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Support Recovery From Noisy Random
Measurements via Weighted /; Minimization

Jun Zhang
and Nicolo Michelusi

Abstract—Herein, the sample complexity of general weighted
£; minimization in terms of support recovery from noisy under-
determined measurements is analyzed. This analysis generalizes
prior work on £; minimization by considering arbitrary weight-
ing. The explicit relationship between the weights and the sample
complexity is stated such that for random matrices with i.i.d. Gaus-
sian entries, the weighted ¢; minimization recovers the support of
the underlying signal with high probability as the problem dimen-
sion increases. This result provides a measure that is predictive
of relative performance of different algorithms. Motivated by the
analysis, a new iterative reweighted strategy is proposed for binary
signal recovery. In the binary sparsity-Promoting Reweighted £;
minimization (bPRL1) algorithm, a sequence of weighted £; min-
imization problems are solved where partial support recovery is
used to prune the optimization; furthermore, the weights used for
the next iteration are updated by the current estimate. bPRL1
is compared to other weighted algorithms through the proposed
measure and numerical results are shown to provide superior per-
formance for a spectrum occupancy estimation problem motivated
by cognitive radio.

Index Terms—Weighted ¢; minimization, support recovery,
sample complexity, partial support recovery, cognitive radio.

1. INTRODUCTION

ONSIDER support recovery of a high-dimensional sparse
C signal from a small number of noisy measurements. More
specifically, suppose that * € R” is an unknown k-sparse
signal, i.e., n-dimensional vector having at most k non-zero
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elements, and A € R"™*" is a known measurement matrix
satisfying k£ < m < n. The measurement process can be
modeled as

y=Azx"+ =z (1
where z is a noise vector. Our goal is to recover the support
of &*; exact support recovery means that supp(x*) = {i : 2} #
0} and its signs are properly identified, i.e., support and sign
consistency.

This is a fundamental problem in many fields, exploiting
tools from compressed sensing (CS) [2], [3], machine learning
[4] and statistics [5]. Given the support, one can straightfor-
wardly recover the signal via least-squares on the received sig-
nal projected onto the support set. In several key applications,
the support is physically more significant than the component
values. For example, in a cognitive radio network scenario [6],
further investigated in Sec. III, the secondary users are allowed
to utilize the frequency bands assigned to the primary users
when the bands are not in current use. To detect the spectrum
opportunities, we are concerned with estimating the number of
active frequency bands and their locations exactly. However, this
might be a difficult task, due to the complexity and energy cost
of sensing, in real time, all the frequency bands to detect avail-
able spectrum opportunities. In contrast, one may leverage the
fact that the spectrum occupancy varies slowly over time, as a
result of users leaving and joining the network at random times,
and thus develop CS techniques to measure the spectrum and de-
tect sparse variations in spectrum occupancy, as demonstrated
in [7]. In brain-computer interfaces [8], electroencephalogra-
phy (EEG) is a popular noninvasive technology to probe hu-
man brain activities with excellent spatial-temporal resolution.
A relatively fine spatial resolution is required to localize the
neural electrical activities from a huge number of potential loca-
tions, where neural activity is represented by non-zero potential
locations [9].

There has been a great deal of work [10]-[13] on the analy-
sis of classical CS methods, such as ¢; minimization [14] and
Orthogonal Matching Pursuit (OMP) [15], for exact support re-
covery. Among them, [10] shows that in a high-dimensional
setting, the /; minimization

. 1 2

& —agming [Az—yl} +hlal, @
can, with high probability, exactly recover the support of =*
from m > 2klog(n — k) random measurements.
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The ¢; minimization assumes no prior information other than
the sparsity prior on *. However, significant performance gains
can be obtained by exploiting not only standard sparsity, but also
structural priors of «*, e.g., partially known support [16]-[18].
A unified method by which to incorporate both the sparsity and
the structural priors is a weighted ¢; minimization [7], [16],
(171, [19];

. . 1 ) n
& = argmin  [|Az — y|; + h}}wlw 3)

where w; > 0 denotes the weight for component 7, which can
play a key role in the incorporation of structural priors by penal-
izing different components of & with nonuniform weights. There
are numerous CS algorithms that employ (3), but with different
weighting assumptions. A partial list includes: modified-BPDN
[16], compact belief incorporation-based recovery (CBIR) [7],
support driven reweighted ¢; minimization (SDRL1) [20], it-
erative reweighted ¢; minimization (IRL1) [19] and threshold
iterative support detection (threshold-ISD) [17]. In this paper,
we are interested in developing a performance guarantee for the
weighted ¢; minimization for determining exact support in the
noisy setting.

A. Prior work on Weighted ¢, Minimization

In the noiseless version of weighted ¢; minimization, we can
pursue the recovery of * by solving

mmin Z wj|z;| subjectto y = Awx. (€Y)
i=1

Several works have studied the exact recovery of * using prior
support information to determine the weights in (4), e.g., [18],
[21]-[23]. There has been a focus on the “two weights” version
of (4), a special case of the weighted ¢; minimization. In partic-
ular, a modified-CS method was proposed in [18], where zero
weights are assigned to the known support and unit weights are
assigned to the others. This work showed that when a large pro-
portion of the support is known, the restricted-isometry-based
recovery conditions of the modified-CS are weaker than those
for traditional /; minimization. A mutual-coherence-based re-
covery condition for the modified-CS was proposed in [21],
which also relaxes the analogous #; minimization condition en-
suring the recovery of any k-sparse signal. More generally, [22]
analyzed the performance of (4) over a non-uniform sparsity
model where the entries of the unknown vector fall into two
sets, with entries of each set having a specific probability of
being non-zero. A Grassman angle approach was used to estab-
lish a recovery condition from the angle of sample complexity
for (4), which focuses primarily on the case that there are only
two different probabilities, and hence only two weights. In [23],
given a support estimate 7 C {1,...,n}, one solves (4) where
w; = w € [0, 1] wheneveri € T, and w; = 1 otherwise. Further,
sufficient and necessary conditions for exact recovery using this
method are derived. Bounds on the number of Gaussian mea-
surements for these conditions to be satisfied are determined.
There is a substantial body of work [24]-[30] examining
the noisy setting and the use of weighted ¢; minimization or
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its variants for sparse signal recovery. These works investigate
the robust and stable recovery problem, i.e., how accurate is &
when compared to * in terms of /5 norm of error. Specifi-
cally, [24] studied a weighted ¢/; minimization, named innova-
tive basis pursuit de-noising (iBPDN), which incorporates the
known support by penalizing it with zero weights, and shows
that iBPDN has similar stability behavior to that of traditional
{1 minimization. In [25], a sufficient condition for weighted
{1 minimization for the robust and stable recovery is analyzed,
where w; = w € [0, 1] is applied to the support estimate and
w; = 1 otherwise. Relying on the accuracy and size of the sup-
port estimate, it is proved in [25] that weighted ¢; minimization
is stable and robust under weaker sufficient conditions than
the analogous conditions for /; minimization. Further, [26] ex-
tended the analysis of [25] to multiple sets. Recently, sample
complexity analyses [28]-[30] have been carried out for the
robust and stable recovery of weighted ¢; minimization. For
example, [28] provided an unifying theory to compute sam-
ple complexity for general regularized linear regression when
the measurement matrix belongs to the Gaussian ensemble and
[30] derived another unified sample complexity for weighted ¢;
minimization in terms of how well a given prior model for the
sparsity support aligns with the true underlying support.

Our work has two major differences compared to the existing
results. Firstly, we focus on the support recovery problem in the
noisy setting, while the existing results in the noisy setting are
concerned with the robust and stable recovery problem. Since
support recovery is a stronger theoretical criterion than robust
and stable recovery, the existing results offer no guarantee that
the support of £* can be recovered exactly in this case. Secondly,
unlike most of the previous studies that restricted the weighted
£, minimization to “two weights” models with w; € [0, 1], we
study weighted ¢; minimization where w; € [0, +00), V1 < i <
n, namely, the general “multiple weights” model.

The current work is an extension of [1], which considered
only strictly positive weights (w; > 0). Several popular algo-
rithms allow for zero-valued weights [16]—-[18], thus the anal-
ysis of w; > 0 is relevant. While this change in assumptions
may seem small, the analysis is quite different. For example,
in some cases, the problem in Equation (3) cannot recover the
support exactly with probability one. This fact necessitates our
new result which characterizes when we can recover the sup-
port and which additional constraints are needed for the cases
of w; € [0, +00).

B. Contributions

This paper provides a sample complexity analysis for the
general weighted ¢, minimization for exact support recovery
when random matrices with i.i.d. Gaussian random entries are
used. The main contributions of this work are two-fold.

1) We prove that, in the noisy scenario, if there exists at least
one zero weight outside of the support of x*, the solution, & in
(3) will not match the true support of * with probability one.
This drawback can be overcome by introducing thresholding.
With thresholding, we establish a set of sufficient conditions
under which & can exactly recover the support of «* with high
probability. These conditions reveal the explicit relationship be-
tween the weights and the sample complexity. For example,
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in the case of w; > 0, we show that if the magnitude of the
non-zero entries of &* are large enough, & has the true support
of * with high probability, provided the number of measure-
ments is sufficiently large, i.e., m > 2nklog(n — k), where 7 is
an explicit function of the weights. This scaling law extends the
work in [10] by incorporating arbitrary weighting. Interestingly,
n provides a key measure, dependent on the weights, which is
predictive of performance.

2) Motivated by the analysis, an iterative weighted strategy,
named the binary sparsity-Promoting Reweighted {1 minimiza-
tion (bPRL1) algorithm!, is proposed to recover a binary sparse
signal, which utilizes partial support recovery to prune the opti-
mization and updates the weights iteratively. bPRL1 is compared
to other weighted algorithms through the proposed measure and
numerical results and is shown to provide superior performance
for a spectrum sensing problem motivated by cognitive radio.
We observe that in some cases where other methods achieve a
50% rate of exact support recovery, bPRL1 can achieve a 87%
rate of exact support recovery.

C. Organization and Notation

The remainder of this paper is organized as follows. In
Section II, we detail the optimality conditions of (3) and es-
tablish sufficient conditions for exact support recovery. Then,
the main results of this paper are derived. Further, motivated by
the spectrum sensing problem, we propose the bPRL1 algorithm
for binary signal recovery in Section III. In Section IV, some
numerical simulations demonstrate the performance gains of the
bPRL1 algorithm. Conclusions are provided in Section V.

We briefly introduce the notation used in this paper. Scalars
are denoted by lowercase letters (e.g., m), vectors by lowercase
bold italicized letters (e.g., ), matrices by uppercase boldface
letters (e.g., A) and sets by uppercase calligraphic letters (e.g.,
S). We denote the -th entry of a vector « by z;, the i-th row of
a matrix A by A’ and the i-th column of a matrix A by A;. We
denote by A (or ) the reduced dimension matrix (or vector)
constructed by the columns (or entries) of A (or x) whose in-
dices are in the set S. If A is a diagonal matrix, A is a diagonal
matrix constructed from the diagonal elements of A whose in-
dices are in the set S. The support set of a vector x is denoted by
supp(a), the cardinality of a set S by |S| and [n] = {1,...,n}.
Given S C [n], its complement is denoted by S¢ = [n] \ S. The
notation [|z[|, denotes the ¢, norm of x. The notation AT
denotes the transpose of A. Throughout this paper, * is the
original k-sparse signal that satisfies k < m < n. Without loss
of generality, we assume that the elements of A are drawn
randomly and independently from the standard Gaussian distri-
bution, i.e., a; ; ~ N(0,1), and the entries of z, z; ~ N(0,0?).

II. SAMPLE COMPLEXITY ANALYSIS FOR
WEIGHTED gl MINIMIZATION
A. Support Recovery Conditions
In this section, we detail the optimality conditions of the

weighted ¢; minimization, then investigate the conditions under

!"This algorithm was presented at the 2016 IEEE International Symposium
on Information Theory (ISIT) conference [1].
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which it is possible to exactly recover the support of =* (or
the support of its reduced dimensional vector). For this section
(Section II-A), we mainly consider the case that A and z are
deterministic and fixed. In the sequel (Section II-B), we will
consider statistical models on A and z and leverage the results
in the current section which serve to provide conditions for
support recovery, conditioned on A and z.

Without loss of generality, the weighted ¢; minimization can
be rewritten as follows:

R .1
w:argmmm%HAw—yHg + h||We|,, 5)

where W € R"*" is a diagonal matrix, whose diagonal vector
isw withw; € [0, +00), h > 0is atuning parameter to achieve
a tradeoff between the data fidelity and its sparsity and m is the
number of the measurements. We denote the subdifferential of
[[We||, on x as

Wz, = {Wulu" Wz = [Wa|,, [ul, <1}
= {Wuu; = sign(z;), if w;z; #0
and u; € [—1,1], otherwise}, (6)

where W is independent on w, sign(xz;) =1 when x; >0
and sign(x;) = —1 when z; < 0. In the paper, we also denote
sign(z;) = 0 when z; = 0. From convex analysis, we have the
following Lemma.

Lemma 1: (Global Minimum and Uniqueness): Assume
that A, z and the weights w; are deterministic and fixed. (a)
A vector £ € R” is a global minimum of (5) if and only if
IWa € 9||Wg&]|,, such that

1
—AT(AZ —y)+hWa = 0. ©)
m

(b) Suppose V is any subset of [n]\ {i : w; = 0} with |V| >
n —m.If |a;| < 1foralli € V and Ay is full column rank 2,
then & is the unique minimum.
The proof of this Lemma is given in Appendix A.
According to the proof of Lemma 1, if (7) can be split into

1 . .
EA]@“ (Y — Ape@ye) = h- Wye - Gy

T ®)

L (y — Ape@ye )| < hw; fori €V,
m

there exists an @, which satisfies |i;| <1 for i € V such
that &; = 0 hold for ¢ € V. According to (b) in Lemma 1,
& is the unique minimum of (5) provided |V| > n — m. Let
S = supp(x*). We further establish a sufficient condition under
which (5) recovers the support of x* exactly, i.e., sign(&) =
sign(x*).

Lemma 2: (Exact Support Recovery): Assume that A, z
and the weights w; are deterministic and fixed. Then the support
of * can be recovered exactly from (5), provided the following

21t follows from [V| > n — m that m > n — |V| = |V°| holds. Hence, the
condition that A e is full column rank always holds.
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events are satisfied

‘AT {(I — AsAf)z + mhAgTWSuS}

< hw;, VieS© (9a)
sign(xs + Az — mh(ALAs) " Wsuy)
= sign(x%) (9b)

where A = (ALAg) 'A% and us = sign(x}).

The proof of this Lemma is given in Appendix B.

Remark 1: The condition in (9a) is a recovery guarantee for
the zero entries in *, which is the key challenge for the exact
support recovery of x*, while the one in (9b) guarantees the
sign recovery of the nonzero entries in x*.

If there exists at least one zero weight outside of the support
of x*, we obtain the following pessimistic conclusion.

Proposition 1: (Failure Condition): Suppose that the
weights w; are deterministic and fixed, the entries of both A
and z are drawn randomly from the Gaussian distribution. If
there exists at least one zero weight outside of the support of
x*, the support of «* with probability one can not be recovered
exactly by solving (5) alone.

The proof of this Proposition is given in Appendix C.

From the proof of Proposition 1, we observe that although &
can not recover the zero entries in * whose indices are included
in7 \ S, where 7 £ (supp(w))¢, itis possible to guarantee that
supp(z*) C supp(&) holds. Hence, redefine ) be any subset of
{SU T} with |V| = n — m. We investigate the guarantee for
exact recovery of sign(x% ;) by employing (5) and obtain the
following sufficient condition.

Lemma 3: (Partial Support Recovery): Assume that A, z
and the weights w; are deterministic and fixed. Then the sup-
port of % , can be recovered exactly from (5), provided the
following events are satisfied

m

{(I — Ay AL )z + mhAS W diye H
< hw;, VieV
A > HA{; z — mh(A]T/p AV{' )71 WV!: ﬂvrr ) H

(10a)
(10b)

where A is the smallest absolute nonzero entry in * and A;; =
(Agc Ay )71 A]I;{ .

The proof of this Lemma is given in Appendix D.

Remark 2: (i) When 7 \S is empty and V=S8,
Lemma 3 reduces to Lemma 2. (ii) Lemma 3 provides an op-
portunity to combine a threshold method to recover the signs
of the remaining components from &, so that, eventually, exact
support recovery of * can be achieved.

B. Sample Complexity Analysis

To elaborate the precise requirements on the number of mea-
surements needed, we analyze the sample complexity for the
general weighted /; minimization to exactly recover the sup-
port of x* (or the support of its reduced dimensional vector).
We will provide high probability results under key assumptions
for the distributions of A and z. As before, W is deterministic
and fixed. The main results are stated as follows.
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Theorem 1: Assume that V is any subset of {S U 7 }© with
[V| = n — m, the elements of A, a; ; ~ N (0, 1), the entries of
z, z; ~ N(0,0?) and W is deterministic and fixed. One solves
(5) to recover * from the measurements y = Ax* 4 z. Define

o log(n — V)
W

g(h) =cth+20

where 7 = max {w; : i € V°} and ¢, is a positive constant.
Suppose

2
m > max <|V°|,2nk10g(V|)(1 +e) <1 + hi‘k)) . (12)
where £ =", . w?/k, n = maxiey{u%} and € = max{e,
84/ 2, for some fixed € > 0.
(a) If A > g(h), then sign(&suy) = sign(xy, ) holds, with
probability greater than

1 — cyexp(—czmin{me?,n — |V|,log |V|}) (13)
for some positive constants ¢y and cs.
(b) Compute vector & by
zi +g(h) i < —g(h)
Ti =40 |1Zi] < g(h) , (14)
& —g(h) & >g(h)

i.e., the soft-thresholding nonlinearity. If A > 2¢g(h), then @
recovers the support of * exactly, with probability greater than

1 — cyexp(—czmin{me®,n — |[V|,log |V|}) (15)

for some positive constants c; and c3.
The proof of this Theorem is given in Appendix E.

C. Discussion and Numerical Validation of Theorem 1

We first discuss the case that w; > 0, V1 < ¢ < n, and then
extend the discussion to the case that allows some weights to be
zero, i.e., w; = 0, V1 < 7 < n. For wj strictly positive, we can
tighten the results of Theorem 1.

1) w; > 0 case: As the problem dimension increases, we
assume that m is sufficiently large as specified in Theorem 1.
Hence, let V = S, inequality 8,/% <. holds for any fix ¢ > 0
[10]. We obtain the following Corollary.

Corollary 1: Assume that the elements of A, a; ; ~ N(0, 1),
the entries of z, z; ~ N(0,0?) and W is deterministic and
fixed. Consider the optimization in (5) to recover «* from the
measurements y = Ax* 4 z. Define

o? log(k)

g(h) = c17h + 204 =———=, (16)
m

where 7 = max{w; : ¢ € S} and ¢; is a positive constant. If
A > g(h) and for some fixed € > 0, if

2
m > max (k, 2nklog(n — k)(1+¢€) <1 + h%k)) , (I7)

where { = >, _gw?/kand ) = max;es: {“fz }, then & recovers

the support of * exactly, with probability greater than

1 — coexp(—cymin{k, log(n — k)}) (18)
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1
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(b) n=0.5.

0.5 1 1.5 2
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1.5

(c) n = 0.25.

Simulation results of optimization problem (5) with n = 1, n = 0.5 and = 0.25, respectively. The top of each sub figure shows the probabilities of

exact recovery versus the sample size m for three different problem size n. The bottom of each sub figure shows the probabilities of exact recovery versus the
rescaled sample size size 0(m, n, k) = m/[2klog(n — k)]. In all cases, sparsity k = {0.4n0'5—| .

for some positive constants ¢y and cj.

Remark 3: Corollary 1 indicates that if m > 2nklog(n — k)
holds and the smallest magnitude of the non-zero entries of x* is
large enough, the optimization problem (5) can, with high prob-
ability, recover the support of &* exactly where the important
parameter 7 is directly related to the weights. In practice, we
can reduce the sample complexity to some extent by selecting
weights such that 7 is minimized.

Remark 4: The sample complexity analysis [10] for standard
¢1 minimization is a special case of Corollary 1 where W is an
identity matrix. Similar to the analysis in [10], if we set

. \/qsn 202 log(n — k)
S

m

19)

for some ¢, > 2, where ¢ = min {w? : i € V}, then it suffices
to have

-1
m > max | k,2nklog(n — k) ((1 +e) ! - (;) (20)

for some ¢ > 0. Further, if we choose the standard Gaussian ma-
trix and an h with ¢,, — 400, Theorem 1, with high probability,
guarantees the exact support recovery of * with approximately
m = max (k, 2nk log(n — k)) samples.

Theorem 1 provides a scaling law for general weighted ¢4
minimization in terms of exact support recovery, which is re-
lated to the system parameters (n, k, W). Moreover, according
to the scaling law, the parameter 7, which is an explicit function
of the weights, can predict the relative performance of weighed
¢, minimization with different weights. We have conducted

simulations to validate the scaling law and the 7. In the ex-
periments, the non-zero elements of the k-sparse signal is £1
uniformly at random. The components of A are drawn ran-
domly from the standard Gaussian distribution and noise level
o, = 0.5. Based on Remark 4, the choice of & follows equation
(19) with ¢, =9 in our experiments. At first, BPDN [14] is
employed to recover *. According to Theorem 1, BPDN, as
a special case of the weighted ¢; minimization, has n = 1. In
the top portion of Fig. 1(a), we plot the probabilities of exact
support recovery versus the sample size m for three differ-
ent problem sizes n € {512, 1024, 2048}, and k = [0.4y/n] in
each case. We repeat the experiment 200 times at each point.
The probabilities of exact support recovery vary from zero to
one; the larger the problem size, the more samples required.
However, according to the scaling predicted by Theorem 1,
ie., m >=2nCklog(n — k), ¢ is a constant. Thus, the bot-
tom portion of Fig. 1(a) plots the same experimental results,
but the probabilities of exact support recovery are now plotted
versus an “appropriately rescaled” version of the sample size,
i.e., 0(m,n, k) = m/[2klog (n — k)]. In the bottom portion of
Fig. 1(a), all of the curves now line up with one another, even
though the problem sizes and sparsity levels vary dramatically.
All of the cases have probabilities of exact support recovery
that equal to one at 6(m, n, k) = ¢ ~ 2. Thus, the experimental
result matches the theoretical prediction of the scaling law very
well.

To further validate the predictive properties of 7, the same
experiments are performed with weighted ¢; minimization with
non-uniform weights. Two classes of weights are tested where
one weights the non-zero elements of k-sparse signals with
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w; = v/2/2 and another with w; = 1/2. Both strategies weight
the zero elements with w; = 1. We used the YALLI toolbox
[31] to implement the weighted ¢; minimization. The experi-
mental results are plotted in Fig. 1(b) and Fig. 1(c), respectively.
According to Theorem 1, the weighted ¢; minimization has
n = 0.5 and n = 0.25 for the two classes of weights. As shown
in the bottom portions of both Fig. 1(b) and Fig. 1(c), the curves
achieve the probability of exact support recovery equals to one at
6(m,n, k) = ¢ ~ 1and 0(m,n, k) = £( ~ 0.5, respectively.
We observed that the simulation results match the theoretical
predictions of 7 very well, which indicates that 7 provides a
good prediction of the relative performance of weighted ¢; min-
imization with different weights.

2) w; = 0 case: There is a large body of work [16]-[18],
such as modified-BPDN [16], [18], which weights the partially
known support with zero weight. However, errors in the partially
known support will lead to zero weights outside of the support
[32]. In this scenario, the support of * may be impossible to be
recovered exactly by solving (5) alone. Theorem 1 indicates that
even for this situation, (5) can, under certain conditions, exactly
recover the support of * by means of a thresholding method.

Remark 5: A special case of weighted /; minimization is
modified-CS [18] which weights the partially known support as
zero. According to condition (12), if the partially known support
isaccurate, i.e., V = S§¢, this weighting strategy ensures thatn <
1 holds. Comparing with the classical result m > 2klog(n — k)
[10] required by the BPDN where 1 = 1, modified-CS achieves
a reduced sample complexity for exact support recovery by
exploiting the support information as predicted by the respective
values of 7).

Remark 6: The sample complexity of the weighted ¢; min-
imization in terms of exact support recovery of x , is domi-
nated by the system parameters (n, | V|, nk). More specifically,
let V = {SUT}° with |V| > n — m, where 7 can be divided
into 7, £ 7 NS and 7, £ 7 \ S. Then, (i) an increase in |7 |
yields a decrease of 7, which reduces the sample complex-
ity; (ii) an increase in |7,| results in the increase of the term

log(|V])(1 48 %‘V‘) so that more samples are required to
exactly recover the support; (iii) If the triples (n, k + |Z.|, nk)
are the same, the same sample complexity is required for exact
support recovery of &, ).

Number of samples m

(b) n = 1024.

150 200 250 300 0 50 100 150 200
Number of samples m

(c) n = 2048.

250 300

The probabilities of identifying sign(ay, ;) versus the sample size m for three different problem size n € {512,1024,2048}.

We conduct further numerical simulations to validate Theo-
rem 1 and Remark 6. In the experiments, the non-zero elements
of the k-sparse signal are +10 uniformly at random. The compo-
nents of A are drawn randomly from the standard Gaussian dis-
tribution and noise standard deviation is 0, = 0.05. The weights
for weighted ¢; minimization are restricted to w; € {0, 1}, i.e.,
amodified-CS model. At first, we vary k, |7.| and | 7, |, but keep
k + |7.| and nk constant. According to Theorem 1 and (77) in
Remark 6, the model should exactly recover sign(x3, ,,) with
the same sample complexity. In Fig. 2, we plot the probabilities
of exactly recovering sign(x, ;) versus the sample size m for
three different problem sizes n € {512, 1024, 2048}. The exper-
iment was repeated 200 times at each point. In all of the cases,
the red, blue and green curves line up with one another, which
indicate the experimental result match (ii¢) in Remark 6 very
well. Further, we make |7, | or |7, | increase in all of the cases.
It can be inferred from (¢) and (¢7) in Remark 6 that the sample
complexity will decrease or increase, respectively. As shown in
Fig. 2, all of the experimental results match these theoretical
predictions very well. On the other hand, although not shown in
Fig. 2, we observe that in all of the experiments, sign(x*) can
not be recovered exactly by solving (5) alone, which validates
the conclusion in Proposition 1. However, if we compute vector
x by T; = sign(Z;)(|%;] — 5)+, then sign(Z) = sign(x*) holds.

Remark 7: Even though some zero entries in «* can not be
recovered by solving (5) alone, since zero weights are assigned
to these indices, it is possible to recover them by means of a
thresholding method. This fact is important for real applications
because the prior information is often inaccurate, which leads to
the result that a fraction of the weights are biased. Fortunately,
utilizing a thresholding method, the weighted ¢; minimization
is robust to the inappropriate weights.

III. BINARY SIGNAL RECOVERY: PROMOTING SPARSITY AND
MINIMIZING 77 VIA BPRL1 ALGORITHM

In this section, a new iterative reweighted algorithm is pro-
posed for the estimation of a sparse binary vector. Due to the
binary property, binary vector estimation is equivalent to support
recovery. Our algorithm is motivated by the spectrum occupancy
estimation problem in [7]. Therein, primary users (PUs) occupy
aportion of the spectrum band; secondary users (SUs) attempt to
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estimate the spectrum to detect available spectrum opportunities
to use for their own data transmissions. We denote the spectrum
occupancy vector (SOV) as x* € {0,1}", where z; = 1 if the
1-th spectrum band is occupied by a PU, and z} = 0 if it is not
occupied (hence available for use by SUs). The goal for SUs is
to detect * with high accuracy, in order to make use of all un-
used spectrum opportunities, while minimizing the interference
generated to PUs. To this end, SUs collect m compressed noisy
measurements as

=Alx*+2.Vi=1,2,...,m, (1)

based on which they attempt to recover x*, where z; ~
N (0,0?) is Gaussian noise, i.i.d. over time and across the SUs,
and A’ is the measurement vector at SU i. This measurement
model is the result of filtering operations performed at each SU
across the spectrum bins, thus A’ denotes the filtering coeffi-
cient vector, which also includes the signal attenuation between
the primary user (PU) and the SU. We assume that the entries
of A’ are Gaussian with zero mean and unit variance. Equation
(21) can be expressed in matrix notation as

y=Azx"+ z. (22)

Because PUs join and leave the network at random times, there
is temporal correlation in the SOV. Thus, past spectrum mea-
surements provide information so as to estimate ™ at the current
time. We denote the availability of prior information by the vec-
tor 3, where (3; denotes the prior probability that z; = 1, which
is a result of all past observations. Note that if 3; ~ %, the
prior is not informative about the current state of the frequency
bin i.

Utilizing 3, the maximum-a-posteriori (MAP) estimate
#MAP) i given by [7]

#MAP) — arg max P(xz|B,A,y)
xc{0,1}"

= arg min — ||y Aw||2 + 02 Zwlx“
xze{0, 1}"

(23)

i

In(? 3” ). On the other hand, an initial estimate of
a* based on 3 alone is & = x (3 > 0.5) where x(-) is the entry-
wise indicator function. The residual uncertainty vector €* can
be computed via e* = & @ x* where @ is the XOR operator.
Therefore, incorporating & into (23), the MAP estimation of
x* can be transformed into the MAP estimation of e*, which
satisfies

where w; =

sMAP) _ & o &(MAP) (24)
Combining (23) and (24), one has [7]
eMAP) — argmmf Hy AeH + 02 |Wel|, (25)

ec{0,1 }"

where § =y — A&, A = A(I —2diag(&)), W = diag(w)

and
=(1-2%;)In <1 giﬁi) .

Remark 8: Due to the discrete set {0,1}", the optimiza-
tion specified by Equation (25) has exponential complexity. We

(26)
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convert to a convex problem by relaxing {0, 1}" to the convex
set [0, 1]" enabling the use of convex optimization techniques.
Suppose éMAP) is the solution of the corresponding convex
problem. Then eMAP) can be approximately obtained by com-
puting x(é™MAP) > 0.5).

If B is informative, e* is well-modeled as sparse even though
x* may not be. In other words, the prior estimate & may differ
from o* only in few entries, due to an informative prior. Further-
more, a more effective sparsity measure | Wel|, can be obtained
via the non-uniform weighting which is a function of 3. By ex-
ploiting sparsity, we can better estimate e* than *. However, a
lack of informative conditional priors can have a serious impact
on our ability to estimate e*. Consider the following example,
let V¢ = S, the support of e*. And suppose that ef =0 (i.e.,
i=1¢€V)and B, = 0.49. Using (26), the weight w; assigned
to e; is approximately zero. According to our theoretical result
in Theorem 1, it incurs a relatively large 7 such that the sample
complexity for exact support recovery increases. Hence, if 3
is uninformative (e.g., close to 1/2), the sparsity assumption of
e* can be violated with high probability. At the same time, the
uninformative priors can lead to weights that incur biases that
further degrade performance. It motivates us to develop a new
algorithm to mitigate the impact of uninformative conditional
belief.

Our strategy is to use é and & to update the ini-
tial estimate & and the weights W, respectively. Then a new
optimization problem can be constructed, which has better re-
coverability. Firstly, we make an assumption that even if inexact
recovery occurs, éM*P) may lead to good partial support re-
covery. In fact, this assumption is supported by recent results
[33], which show the requirement that most of the support of
current estimate belong to the support of the true signal is far
less stringent than the requirement for exact recovery. Further,
we obtain the following Proposition.

Proposition 2: If most of the support of é
in Equation (25) belongs to the support of e*, i.e

5(MAP) MAP)

(MAP) a5 defined

(MAP)Y ~ o *
su N supp(e 1
pp(é ()MAP)pp( ) > 27
supp(é )
Then } eMAP)Y @ ¢ o x*|| < ||& @ z*||, = |le*]|, holds.
0

The proof of this Proposition is given in Appendix F.

For ease of description, we redefine 200 — 2, ell) =
er, e = gMAP) 3 = 61) g 3O and ® = 30V @ o,
Proposition 2 motivates us to update & to &) because the cor-
responding residual uncertainty vector, i.e., e'?), is more sparse
than e*. Secondly, we use eMAP) 1o update W. Consider the
specific situations that §; = 0 (or 1), then we have the initial
estimate 2.°) = 0 (or 1). If &™) = 1, then 2} is more likely
to be one (or zero) and we hope that w; tends to zero (or 4+00).
Conversely, if égMAP) = 0, then 2] is more likely to be zero (or
one) and w; — 400 (or — 0) is preferred. Hence, to assign the

appropriate weights, we use eMAP) (o update the weights by
ﬁ +&(MAP)

1)

adapting the approximated conditional belief ,6
This update rule pr0V1des a simple tradeoff between the condl—
tional belief of * and the current estimate. Finally, similar to
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(25), anew optimization problem with the updated estimate &
and the approximated conditional belief ,8(1) can be constructed.

Clearly, the above argument can be extended to &) with
7 > 1. Denote 20 = g0-1 ® é(i),forz' > 1. A sequence of
optimization problems with better recoverability (due e being
more sparse and B being more informative) are constructed
as follows,

) 1 , o 2
é) = argmin = H'Q“’U —A(Z’UeH +o?
ecl0,1]" 2

W,

1
(28)
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where (71 =y — Azl AU = A(T - 2diag(&" "))

and
i—1 A(t—1
J

with B°) = 3. Further, &) 2 y (&) > 0.5) and B'") can be
updated as

,B(i) _ I@(ifl) +e
2 b

We summarize the bPRL1 algorithm in Algorithm 1.

1> 1. (30)

Algorithm 1: bPRL1 Algorithm.
Input: y, A, 3 and .
Output: &)
Initialization
1=1,
& =x(B =0.5),
g9 =y - Az,
A = A(T — 2diag(#)) and

0 A 1-4; .
wj( ) (1—23:j)1n( 5 ),forl <j<n.

=

Repeat
1) Solve the optimization problem:
. 1 , . 2
é") = argmin = HQ(’_U - A(“l)eH
ecl0,1]" 2

+ o2 (31)

Wi
1

e = x(&" >0.5) (32)
2) Sparsity-promotion:
2 = 30-1) g g (33)
Q(i) —y— Az
A = A(T - 2diag(2"))
3) Weight update:
8 — ﬁH);é()

(i)
_ . 1- 8
(#) - (1) J
J

(34)

(35)

4 i=i+1;
Until (2 = 20"y or (i > §)

To summarize the essence of the bPRL1 algorithm, we pro-
vide an algorithm sketch, as well as an illustration for promoting
the sparsity in e(*) in Fig. 3 where the solid lines represent the
algorithm sketch and the dashed lines describe the promotion
of sparsity in e(¥), respectively. The core of the bPRL1 algo-
rithm is a dynamic updating of the optimization problem (28)
at each iteration. The updating modifies not only the weights,
but also the residual uncertainty vector. For the i-th iteration
of the bPRL1 algorithm, e is the residual uncertainty vector
of optimization problem (28), which is more sparse than e('~1)
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provided the condition in Proposition 2 is satisfied. At the same
time, the current output é'" is also used to update the weights,
so that 7 is minimized. These two modifications work together
to improve recovery.

Remark 9: In our experiments, the iterative bPRL1 algo-
rithm generally converged in 2-3 iterations. Thus, the added
computational cost for improved support recovery appears to be
moderate.

IV. SIMULATION RESULTS

In this section, we compare bPRL1 to BPDN [14], CBIR [7],
SDRL1 [20], IRL1 [19] and threshold-ISD [17]. For BPDN and
CBIR, fixed weights are employed where BPDN uses W =1
and CBIR determines w; via (26). We observe that bPRL1,
SDRLI1, IRL1 and threshold-ISD are iterative reweighted algo-
rithms. SDRL1 identifies two support estimates that are updated
in every iteration and applies constant weights (i.e., 0 and 1/2)
on these estimates. At the s-th iteration, IRL1 computes

(s

T ) (36)

where xE‘%l) is the i-th element of the solution at the pre-
vious iteration, p € [0,1] and p is a regularization parameter.
Threshold-ISD estimates the support set by employing the cur-
rent solution. In the subsequent iteration, a weight of zero is ap-
plied to the elements whose indices are included in the set. Note
that for CBIR, IRL1 and bPRL1, the weights w; € (0, +00); we
have w; € {0,1} and w; € {0,1/2,1} for threshold-ISD and
SDRLI1, respectively. Both IRL1 and threshold-ISD are state-
of-the-art in terms of the number of measurements required.
However, for the particular problem considered herein, bPRL1
offers improved performance. We underscore that our bPRL1
actively exploits the quality of the prior information, whereas the
other algorithms do not. Thus, the performance improvement is
to be expected. In our experiments, we used the CVX toolbox
[34] for BPDN, CBIR, SDRL1 and bPRL1 implementations;
for IRL1 and threshold-ISD implementations, we employed the
open source code [35] provided in [17]. However, to constrain
the optimization domain to [0, 1], we replaced the YALLI tool-
box [31] in the open source code with the CVX toolbox [34].

Comparisons between six methods in terms of 7 and noise variance o
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versus probability of exact recovery.

All test code was tested on a Thinkpad X220i with dual Intel(R)
Core(TM) i3 CPUs 2.30GHz and 4GB of memory.
We first generate a random prior, 7; ~ U|[0, 1] where

{m SP(ar=1), Vie[l,n] (37)

Y Plzi=1)=n

Then, the n-dimensional SOV x* is generated using this prior. In
the experiment, we set n = 60 and the sparsity rate v = 0.2. The
measurement y = Ax* 4 zis constructed where the elements
of A, a;; ~N(0,1) and the entries of z, z; ~ N(0,0.05).
To emulate the conditional prior in [7], we generate con-
ditional priors randomly to consider the cases of informa-
tive/uninformative priors. In particular, we select 3; as fol-
lows: if & =0, then B; ~ U [1,7 + 0.6] and if =] = 1, then
Bi ~ U [0.4 — 7,1 — 7]. Herein, we provide results for 7 = 0.1
and 7 = 0.2. According to the model, when 7 = 0.1, 3 provides
an informative prior such that we can expect that both CBIR and
bPRL1 will achieve better performance than the others. How-
ever, when 7 = 0.2, we have

8i ~ U10.2,0.8], x]
‘ U[0.2,0.8], x;

=0
:]_.

* =%

(38)

The conditional prior 3 in this case does not provide any in-
formation for both CBIR and bPRLI1. Note that we have used
(3 to construct an initial support estimate &, then all of the al-
gorithms in the experiments recover the corresponding residual
uncertainty vector e* rather than x* directly.

Fig. 4 and Fig. 5 depict the sampling rate (i.e., 7-) versus the
probability of exact recovery when 7 = 0.1 and 7 = 0.2, respec-
tively. The experiments are repeated 200 times for each sam-
pling rate. Although not shown here, if 7 = 0, CBIR and bPRL1
achieve the same, near unity probability of exact recovery and
the other schemes are worse, but have essentially coincident be-
havior. The top portion of Fig. 4 and Fig. 5 show the histograms
of n for three classes of weighted ¢; minimization based recov-
ery algorithms: the IRL1 [19], the CBIR [7] and the proposed
bPRL1 algorithm. Note that as all of the algorithms examined
couple weighted ¢; minimization with hard-thresholding, small
valued elements will be clipped to zero. Thus we compute the
average 1) for the last iteration of each estimation by eliminat-
ing the smallest 35% of the weights in the complement of the
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support set. If we compare the modes of these histograms, we
see that in Fig. 4, f[R1.1 > TCBIR > bPRL1- Suggesting that
for a fixed sampling rate, we expect the probability of exact
recovery to be the best for bPRL1; indeed, this is reflected in
the numerical results in the lower portion of the figure. Inter-
estingly, for 7 = 0.2, JcBIR > MRL1 > bPRL1- Suggesting
that CBIR will provide worse performance than IRL1, this is
consistent with what we see in the bottom portion of Fig. 5. The
bPRLI1 still attains the best performance in this case.

Further, Fig. 6(a) presents the probability of exact recovery
versus 7 for the six methods where the sampling rate is set to
0.5. We observe that the performance of CBIR degrades rapidly
as 7 increases. When 7 > (.18, CBIR is inferior to SDRL1,
IRL1 and threshold-ISD. However, bPRLI is far superior to the
other algorithms even if the conditional prior is uninformative.
Fig. 6(b) depicts the probability of exact recovery versus noise
variance o> where 7=0.15 and the sampling rate is fixed to 0.5.
These curves show while varying the noise levels, bPRL1 still
maintains a significant improvement on recoverability. We have
also compared the computational complexity of the six methods.
The results are depicted in Fig. 7. As BPDN and CBIR are not
iterative, they are the least complex. However, bPRL1 has lower
complexity than SDRLI, threshold-ISD and IRLI as it con-
verges in very few iterations. Thus, for our problem of interest,
exact support recovery in the presence of potentially uninfor-
mative priors, bPRL1 provides the best performance/complexity
tradeoff.

V. CONCLUSIONS

We provide a sample complexity analysis for the general
weighted ¢; minimization problem for support recovery which
generalizes prior work for standard /; minimization by consid-
ering arbitrary weights. This result provides a measure which
allows one to predict the performance of weighted ¢, minimiza-
tion based approaches. Motivated by the theory, a new itera-
tive reweighting algorithm, named bPRLI1, is proposed which
exploits prior information and promotes sparsity through the
pruning of the signal within an iteration. Signal pruning capi-
talizes on partial support recovery and the binary nature of the
signal of interest. Our previously computed measure proves to
be predictive of simulation results wherein bPRL1 offers su-
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perior performance over other reweighting methods that also
exploit prior information. We observe that in some cases where
other methods achieve a 50% rate of exact recovery, bPRL1 can
achieve a 87% rate. At present, we are working on extending
the bPRL1 to the non-binary case.

APPENDIX A
PROOF OF LEMMA 1

Proof: Tt is known that (5) can be transformed into an
equivalent constrained problem with a continuous objective
function over a compact set [36]. Therefore, its minimum is
always achieved. Based on the first order optimality condi-
tion, & is a global minimum of (5) if and only if IWau €
O||W&|,,such that AT (A& —y)+hWa =0. Thus (a)
is established. According to standard duality theory [37],
given the subgradient W4 € R"™, any optimum & € R" of (5)
must satisfy the complementary slackness condition &/ W& =
'W&||,. For all ¢ such that |@;| < 1 and w; # 0, this condition
holds if and only if Z; = 0. Further, if |4;| < 1 forall ¢ € V and
Ay is full column rank, then (5) is strictly convex because its
solution is restricted to the form (£, 0), and so its optimum is
unique. Thus (b) applies.

APPENDIX B
PROOF OF LEMMA 2

Proof- Define an n-dimensional vector ' as

mj[s =x5+Alz —mh(ALAs) ' Wsug 39)
mg =0 '

If the conditions in (9) are satisfied, we will prove that vector

x' is the unique minimum of (5). According to (9b), we have

sign(m}) = sign(xs). (40)

Further, utilizing the equality Wsugs = W x sign(xs), it
follows

acjs =z5+ Alz —mh(ASAs) "W x sign(wg). (41)

Thus letting )V = S¢ and V¢ = S, we have that :ch satisfies the
first condition in (8) through multiplying both sides in (41) by
AgAg. Further, substituting (41) into the term (y — Agwg),
we have that Vi € V

3 i
‘ m (y Asws)

< hw, (42)

where the inequality in (42) utilizes the fact that Wg x
sign(a;jg) = Wgsus and follows from the condition in (9a).
Hence, according to the sufficient conditions in (8), xt is the
unique minimum of (5), i.e., & = xt. Based on (39) and (40),
sign(@&) = sign(x*) holds.

APPENDIX C
PROOF OF PROPOSITION 1

Proof: Recall that W is the subdifferential of |[WZ||,
as defined in Equation (6). If there is a nonempty set 7, =
{i:w; =0andi ¢ S}, we have that W7 7, = 0y, |1 holds,
where 07|« represents the vector of zeros with the size
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|7¢] x 1. According to Lemma 1, if the support of &* can be
recovered exactly by solving (5), i.e., sign(&) = sign(x*), then
it is necessary that 3 W € 9||W ||, , such that

[As,Az]" QJ— [As, A7 ] [:733 D = mh{wsa‘g}. (43)
07, 1x1 07, |x1

Defining B = [As, A7 ]"[As, Az ] and p = ([As, Az ]
z —mh[YVs%5]), (43) can be rewritten as

07 1x1
:f:g — x
B Sl=p
07 |x1

We first consider the case that |7.| < m — k. Since A is a Gaus-
sian random matrix, its submatrix [As, A7 ] is full column rank
with probability one. Thus B € RF+7-Dx(k+[T]) s fyll rank
with probability one [38] and its columns are linearly inde-
pendent. Moreover, given that the noise vector z is selected
randomly from a Gaussian distribution, p is also randomly dis-
tributed, which is linearly independent with any k + |7;| — 1
columns of B with a probability of one [39]. Therefore, the
probability that (44) holds is zero.

Further, we consider the case that |7;| > m — k, where
[As, Az ] is full row rank with probability one. According to
matrix theory [38], we have that

rank(B) = rank ([As, Az ]) =m,

(44)

(45)

where rank(B) represents the rank of matrix B. Because of the
random property of p, there are m columns of B that are linearly
independent with p. Therefore, it follows that

rank([B, p]) = m + 1 # rank(B) (46)
According to matrix theory [38], we have that
Bx=p ()

is an inconsistent equation. Hence, (44) holds with proba-
bility zero. Based on the above analysis, the conclusion in
Proposition 1 holds.

APPENDIX D
PROOF OF LEMMA 3

Proof: There always exists a vector & that is the global min-
imum of (5) and satisfies (7). Recall that S = supp(x*) and
T = {i : w; = 0}. Suppose V be any subset of {S U7 } with
|[V| > n — m. According to Lemma 1, & is the unique minimum
of (5) if

i

(48)

(y — Ay @y )| < hu

T
‘A forieV.

m
Moreover, according to Equation (8) and Footnote 1, & can be

determined as
{ ivc = Ili?;p =+ Altp z — mh(Agp AV“ )_1WVr '[l,Vr‘ (49)
Cf)v =0 :

Substituting (49) into (48), we obtain the condition in (10a).
Obviously, we have that S C V°. Therefore, if the condition in
(10b) is satisfied, according to Equation (49), it follows that

sign(&s) = sign(xk). (50)
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Based on Equations (49) and (50), we have that sign(&suy) =
sign(x* sy ) so that the conclusion in Lemma 3 holds.

APPENDIX E
PROOF OF THEOREM 1

In this section, the proof of Theorem 1 uses the techniques in
[10], with appropriate modification to account for the weighted
£, norm that replaces the ¢; norm.

Proof: Based on Lemma 3, we conclude that optimization
problem (5) can recover the support of x% ,, exactly, pro-
vided the events in (10) are satisfied. Therefore, we first de-
rive a precise condition under which (10a) is satisfied with
high probability. Further, by bounding the quantity (A;},z —
mh(AL. Aye )" W @y ), another condition can be obtained
to guarantee sign(&s) = sign(x%) holds with high probability.
Then, according to Lemma 3, the support of x, ), is, with high
probability, recovered exactly from the solution of (5).

For (10a), conditioned on Ay. and noise z, we have that
A AIT + T -1 N
Fi = h [(I — Avc AV‘ )Z + mhAVn (AV{‘, A])n ) WVr UVn]

(5D

m
is zero-mean Gaussian with variance at most
var(L;|Ay., 2)
< A (AL AV Wi + (1- Av AT Hz . (52
Further, because
(Aye (AL Ay ) la, T— Ay A DY =0 (53)
holds for all vectors a and b, we have
<Av(, (AL Ap) "Wty , (I— Ay A, )%> —0. (54)
It follows that

var(T';|Aye, z)

< [Av A% Av) T Wi z + |- Ay A;)ﬁ”j.
(55)

For the first term in equation (55), we have

T -1 Ik
HAV(: (AV" AV{: ) WV{‘ Uye

2

1 AL Ay \ !
= —al. Wy ("") Wy Gy
m m
AL Ay \ !
(VV> Wi diye
m

AL AN\
m

where the first inequality follows from the Cauchy-Schwartz
inequality, |||-|||, represents the spectral norm and the second
inequality follows from the definition of matrix norm.

1

IN

W W

2

2

1

2
2

IN

W W

; (56)
2
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At the same time, we have

(C)

2

AL AN
R e I (A
m
2
Applying Lemma 9 in [10], it follows that the event
AL Ay Ny
|||(V V> <148,V (58)
m m
2
is satisfied with probability greater than 1 — 2exp(—#).
Recall that the definition of vector .. We have
. 2
[ag W [[; < D° Wik = ke, (59)

icye

o W2, ) .
where & = Z@T” and Wy ; represents the i-th diagonal

element in the matrix Wy . Consequently, combining Equations
(56), (58) and (59), we obtain that event

_ 2 _
HAyu (Aglg Ayu) 1Wyv ﬁyc S (1 +8 TLV|> @ (60)
2 m m

is satisfied with probability greater than 1 — 2€xp(f%M).

Turning to the second term in (55), we have

[a-avap) = <L 113
Ve mhlla = mh2 m

(61)

since (I — Ay A;w ) is an orthogonal projection matrix. On the
other hand, ||zH§ /o? is a x? random variable with m degrees of
freedom. Thus, applying the tail bounds for x? random variable
(see Appendix J in [10]), we have that for all e € (0,1/2),

AL At E 2 < o? < 73me2
F {H(I Av AV(‘)thQ z(1+¢) th] =P 16 )

(62)
Combining (55), (58) and (62), we have that event

var([;) > 11

_ 2 63
é(l—f—maX{E,S M}) (Ek—i—az) ©
m m  mh?

is  satisfied with probability less than

min{me*,n — |V|}) for some ¢; > 0.

dexp(—cy
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Consequently, applying the standard Gaussian tail bounds
(see Appendix A in [10]), we have

ey
=P {ma{}x T | > w;|var(T;) < H} P [var(T;) < II]
1€

+P [mavx|l"i| > w;|var(T;) > H} Pvar(T;) > II]
ic

<P {ma{)xﬂj,; > w;|var(T;) < H} + P[var(T;) > 17]
1€

2
< 2|V|exp (—;ﬁ{) + 4exp(—cymin{me*, n — [V|}).

(64)

Further, the exponential term in (64) is decaying, provided

’ O'g

m > 2nklog|V|(1+¢) <1+h2§k>’ (65)
wheren = max,;ey{%} and € = max{e, 84/ }. Combining
with the rank condition on Ay, i.e., m > |V¢|, it follows that
the condition (12) holds.

For (10b), we establish a bound on (A)t z—
mh(AL Ay )" Wye @iy ) and applying the triangle in-
equality, we have

(A 2 — mh(AL Aye) " Wyediye )

s

§ ||A+(, z”oo + th (A]I;( A])r‘ )_1WV!: '&V!: H . (66)

For the first term in (66), conditioned on A ., random vector
A{; z is zero-mean Gaussian with variance at most

AL AN\
m
As analyzed in [10],

AL Ay
m

By the total probability rule, it follows

3 [

(67)

2

9;2] < %exp (f%) (68)

2
4%

P|T >

2

m

2 2
<P [||A];zHOo > 1T < 9‘72] +P (T > 9UZ> (69)
m m

Using the standard Gaussian tail bounds and the conclusion in
(42) of [10], it follows

o2 log(n — |V])

P |Iag<l, >
m

] < dexp(—¢;m) (70)

holds for some ¢; > 0.
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For the second term in (66), we have

-1 R
mH (Agu A]}tf ) Wyr Uye Hoo

<

(A e Ay

-1
m > - :[71 W]}f‘ 'l’l]jr + ||171WV1: 'lfl/];a ||:)o

e}

(71)

According to Lemma 5 in [10], we have

AL A\ R X
P <H> —I 1 eruyr ZCQ”WV!:UV(:”OO

m
(o)
< 4exp(—cgmin{n — [V|,1og(|V])}) (72)
holds for some co, c3 > 0. Therefore, it follows
71 ~ ~
P {th(Azjﬂ(Avr) WV”UV” 2 C4hHWV"UV“ OO}
< 4dexp(—c3 min{n — |V|,log(|V|)}) (73)

holds for some c3, ¢y > 0. Combining (66), (70) and (73), we
have that event

(A 2 — mh(Ay Ay ) Wiy )||

< C4hHWVc ﬁyn

420

g(h)  (74)

oZlog(n—[V[) a
p =

is satisfied with probability greater than 1 — c’4 exp(—
min{n — [V|,log(|V|)}). Therefore, if Vie S |z}| > g(h)
holds, we have that (10b) holds with high probability. Com-
bining the probabilities that the two events in (10) are satisfied,
it follows from Lemma 3 that (a) in Theorem 1 holds.

Further, if |2}| > 2¢g(h), for i € S, it follows from (49) and
(74) that for ¢ € S,

2] > |2} — |[(As 2z — mA(A Ape) ™ Wyediye ) ||
> g(h)
and fori € V°\ S,

(75)

2] < |2f] + || (ASx
= [|(A}x 2
< g(h)

hold with probability greater than 1-coexp(—c3 min{me?,n —
[V|,log(|V])}) for some positive constants c; and c3. Therefore,
applying Equation (14), the zero entries of «* in indices V¢ \ S
can, with high probability, be recovered exactly. Then (b) in
Theorem 1 holds.

z — mh(AJ Ay ) Wiy )|
— mh(Af Ay ) Wiy )|
(76)

APPENDIX F
PROOF OF PROPOSITION 2
Proof: If most of the support of eMAP) belon g to the support
of e*, i.e.,
‘supp( (AP Asupp(e*)| 4
MAP = 2’ a7
‘supp( (MAP)) ‘
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we have
eMAP) @ 3 @ .= eMAP) o o .
= |supp(é™*™)) N supp(e”)°| + |supp(e”) N supp(eMAT))e .
(78)
Because we have |supp(é™MAP)) N supp(e*)°| +
|supp(é™*")) N supp(e*)| = |supp(e™MAF))|, it follows
that
[supp(e™*")) N supp(e”)°| < [supp(eé™*")) N supp(e”)]
(79)
by applying (77).
Hence, combining (78) and (79), we have
SMAP) o & o o
< |supp(e™*")) M supp(e”)| + [supp(e”) N supp(e™ A7) )|
= [supp(e”)[ = [le”[l, - (80)
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