD). For this reason, it has
been employed in previous works related to multi-resolution
codebook design, such as [9]. In [1] and [8], we incorporate
the energy cost of beam-alignment, and prove the optimality of
a fractional search method. Yet, in [5]–[8], optimal design is
carried out under restrictive assumptions that the UE receives
isotropically, and that the duration of beam-alignment is fixed.
In practice, the BS may switch to data transmission upon
finding a strong beam, as in [10], and both BS and UE may
use narrow beams to fully leverage the beamforming gain.

To the best of our knowledge, the optimization of interactive
beam-alignment, jointly at both BS and UE, is still an open
problem. Therefore, in this paper, we consider a more flexible
model than our previous papers [5]–[8], by allowing dynamic
switching between beam-alignment and data-communication
and joint optimization over BS-UE beams, BS transmission
power and rate. Indeed, we prove that a fixed-length beam-
alignment scheme followed by data communication is opti-
mal, and we prove the optimality of a decoupled fractional
search method, which decouples over time the alignment
of AoD and AoA, and iteratively scans a fraction of their
region of uncertainty. Using Monte-Carlo simulation with
analog beams, we demonstrate superior performance, with
up to 4dB, 7.5dB, and 14dB power gains over the state-
of-the-art bisection method [9], conventional exhaustive, and
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interactive exhaustive search policies, respectively. Compared
to our recent paper [1], the system model adopted in this
paper is more realistic since it captures the effects of fading
and resulting outages, non-uniform priors on AoD/AoA, and
detection errors. Additionally, the model in [1] is restricted
to a two-phase protocol with deterministic beam-alignment
duration. In this paper, we show that this is indeed optimal.

A. Related Work

Beam-alignment has been a subject of intense research
due to its importance in mm-wave communications. The
research in this area can be categorized into beam-
sweeping [5]–[9], [11]–[13], data-assisted schemes [14]–[17],
and AoD/AoA estimation [18], [19]. The simplest and
yet most popular beam-sweeping scheme is exhaustive
search [11], which sequentially scans through all possible
BS-UE beam pairs and selects the one with maximum signal
power. A version of this scheme has been adopted in existing
mm-wave standards including IEEE 802.15.3c [20] and IEEE
802.11ad [21]. An interactive version of exhaustive search has
been proposed in [10], wherein the beam-alignment phase is
terminated once the power of the received beacon is above
a certain threshold. The second popular scheme is iterative
search [12], where scanning is first performed using wider
beams followed by refinement using narrow beams. A variant
of iterative search is studied in [22], where the beam sequence
is chosen adaptively from a pre-designed multi-resolution
codebook. However, this codebook is designed independently
of the beam-alignment protocol, thereby potentially resulting
in suboptimal design. In [13], the authors consider the design
of a beamforming vector sequence based on a partially observ-
able (PO-) Markov decision processes (MDPs). However,
POMDPs are generally not amenable to closed-form solutions,
and have high complexity. To reduce the computational over-
head, the authors focus on a greedy algorithm, which yields a
sub-optimal policy.

Data-aided schemes utilize the information from sensors
to aid beam-alignment and reduce the beam-sweeping cost
(e.g., from radar [14], lower frequencies [15], position
information [16], [17]). AoD/AoA estimation schemes
leverage the sparsity of mm-wave channels, and include
compressive sensing schemes [18] or approximate maximum
likelihood estimators [19]. In [23], the authors compare
different schemes and conclude that the performance of
beam-sweeping is comparable with the best performing
estimation schemes based on compressed sensing. Yet,
beam-sweeping has the added advantage of low complexity
over compressed sensing schemes, which often involve solving
complex optimization problems, and is more amenable to
analytical insights on the beam-alignment process. For these
reasons, in this paper we focus on beam-sweeping, and derive
insights on its optimal design.

All of the aforementioned schemes choose the
beam-alignment beams from pre-designed codebooks,
use heuristic protocols, or are not amenable to analytical
insights. By choosing the beams from a restricted beam-
space or a predetermined protocol, optimality may not be
achieved. Moreover, all of these papers do not consider the

Fig. 1. Actual beam pattern G(cx, θx) generated using the algorithm
in [22] with Mt = Mr = 128 antennas. (solid lines) versus sectored model
G(Bx, θx) (dashed lines) [24], on a linear scale. Sidelobes are not visible due
to their small magnitude.

energy and/or time overhead of beam-alignment as part of
their design. In this paper, we address these open challenges
by optimizing the beam-alignment protocol to maximize the
communication performance.

B. Our Contributions

1) Based on a MDP formulation, under the sectored
antenna model [24], uniform AoD/AoA prior, and small
detection error assumptions, we prove the optimality of a
fixed-length two-phase protocol, with a beam-alignment
phase of fixed duration followed by a data communi-
cation phase. We provide an algorithm to compute the
optimal duration.

2) We prove the optimality of a decoupled fractional search
method, which scans a fixed fraction of the region of
uncertainty of the AoD/AoA in each beam-alignment
slot. Moreover, the beam refinements over the AoD and
AoA dimensions are decoupled over time, thus proving
the sub-optimality of exhaustive search methods.

3) Inspired by the decoupled fractional search method,
we propose a heuristic scheme for the case of
non-uniform prior on AoD/AoA with provable perfor-
mance, and prove that the uniform prior is indeed the
worst-case scenario.

4) We analyze the effect of detection errors on the perfor-
mance of the proposed protocol.

5) We evaluate its performance via simulation using ana-
log beams, and demonstrate up to 4dB, 7.5dB, and
14dB power gains compared to the state-of-the-art bisec-
tion scheme [9], conventional and interactive exhaustive
search policies, respectively. Remarkably, the sectored
model provides valuable insights for beam-alignment
design.

The rest of this paper is organized as follows. In Secs. II,
we describe the system model. In Sec. III, we formulate
the optimization problem. In Secs. IV-VI, we provide the
analysis for the case of uniform and non-uniform priors on
AoD/AoA. In Sec. VII, we analyze the effects of false-alarm
and misdetection errors. The numerical results are provided
in Sec. VIII, followed by concluding remarks in Sec. IX. The
main analytical proofs are provided in the Appendix.

II. SYSTEM MODEL

We consider a downlink scenario in a mm-wave cellular
system with one base-station (BS) and one mobile user (UE)
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at distance d from the BS, both equipped with uniform
linear arrays (ULAs) with Mt and Mr antennas, respectively,
depicted in Fig. 1. Communication occurs over frames of
fixed duration Tfr, each composed of N slots indexed by
I≡{0, 1, . . . , N−1} of duration T = Tfr/N , each carrying S
symbols of duration Tsy = T/S. Let s be the transmitted sym-
bol, with E[|s|2] = 1. Then, the signal received at the UE is

y =
√
PcH

r Hcts+ cH
r w, (1)

where P is the average transmit power of the BS; H∈C
Mr×Mt

is the channel matrix; ct∈C
Mt is the BS beam-forming vector;

cr∈C
Mr is the UE combining vector; w ∼ CN (0, N0WtotI) is

additive white Gaussian noise (AWGN). The symbols N0 and
Wtot denote the one-sided power spectral density of AWGN
and the system bandwidth, respectively. By assuming analog
beam-forming at both BS and UE, ct and cr satisfy the unit
norm constraints ‖ct‖2

2 = ‖cr‖2
2 = 1. The channel matrix H

follows the extended Saleh-Valenzuela geometric model [25],

H =

√
MtMr

K

K∑
�=1

h� dr(θr,�)dH
t (θt,�), (2)

where h� ∈ C, θt,� and θr,� denote the small scale fading
coefficient, AoD and AoA of the �th cluster, respectively. The
terms dr(θr,�)∈C

Mr and dt(θt,�)∈C
Mt are the UE and BS

array response vectors, respectively. For ULAs, θt,� (respec-
tively, θr,�) is the angle formed between the outgoing (incom-
ing) rays of the lth channel cluster and the perpendicular to
the BS (UE) antenna array, as represented in Fig. 1, so that

dx(θx) =
1√
Mx

[
1, ej 2πdx

λ sin θx , . . . , ej(Mx−1) 2πdx
λ sin θx

]�
,

where x ∈ {t, r}, dt and dr are the antenna spacing of the
BS and UE arrays, respectively, λ is the wavelength of the
carrier signal. In (2), K ≥ rank(H) is the total number of
clusters. Note that H has low-rank if K � min{Mt,Mr}.
In this paper, we assume that there is a single dominant
cluster (K = 1). This assumption has been adopted in several
previous works (e.g., see [26], [27]), and is motivated by
channel measurements and modeling works such as [3], where
it is shown that, in dense urban environments, with high
probability the mm-wave channel exhibits only one or two
clusters, with the dominant one containing most of the signal
energy. While our analysis is based on a single cluster model,
in Sec. VIII we demonstrate by simulation that the proposed
scheme is robust also against multiple clusters. For the single
cluster model, we obtain

H =
√
MtMrh dr(θr)dH

t (θt), (3)

where E[|h|2] = 1/�(d), �(d) denotes the path loss between
BS and UE as a function of distance d, and θ = (θt, θr) is
the single-cluster AoD/AoA pair. We assume that θ has prior
joint distribution f0(θ) with support supp(f0) = Ut,0 × Ur,0,
which reflects the availability of prior AoD/AoA information
acquired from previous beam-alignment phases, or based on
geometric constraints (e.g., presence of buildings blocking
the signal in certain directions). We assume that h and θ
do not change over a frame, whose duration Tfr is chosen

based upon the channel and beam coherence times Tc and
Tb (time duration over which the AoD/AoA do not change
appreciably) to satisfy this property. In [28], it has been
reported that Tc�Tb. In the numerical values given below,
Tb∼100Tc. Therefore, by choosing Tfr ≤ Tc, we ensure that
the variations in h and θ over the frame duration Tfr are small
and can be ignored. For example, using the relationships of
Tc and Tb in [28], we obtain Tc
10[ms] and Tb
1[s] for
a UE velocity of 100[km/h]. In our numerical evaluations,
we will therefore use Tfr = 10[ms]. It is noteworthy that
this assumption has also been used extensively in previous
beam-alignment works, such as [18], [19], and [26].

We assume that blockage occurs at longer time-scales
than the frame duration, determined by the geometry of the
environment and mobility of users, hence we neglect blockage
dynamics within a frame duration [29]. By replacing (3)
into (1), and defining the BS and UE beam-forming gains
Gx(cx, θx) = Mx|dH

x (θx)cx|2, x ∈ {t, r}, we get

y = h
√
PGt(ct, θt) ·Gr(cr, θr)ejΨ(θ)s+ ŵ, (4)

where ŵ�cH
r w ∼ CN (0, N0 Wtot) is the noise component

and Ψ(θ) = ∠dH
t (θt)ct − ∠dH

r (θr)cr is the phase.
In this paper, we use the sectored antenna model [24] to

approximate the BS and UE beam-forming gains, represented
in Fig. 1. Under this model,

Gx(cx, θx) ≈ Gx(Bx, θx) =
2μ
|Bx|χBx (θx) , x ∈ {t, r}, (5)

where Bt ⊆ (−μ, μ] is the range of AoD covered by ct,
Br ⊆ (−μ, μ] is the range of AoA covered by cr, χA(θ) is the
indicator function of the event θ ∈ A, and |A| =

∫
A dθ is the

measure of the set A. Hereafter, the two sets Bt and Br will
be referred to as BS and UE beams, respectively. Additionally,
we define Bk = Bt,k × Br,k as the 2-dimensional (2D)
AoD/AoA support defined by the BS-UE beams. Note that
the sectored model is used as an abstraction of the real
model, which applies a precoding vector ct at the transmitter
and a beamforming vector cr at the receiver. This abstrac-
tion, shown in Fig. 1, is adopted since direct optimization
of ct and cr is not analytically tractable, due to the high
dimensionality of the problem. In Sec. VIII we show via
Monte-Carlo simulation that, by appropriate design of ct and
cr to approximate the sectored model, our scheme attains
near-optimal performance, and outperforms a state-of-the-art
bisection search scheme [9]; thus, the sectored antenna model
provides a valuable abstraction for practical design. Following
the sectored antenna model, we obtain the received signal by
replacing Gx(cx, θx) with Gx(Bx, θx) in (4), yielding

y = h
√
PGt(Bt, θt) ·Gr(Br, θr)ejΨ(θ)s+ ŵ. (6)

Although the analysis in this paper is presented for ULAs
(2D beamforming), the proposed scheme can be extended
to the case of uniform planar arrays with 3D beamforming,
by interpreting θx, x ∈ {t, r} as a vector denoting the azimuth
and elevation pair in (−μ, μ]2 and the beam Bx ⊆ (μ, μ]2.
For notational convenience and ease of exposition, in this
paper we focus on the 2D beamforming case (also adopted
in, e.g., [9], [18], [22], [23]).
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The entire frame duration is split into two, possibly
interleaved phases: a beam-alignment phase, whose goal is to
detect the best beam to be used in the data communication
phase. To this end, we partition the slots I in each frame
into the indices in the set Is, reserved for beam-alignment,
and those in the set Id, reserved for data communication,
where Is∩Id = ∅ and Is∪Id = I. The optimal frame
partition and duration of beam-alignment are part of our
design. In the sequel, we describe the operations performed
in the beam-alignment and data communication slots, and
characterize their energy consumption.

A. Beam-Alignment
At the beginning of each slot k∈Is, the BS sends a beacon

signal s of duration TB<T using the transmit beam Bt,k with
power Pk ,1 and the UE receives the signal using the receive
beam Br,k. Note that Bk = Bt,k×Br,k and Pk are design
parameters. If the UE detects the beacon (i.e., the AoD/AoA
θ is in Bk, or a false-alarm occurs, see [31]), then, in the
remaining portion of the slot of duration T−TB , it transmits
an acknowledgment (ACK) packet to the BS, denoted as
Ck = ACK. Otherwise (the UE does not detect the beacon
due to either mis-alignment or misdetection error), it transmits
Ck = NACK. We assume that the ACK/NACK signal Ck

is received perfectly and within the end of the slot by the BS
(for instance, by using a conventional microwave technology
as a control channel [32]).

As a result of (6), the UE attempts to detect the beam,
and generates the ACK/NACK signal based on the following
hypothesis testing problem,

H1 : yk =
√
N0 Wtotνkhe

jΨk(θ)s+ŵk, (alignment, θ∈Bk)

H0 : yk = ŵk, (misalignment, θ/∈Bk)

where yk is the received signal vector, s is the transmitted
symbol sequence, ŵk∼CN (0, N0 WtotI) is the AWGN vec-
tor, and νk is related to the beam-forming gain in slot k,

νk =
(2μ)2 Pk

N0 Wtot|Bk| . (7)

The optimal detector depends on the availability of prior infor-
mation on h. We assume that an estimate of the channel gain
γ = |h|2 is available at the BS and UE at the beginning of each
frame, denoted as γ̂ = |ĥ|2, where ĥ = h+e and e∼CN (0, σ2

e )
denotes the estimation noise. A Neyman-Pearson threshold
detector is optimal in this case,

|sHyk|2
N0 Wtot‖s‖2

2

H0

≶
H1

τth. (8)

The detector’s threshold τth and the transmission power Pk are
designed based on the channel gain estimate γ̂, so as to satisfy
constraints on the false-alarm and misdetection probabilities,
pfa, pmd ≤ pe. We now compute these probabilities under the
simplifying assumption that ĥ and e are independent, so that
h|ĥ ∼ CN (ĥ, σ2

e ). Let zk � sHyk√
N0 Wtot‖s‖2

, so that |zk|2 is the

1In practice, there are limits on how small the beacon duration can be
made, due to peak power constraints [30], beacon synchronization errors [4],
and auto-correlation properties of the beacon sequence [4].

decision variable. We observe that

zk =

⎧⎪⎪⎨
⎪⎪⎩

√
νkhe

jΨk(θ)‖s‖2 +
sHŵk√

N0 Wtot‖s‖2

, if H1 is true;

sHŵk√
N0 Wtot‖s‖2

, if H0 is true.

Since ĥ and ŵk are independent and h = ĥ− e, we obtain

f(zk|ĥ,H1,θ) = CN
(√

νkĥe
jΨk(θ)‖s‖2, 1+νk‖s‖2

2σ
2
e

)
, (9)

f(zk|ĥ,H0) = CN (0, 1), (10)

so that [|zk|2|ĥ,H0] ∼ Exponential(1), and the false-alarm
probability can be expressed as

pfa(τth) � P

(
|zk|2 > τth

∣∣ĥ,H0

)
= exp (−τth). (11)

Similarly, the misdetection probability is found to be

pmd(νk, τth, γ̂) � P

(
|zk|2 < τth

∣∣ĥ,H1

)

= 1 −Q1

(√
2γ̂νk‖s‖2

2

1 + νk‖s‖2
2σ

2
e

,

√
2τth

1 + νk‖s‖2
2σ

2
e

)
, (12)

where Q1(·) is the first-order Marcum’s Q function [33].
In fact, zk|(ĥ,H1) is complex Gaussian as in (9), so that,
given (γ̂,H1),

2|zk|2
1+νk‖s‖2

2σ2
e

follows non-central chi-square
distribution with 2 degrees of freedom and non-centrality
parameter 2νk γ̂‖s‖2

2
1+νk‖s‖2

2σ2
e

.
Herein, we design τth and Pk to achieve pfa, pmd ≤ pe.

To satisfy pfa(τth) ≤ pe we need

τth ≥ − ln (pe). (13)

Since Q1(a, b) is an increasing function of a ≥ 0 and a
decreasing function of b ≥ 0, it follows that pmd(νk, τth) is
a decreasing function of νk ≥ 0 and an increasing function
of τth ≥ 0. Then, to guarantee pmd(νk, τth, γ̂) ≤ pe, (13)
should be satisfied with equality to attain the smallest pmd;
additionally, there exists ν∗>0, determined as the unique
solution of pmd(ν∗, τth, γ̂) = pe and independent of the beam
shape Bk, such that pmd(νk, τth, γ̂) ≤ pe iff (if and only if)
νk ≥ ν∗. Then, using (7) and letting Ek�PkTsy‖s‖2

2 be the
energy incurred for the transmission of the beacon s in slot k,
Ek should satisfy

Ek ≥ φs(pe)|Bk|, (14)

where φs(pe) � N0 Wtotν
∗Tsy‖s‖2

2/(2μ)2 (15)

is the energy/rad2 required to achieve false-alarm and misde-
tection probabilities equal to pe.

Note that false-alarm and misdetection errors are deleterious
to performance, since they result in mis-alignment and outages
during data transmission. Therefore, they should be mini-
mized. For this reason, in the first part of this paper we assume
that pe�1, and neglect the impact of these errors on beam-
alignment. Thus, we let Ek ≥ φs|Bk| be the energy required
in each beam-alignment slot to guarantee successful detection
with high probability, where φs is computed under some
small pe � 1. We will consider the impact of these errors
in Sec. VII.2

2The design of beam-alignment schemes robust to errors when pe �� 1 has
been considered in [34]. Its analysis is outside the scope of this paper.
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B. Data Communication

In the communication slots indexed by k ∈Id, the BS uses
Bt,k, rate Rk, and transmit power Pk, while the UE processes
the received signal using the beam Br,k. Therefore, letting
γ = |h|2 and νk as in (7), the instantaneous SNR can be
expressed as

SNRk =
γPkGt(Bt,k, θt)Gr(Br,k, θr)

N0 Wtot

= νkγχBt,k(θt)χBr,k(θr). (16)

Outage occurs if Wtot log2(1+SNRk)<Rk due to either
mis-alignment between transmitter and receiver, or low chan-
nel gain γ. The probability of this event, pout, can be
inferred from the posterior probability distribution of the
AoD/AoA pair θ and the channel gain γ, given its esti-
mate γ̂, and the history of BS-UE beams and feedback until
slot k, denoted as Hk � {(B0, C0), . . . , (Bk−1, Ck−1)}. Thus,
pout � P(Wtot log2(1 + SNRk) < Rk|γ̂,Hk), yielding

pout
(a)
= P

(
SNRk < 2

Rk
Wtot − 1|γ̂,θ ∈ Bk

)
P(θ ∈ Bk|Hk)

+ P(θ �∈ Bk|Hk)

(b)
= 1 − F̄γ

(
2

Rk
Wtot − 1
νk

∣∣∣∣γ̂
)

P(θ ∈ Bk|Hk), (17)

where (a) follows from the law of total probability and
P(θ∈Bk|Hk) denotes the probability of correct beam-
alignment; (b) follows by substituting F̄γ(x|γ̂)�P(γ ≥ x|γ̂)
into (a), given as

F̄γ(x|γ̂) = Q1

(√
2γ̂/σ2

e ,
√

2x/σ2
e

)
. (18)

Herein, we use the notion of �-outage capacity to design Rk,
defined as the largest transmission rate such that pout ≤ �, for
a target outage probability �<1. This can be expressed as

Cε(Pk,Bk|Hk, γ̂)

� Wtot log2

(
1 + νkF̄

−1
γ

(
1 − �

P(θ∈Bk|Hk)

∣∣∣∣ γ̂
))

, (19)

where F̄−1
γ (·|γ̂) denotes the inverse posterior CCDF of γ,

conditional on γ̂. In other words, if Rk ≤ Cε(Pk,Bk|Hk, γ̂),
then the transmission is successful with probability at least
1−�, and the average rate is at least (1−�)Rk. Note that,
in order to achieve the target pout ≤ �, the probability of cor-
rect beam-alignment must satisfy P(θ∈Bk|Hk) ≥ 1−�. This
can be achieved with a proper choice of Bk, as discussed next.

Since the ACK/NACK feedback after data communication
is generated by higher layers (e.g., network or transport layer),
we do not use it to improve beam-alignment. We define
Ck = NULL, ∀k∈Id, to distinguish it from the ACK/NACK
feedback signal in the beam-alignment slots.

III. PROBLEM FORMULATION

In this section, we formulate the optimization problem,
and characterize it as a Markov decision process (MDP). The
goal is to minimize the power consumption at the BS over a
frame duration, while achieving the quality of service (QoS)

requirements of the UE (rate and delay). Therefore, the objec-
tive function of the following optimization problem captures
the beam-alignment and data communication energy costs;
the QoS requirements are specified in the constraints through
a rate requirement Rmin of the UE along with an outage
probability of �; additionally, the frame duration Tfr represents
a delay guarantee on data transmission. The design variables
in slot k are denoted by the 4-tuple ak = (ξk, Pk,Bk, Rk),
where ξk corresponds to the decision of whether to perform
beam-alignment (ξk = 1) or data communication (ξk = 0);
we let Rk = 0 for beam-alignment slots (ξk = 1). With this
choice of ak , we aim to optimally select the beam-alignment
slots Is and data communication slots Id. If a slots is
selected for beam-alignment (ξk = 1), we aim to optimize
the associated power Pk and 2D beam Bk. Likewise, if a
slot is selected for data communication (ξk = 0), we aim to
optimize the associated power Pk , data rate Rk, and 2D beam
Bk. Mathematically, the optimization problem is stated as

P1 : P̄ � min
a0,...,aN−1

1
Tfr

E

[
N−1∑
k=0

Ek

∣∣∣∣f0
]

(20)

s.t. ak = (ξk, Pk,Bk, Rk), ∀k,
Bk = Bt,k×Br,k ⊆ [−μ, μ]2, ∀k, (21)

Ek ≥ φs|Bk|, ∀k ∈ Is, (22)

1
N

∑
k

Rk≥Rmin, Rk ≤ Cε(Pk,Bk|Hk, γ̂), ∀k∈Id, (23)

Pk = Ek/[ξkTB + (1 − ξk)T ], ∀k, (24)

where f0 in (20) denotes the prior belief over θ; (21) defines
the 2D beam Bk; (22) gives the energy consumption in
the beam-alignment slots; (23) ensures the rate requirement
Rmin over the frame, and that Rk is within the �-outage
capacity, see (19); (24) gives the relation between energy and
power.3 Since the cost is the average BS power consumption,
the inequality constraints (22)-(23) must be tight, i.e., we
replace them with

Ek = ξkφs|Bk| + (1 − ξk)
ψd(Rk)|Bk|

F̄−1
γ

(
1−ε

P(θ∈Bk|Hk)

∣∣γ̂) , (25)

1
N

∑
k

Rk = Rmin, (26)

where (25) when ξk = 0 is obtained by inverting (23) via (19)
and (7) (with equality) to find Pk and Ek = PkT , and we
have defined the energy/rad2 required to achieve the rate R

ψd(R) � (2μ)−2N0 WtotT (2
R

Wtot − 1).

Hereafter, we exclude Pk from the design space, since it is
uniquely defined by the set of equality constraints (24)-(25).
Thus, we simplify the design variable to ak = (ξk,Bk, Rk).

We pose P1 as an MDP [35] over the time horizon I.
The state at the start of slot k is (fk, Dk), where fk is the
probability distribution over the AoD/AoA pair θ, given the

3Data communication takes the entire slot, whereas beam-alignment occurs
over a portion TB < T of the slot to allow for the time to receive the
ACK/NACK feedback from the receiver.



HUSSAIN AND MICHELUSI: ENERGY-EFFICIENT INTERACTIVE BEAM ALIGNMENT FOR MM-WAVE NETWORKS 843

history Hk up to slot k, denoted as belief ; Dk is the backlog
(untransmitted data bits). Initially, f0 is the prior belief and
D0�RminTfr. Given (fk, Dk), the BS and UE select ak =
(ξk,Bk, Rk).4 Then, the UE generates the feedback signal: if
ξk = 0 (data communication), then Ck = NULL; if ξk = 1
(beam-alignment), then Ck = ACK if θ∈Bk, with probability

P(Ck = ACK|fk,ak) =
∫
Bk

fk(θ)dθ, (27)

and Ck = NACK otherwise. Upon receiving Ck , the new
backlog in slot k + 1 becomes5

Dk+1 = max
{
Dk −RkT, 0

}
, (28)

and the new belief fk+1 is computed via Bayes’ rule, as given
in the following lemma.

Lemma 1: Let f0 be the prior belief on θ with support
supp(f0) = U0. Then,

fk(θ) =
f0(θ)∫

Uk
f0(θ̃)dθ̃

χUk
(θ), (29)

where Uk � supp(fk) is updated recursively as

Uk+1 =

⎧⎪⎨
⎪⎩
Uk ∩ Bk, k ∈ Is, Ck = ACK
Uk \ Bk, k ∈ Is, Ck = NACK
Uk, k ∈ Id.

(30)

Proof: The proof follows by induction using Bayes’ rule.
In fact, if Ck = ACK in a beam-alignment slot, then it can
be inferred that θ∈Uk∩Bk; otherwise (Ck = NACK) the UE
lies outside Bk, but within the support of fk, i.e., θ∈Uk\Bk.
In the data communication slots, no feedback is generated,
hence fk+1 = fk and Uk+1 = Uk. A detailed proof is given
in [36].

Lemma 1 implies that Uk is a sufficient statistic for deci-
sion making in slot k, and is updated recursively via (30).
Accordingly, the state space is defined as

S ≡ {(U , D) : U ⊆ U0, 0 ≤ D ≤ D0}. (31)

Given the data backlog Dk = D, the action space is
expressed as6

A(D) ≡ {
(0,B, R) : B ≡ Bt×Br ⊆ [−μ, μ]2, 0<R ≤ D/T

}
∪{(1,B, 0) : B ≡ Bt×Br ⊆ [−μ, μ]2

}
. (32)

Given (Uk, Dk) ∈ S, the action ak∈A(Dk) is chosen based
on policy μk, which determines the BS-UE beam Bk and
whether to perform beam-alignment (ξk = 1, Rk = 0) or data
communication (ξk = 0, Rk>0), with energy cost Ek given
by (25). With this notation, we can express the problem P1

as that of finding the policy μ∗ which minimizes the power
consumption under rate requirement and outage probability
constraints,

P2 : P̄ � min
μ

1
Tfr

Eμ

[
N−1∑
k=0

c(ak;Uk, Dk)
∣∣∣∣U0, D0, f0

]
,

s.t. Dk+1 = Dk − TRk, ∀k ∈ I, DN = 0, (33)

4Since feedback is error-free, both BS and UE have the same information
to generate the action ak and their beams.

5If Dk+1 ≤ 0, all bits have been transmitted.
6Note that, for a data communication action (0,B, R), we assume that

R > 0; in fact, data communication with zero rate is equivalent to a beam-
alignment action (1, ∅, 0) with empty beam.

where we have defined the cost per stage in state (Uk, Dk)
under action ak as

c(ak;Uk, Dk) =

⎡
⎣ξkφs+

(1−ξk)ψd(Rk)

F̄−1
γ

(
1−ε

P(θ∈Bk|Uk)

∣∣γ̂)
⎤
⎦ |Bk|, (34)

and we used the sufficient statistic (Lemma 1) to express
P(θ∈Bk|Hk) = P(θ∈Bk|Uk) in (25). P2 can be solved
via dynamic programming (DP): the value function in state
(Uk, Dk) under action ak∈A(Dk), Vk(ak;Uk, Dk), and the
optimal value function, V ∗

k (Uk, Dk), are expressed as

Vk(ak;Uk, Dk) = c(ak;Uk, Dk)

+ E

[
V ∗

k+1(Uk+1, Dk+1)
∣∣∣∣Uk, Dk;ak

]
,

V ∗
k (Uk, Dk) = min

ak∈A(Dk)
Vk(ak;Uk, Dk), (35)

where the minimum is attained by the optimal policy. To
enforce DN = 0, we initialize it as

V ∗
N (UN , DN) =

{
0, DN = 0
∞, DN > 0.

(36)

Further analysis is not doable for a generic prior f0.
To unveil structural properties, we proceed as follows:

1) We optimize over the extended action space

Aext(D) ≡ {
(0,B, R) : B ⊆ [−μ, μ]2, 0 < R ≤ D/T

}
∪{(1,B, 0) : B ⊆ [−μ, μ]2

}
, (37)

obtained by removing the “rectangular beam” constraint
B≡Bt×Br in (32). Thus, B ∈ Aext(D) can be any
subset of [−μ, μ]2, not restricted to a “rectangular” shape
B ≡ Bt,k ×Br,k. By optimizing over an extended action
space, a lower bound to the value function is obtained,
denoted as V̂ ∗

k (Uk, Dk) ≤ V ∗
k (Uk, Dk), possibly not

achievable by a “rectangular” beam.
2) In Sec. IV, we find structural properties under such

extended action space, for the case of a uniform belief
f0. In this setting, we prove the optimality of a fractional
search method, which selects Bk as Bk ⊆ U with
|Bk| = ρk|Uk| (beam-alignment) or |Bk| = ς|Uk| (data
communication), for appropriate fractional parameters
ρk and ς; additionally, we prove the optimality of
a deterministic duration of the beam-alignment phase
(Theorems 1 and 3).

3) In Sec. V, we prove that such lower bound is indeed
achievable by a decoupled fractional search method,
which decouples the BS and UE beam-alignment over
time using rectangular beams, hence it is optimal.

4) In Sec. VI, we use these results to design a heuristic
policy with performance guarantees for the case of
non-uniform prior f0, and show that the uniform prior
is the worst case.

IV. UNIFORM PRIOR

We denote the beam B taking value from the extended action
space Aext(D) as “2D beam”, to distinguish it from B∈A(D),
that obeys a “rectangular” constraint. Additionally, since the
goal is to minimize the energy consumption, we restrict B⊆U
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during data communication and B⊂U during beam-alignment,
yielding the following extended action space in state (U , D)7:

Aext(U , D) ≡ {(0,B, R) : B ⊆ U , 0 < R ≤ D/T }
∪{(1,B, 0) : B ⊂ U}. (38)

In this section, we consider the independent uniform prior
on θ = (θt, θr), i.e.,

f0(θ) = fr,0(θr) · ft,0(θt), fx,0(θx) =
χUx,0(θx)
|Ux,0| . (39)

From Lemma 1, it directly follows that fk is uniform in
its support Uk, and the state transition probabilities from
state (Uk, Dk) under the beam-alignment action (1,Bk, 0) ∈
Aext(U , D), given in (27) for the general case, can be spe-
cialized as Dk+1 = Dk and

Uk+1 =

⎧⎪⎪⎨
⎪⎪⎩
Bk, w.p.

|Bk|
|Uk| ,

Uk \ Bk, w.p. 1 − |Bk|
|Uk| ,

(40)

where “w.p.” abbreviates “with probability”. On the other
hand, under the data communication action (0,Bk, Rk),
the new state becomes Uk+1 = Uk, and Dk+1 = Dk −RkT .

In order to determine the optimal policy with extended
action set, we proceed as follows:

1) In Sec. IV-A, we find the structure of the optimal data
communication beam, as a function of the transmit rate
Rk and support Uk, and investigate its energy cost;

2) Next, in Sec. IV-B, we prove that it is suboptimal
to perform beam-alignment after data communication
within the frame. Instead, it is convenient to nar-
row down the beam as much as possible via beam-
alignment, to achieve the most energy-efficient data
communication;

3) Finally, in Sec. IV-C, we investigate the structure of the
value function, to prove the optimality of a fixed-length
beam-alignment and of a fractional-search method.

A. Optimal Data Communication Beam

In the following theorem, we find the optimal 2D beam for
data communication.

Theorem 1: In any communication slot k ∈ Id, the 2D
beam Bk is optimal iff

Bk ⊆ Uk|Bk| = ς|Uk|, (41)

where ς = (1−�)/q∗, with q∗ = argmaxq∈[1−ε,1] qF̄
−1
γ (q|γ̂).

Proof: The proof is provided in Appendix A.
The significance of this result is that the optimal beam in

the data communication phase is a fraction ς of the region of
uncertainty Uk, with ς reflecting the desired outage constraint.
By substituting (41) into (34), and letting

φd(R, �) � ψd(R)(1 − �)
q∗F̄−1

γ (q∗|γ̂)
(42)

be the energy/rad2 to achieve transmission rate R with outage
probability �, the cost per stage of a data communication action

7In fact, the AoD/AoA lie within the belief support Uk; projecting a “2D
beam” outside of Uk is suboptimal, since it yields an unnecessary energy
cost. Additionally, choosing Bk = Uk during beam-alignment is suboptimal,
since it triggers an ACK with probability one, which is uninformative; we
thus restrict Bk ⊂ Uk . A formal proof is provided in [36].

with beam given by Theorem 1 can be expressed as

c(ak;Uk, Dk) = φd(Rk, �)|Uk|. (43)

B. Beam-Alignment Before Data Communication Is Optimal

In Theorem 2, we prove that it is suboptimal to precede data
communication to beam-alignment. Instead, it is more energy
efficient to narrow down the beam as much as possible via
beam-alignment, before switching to data communication.

Theorem 2: Let μ be a policy and {(Uk, Dk), k ∈ I} be
a realization of the state process under μ such that ∃j :
ξj(Uj , Dj) = 0 and ξj+1(Uj+1, Dj+1) = 1 (beam-alignment
is followed by data communication, for some slot j). Then, μ
is suboptimal.

Proof: The theorem is proved in two parts using con-
tradiction. The first part deals with the case when a data
communication slot is followed by a beam-alignment slot
having non-zero beam-width. The second part deals with
the case when a data communication slot is followed by a
beam-alignment slot having zero beam-width. Let μ be a
policy such that, for some state (Uj , Dj) and slot index j,
μj(Uj , Dj) = (0,Bj, Rj), satisfying the conditions of Theo-
rem 1 (data communication action); thus, the state at j + 1 is
(Uj+1, Dj+1) = (Uj , Dj −TRj). Further, assume that, in this
state, μj+1(Uj , Dj − TRj) = (1,Bj+1, 0) (beam-alignment),
with Bj+1 ⊂ Uj (strict subset, see (38)), so that the state in slot
j+2 is either (Bj+1, Dj −TRj) with probability |Bj+1|/|Uj |
(ACK), or (Uj \ Bj+1, Dj − TRj) otherwise (NACK). This
policy follows beam-alignment to data communication, and
we want to prove that it is suboptimal. We use (35) to get the
cost-to-go function in slot j under policy μ as

V μ
j (Uj , Dj) = φd(Rj , �)|Uj| + V μ

j+1(Uj , Dj − TRj)

= φd(Rj , �)|Uj | + φs|Bj+1|+ |Bj+1|
|Uj | V

μ
j+2(Bj+1, Dj−TRj)

+
|Uj \ Bj+1|

|Uj | V μ
j+2(Uj \ Bj+1, Dj − TRj). (44)

We consider the two cases |Bj+1|>0 and |Bj+1| = 0 sepa-
rately. In both cases, we will construct a new policy μ̃ and
compare the cost-to-go function at j under the two policies
μ and μ̃.
|Bj+1| > 0: We define μ̃ as being equal to μ except for the

following: μ̃j(Uj , Dj) = (1,Bj+1, 0), so that μ̃ executes the
beam-alignment action in slot j, instead of j+1. It follows
that

V μ̃
j (Uj , Dj) = φs|Bj+1| + |Bj+1|

|Uj | V
μ̃
j+1(Bj+1, Dj)

+
|Uj \ Bj+1|

|Uj | V μ̃
j+1(Uj \ Bj+1, Dj). (45)

Furthermore, we design μ̃ such that μ̃j+1(Bj+1, Dj) =
(0, B̃′

j+1, Rj) and μ̃j+1(Uj \ Bj+1, Dj) = (0, B̃′′
j+1, Rj),

so that μ̃ executes the data communication action in slot
j + 1, instead of j, with beams B̃′

j+1 and B̃′′
j+1 satisfying

the conditions of Theorem 1. It follows that the system
moves from state (Bj+1, Dj) to (Bj+1, Dj −TRj), and from
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(Uj \ Bj+1, Dj) to (Uj \ Bj+1, Dj − TRj) under policy μ̃,
yielding

V μ̃
j+1(Bj+1,Dj)

(a)
= φd(Rj , �)|Bj+1|+ V μ̃

j+2(Bj+1,Dj−TRj),

V μ̃
j+1(Uj \ Bj+1, Dj)

(b)
= φd(Rj , �)|Uj \ Bj+1|

+V μ̃
j+2(Uj \ Bj+1, Dj − TRj).

By substituting (a),(b) into (45), and using the fact that μ̃k and
μk are identical for k ≥ j+2 (hence V μ̃

j+2 = V μ
j+2), it follows

that

V μ̃
j (Uj , Dj)−V μ

j (Uj , Dj)
(a)
= −2φd(Rj , �)

|Bj+1||Uj \ Bj+1|
|Uj |

(b)
< 0, (46)

where (a) follows from |Uj\Bj+1| = |Uj |−|Bj+1|; (b) follows
from |Bj+1| > 0 and Bj+1 ⊂ Uj .
|Bj+1| = 0 : In this case, we design μ̃ equal to μ except for

the following: μ̃j(Uj , Dj) = (0, B̃′
j, Rj/2), with B̃′

j satisfying
the conditions of Theorem 1, so that state (Uj , Dj) transitions
to state (Uj , Dj−TRj/2). Moreover μ̃j+1(Uj , Dj−TRj/2) =
(0, B̃′′

j , Rj/2), with B̃′′
j satisfying the conditions of Theorem 1,

so that the system moves to state (Uj , Dj −TRj) in slot j+2.
Under this new policy, the BS performs data communication
in both slots, with rate Rj/2. Thus, the cost-to-go function
under μ̃ in slot j is given as

V μ̃
j (Uj , Dj) = φd

(
Rj

2
, �

)
|Uj | + V μ̂

j+1

(
Uj , Dj − T

Rj

2

)

= 2φd

(
Rj

2
, �

)
|Uj | + V μ̂

j+2 (Uj , Dj − TRj). (47)

By comparing (47) and (44) and using the fact that μ and μ̃
are identical for k ≥ j + 2, we get

V μ̃
j (Uj , Dj) − V μ

j (Uj , Dj)
(a)
=
[
2φd

(
Rj

2
, �

)
− φd (Rj , �)

]
|Uj |

(b)
< 0, (48)

where (a) follows from |Bj+1| = 0; (b) follows from
the strict convexity of φd (R, �) over R>0, implying that

2φd

(
Rj

2 , �
)
<φd (Rj , �). (46) and (48) imply that μ does not

satisfy Bellman’s optimality equation, hence it is suboptimal,
yielding a contradiction. The theorem is proved.

From Theorem 2, we infer that:
Corollary 1: Under an optimal policy μ∗, the frame can

be split into a beam-alignment phase, followed by a data
communication phase until the end of the frame. The duration
L∗∈I of beam-alignment is, possibly, a random variable,
function of the realization of the beam-alignment process.

To capture this phase transition, we introduce the state
variable ∇∈{BA,DC}, denoting that the system is operating
in the beam-alignment phase (∇ = BA) or switched to data
communication (∇ = DC). The extended state is denoted as
(Uk, Dk,∇k), with the following DP updates. If ∇k = DC,
then the system remains in the data communication phase until
the end of the frame, and ∇j = DC, ∀j ≥ k, yielding

V̂ ∗
k (Uk, Dk,DC) (49)

= min
0<R≤Dk/T

{
φd(R, �)|Uk| + V̂ ∗

k+1(Uk+1, Dk − TR,DC)
}
.

Using the convexity of φd(R, �) with respect to R, it is
straightforward to prove the following.

Lemma 2:

V̂ ∗
k (Uk, Dk,DC) = (N − k)φd

(
Dk

T (N − k)
, �

)
|Uk|.

That is, it is optimal to transmit with constant rate Dk

T (N−k)

in the remaining (N − k) slots until the end of the frame.
On the other hand, if ∇k = BA, then ∇j = BA, ∀j ≤ k and
Dk = D0, since no data has been transmitted yet. Then,

V̂ ∗
k (Uk, D0,BA) = min

{
(N − k)φd

(
NRmin

N − k
, �

)
|Uk|,

min
Bk⊂Uk

[
φs|Bk| + |Bk|

|Uk| V̂
∗
k+1(Bk, D0,BA)

+
(

1− |Bk|
|Uk|

)
V̂ ∗

k+1(Uk \ Bk, D0,BA)
]}

, (50)

where the outer minimization reflects an optimization over
the actions “switch to data communication in slot k with
rate Rk = NRmin

N−k ,” or “perform beam-alignment.” The inner
minimization represents an optimization over the 2D beam Bk

used for beam-alignment.

C. Optimality of Deterministic Beam-Alignment
Duration With Fractional-Search Method

It is important to observe that the proposed protocol is
interactive, so that the duration of the beam-alignment phase,
L∗ ∈ I, is possibly a random variable, function of the
realization of the beam-alignment process. For example, if it
occurs that the AoD/AoA is identified with high accuracy,
the BS may decide to switch to data communication to achieve
energy-efficient transmissions until the end of the frame.
Although it may seem intuitive that L∗ should indeed be
random, in this section we will show that, instead, L∗ is deter-
ministic. Additionally, we prove the optimality of a fractional
search method, which dictates the optimal beam design.

To unveil these structural properties, we define v∗k(Uk) �
V̂ ∗

k (Uk,D0,BA)
|Uk| . Then, (50) yields

v∗k(Uk) = min
{

(N − k)φd

(
NRmin

N − k
, �

)
,

min
ρ∈[0,1)

φsρ+ρ2 v∗k+1(Bt,k)+ (1 − ρ)2 v∗k+1(Uk \ Bk)
}
, (51)

where v∗N (UN ) = ∞ and we used ρ in place of |Bk|
|Uk| ,

with ρ<1 since Bk⊂Uk. Using this fact, we find that
v∗N−1(UN−1) = φd (NRmin, �) is independent of UN−1. By
induction on k, it is then straightforward to see that v∗k(Uk) is
independent of Uk, ∀k. We thus let v∗k�v∗k(Uk), ∀Uk to capture
this independence, which is then defined recursively as

v∗k = min
{
(N − k)φd

(
NRmin

N − k
, �

)
,

min
ρ∈[0,1)

φsρ+
[
ρ2 + (1 − ρ)2

]
v∗k+1

}
. (52)
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The value of ρ achieving the minimum in (52) is ρk = |Bk|
|Uk| =

1
2

(
1 − φs

2v∗
k+1

)+

, yielding

v∗k = min

{
(N−k)φd

(
NRmin

N−k , �

)
︸ ︷︷ ︸

Γk (data communication)

, v∗k+1−
[(2v∗k+1−φs)+]2

8v∗k+1︸ ︷︷ ︸
Λk (beam-alignment)

}
.

From this decomposition, we infer important properties:

1) Given v∗k, the original value function is obtained as
V̂ ∗

k (Uk, D0,BA) = v∗k|Uk|. If, at time k, Γk < Λk,
then it is optimal to switch to data communication in
the remaining N − k slots, with constant rate NRmin

N−k .
2) Otherwise, it is optimal to perform beam-alignment,

with beam Bk ⊂ Uk, |Bk| = ρk|Uk|.
3) Finally, since the time to switch to data communication

is solely based on {v∗k}, but not on Uk, it follows that
fixed-length beam-alignment is optimal, with duration

L∗ = min {k : Γk < Λk} . (53)

These structural results are detailed in the following theorem.
Theorem 3: Let

Lmin = argmin
L∈{0,...,N−1}

{
L : (N−L)φd

(
NRmin

N − L
, �

)
>
φs

2

}
(54)

and, for Lmin ≤ L < N ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v
(L)
L = (N − L)φd

(
NRmin

N − L
, �

)
,

v
(L)
k = v

(L)
k+1 −

(2v(L)
k+1 − φs)2

8v(L)
k+1

, k < L.
(55)

Then, the beam-alignment phase has deterministic duration

L∗ = arg min
L∈{0}∪{Lmin,...,N−1}

v
(L)
0 . (56)

For 0 ≤ k<L∗ (beam-alignment phase), Bk is optimal iff

Bk ⊂ Uk, |Bk| = ρk|Uk|, (57)

where ρk is the fractional search parameter, defined as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρL∗−1 =
1
2
− φs

4(N − L∗)φd

(
NRmin

N − L∗ , �
) ,

ρk =
1 − ρk+1

1 − 2ρ2
k+1

ρk+1, k < L∗ − 1.

(58)

Moreover, ρk ∈ (0, 1/2), strictly increasing in k. For k ≥ L∗,
the data communication phase occurs with rate NRmin

N−L∗ , and
2D beam given by Theorem 1.

Proof: Since the optimal duration of the beam-alignment
phase is deterministic, as previously discussed, we consider a
fixed beam-alignment duration L, and then optimize over L
to achieve minimum energy consumption. Let L ∈ I. Then,
the DP updates are obtained by adapting (52) to this case (so

that the outer minimization disappears for k < L), yielding⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
(L)
L = (N − L)φd

(
NRmin

N − L
, �

)
,

v
(L)
k = gk(ρk), k < L, where

gk(ρ) � φsρ+
[
ρ2 + (1 − ρ)2

]
v
(L)
k+1,

ρk = arg minρ∈[0,1] gk(ρ) =
1
2

(
1 − φs

2v(L)
k+1

)+

.

(59)

Since the goal is to minimize the energy consumption, the opti-
mal L is obtained as L∗ = arg minL v

(L)
0 . We now prove that

0 < L < Lmin is suboptimal, so that this optimization can be
restricted to L ∈ {0} ∪ {Lmin, · · · , N − 1}, as in (56). Let
0 < L < Lmin, so that v(L)

L ≤ φs/2, as can be seen from the
definition of Lmin in (54). Note that v(L)

k is a non-decreasing
function of k. In fact, v(L)

k ≤ gk(0) = v
(L)
k+1. Then, it follows

that v(L)
k ≤ φs/2, ∀k, hence ρk = 0, ∀k, yielding v(L)

0 = v
(L)
L

by induction. However, v(L)
L is an increasing function of L

(it is more energy efficient to spread transmissions over a
longer interval), hence v(L)

0 > v
(0)
0 and such L is suboptimal.

This proves that any 0 < L < Lmin is suboptimal.
We now prove the updates for L ≥ Lmin, i.e., v(L)

L > φs/2.
By induction, we have that v

(L)
k > φs/2, ∀k. In fact,

this condition trivially holds for k = L, by hypothesis.
Now, assume v

(L)
k+1 > φs/2 for some k < L. Then,

v
(L)
k = minρ∈[0,1] gk(ρ), minimized at ρk = 1

2

(
1 − φs

2v
(L)
k+1

)
,

so that v(L)
k = gk(ρk), yielding (55). This recursion is an

increasing function of v(L)
k+1, yielding v(L)

k > φs/2, thus prov-

ing the induction. It follows that ρk = 1
2

(
1 − φs

2v
(L)
k+1

)
, ∀k,

yielding the recursion given by (55). The fractional search
parameter ρk is finally obtained by substituting v

(L)
k+1 =

φs

2(1−2ρk) into the recursion (55) to find a recursive expression
of ρk from ρk+1, yielding (58). These fractional values are
used to obtain Bk in (57).

To conclude, we show by induction that ρk∈(0, 1/2), strictly
increasing in k. This is true for k = L−1 since ρL−1∈(0, 1/2).
Assume that ρk+1∈(0, 1/2), for some k ≤ L−2. Then, by
inspection of (58), it follows that 0<ρk<ρk+1 < 1/2. The
theorem is thus proved.

V. DECOUPLED BS AND UE BEAM-ALIGNMENT

In the previous section, we proved the optimality of a frac-
tional search method, based on an extended action space that
uses the 2D beam Bk∈[−μ, μ]2, which may take any shape.
However, actual beams should satisfy the rectangular con-
straint Bk = Bt,k×Br,k, and therefore, it is not immediate to
see that the optimal scheme outlined in Theorem 3 is attainable
in practice. Indeed, in this section we prove that there exists a
feasible beam design attaining optimality. The proposed beam
design decouples over time the beam-alignment of the AoD
at the BS (BS beam-alignment) and of the AoA at the UE
(UE beam-alignment). To explain this approach, we define
the support of the marginal belief with respect to θx, x∈{t, r}
as Ux,k ≡ supp(fx,k). In BS beam-alignment, indicated with
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βk = 1, the 2D beam is chosen as Bk = Bt,k×Ur,k, where
Bt,k⊂Ut,k, so that the BS can better estimate the support of
the AoD, whereas the UE receives over the entire support of
the AoA. On the other hand, in UE beam-alignment, indicated
with βk = 2, the 2D beam is chosen as Bk = Ut,k×Br,k, where
Br,k⊂Ur,k, so that the UE can better estimate the support of
the AoA, whereas the BS transmits over the entire support of
the AoD. We now define a policy μ that uses this principle,
and then prove its optimality.

Definition 1 (Decoupled Fractional Search Policy): Let
L∗, ς, {ρk:k = 0, . . . , L∗−1} as in Theorems 1, 3. In slots
k = L∗, . . . , N − 1, data communication occurs with rate
Rk = NRmin

N−L∗ and beams

Bt,k ⊆ Ut,k, Br,k ⊆ Ur,k, |Bt,k||Br,k| = ς|Ut,k||Ur,k|. (60)

In slots k = 0, 1, . . . , L∗ − 1, βk∈{1, 2} is chosen arbitrarily
and beam-alignment occurs with beams{

Bt,k ⊂ Ut,k, Br,k = Ur,k, |Bt,k| = ρk|Ut,k|, if βk = 1
Bt,k = Ut,k,Br,k ⊂ Ur,k, |Br,k| = ρk|Ur,k|, if βk = 2.
Theorem 4: The decoupled fractional search policy is opti-

mal, with minimum power consumption

P̄u =
v
(L∗)
0

Tfr
|U0|. (61)

Proof: The proof is provided in Appendix B.
The intuition behind this result is that, by decoupling the

beam-alignment of the AoD and AoA over time, the proposed
method maintains a rectangular support Uk = Ut,k × Ur,k,
so that no loss of optimality is incurred by using a rectangular
beam Bk = Bt,k × Br,k. Additionally, we can infer that the
exhaustive search method is suboptimal, since it searches over
the AoD/AoA space in an exhaustive manner, rather than by
decoupling this search over time.

VI. NON-UNIFORM PRIOR

In this section, we investigate the case of non-uniform
prior f0. We use the previous analysis to design a heuristic
scheme with performance guarantees. We consider the decou-
pled fractional search policy (Definition 1), with the following
additional constraints: in the beam-alignment phase k < L∗,
if β∗

k = 1 (BS beam-alignment), then

B∗
t,k =arg max

Bt,k⊂Ut,k

∫
Bt,k

ft,k(θt)dθt, s.t. |Bt,k|=ρk|Ut,k|; (62)

if β∗
k = 2 (UE beam-alignment), then

B∗
r,k =arg max

Br,k⊂Ur,k

∫
Br,k

fr,k(θr)dθr, s.t. |Br,k| = ρk|Ur,k|. (63)

Hence, the probability of ACK can be bounded as

Case β∗
k = 1:

∫
B∗

t,k
ft,k(θt)dθt ≥

|B∗
t,k|

|Ut,k|
Case β∗

k = 2:
∫
B∗

r,k
fr,k(θr)dθr ≥

|B∗
r,k|

|Ur,k|

⎫⎪⎪⎬
⎪⎪⎭

= ρk. (64)

In other words, such choice of the BS-UE beam maximizes the
probability of successful beam-detection, so that the resulting
probability of ACK is at least as good as in the uniform case.

Similarly, in the data communication phase k ≥ L∗, the BS
transmits with rate Rk = NRmin

N−L∗ , and the beams are chosen
as in Definition 1, with the additional constraint

(B∗
t,k,B∗

r,k) = arg max
Bt,k×Br,k⊆Uk

∫
Bt,k×Br,k

fk(θ)dθ,

s.t. |Bt,k||Bt,k| = ς|Ut,k||Ur,k|. (65)

Under this choice, the energy consumption per data commu-
nication slot is obtained from (34),

Ek = ψd(Rk)
|Bk|

F̄−1
γ

(
1−ε

P(θ∈Bk|Uk)

) (66)

(a)

≤ ψd(Rk)
|Bk|

F̄−1
γ

(
(1−ε)|Uk|

|Bk|
) (b)

= φd(Rk, �)|Uk|, (67)

where (a) follows from P(θ∈Bk|Uk) ≥ |Bk|/|Uk|, and
(b) from |Bt,k||Br,k| = ς|Ut,k||Ur,k|, and from (42) with
ς = (1 − �)/q∗ (Theorem 1). This result implies that data
communication is more energy efficient than in the uniform
case, see (43). These observations suggest that the uniform
prior yields the worst performance, as confirmed by the
following theorem.

Theorem 5: The minimum power consumption for the
non-uniform prior is upper bounded by P̄nu ≤ P̄u, with
equality when f0 is uniform.

Proof: We denote the value function of the non-uniform
case under such policy as Vnu,k(Uk, Dk). Additionally, we let
P̄nu be the corresponding minimum power consumption, solu-
tion of problem P2 in (33), to distinguish it from the minimum
power consumption in the uniform case, given by (61). For
k = L∗ (data communication begins), (66) implies that

Vnu,k(Uk, D0) ≤ (N − L∗)φd

(
NRmin

N − L∗ , �
)
|Uk|. (68)

For k < L∗ (beam-alignment phase), it can be expressed as

Vnu,k(Uk, D0) = φs|B∗
k|+

∫
B∗

k

fk(θ)dθVnu,k+1(B∗
k, D0)

+

(
1 −

∫
B∗

k

fk(θ)dθ

)
Vnu,k+1(Uk \ B∗

k, D0), (69)

where B∗
k is given by (62) or (63). The minimum power

consumption is given by P̄nu = Vnu,0(U0, D0)/Tfr, so that
P̄nu ≤ P̄u is equivalent to Vnu,k(Uk, Dk) ≤ v

(L∗)
k |Uk| when

k = 0. We prove this inequality for general k by induction.
The induction hypothesis holds for k = L∗, see (68) with v(L∗)

L∗

given in (55). Assume it holds for k + 1, where k ≤ L∗ − 1.
Then, (69) can be expressed as

Vnu,k(Uk, D0) ≤ φs|B∗
k| +

∫
B∗

k

fk(θ)dθv
(L∗)
k+1 |B∗

k|

+

(
1 −

∫
B∗

k

fk(θ)dθ

)
v
(L∗)
k+1 |Uk \ B∗

k|
(a)
=
[
φsρk + v

(L∗)
k+1

(
1 − 2ρk + 2ρ2

k

)] |Uk|

−
(∫

B∗
k

fk(θ)dθ−ρk

)
v
(L∗)
k+1 |Uk|(1−2ρk),
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where (a) follows from (62)-(63) and |Uk \B∗
k| = |Uk|− |B∗

k|.
Finally, the bound (64) yields

Vnu,k(Uk, D0) ≤
[
φsρk + v

(L∗)
k+1

(
1 − 2ρk + 2ρ2

k

)] |Uk|
= v

(L∗)
k |Uk|,

where the last equality is obtained by using the recursion (55)
and the fact that ρk = 1

2 − φs

4v
(L∗)
k+1

(see proof of Theorem 3).

This proves the induction step. Clearly, equality is attained in
the uniform case. The theorem is thus proved.

This result is in line with the fact that one can leverage
the structure of the joint distribution over θ to improve the
beam-alignment algorithm. However, for the first time to the
best of our knowledge, this result provides a heuristic scheme
with provable performance guarantees.

VII. IMPACT OF FALSE-ALARM AND MISDETECTION

In this section, we analyze the impact of false-alarm and
misdetection on the performance of the decoupled fractional
search policy (Definition 1). For simplicity, we focus only on
the uniform prior case. Under false-alarm and misdetection,
the MDP introduced in Sec. III does not follow the Markov
property. To overcome this problem, we augment it with the
state variable ek ∈ {0, 1}, with ek = 0 iff no errors have
been introduced up to slot k. Note that, if errors have been
introduced (ek = 1), then necessarily θ /∈ Uk, so that we
can write ek = 1 − χ(θ ∈ Uk). It should be noted that ek is
not observable in reality and is considered for the purpose of
analysis only (indeed, the policy under analysis does not use
such information). We thus define the state as (Uk, ek),8 and
study the transition probabilities during the beam-alignment
phase k < L∗. From state (Uk, 0) (no errors have been
introduced), the transitions are

(Uk+1, ek+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Bk, 0), w.p. ρk(1 − pmd)
(Bk, 1), w.p. (1 − ρk) pfa

(Uk \ Bk, 0), w.p. (1 − ρk) (1−pfa)
(Uk \ Bk, 1), w.p. ρk pmd,

(70)

where pfa and pmd denote the false-alarm and misdetection
probabilities, respectively. In fact, if no errors occur, then
θ∈Bk with probability |Bk|

|Uk| = ρk and θ/∈Bk otherwise, yield-
ing the first and third cases; if a false-alarm or misdetection
error is introduced, then the BS infers incorrectly that θ∈Bk

(second case) or θ/∈Bk (fourth case), respectively, and the new
state becomes ek+1 = 1. Once errors have been introduced
(state (Uk, 1)), it follows that θ/∈Bk, so that Uk+1 = Bk iff a
false-alarm error occurs, and the transitions are

(Uk+1, ek+1) =

{
(Bk, 1), w.p. pfa

(Uk \ Bk, 1), w.p. 1 − pfa.
(71)

The average throughput and power are given by

T̄err = E [(1 − eL∗)(1 − �)Rmin|U0, e0 = 0] , (72)

8The backlog Dk is removed from the state space, since no data is
transmitted during the beam-alignment phase.

P̄err =
1
Tfr

E

[
φs

L∗−1∑
k=0

ρk|Uk|

+ (N − L∗)φd

(
NRmin

N − L∗ , �
)
|UL∗ |

∣∣∣∣U0, e0 = 0

]
. (73)

In fact, a rate equal to Rmin is sustained if: (1) no outage
occurs in the data communication phase, with probability 1−�;
(2) no errors occur during the beam-alignment phase, eL∗ = 0.

The analysis of the underlying Markov chain {(Uk, ek),
k ≥ 0} yields the following theorem.

Theorem 6: Under the decoupled fractional search policy,

T̄err = (1−�)Rmin

L∗−1∏
k=0

[
(1−ρk) (1−pfa)+ρk(1−pmd)

]
, (74)

P̄err = P̄u +
h0 + u0

Tfr
|U0|, (75)

where P̄u in (61) is the error-free case, and we have defined
hL∗ = uL∗ = 0 and, for k<L∗,

hk = φs
ρk − pfa

2
+ [ρkpfa + (1 − ρk) (1 − pfa)]hk+1, (76)

uk =
[
ρ2

k(1−pmd)+ (1−ρk)2 (1−pfa)
]
uk+1

− (1−pfa−pmd)ρk

[
φs

2
+hk+1 (1−2ρk)

]
. (77)

Proof: The proof is provided in Appendix C.

VIII. NUMERICAL RESULTS

In this section, we demonstrate the performance of the
proposed decoupled fractional search (DFS) scheme and
compare it with the bisection search algorithm developed
in [9] and two variants of exhaustive search. In the bisection
algorithm [9] (BiS), in each beam-alignment slot the uncer-
tainty region is divided into two regions of equal width,
scanned in sequence by the BS by transmitting beacons
corresponding to each region. Then, the UE compares the
signal power (the strongest indicating alignment) and transmits
the feedback to the BS. Since in each beam-alignment slot two
sectors are scanned (each of duration TB), the total duration
of the beam-alignment phase is (2 TB + TF )L [s], where TF

is the feedback time.
In conventional exhaustive search (CES), the BS-UE scan

exhaustively the entire beam space. In the BS beam-alignment
sub-phase, the BS searches over N (BS)

B beams covering the
AoD space, while the UE receives isotropically; in the second
UE beam-alignment sub-phase, the BS transmits using the
best beam found in the first sub-phase, whereas the UE
searches exhaustively over N (UE)

B beams covering the AoA
space. Since the UE reports the best beam at the end of each
sub-phase, the total duration of the beam-alignment phase
is [N (BS)

B + N
(UE)
B ]TB + 2TF . On the other hand, in the

interactive exhaustive search (IES) method, the UE reports
the feedback at the end of each beam-alignment slot, and
each beam-alignment sub-phase terminates upon receiving an
ACK from the UE. Since the BS awaits for feedback at the
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Fig. 2. Spectral efficiency versus beam-alignment error probability pe

for DFS.

end of each beam, the duration of the beam-alignment phase
is (TB + TF )[N̂ (BS)

B + N̂
(UE)
B ], where N̂B ≤ NB is the

number of beams scanned until receiving an ACK; assuming
the AoD/AoA is uniformly distributed over the beam space,
the expected duration of the beam-alignment phase is then
1
2 (TB + TF )

[
N

(BS)
B +N

(UE)
B + 2

]
.

We use the following parameters: [carrier frequency]=
30GHz, d = 10m, [path loss exponent]= 2, Tfr = 20ms,
TB = 50μs, TF = 50μs, |U0| = [μ]2, N0 = −173dBm,
Wtot = 500MHz, Mt = Mr = 128.

In Fig. 2, we depict the average power vs the probabil-
ity of false-alarm and misdetection pe for different values
of the spectral efficiency using expressions (74) and (75).
We use � = 0.01, and consider Rayleigh fading with no
CSI at BS, corresponding to h∼CN (0, 1/�(d)) with ĥ = 0
and σ2

e = 1/�(d). We restrict the optimization of L over
L∈{0, . . . , Lmax}, to capture a maximum resolution con-
straint for the antenna array, where we chose Lmax = 14.
From the figure, we observe that, for a given pe, as the spectral
efficiency increases so does the average power consumption
due to increase in the energy cost of data communication.
Moreover, the figure reveals that, for a given value of spectral
efficiency, there exists an optimal range of pe, where power
consumption is minimized. The performance degrades for pe

above the optimal range due to false-alarm and misdetection
errors during beam-alignment, causing outage in data commu-
nication; similarly, it degrades for pe below the optimal range
due to an increased power consumption of beam-alignment.

In Fig. 3, we plot the results of a Monte-Carlo sim-
ulation with analog beams generated using the algorithm
in [22]. In this case, we obtain φs = −94dBm with pfa =
pmd = 10−5. For BiS and DFS we set Lmax = 10 to
capture a maximum resolution constraint for the antenna array;
for the exhaustive search methods, we choose N

(BS)
B =

N
(UE)
B = 32. The performance gap between the analytical

and the simulation-based curves for DFS is attributed to the
fact that the beams used in the simulation have non-zero
side-lobe gain and non-uniform main-lobe gain, as opposed
to the “sectored” beams used in the analytical model. This
results in false-alarm, misdetection errors, and leakage, which
lead to some performance degradation. However, the sim-
ulation is in line with the analytical curve, and exhibits

Fig. 3. Spectral efficiency versus average power consumption.

Fig. 4. Performance degradation with multi-cluster channel (K = 2).

superior performance compared to the other schemes, thus
demonstrating that the analysis using the sectored gain model
provides useful insights for practical design.

For instance, to achieve a spectral efficiency of 15bps/Hz,
BiS [9] requires 4dB more average power than DFS, mainly
due to the time and energy overhead of scanning two sectors
in each beam-alignment slot, whereas IES and CES require
7.5dB and 14dB more power, respectively. The performance
degradation of IES and CES is due to the exhaustive search of
the best sector, which demands a huge time overhead. Indeed,
IES outperforms CES since it stops beam-alignment once a
strong beam is detected.

So far in our analysis, we assumed a channel with a single
cluster of rays, see (3). In Fig. 4, we depict the performance
of DFS and BiS [9] in a multi-cluster channel (K = 2 in
(2)), with the weakest cluster having a fraction � of the total
energy, 0 ≤ � ≤ 0.1. It can be seen that the performance of
both DFS and BiS degrade as � increases, since a portion of
the energy is lost in the weaker cluster, and the algorithms may
misdetect the weaker cluster instead of the strongest one. For
example, for spectral efficiency of 15bps/Hz, both schemes
exhibit ∼ 2dB and ∼ 5dB performance loss at � = 5% and
� = 10%, respectively, compared to � = 0 (single cluster).
However, DFS consistently outperforms BiS, with a gain of
∼ 3.5dB. This evaluation demonstrates the robustness of the
proposed algorithm in multi-cluster scenarios.

IX. CONCLUSIONS

In this paper, we designed an optimal interactive
beam-alignment scheme, with the goal of minimizing power
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consumption under a rate constraint. For the case of perfect
detection and uniform prior on AoD/AoA, we proved that the
optimal beam-alignment protocol has fixed beam-alignment
duration, and that a decoupled fractional search method is
optimal. Inspired by this scheme, we proposed a heuristic
policy for the case of a non-uniform prior, and showed that
the uniform prior is the worst-case scenario. Furthermore,
we investigated the impact of beam-alignment errors on the
average throughput and power consumption. The numerical
results depicted the superior performance of our proposed
scheme, with up to 4dB, 7.5dB, and 14dB gain compared
to a state-of-the-art bisection search, conventional exhaustive
search and interactive exhaustive search policies, respectively,
and robustness against multi-cluster channels.

APPENDIX A: PROOF OF THEOREM 1
Proof: For a data communication action ak∈Aext(U , D),

the state transition is independent of Bk since Uk+1 = Uk

and Dk+1 = Dk−RkT . Hence, the optimal beam given Rk is
obtained by minimizing c(ak;Uk, Dk) in (34), yielding

c(ak;Uk, Dk)
(a)
= ψd(Rk)

|Bk|
F̄−1

γ

(
(1−ε)|Uk|

|Bk|
∣∣γ̂)

(b)

≥ ψd(Rk)(1 − �)|Uk| 1
q∗F̄−1

γ (q∗|γ̂) , (78)

where (a) follows from P(θ∈Bk|Uk,ak) = |Bk|
|Uk| , with

q�(1−�) |Uk|
|Bk| ≤ 1 to enforce the �-outage constraint; (b)

follows by maximizing qF̄−1
γ (q|γ̂) over q∈[1−�, 1]. Equality

holds in (b) if |Bk| = ς|Uk|, with ς = (1−�)/q∗ and q∗ as in
the statement. The theorem is thus proved.

APPENDIX B: PROOF OF THEOREM 4

Proof: Note that, if this policy satisfies Bk≡Bt,k×
Br,k⊆Uk ≡ supp(fk), along with the appropriate fractional
values |Bk|/|Uk|, then it is optimal since it satisfies all
the conditions of Theorems 1 and 3. We now verify these
conditions. Since Bt,k ⊆ Ut,k and Br,k ⊆ Ur,k, it is sufficient
to prove that Ut,k × Ur,k ≡ Uk, ∀k. Indeed, U0 ≡ Ut,0 × Ur,0.
By induction, assume that Uk ≡ Ut,k ×Ur,k. Then, for βk = 1
(a similar result holds for βk = 2), using (30) we get

Uk+1 =

{
(Ut,k ∩ Bt,k) × Ur,k, if Ck = ACK,
(Ut,k \ Bt,k) × Ur,k, if Ck = NACK.

(79)

By letting Ur,k≡Ur,k−1, Ut,k≡Ut,k−1∩Bt,k−1 if Ck = ACK
and Ut,k≡Ut,k−1\Bt,k−1 if Ck = NACK, we obtain
Uk≡Ut,k×Ur,k. This policy is then optimal. Finally, (61) is
obtained by using the relation between power consumption
and value function. Thus, we have proved the theorem.

APPENDIX C: PROOF OF THEOREM 6

Proof: We prove it by induction using the DP updates.
Let T̄k(Uk, ek) be the throughput-to-go function from state
(Uk, ek) in slot k ≤ L∗. We prove by induction that

T̄k(Uk, ek) = (1 − ek)(1 − �)Rmin

×
L∗−1∏
j=k

[(1 − ρk) (1 − pfa) + ρk(1 − pmd)]. (80)

Then, (75) follows from T̄err = T̄0(U0, 0). The induc-
tion hypothesis holds at k = L∗, since T̄L∗(UL∗ , eL∗) =
(1−eL∗)(1−�)Rmin, see (72). Now, assume it holds for some
k+1 ≤ L∗. Using the transition probabilities from state
(Uk, 1) and the induction hypothesis, we obtain T̄k(Uk, 1) = 0.
Instead, from state (Uk, 0) we obtain

T̄k(Uk, 0) = ρk(1 − pmd)T̄k+1(Bk, 0)
+ (1 − ρk) (1 − pfa)T̄k+1(Uk \ Bk, 0)

= (1 − �)Rmin

L∗−1∏
j=k

[
(1 − ρk) (1 − pfa) + ρk(1 − pmd)

]
,

which readily follows by applying the induction hypothesis.
The induction step is thus proved.

Let Ēk(Uk, ek) be the energy-to-go from state (Uk, ek) in
slot k ≤ L∗. We prove that

Ēk(Uk, ek) =
[
v
(L∗)
k + hk + uk(1 − ek)

]
|Uk|. (81)

Then, (75) follows from P̄err = 1
Tfr
Ē0(U0, 0), and by noticing

that v(L∗)
0 /Tfr is the power consumption in the error-free case,

given in Theorem 4. The induction hypothesis holds at k = L∗,
since ĒL∗(UL∗ , eL∗) = (N − L∗)φd

(
NRmin
N−L∗ , �

)
|UL∗ | =

v
(L∗)
L∗ + hL∗ + uL∗(1 − eL∗), with v

(L∗)
L∗ given by (55),

hL∗ = uL∗ = 0, see (72). Now, assume it holds for some
k + 1 ≤ L∗. Using the transition probabilities from state
(Uk, ek), the induction hypothesis, and the fact that |Bk| =
ρk|Uk| and |Uk \ Bk| = (1 − ρk)|Uk|, we obtain

Ēk(Uk, 1) = φsρk|Uk| + pfaĒk+1(Bk, 1)
+ (1 − pfa)Ēk+1(Uk \ Bk, 1)

=
{
φsρk +

(
v
(L∗)
k+1 +hk+1

)
[pfaρk + (1 − pfa) (1 − ρk)]

}
|Uk|;

Ēk(Uk, 0) = φsρk|Uk| + ρk(1 − pmd)Ēk+1(Bk, 0)
+ (1 − ρk) pfaĒk+1(Bk, 1)
+ (1 − ρk) (1 − pfa)Ēk+1(Uk \ Bk, 0)
+ ρkpmdĒk+1(Uk \ Bk, 1)

=

{
φsρk +

(
v
(L∗)
k+1 + hk+1 + uk+1

)

×
[
ρ2

k(1 − pmd) + (1 − ρk)2 (1 − pfa)
]

+
(
v
(L∗)
k+1 +hk+1

)
ρk (1 − ρk) (pfa+pmd)

}
|Uk|.

The induction step Ēk(Uk, ek) = (v(L∗)
k +hk+uk(1−ek))|Uk|

can be finally proved by expressing v
(L∗)
k = gk(ρk) and

ρk = 1
2 − φs

4v
(L∗)
k+1

using (59), and using (76)-(77).
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